
Adjunct Elimination in Context Logic for

Trees

Cristiano Calcagno Thomas Dinsdale-Young Philippa Gardner

Department of Computing, Imperial College, London, UK

Abstract

We study adjunct-elimination results for Context Logic applied to trees, following
previous results by Lozes for Separation Logic and Ambient Logic. In fact, it is not
possible to prove such elimination results for the original single-holed formulation
of Context Logic. Instead, we prove our results for multi-holed Context Logic.

Key words: Context Logic, Adjunct Elimination, Ehrenfeucht-Fräıssé Games

1 Introduction

Separation Logic [1–3] and Ambient Logic [4] are related theories for reason-
ing, respectively, about heap update and static trees. Inspired by this work,
Calcagno, Gardner and Zarfaty invented Context Logic [5] for reasoning about
structured data. In particular, they used Context Logic applied to trees to rea-
son locally about tree update, following the reasoning style of Separation Logic
for reasoning locally about heap update. Such local reasoning is not possible
using Ambient Logic [6].

All these logics extend the standard propositional connectives with a struc-
tural (separating) composition for reasoning about disjoint subdata and the
corresponding structural adjoint(s) for expressing properties such as weak-
est pre-conditions and safety conditions. For Separation Logic and Ambient
Logic, Lozes [7] and then Dawar, Gardner and Ghelli [8] showed that the

Email addresses: ccris@doc.ic.ac.uk (Cristiano Calcagno),
td202@doc.ic.ac.uk (Thomas Dinsdale-Young), pg@doc.ic.ac.uk (Philippa
Gardner).

Preprint submitted to Elsevier 18 February 2009

structural adjoints provide no additional expressive power on closed formu-
lae. This result is interesting, as the adjunct connectives introduce quantifica-
tion over potentially infinite sets whereas the structural composition only re-
quires quantification over finite substructures. Following this work, Calcagno,
Gardner and Zarfaty proved adjunct elimination for Context Logic applied
to sequences, and showed the correspondence with the ∗-free regular lan-
guages [9,6]. We expected an analogous result for Context Logic applied to
trees, but instead found a counterexample (first reported in Dinsdale-Young’s
Masters thesis [10]).

Context Logic was originally introduced to establish local Hoare reasoning
about tree update. For this application, it was enough to work with single-
holed contexts, although we always understood that there were other forms
of contexts requiring study. In Section 2, we present our counterexample to
adjunct elimination for single-holed Context Logic. The key point is that,
whereas structural composition reasons about trees by splitting them into
contexts and trees, contexts cannot be split. One possible solution is simply to
extend Context Logic with context composition and its corresponding adjoints.
We do not know if adjunct elimination holds for this extension. We do know
that current proof techniques cannot be immediately adapted. Instead, we
prove an adjunct-elimination result for multi-holed Context Logic applied to
trees, which provides a more general approach for splitting contexts.

Our adjunct-elimination result uses a technique based on Ehrenfeucht-Fräıssé
games, which was first used to prove adjunct elimination for Ambient Logic
in [8]. For Context Logic, this technique naturally requires multi-holed con-
texts. To illustrate this, consider the tree t = c1(t1) which denotes the appli-
cation of context c1 to tree t1. The structural composition move in a game
will split t into c2(t2), leading to a case analysis relating c1 and t1 with c2

and t2 involving multi-holed contexts. For example, when t2 is a subtree of c1,
this case is simply expressed using a two-holed context d(,) with d(t2,) = c1

and d(, t1) = c2. Using multi-holed Context Logic, we are thus able to provide
an adjunct-elimination result which conforms with the analogous results for
Separation Logic and Ambient Logic.

We first published this adjunct-elimination result in the conference APLAS
2007 [11], although it does not contain most of the proofs. This journal paper
provides the proofs, gives a more detailed account of adjunct elimination in the
single-holed case (Section 2), where one adjoint can be removed and the other
cannot, and provides a fuller account of multi-holed Context Logic (Section 3).
We believe multi-holed Context Logic introduced here will play an important role
in our future development of Context Logic since, although analysing multi-holed
contexts was not necessary for our preliminary work on tree update, they do seem
to be fundamental for other applications such as reasoning about concurrent tree
update.

2

Acknowledgements Calcagno acknowledges support of an EPSRC Advanced Fel-
lowship. Dinsdale-Young acknowledges support of an EPSRC DTA award. Gardner
acknowledges support of a Microsoft Research Cambridge/ Royal Academy of En-
gineering Senior Research Fellowship.

2 Single-holed Context Logic for Trees

In order to motivate our use of multi-holed Context Logic, we shall first summarise
single-holed Context Logic for trees (CLs

Tree) [5] and the known facts concerning
adjunct elimination.

2.1 The Tree Model

We begin by defining the tree model which consists of finite, ordered, unranked trees
and tree contexts. Throughout the paper, the nodes of trees are labelled from an
infinite set of atoms, the set of node labels Σ, ranged over by u, v, w. 1

In the literature, a distinction is often drawn between structures with a single root
node, which are called ‘trees’, and structures with any number of roots, called
‘forests’. Results in Context Logic, including those presented here, do not generally
rely on this distinction, and so we use the term ‘trees’ to refer to structures with
any number of root nodes.

Definition 1 (Trees and Tree Contexts). The set of trees T , ranged over by a, b,
and the set of (single-holed) tree contexts Cs, ranged over by c, d, are defined as

a, b ::= ε
∣∣ u[a]

∣∣ a1 | a2 (u ∈ Σ)
c, d ::=

∣∣ u[c]
∣∣ a | c ∣∣ c | a (u ∈ Σ)

modulo structural equivalences given by the ‘|’ operators being mutually associative
and having identity ε (the empty tree). The notation u is used to abbreviate u[ε].

Definition 2 (Context Application). Context application is a function, ap : Cs ×
T → T , defined inductively over the structure of contexts by

ap(, b) = b

ap(u[c], b) = u[ap(c, b)]
ap(a | c, b) = a | ap(c, b)
ap(c | a, b) = ap(c, b) | a.

The notation c(a) is used to abbreviate ap(c, a). Note that is the left identity of
ap.

1 We assume that the elements of Σ are distinct from all other constants introduced
in this paper.

3

2.2 Single-holed Context Logic

Context Logic [5] was introduced by Calcagno, Gardner and Zarfaty to reason about
structured data (for example, trees), in contrast with Bunched Logic of O’Hearn
and Pym [12] which reasons about unstructured resource (for example, heaps).
Using Context Logic, it is possible to provide local Hoare reasoning about tree
update, following O’Hearn, Reynolds and Yang’s work on local Hoare reasoning
about heap update [1–3]. The key observation in [5] was that local data update
typically identifies the portion of data to be replaced, removes it, and inserts new
data in the same place. Context Logic was therefore introduced to reason about
both data and this place of insertion (contexts).

We now define single-holed Context Logic applied to trees, denoted CLs
Tree . Our def-

inition follows a similar pattern to the definitions of Separation Logic and Ambient
Logic. It extends the propositional connectives of classical logic with general struc-
tural connectives for analysing the structure of single-holed contexts, and specific
connectives for analysing the particular model under consideration (in this case,
trees and tree contexts).

Definition 3 (Formulae of CLs
Tree). Single-holed Context Logic for trees consists

of the set of tree formulae, Ps, ranged over by P, P1, P2, and the set of context
formulae, Ks, ranged over by K,K1,K2. These sets are defined by:

P ::= 0 tree-specific formulae
K(P)

∣∣ K � P structural formulae
false

∣∣ P1 ⇒ P2 Boolean formulae
K ::= u[K]

∣∣ P |K ∣∣ K | P (u ∈ Σ) tree-specific formulae
I
∣∣ P1 � P2 structural formulae

False
∣∣ K1 ⇒ K2 Boolean formulae.

The structural formulae relate to the single-holed context application operation.
The formula I specifies that a context is the context hole, . The application formula
K(P) specifies that a tree can be viewed as the application of some context satisfying
K to some tree satisfying P . The connectives ‘�’ and ‘�’ are the right adjoints of
application. The formula K � P is satisfied by a tree if, whenever any context
satisfying K is applied to it, the result satisfies P . Similarly, the formula P1 � P2

is satisfied by a context if, whenever it is applied to a tree satisfying P1, the result
satisfies P2. The specific connectives are used to express additional tree-specific
properties of trees and tree contexts. The formula 0 specifies that a tree is the
empty tree, ε. The formula u[K] specifies that a tree context has a single topmost
node labelled u above a context that satisfies the formula K. The formula K | P
specifies that a context is the horizontal concatenation of a context satisfying K
and a tree satisfying P ; the formula P |K has an analogous interpretation. In this
paper, we deal with basic Context Logic without quantification over node labels.

The formal semantics of the formulae is given by the satisfaction relations described

4

Fig. 1. The tree a = u[v1[v2[w1] | v3[w2]] | v2[v2[w3] | v3[w4]]]

below.

Definition 4 (Satisfaction Relations of CLs
Tree). The satisfaction relations, |=Ps ⊆

T × Ps denoting the satisfaction of a tree formula by a tree, and |=Ks ⊆ Cs × Ks

denoting the satisfaction of context formula by a tree context, are defined inductively
on the structure of the formulae by

a |=Ps 0 iff a = ε

a |=Ps K(P) iff there exist c ∈ Cs, b ∈ T s.t.
a = c(b) and c |=Ks K and b |=Ps P

a |=Ps K � P iff for all c ∈ Cs, b ∈ T , b = c(a) and c |=Ks K implies b |=Ps P

a /|=Ps false
a |=Ps P1 ⇒ P2 iff a |=Ps P1 implies a |=Ps P2

c |=Ks u[K] iff there exists d ∈ Cs s.t. c = u[d] and d |=Ks K

c |=Ks P |K iff there exist a ∈ T , d ∈ Cs s.t.
c = a | d and a |=Ps P and d |=Ks K

c |=Ks K | P iff there exist a ∈ T , d ∈ Cs s.t.
c = d | a and a |=Ps P and d |=Ks K

c |=Ks I iff c =
c |=Ks P1 � P2 iff for all a, b ∈ T , a = c(b) and b |=Ps P1 implies a |=Ps P2

c /|=Ks False
c |=Ks K1 ⇒ K2 iff c |=Ks K1 implies c |=Ks K2

We use the Boolean connectives ‘false’, ‘False’ and ‘⇒’. The other standard con-
nectives, ‘true’, ‘True’, ‘¬’, ‘∧’ and ‘∨’, are derivable. We also use the following
derived formulae: u[P] , u[I](P), P1 | P2 , (P1 | I)(P2), K J P , ¬(K � ¬P) and
P1 I P2 , ¬(P1 � ¬P2). The first derived formula has the expected meaning, that
a forest consists of a root node labelled u above a forest satisfying P . The second is
also intuitive, meaning that a forest is the horizontal concatenation of two forests
with the left satisfying P1 and the right P2. The others are negation duals of the
application right adjoints, which have an existential interpretation. For instance,
K J P is satisfied by a tree if there exists a context satisfying K which may be
applied to it to produce a tree satisfying P .

We assume the following binding precedence among the connectives, with ‘¬’ bind-
ing tightest: ‘¬’, ‘−(−)’, ‘|’, ‘∧’, ‘∨’, {‘�’, ‘�’, ‘I’, ‘J’}, ‘⇒’, with the braces denoting
that there is no precedence between ‘�’, ‘�’, ‘I’ and ‘J’.

5

Fig. 2. Illustration of how the tree a may be split: a = ap(c, b)

Let us consider a few examples to illustrate the logic.

Example 5. Let a = u[v1[v2[w1]|v3[w2]]|v1[v2[w3]|v3[w4]]], as illustrated in Figure 1.
Then we have the following:

a |=Ps u[true | v1[v2[w3[0]] | true] | true] (1)
a |=Ps True(v2[w3[0]]) (2)
a /|=Ps u[True(v2[w5[0]])] (3)
a |=Ps (w6[0] � True(v2[w1[0]] | v3[w6[0]]))(w2[0]). (4)

The first example expresses that the tree a has root node labelled u with a child
labelled v1 whose first child consists of a tree of the form v2[w3]. By examination,
this can be seen to be true. The second example expresses that a has some subtree
of the form v2[w3]. Figure 2 illustrates how a may be split into context c and tree b
such that c |=Ks True and b |=Ps v2[w3[0]] as required for (2). In the third example,
the formula is not satisfied by a since the tree cannot be split apart as required;
in particular, there is no node labelled w5. The fourth example illustrates how the
adjoints are used to express hypothetical statements about trees. The formula is
satisfied because, when a subtree satisfying w2[0] is replaced by a tree satisfying
w6[0], the resulting tree satisfies True(v2[w1[0]] | v3[w6[0]]).

2.3 Adjunct elimination

Dinsdale-Young studied adjunct elimination results for CLs
Tree in his Masters’ the-

sis [10]. He proved the following two results.

Theorem 6. For every tree and context formula of CLs
Tree , there is a logically

equivalent formula which does not make use of the ‘�’-connective.

Theorem 7. There is no adjunct-free formula of CLs
Tree that is logically equivalent

to the context formula 0 � True (u[0]).

6

Fig. 3. Structure of the contexts ci and di

The first result is a positive elimination result, that the ‘�’-connective adds no
expressive power to the logic. The proof is based on Ehrenfeucht-Fräıssé games,
a technique we shall use later in this paper. It adapts the method introduced by
Dawar et al. in [8] to prove adjunct elimination for Ambient Logic, whose adjuncts
are essentially special cases of Context Logic’s ‘�’-connective. Indeed, in light of
their paper and Lozes earlier work [7], this elimination result is not surprising.

The second result shows that elimination of the other right adjoint is not possible;
that is, the ‘�’-connective does add some expressive power. Since no analogue of
the ‘�’-connective exists in Ambient Logic, we have less expectation of a positive
elimination result a priori. However, on an intuitive level we may find this result
surprising. The adjunct connective, in essence, allows one to specify properties of
a context in terms of the result of applying it to specified trees. The result of this
application is a tree that incorporates the original context, and is, in a sense, bigger.
Intuitively, we should not be able to specify any additional properties of the context
in terms of this tree.

However, Theorem 7 shows that this is not the case. We present a short proof of
this theorem.

Proof of Theorem 7. Let K = 0 � True (u[0]). Define contexts ci and di (illustrated
in Figure 3) by

c0 = u[] ci+1 = u[ci]
d0 = v[] di+1 = u[di].

Observe that, for all i, ci |=Ks K whilst di /|=Ks K. We shall prove, by induction
on the structure of formulae, that no adjunct-free formula shares this property. In
particular, we shall prove that, for any given adjunct-free formula K ′, there is an n
such that, for j ≥ n, cj |=Ks K ′ if and only if dj |=Ks K ′.

In the base case, K ′ = I or K ′ = False. It is immediate that n = 0 is adequate for
both cases, since ci /|=Ks K ′ and di /|=Ks K ′ for all i.

In the inductive case, we consider the different cases for the structure of K ′. Where
K ′ = w[K ′′], either w = u or K ′ is not satisfied by ci or di for any choice of i > 0
(and hence n = 1 works). Assuming the former, let n′ be the value given by the
inductive hypothesis such that, for j ≥ n′, cj |=Ks K ′′ if and only if dj |=Ks K ′′.

7

Observe that ci+1 |=Ks K ′ if and only if ci |=Ks K ′′, and di+1 |=Ks K ′ if and only if
di |=Ks K ′′. Therefore, selecting n = n′ + 1 works.

In the case where K ′ = P |K ′′ or K ′ = K ′′ | P , ci and di can only satisfy K ′ when
they also satisfy K ′′, since any horizontal splitting of ci or di into a context and
tree will give the empty tree. Let n′ be the value given by the inductive hypothesis
for K ′′. Choosing n = n′ is sufficient for the result to hold. In the case where
K ′ = K1 ∨ K2, choosing n to be the maximum of n1 and n2 (where these values
are given for K1 and K2 by the inductive hypothesis), is sufficient. Similarly, in the
case where K ′ = ¬K ′′, choosing n = n′ suffices.

Thus, there is no adjunct-free formula equivalent to K.

The key property of the logic that is exploited in Theorem 7 is that trees can be
split arbitrarily while contexts cannot. Thus, inserting the empty tree into a context
results in a tree which can be split in such a way that properties can be identified
close to the context hole, regardless of how deep it was within the original context.

It should be noted that the counterexample does not show whether there is some tree
formula that has no adjunct-free equivalent, which remains an open question. This
problem is interesting, since contexts are in some sense a by-product of reasoning
about trees. Yet it is difficult, since the counterexample from Theorem 7 precludes
a direct inductive proof that ‘�’ is eliminable from tree formulae, since it may not
be eliminable from subformulae.

2.4 Single-holed Context Logic with Composition

A natural extension of single-holed Context Logic is to include connectives for rea-
soning about context composition: that is, a composition connective — enabling a
context to be specified as the result of inserting one context into the context hole
of another, much like the application connective for trees — plus the correspond-
ing adjoints. This composition connective allows us to split contexts in a much
more arbitrary fashion, without using ‘�’. As we might expect, this means that
the counterexample to ‘�’-elimination for CLs

Tree no longer applies. Indeed, adjunct
elimination for this extended logic is an open problem.

Before we discuss the implications of this extension further, let us formalise it.
We work with the same trees and contexts as before. The composition function,
cp : Cs × Cs → Cs, is defined analogously to ap.

Definition 8 (Context Composition). Context composition is a function, cp : Cs×

8

Cs → Cs, defined inductively on the structure of contexts by

cp(, c′) = c′

cp(u[c], c′) = u[cp(c, c′)]
cp(a | c, c′) = a | cp(c, c′)
cp(c | a, c′) = cp(c, c′) | a.

Note that is the two-sided identity of cp.

We define single-holed Context Logic for trees with composition, denoted CLc
Tree ,

by extending CLs
Tree with a composition connective and its corresponding right

adjoints.

Definition 9 (Formaule of CLc
Tree). Single-holed Context Logic for trees with com-

position consists of the set of tree formulae, Pc, ranged over by P, P1, P2, and the set
of context formulae, Kc, ranged over by K,K1,K2. These definitions are mutually
recursive: the set Pc is constructed as for CLs

Tree ; the set Kc is defined by:

K ::= u[K]
∣∣ P |K ∣∣ K | P (u ∈ Σ) tree-specific formulae

I
∣∣ P1 � P2 structural formulae

False
∣∣ K1 ⇒ K2 Boolean formulae

K1 ◦K2

∣∣ K1 ◦−K2

∣∣ K1 −◦K2 composition formulae.

Definition 10 (Satisfaction Relations of CLc
Tree). The satisfaction relations for

CLc
Tree , |=Pc ⊆ T × Pc denoting the satisfaction of a tree formula by a tree, and

|=Kc ⊆ Cs×Kc denoting the satisfaction of a context formula by a tree context, are
defined as for CLs

Tree , but with the following additional inductive rules for the new
connectives:

c |=Kc K1 ◦K2 iff there exist c1, c2 ∈ Cs s.t.
c = cp(c1, c2) and c1 |=Kc K1 and c2 |=Kc K2

c |=Kc K1 ◦−K2 iff for all c1, c2 ∈ Cs,
c2 = cp(c1, c) and c1 |=Kc K1 implies c2 |=Kc K2

c |=Kc K1 −◦K2 iff for all c1, c2 ∈ Cs,
c2 = cp(c, c1) and c1 |=Kc K1 implies c2 |=Kc K2.

With context composition at our disposal, we can start to see how the problems we
had earlier in showing adjunct elimination start to break down. For example, the
formula 0 � True(u[0]) is equivalent to the adjunct-free formula

True ◦ (u[I] ∨ (True(u[0]) | True) ∨ (True | True(u[0]))).

Although our original counterexample no longer disproves adjunct elimination, as
we have seen, we might expect that there are others which do. However, let us
consider our earlier intuition that the ‘�’-connective simply turns a context into a
larger tree, and hence does not make it easier to discriminate between two contexts.

9

The trick of the counterexample was that we had a powerful tool for describing
trees that we did not have for describing contexts, namely the arbitrary splitting
into context and tree. This meant that the ‘�’-connective could be used indirectly
to describe how a context could be split. Context composition allows us to split con-
texts directly, so the advantage of shifting from context reasoning to tree reasoning
is apparently mitigated. Our original intuition, then, is more likely to be valid.

Despite this, there is an expressive subtlety: application allows us to reason about a
subtree at any point in a tree, whereas context composition is limited to reasoning
about subcontexts. To exemplify this, consider that we can express that the tree
u[w | u[v | u]] has subtree u in terms of application as

u[w | u[v | u]] = ap(u[w | u[v |]], u),

but there is no directly analogous way to express that u is a subtree of the context
u[w[] | u[v | u]]. Such a direct analogue would require the use of two-holed contexts.

We can, however, express such properties indirectly. A subtree of a context has a
lowest common ancestor with the context hole. The subcontext at this ancestor can
be viewed as the horizontal concatenation of a context and a tree that contains
the subtree of interest. Thus, the overall context is the composition of a context
with the concatenation of a context and the application of a context to the tree of
interest. In our example:

u[w[] | u[v | u]] = cp(u[], w[] | ap(u[v |], u)).

As long as we can express the potential properties of the two-holed context in terms
of the properties of the component contexts, the ‘�’-connective no longer seems
necessary for describing such splittings.

However, our attempts to prove adjunct elimination using games for single-holed
Context Logic with composition are thwarted by this issue. The crux of the prob-
lem is that the complex splitting required to express the subtree of the context
means that the inductive hypothesis is not strong enough to show that the required
properties of the composition hold. Instead, we prove adjunct elimination for the
multi-holed case.

3 Multi-holed Context Logic for Trees

We now present multi-holed Context Logic for trees, CLm
Tree . Our definitions arise

as extensions of those of CLc
Tree . As before, we work with finite, ordered, unranked

trees with nodes labelled from the set Σ. The difference is that contexts may now
have multiple context holes, each labelled distinctly from an infinite set of atoms,
the set of hole labels X, ranged over by x, y, z, We assume that the sets X
and Σ are disjoint. Since our contexts can have any number of holes, in CLm

Tree we
consider trees to be exactly the contexts with no context holes, and therefore do
not explicitly distinguish them in our definitions.

10

Fig. 4. An illustration of how contexts c1 and c2 combine to form c = c1 ©x c2

Definition 11 (Multi-holed Tree Contexts). The set of multi-holed tree contexts,
denoted Cm and ranged over by c, d, is defined by

c ::= ε
∣∣ x ∣∣ u[c]

∣∣ c1 | c2 (x ∈ X,u ∈ Σ)

with the restriction that each hole label, x ∈ X, occurs at most once in the context
c, and subject to the ‘|’ operator being associative and having identity ε. The set of
hole labels that occur in c, denoted fn(c), is defined inductively by

fn(ε) = ∅
fn(x) = {x}

fn(u[c]) = fn(c)
fn(c1 | c2) = fn(c1) ∪ fn(c2).

The notation u is used as an abbreviation of u[ε].

Definition 12 (Substitution). The substitution of hole label x ∈ X by context
c2 ∈ Cm in context c1 ∈ Cm, denoted c1[c2/x], is defined as follows:

ε[c2/x] = ε

x[c2/x] = c2

y[c2/x] = y where y 6= x

(u[c1])[c2/x] = u[(c1[c2/x])]
(c1 | c′1)[c2/x] = (c1[c2/x]) | (c′1[c2/x]).

Definition 13 (Context Composition). Context composition is a set of partial
functions indexed by hole labels, cpx : Cm × Cm ⇀ Cm, defined by

cpx(c1, c2) =

 c1[c2/x] if x ∈ fn(c1) and fn(c1) ∩ fn(c2) ⊆ {x}

undefined otherwise.

The notation c1 ©x c2 is used as an abbreviation of cpx(c1, c2). Figure 4 shows an
example of context application. Note that x is the two-sided identity of ‘©x ’.

11

This definition of multi-holed context seems to be the most appropriate for our
reasoning style, since it allows contexts to be separated easily. A similar definition
is used in [13] to study the expressivity of First-Order Logic on ranked trees. An
alternative formulation is to order the holes, rather than uniquely name them, but
this approach does not sit so naturally with separating contexts.

Example 14. The context c1 = u[u[v] | u[u | v]] | v is a tree with no hole labels.
It may be expressed as the application of a single-holed context to another tree,
e.g. c1 = u[x | u[u | v]] | v ©x u[v]. It may also be expressed as a two-holed context
applied to two trees, e.g. c1 = (u[x |u[u | y]] | v ©y v)©x u[v]. Recall that the context
holes are labelled uniquely by x and y, with the first application u[x |u[u |y]] |v ©y v
declaring that the argument v should be placed in the hole labelled y. This means
that u[x | u[u | x]] | v does not fit our definition of a context since the hole label x
occurs more than once.

The following two lemmata, which are readily checked, state useful properties of
context composition.

Lemma 15. For x, y ∈ X and c1, c2, c3 ∈ Cm, if y = x or y /∈ fn(c1), then
c1 ©x (c2 ©y c3) = (c1 ©x c2)©y c3, where defined.

Lemma 16. For x, y ∈ X and c1, c2, c3 ∈ Cm, if y 6= x, x, y ∈ fn(c1), y /∈ fn(c2),
x /∈ fn(c3), then

(c1 ©x c2)©y c3 = (c1 ©y c3)©x c2.

We define multi-holed Context Logic for trees, CLm
Tree . As for the single-holed case,

we extend the propositional connectives of classical logic with structural connec-
tives for analysing multi-holed contexts, and specific connectives for analysing tree
contexts.

The formulae of CLm
Tree use variables for hole labels. The variable names are taken

from an infinite set of atoms, the set of hole variables Θ, ranged over by α, β, γ.

Definition 17 (Formulae of CLm
Tree). Multi-holed Context Logic for trees consists

of the set of CLm
Tree formulae, Km, ranged over by K,K1,K2. This set is defined by:

K ::= 0
∣∣ u[K]

∣∣ K1 |K2 (u ∈ Σ) tree-specific formulae

α
∣∣ K1 ◦α K2

∣∣ K1 ◦−α K2

K1 −◦α K2

∣∣ ∃α.K (α ∈ Θ) structural formulae

False
∣∣ K1 ⇒ K2 Boolean formulae.

As in CLs
Tree , we use the Boolean connectives ‘False’ and ‘⇒’. The structural con-

nectives ‘α’, ‘◦α’, ‘◦−α’ and ‘−◦α’ describe fundamental properties of multi-holed
contexts. The connective ‘α’ expresses that a context is a hole whose label is the
value of the variable α. The connective ‘◦α’ specifies that a context is a composition
of two contexts where the hole being filled is the value of α. The connectives ‘◦−α’

12

and ‘−◦α’ are the right adjoints of composition: K1 ◦−αK2 expresses that, whenever
a context satisfying K1 is α-composed on the left with the given context, the result
satisfies K2; while K1 −◦α K2 expresses that, whenever a context satisfying K1 is
α-composed on the right with the given context, the result satisfies K2. In addi-
tion, we have existential quantification over hole labels, which allows us to specify
context composition without specific reference to the hole name. Finally, the tree-
specific connectives ‘0’, ‘u[−]’ and ‘|’ express basic structural properties of our tree
contexts: a tree context is empty, has top node labelled u, or is the concatenation
of two contexts respectively.

Definition 18 (Environment). An environment is a finite partial function σ :
Θ ⇀fin X which assigns hole labels to hole variables. The set of environments is
ranged over by σ, ρ.

The empty environment is denoted by ∅, and the extension of σ with a new domain
element α with value y is denoted by σ[α 7→ y]. The domain of definition of σ is
defined as

dom(σ) = {α ∈ Θ : σ(α) is defined},

and we call σ and σ′ domain-coincident if dom(σ) = dom(σ′). The range of σ is
defined as

range(σ) = {x ∈ X : there exists α ∈ Θ s.t. x = σ(α)}.

We denote by σ[y/x] the environment with

σ[y/x](α) =

 y if σ(α) = x

σ(α) otherwise

for all α ∈ Θ.

Whereas CLs
Tree did not include variables in the logic, CLm

Tree does. Consequently,
the satisfaction judgement for CLm

Tree takes into account the valuation of the free
variables of a formula given by an environment.

Definition 19 (Satisfaction relation of CLm
Tree). The satisfaction relation, |= ⊆

(Cm × (Θ ⇀fin X)) × Km denoting the satisfaction of a formula by a context with
respect to an environment, is defined inductively on the structure of the formulae
by

c, σ |= 0 iff c = ε

c, σ |= u[K] iff there exists c′ ∈ Cm s.t. c = u[c′] and c′, σ |= K

c, σ |= K1 |K2 iff there exist c1, c2 ∈ Cm s.t.
c = c1 | c2 and c1, σ |= K1 and c2, σ |= K2

13

c, σ |= α iff c = x

c, σ |= K1 ◦α K2 iff there exist c1, c2 ∈ Cm s.t.
c = c1 ©x c2 and c1, σ |= K1 and c2, σ |= K2

c, σ |= K1 ◦−α K2 iff for all c1, c2 ∈ Cm,
c2 = c1 ©x c and c1, σ |= K1 implies c2, σ |= K2

c, σ |= K1 −◦α K2 iff for all c1, c2 ∈ Cm,
c2 = c©x c1 and c1, σ |= K1 implies c2, σ |= K2

c, σ |= ∃α.K iff there exists y ∈ X s.t. c, σ[α 7→ y] |= K

c, σ /|= False
c, σ |= K1 ⇒ K2 iff c, σ |= K1 implies c, σ |= K2.

We use two conventions for convenience. Firstly, we adopt Barendregt’s conven-
tion and assume that bound variable names differ from free variable names, and
furthermore differ from elements of the domain of any environment under consid-
eration; if that is not the case, the bound variables may and are assumed to be
renamed. Secondly, we only ever consider satisfaction of a formula when all of its
free variables are assigned values by the environment. We also make use of standard
derived connectives, where appropriate: ‘True’, ‘¬’, ‘∧’, ‘∨’, ‘∀α’. As in CLs

Tree , we
define negation duals for the adjunct connectives: K1 •−αK2 , ¬(K1 ◦−α¬K2) and
K1 −•α K2 , ¬(K1 −◦α ¬K2).

We assume the following binding order among the connectives, with ‘¬’ binding the
tightest: ‘¬’, ‘|’, ‘◦α’, ‘∧’, ‘∨’, {‘◦−α’, ‘−◦α’, ‘•−α’, ‘−•α’}, ‘⇒’, ‘∃α’, ‘∀α’, with the
braces denoting that there is no precedence between ‘◦−α’, ‘−◦α’, ‘•−α’ and ‘−•α’.

Example 20. We present a few example formulae:

(1) The formula u[0] expresses that a tree consists of a single node labelled u.

(2) The formula ∃α. (True ◦α u[0]) expresses that a context contains tree u[ε].

(3) The formula (True ◦α α) expresses that a hole labelled with the value of α
must be in the context.

(4) The formulae ∃α. (0−◦α u[0])◦α True and u[True]∨ (True |u[0])∨ (u[0] |True)
both express that a context has a root node labelled u and either children or
siblings on the left or siblings on the right.

(5) The formula ∃α. (¬(u[True]−◦α ¬K)) ◦α 0 expresses that it is possible to add
some subcontext with a single root node labelled u at some point in the context
(not in a context hole) to produce a context satisfying K.

(6) The formula ∃α. (True ◦α α) ∧ (0 −◦α (∃β.True ◦β u[0])) expresses that the
empty tree may be placed into some context hole such that the resulting tree
has some leaf node labelled u.

The logic CLm
Tree has several useful properties. Firstly, CLs

Tree can be embedded in
it as described below.

14

Fix some hole label x ∈ X. The sets T and Cs are embedded into Cm by the functions
J−KT : T → Cm and J−KCs : Cs → Cm respectively, defined inductively as follows:

JεKT = ε

Ju[a]KT = u[JaKT]
Ja1 | a2KT = Ja1KT | Ja2KT

J KCs = x

Ju[c]KCs = u[JcKCs]
Ja | cKCs = JaKCs | JcKCs
Jc | aKCs = JcKCs | JaKCs .

Fix some hole variable α ∈ Θ. The sets Ps and Ks are embedded into Km by the
functions J−KPs : Ps → Km and J−KKs : Ks → Km respectively, defined inductively
as follows:

J0KPs = 0
JK(P)KPs = JKKKs ◦α JP KPs

JK � P KPs = JKKKs ◦−α JP KPs

JfalseKPs = false
JP1 ⇒ P2KPs = JP1KPs ⇒ JP2KPs

Ju[K]KKs = u[JKKKs]
JP |KKKs = JP KPs | JKKKs

JK | P KKs = JKKKs | JP KPs

JIKKs = α

JP1 � P2KKs = JP1KPs −◦α JP2KPs

JFalseKKs = False
JK1 ⇒ K2KKs = JK1KPs ⇒ JK2KPs .

These embeddings preserve satisfaction in the following sense.

Proposition 21. For all a ∈ T , P ∈ Ps, c ∈ Cs and K ∈ Ps

a |=Ps P iff JaKT , [α 7→ x] |= JP KPs

c |=Ks K iff JcKCs , [α 7→ x] |= JKKKs.

This embedding is readily extended to CLc
Tree .

Another useful property is given by the use of quantified variables over hole labels in
the logic: it is possible to express compounded splittings of a context in a way that
is agnostic to the actual labels used to identify the holes. This can result in greater
modularity than if we did not have quantification — a subformula can say that a
property holds for some choice of hole label without explicitly stating which, and so
maintain its sense despite changes in the rest of the formulae which may introduce
other hole names. For example, the formula K1 ∧∃α. True ◦αK2 expresses that K1

holds for the context and that K2 holds for some subcontext. The choice of which
hole label α should be bound to may depend on K1, but with quantification it is
not necessary to re-write the rest of the formula to accommodate a change in K1.

15

A further consequence of quantification is that sentences of CLm
Tree (that is, formulae

with no free variables) describe the shape of contexts completely independently
of the hole labels that appear in them. For instance, the formula ¬∃α.True ◦α α
expresses that a context is a tree (that is, it has no holes); the formula ∃α. (True ◦α
α) ∧ ∀β.True ◦β β ⇒ β ◦α True expresses that a context has exactly one context
hole.

A third property of CLm
Tree that is significant to this paper is that the games method-

ology used to prove adjunct elimination for Ambient Logic in [8] can be successfully
adapted to prove adjunct elimination for CLm

Tree .

As in the original Context Logic, we can derive the adjoints of the specific formulae:
the adjoint of ‘u[−]’ is ‘∀α. (u[α] ◦−α−)’; that of ‘−|K’ is ‘∀α. ((α |K) ◦−α−)’; and
that of ‘K | −’ is ‘∀α. ((K | α) ◦−α −)’.

The following lemma establishes formally the natural intuition that the labels used
for holes are not important; that is, we can substitute them and maintain the
satisfaction relation. We will make use of this fact in our later results.

Lemma 22 (Hole Substitution Property). For any tree context c ∈ Cm, environment
σ : Θ ⇀fin X, formula K ∈ Km, and hole labels y, x ∈ X such that x /∈ fn(c) ∪
range(σ),

c, σ |= K iff c[x/y], σ[x/y] |= K.

4 Games

We define Ehrenfeucht-Fräıssé-style games for CLm
Tree . These games are sound and

complete with respect to the logic: two contexts can be distinguished by a logical
formula if and only if Spoiler has a winning strategy for a corresponding game. Our
presentation is similar to that of [8], except we use a more relaxed definition of rank,
which simply distinguishes between the adjunct and non-adjunct moves.

4.1 Ranks

We first define the rank of a logical formula, a concept which is also used to
parametrise games. Some examples are given in Table 1. Informally, the rank of
a formula is a tuple 2 r = (n, s,L) ∈ N× N×F (Σ) where:

• n is the greatest nesting depth of the non-adjunct, non-Boolean connectives,
i.e. ‘0’, ‘u[−]’, ‘|’, ‘α’, ‘◦α’, ‘∃α’;

2 We use the notation F (Σ) to denote the finite power set of Σ; that is, the set of
all finite subsets of Σ.

16

Formula Rank

u[0] | (u[0] | u[0]) ∨ ¬0 (4, 0, {u})

∃α. (¬u[v[0] | True]) ◦α β (6, 0, {u, v})

u[v[α]−◦α (w[0] ◦−β v[u[w[0]]])] (5, 2, {u, v, w})
Table 1
Ranks of Selected Formulae

• s is the greatest nesting depth of the adjunct, non-Boolean connectives, i.e. ‘◦−α’,
‘−◦α’; and

• L is the finite subset of Σ consisting of the node labels that occur in the formula.

Definition 23 (Rank). The rank of a formula K ∈ Km is rank(K), where the
function rank : Km → N × N ×F (Σ) is defined inductively over the structure of
CLm

Tree formulae by

rank(0) = (1, 0, ∅)
rank(u[K]) = (n+ 1, s,L ∪ {u})

where (n, s,L) = rank(K)
rank(K1 |K2) = (max(n1, n2) + 1,max(s1, s2),L1 ∪ L2)

where (n1, s2,L1) = rank(K1) and (n2, s2,L2) = rank(K2)
rank(α) = (1, 0, 0)

rank(K1 ◦α K2) = (max(n1, n2) + 1,max(s1, s2),L1 ∪ L2)
where (n1, s2,L1) = rank(K1) and (n2, s2,L2) = rank(K2)

rank(K1 ◦−α K2) = (max(n1, n2),max(s1, s2) + 1,L1 ∪ L2)
where (n1, s2,L1) = rank(K1) and (n2, s2,L2) = rank(K2)

rank(K1 −◦α K2) = (max(n1, n2),max(s1, s2) + 1,L1 ∪ L2)
where (n1, s2,L1) = rank(K1) and (n2, s2,L2) = rank(K2)

rank(∃α.K) = (n+ 1, s,L)
where (n, s,L) = rank(K)

rank(False) = (0, 0, ∅)
rank(K1 ⇒ K2) = (max(n1, n2),max(s1, s2),L1 ∪ L2)

where (n1, s2,L1) = rank(K1) and (n2, s2,L2) = rank(K2).

Lemma 24. For each rank r ∈ N×N×F (Σ) and finite set of variables V ⊂ Θ, there
are finitely many non-equivalent CLm

Tree formulae of rank r whose free variables are
in V.

Proof. By induction on the rank, r.

In the base case r = (0, 0,L). Any formula of rank r must consist only of Boolean
connectives, and therefore be equivalent to either True or False.

In the inductive case, any formula of rank r = (n, s,L) either

17

• consists of one of the connectives ‘0’, ‘α’ (for each α ∈ V), ‘u[−]’ (for any u ∈ L),
‘ |’, ‘◦α’ (for any α ∈ V), ‘◦−α’ (for any α ∈ V), ‘−◦α’ (for any α ∈ V), or ‘∃β’
(for some β /∈ V) applied to operands with lower rank, or

• consists of a Boolean combination of formulae of rank at most r whose outermost
connectives are non-Boolean.

In the first case, by induction there are only finitely many choices for the operands,
since they have lower rank. Note that in the case of ‘∃β’ the operand may have free
variables in V ∪ {β} — the inductive hypothesis still covers this. We do, however,
only have to consider one choice of β since any other would be equivalent to that.
Since there are only finitely many choices of connective (up to alpha equivalence)
and finitely many choices of inequivalent operands, there are only finitely many
inequivalent formulae that can be constructed in this way.

In the second case, note that there are only finitely many inequivalent Boolean
combinations of a finite number of formulae. Since there are only finitely many in-
equivalent formulae of rank at most r whose outermost connectives are non-Boolean,
it follows that only finitely many inequivalent formulae can be constructed in this
way.

Definition 25. For each rank r ∈ N × N ×F (Σ) and finite set of free variables
V ⊂ Θ, choose Kr,V ⊂ Km to be a finite set of CLm

Tree formulae of rank r with free
variables in V, such that every formula in Km of rank r with free variables in V is
equivalent to some formula in Kr,V .

For context c, the defining formula of c with respect to rank r and environment σ
is

Dr
c,σ =

∧
{K ∈ Kr,V : c, σ |= K} ,

where V = dom(σ). By construction, Dr
c,σ has rank r and c, σ |= Dr

c,σ.

Lemma 26. For contexts c, c′ ∈ Cm, environments σ, σ′ : Θ ⇀fin X with dom(σ) =
dom(σ′) = V, and rank r ∈ N× N×F (Σ),

(for all K ∈ Kr,V , c, σ |= K implies c′, σ′ |= K) iff c′, σ′ |= Dr
c,σ (5)

(there exists K ∈ Kr,V s.t. c, σ |= K and c′, σ′ /|= K) iff c′, σ′ /|= Dr
c,σ (6)

(for all K ∈ Kr,V , c, σ |= K iff c′, σ′ |= K) iff c′, σ′ |= Dr
c,σ (7)

c′, σ′ |= Dr
c,σ iff c, σ |= Dr

c′,σ′ (8)

Proof. For (5), by definition:

c′, σ′ |= Dr
c,σ iff c′, σ′ |=

(∧
{K ∈ Kr,V : c, σ |= K}

)
iff for all K ∈ Kr,V , c, σ |= K implies c′, σ′ |= K.

Assertion (6) is immediate from (5).

18

For (7), the implication from left to right is immediate from (5). To show the
implication from right to left, suppose that c′, σ′ |= Dr

c,σ and fix some K ∈ Kr,V . If
c, σ |= K then c′, σ′ |= K by (5). Conversely, if c′, σ′ |= K then c′, σ′ /|= ¬K and so
c, σ /|= ¬K by (5) and c, σ |= K.

Assertion (8) follows immediately from (7).

Definition 27. Let S be a set. A pair (a, b) is said to be S-discriminated if either
a ∈ S and b /∈ S, or a /∈ S and b ∈ S.

Lemma 28. Let S ⊆ Cm × (Θ ⇀fin X) be a set of context-environment pairs, r ∈
N×N×F (Σ) be a rank, and V ⊂ Θ be a finite set of hole variables. Suppose that for
any S-discriminated pair ((c, σ), (c′, σ′)) there exists a formula K(c,σ),(c′,σ′) of rank
r and with free variables in V such that c, σ |= K(c,σ),(c′,σ′) and c′, σ′ /|= K(c,σ),(c′,σ′).
Then S can be defined by a rank-r formula K with free variables in V.

Proof. Consider KS =
{
K ∈ Kr,V : ∃(c, σ) ∈ S.K is equivalent to Dr

c,σ

}
. By con-

struction, KS is finite, hence, K =
∨
KS is a formula of rank r and free variables in

V. We shall show that d, ρ |= K if and only if (d, ρ) ∈ S.

Suppose that (d, ρ) ∈ S. By definition, there exists K ′ ∈ Kr,V which is equivalent
to Dr

d,ρ. Hence, d, ρ |= K ′ and K ′ ∈ KS , and so d, ρ |= K.

Now suppose that d, ρ |= K. Then d, ρ |= Dr
c,σ for some (c, σ) ∈ S. If (d, ρ) /∈ S, then

there exists a rank-r formula with free variables in V that discriminates between
(d, ρ) and (c, σ), which is not possible by Lemma 26. Hence, (d, ρ) ∈ S.

4.2 Games

We adapt the Ehrenfeucht-Fräıssé games to CLm
Tree . A game state is a tuple ((c, σ),

(c′, σ′), r), where c and c′ are contexts, σ and σ′ are environments with coincident
domains, and r = (n, s,L) is a rank. The game is played between two players, Spoiler
and Duplicator. 3 At each step, Spoiler selects a move to play, and the two players
make choices according to the rules for that move. After a move is played out, either
Spoiler will have won the game or the game will continue with a new state that has
a reduced rank (either n or s will be reduced by one, depending on the move). If
Spoiler is unable to play a move, for instance, if the rank reaches (0, 0,L), Duplicator
wins.

Each move in the game ((c, σ), (c′, σ′), (n, s,L)) begins by Spoiler selecting one of
the pairs (c, σ) or (c′, σ′). We shall call Spoiler’s selection (d, ρ) and the other (d′, ρ′).
Spoiler may only play a particular move when the rank allows it. A move is also

3 For convenience, we sometimes use pronouns to refer to the players, adopting
male personal pronouns for Spoiler and female personal pronouns for Duplicator.
The reader is asked to forgive the implied personification of these abstract entities.

19

prohibited when Spoiler cannot make the choice stipulated by the move. The moves
are defined as follows:

Moves playable when n > 0 (the non-adjunct moves):

EMP move. Spoiler’s choice is such that d = ε and d′ 6= ε. Spoiler wins.

VAR move. Spoiler chooses α ∈ Θ with d = ρ(α) and d′ 6= ρ′(α). Spoiler wins.

LAB move. Spoiler chooses some u ∈ L and d1 ∈ Cm such that d = u[d1]. If
d′ = u[d′1] for some d′1 ∈ Cm, the game continues with ((d1, ρ), (d′1, ρ

′), (n− 1, s,L)).
Otherwise, Spoiler wins.

PAR move. Spoiler chooses some d1, d2 ∈ Cm such that d = d1 | d2. Duplicator
chooses some d′1, d

′
2 ∈ Cm such that d′ = d′1 | d′2. Spoiler decides whether the game

continues with ((d1, ρ), (d′1, ρ
′), (n− 1, s,L)) or ((d2, ρ), (d′2, ρ

′), (n− 1, s,L)).

CMP move. Spoiler chooses x = ρ(α) for some α, and d1, d2 ∈ Cm such that d =
d1 ©x d2. Duplicator then chooses d′1, d

′
2 ∈ Cm such that d′ = d′1 ©́x d′2 for x́ = ρ′(α).

Spoiler decides whether the game will continue with ((d1, ρ), (d′1, ρ
′), (n−1, s,L)) or

((d2, ρ), (d′2, ρ
′), (n− 1, s,L)).

EXS move. Let α ∈ Θ be some new hole variable (i.e. σ(α) and, equivalently,
σ′(α) are undefined). Spoiler chooses some hole label x ∈ X. Duplicator chooses
an answering x́ ∈ X. The game then continues with ((d, ρ[α 7→ x]), (d′, ρ′[α 7→
x́]), (n− 1, s,L)).

Moves playable when s > 0 (the adjunct moves):

LEF move. Spoiler chooses x = ρ(α) for some α, and d1, d2 ∈ Cm such that d2 =
d1 ©x d. Duplicator then chooses d′1, d

′
2 ∈ Cm such that d′2 = d′1 ©́x d′ for x́ = ρ′(α).

Spoiler decides whether the game will continue with ((d1, ρ), (d′1, ρ
′), (n, s−1,L)) or

((d2, ρ), (d′2, ρ
′), (n, s− 1,L)).

RIG move. Spoiler chooses x = ρ(α) for some α, and d1, d2 ∈ Cm such that
d2 = d ©x d1. Duplicator then chooses d′1, d

′
2 ∈ Cm such that d′2 = d′ ©́x d′1

for x́ = ρ′(α). If Duplicator cannot make such a choice, Spoiler wins. Otherwise,
Spoiler decides whether the game will continue with ((d1, ρ), (d′1, ρ

′), (n, s−1,L)) or
((d2, ρ), (d′2, ρ

′), (n, s− 1,L)).

Of more interest than the outcome of an individual run of a game is the question
of which player has a winning strategy for that game: either Spoiler or Duplica-
tor is capable of ensuring his or her victory regardless of how the other plays. If
Spoiler has a winning strategy, we say ((c, σ), (c′, σ′), r) ∈ SW . Otherwise, we say
((c, σ), (c′, σ′), r) ∈ DW . The following useful properties are direct consequences of
the definitions.

Proposition 29 (Downward Closure). If ((c, σ), (c′, σ′), (n, s,L)) ∈ DW then ((c,
σ), (c′, σ′), (n′, s′,L′)) ∈ DW for any n′ ≤ n, s′ ≤ s and L′ ⊆ L.

20

Proposition 30 (Downward Closure for Environments). If ((c, σ[α 7→ x]), (c′,
σ′[α 7→ x́]), r) ∈ DW then ((c, σ), (c′, σ′), r) ∈ DW .

At each stage of a game, Spoiler is trying to show that the two contexts are dif-
ferent, while Duplicator is trying to show that they are similar enough that Spoiler
cannot identify a difference. The game moves correspond closely with the (non-
Boolean) connectives of the logic. For instance, the RIG move corresponds to the
‘−◦’-connective: it speaks of applying the given context to a new one and then rea-
soning about the result or the new context. If Spoiler wins on playing this move
then the two (current) trees are differentiated by the formula True −◦α False: one
tree has an α-labelled hole (so the formula is not satisfied) while the other does not
(so the formula is satisfied trivially).

This correspondence between game moves and logical connectives is formalised in
the soundness and completeness results below. The results establish that the exis-
tence of a formula of rank r that discriminates between two contexts is equivalent
to the existence of a winning strategy for Spoiler for the game of rank r on those
two contexts.

Lemma 31 (Game Soundness). For c, c′ ∈ Cm and domain-coincident environments
σ, σ′, if there is a formula K of rank r such that c, σ |= K and c′, σ′ /|= K, then
Spoiler has a winning strategy for the game ((c, σ), (c′, σ′), r).

Proof. The proof is by induction on the structure of the formula K. We look at the
cases for the outermost operator. In each case, we show inductively that Spoiler can
play the corresponding game move and thereby obtain a winning strategy.

K = 0. In this case, c = ε and c′ 6= ε. Hence, Spoiler may play the EMP move and
win the game.

K = α. In this case, c = σ(α) and c′ 6= σ′(α). Hence, Spoiler may play the VAR
move, choosing c and α, and win the game.

K = u[K1]. In this case, c = u[c1] for some c1, σ |= K1. Suppose that Spoiler plays
the LAB move choosing c and label u. Since c′, σ′ /|= u[K1], either c′ 6= u[c′1] for any
c′1, in which case Spoiler wins immediately, or c′ = u[c′1] with c′1, σ

′ /|= K1, in which
case Spoiler will win since, by the inductive hypothesis, he has a winning strategy
for the game ((c1, σ), (c′1, σ

′), (n− 1, s,L)).

K = K1 | K2. In this case, c = c1 | c2 with c1, σ |= K1 and c2, σ |= K2. Suppose
that Spoiler plays the PAR move, splitting c into c1 and c2. Duplicator responds by
splitting c′ = c′1 | c′2. Since c′, σ′ /|= K1 | K2, either c′1, σ

′ /|= K1 or c′2, σ
′ /|= K2. If

the former, by the inductive hypothesis, ((c1, σ), (c′1, σ
′), (n− 1, s,L)) ∈ SW . If the

latter, ((c2, σ), (c′2, σ
′), (n − 1, s,L)) ∈ SW . In either case, Spoiler has a winning

strategy.

For the following cases, let x = σ(α), x́ = σ′(α).

21

K = K1 ◦α K2. Here, c = c1 ©x c2 for some c1, σ |= K1, c2, σ |= K2. Suppose that
Spoiler plays the CMP move, choosing to split c as c1 ©x c2. Then Duplicator responds
with c′ = c′1 ©́x c′2. Since c′, σ′ /|= K1 ◦α K2, either c′1, σ

′ /|= K1 or c′2, σ
′ /|= K2. If

the former, by the inductive hypothesis, ((c1, σ), (c′1, σ
′), (n− 1, s,L)) ∈ SW . If the

latter, ((c2, σ), (c′2, σ
′), (n − 1, s,L)) ∈ SW . In either case, Spoiler has a winning

strategy.

K = K1◦−αK2. In this case, since c′ /|= K, there are c′1, c
′
2 with c′2 = c′1 ©́x c′, c′1 |= K1

and c′2 /|= K2. Suppose that Spoiler plays the LEF move, choosing to work with the
pair (c′, σ′), the contexts c′1, c

′
2 and the hole label x́. Duplicator then responds with

some c1, c2 with c2 = c1 ©x c. If c1 /|= K1 then, by the inductive hypothesis, Spoiler
has a winning strategy for the game ((c1, σ), (c′1, σ

′), (n, s−1,L)). Otherwise, c |= K
implies that c2 |= K2, and so, by the inductive hypothesis, Spoiler has a winning
strategy for the game ((c1, σ), (c′2, σ

′), (n, s− 1,L)).

K = K1−◦αK2. In this case, since c′ /|= K, there are c′1, c
′
2 with c′2 = c′ ©́x c′1, c′1 |= K1

and c′2 /|= K2. Suppose that Spoiler plays the RIG move, choosing to work with (c′, σ′),
c′1, c

′
2 and x́. If x /∈ fn(c) then Spoiler wins immediately. Otherwise, Duplicator

responds with some c1, c2 with c2 = c ©x c1. If c1 /|= K1 then, by the inductive
hypothesis, Spoiler has a winning strategy for the game ((c1, σ), (c′1, σ

′), (n, s−1,L)).
Otherwise, c |= K implies that c2 |= K2, and so, by the inductive hypothesis, Spoiler
has a winning strategy for the game ((c2, σ), (c′2, σ

′), (n, s− 1,L)).

K = ∃α.K1. In this case, c, σ[α 7→ x] |= K1 for some x and fresh α. Suppose
that Spoiler plays the EXS move, choosing to instantiate α as x on σ. Duplicator
responds by instantiating α as x́. Since c′, σ′ /|= ∃α.K1, c′, σ′[α 7→ x́] /|= K1. Thus,
by induction, ((c, σ[α 7→ x]), (c′, σ′[α 7→ x́]), (n− 1, s,L)) ∈ SW , and so Spoiler has
a winning strategy.

Lemma 32 (Game Completeness). If Spoiler has a winning strategy for the game
((c, σ), (c′, σ′), r) then there exists a formula K of rank at most r such that c, σ |= K
and c′, σ′ /|= K.

Proof. The proof is by induction on the rank r = (n, s,L), and by cases on the first
move that Spoiler makes in his winning strategy for the game. At the start of the
first move, Spoiler may choose either (c, σ) or (c′, σ′); we assume that he chooses
the former, without loss of generality. 4

EMP move. Here, c, σ |= 0 and c′, σ′ /|= 0.

VAR move. Suppose that Spoiler plays this move with x = σ(α). Then c, σ |= α
and c′, σ′ /|= α.

For the following cases, let r− = (n− 1, s,L).

4 If he chooses (c′, σ′) instead, the proof gives K with c′, σ′ |= K, and c, σ /|= K.
Then ¬K satisfies the required properties.

22

LAB move. Suppose that Spoiler plays this move using label u ∈ L, and that
c = u[c1]. If Spoiler wins on this move, then c′ 6= u[c′1] for any c′1, and thus c′, σ′ /|=
u[True] but c, σ |= u[True]. Otherwise, c′ = u[c′1] for some c′1, and Spoiler has a
winning strategy for the game ((c1, σ), (c′1, σ

′), r−), and so by induction, there is a
K1 with c1, σ |= K1 and c′1, σ

′ /|= K1. Therefore c, σ |= u[K1] and c′, σ′ /|= u[K1].

PAR move. Suppose that Spoiler, for his winning strategy, plays this move, splitting
c = c1 | c2. Then let K = Dr−

c1,σ | D
r−
c2,σ. We know that c, σ |= K. Suppose that

c′, σ′ |= K also. Then c′ = c′1 | c′2 with c′1, σ
′ |= Dr−

c1,σ and c′2, σ
′ |= Dr−

c2,σ for some
c′1, c

′
2. Thus there is no formula of rank r−, free variables in V = dom(σ), that

discriminates between (c1, σ) and (c′1, σ
′) or between (c2, σ) and (c′2, σ

′). By the
inductive hypothesis, this implies that Duplicator has a winning strategy for the
games ((c1, σ), (c′1, σ

′), r−) and ((c2, σ), (c′2, σ
′), r−), which contradicts the fact that

this move is part of Spoiler’s winning strategy. Therefore c′, σ′ /|= K and c, σ |= K.

CMP move. Suppose that Spoiler plays this move, splitting c = c1 ©x c2 with x =
σ(α). Then let K = Dr−

c1,σ ◦αD
r−
c2,σ. We know that c, σ |= K. Suppose that c′, σ′ |= K

also. Then c′ = c′1 ©́x c′2 with c′1, σ
′ |= Dr−

c1,σ and c′2, σ
′ |= Dr−

c2,σ, for some c′1, c
′
2 and

x́ = σ′(α). Thus there is no formula of rank r−, free variables in V = dom(σ),
that discriminates between (c1, σ) and (c′1, σ

′) or between (c2, σ) and (c′2, σ
′). By

the inductive hypothesis, this implies that Duplicator has a winning strategy for the
games ((c1, σ), (c′1, σ

′), r−) and ((c2, σ), (c′2, σ
′), r−), which contradicts the fact that

this move is part of Spoiler’s winning strategy. Therefore c′, σ′ /|= K and c, σ |= K.

EXS move. Suppose that Spoiler plays this move, extending σ by [α 7→ x]. Then
let K = ∃α.Dr−

c,σ[α 7→x], which has rank r, and free variables in V = dom(σ). We
know that c, σ |= K. Suppose that c′, σ′ |= K also. Then, for some x́, c′, σ′[α 7→
x́] |= Dr−

c,σ[α 7→x]. Thus, there is no formula of rank r− with free variables in V ∪ {α}
that discriminates between (c, σ[α 7→ x]) and (c′, σ′[α 7→ x́]). Hence, by induction,
Duplicator has a winning strategy for the game ((c, σ[α 7→ x]), (c′, σ′[α 7→ x́]), r−),
which contradicts the fact that this move is part of Spoiler’s winning strategy.
Therefore c′, σ′ /|= K and c, σ |= K.

For the following cases, let r− = (n, s− 1,L).

LEF move. Suppose that Spoiler plays this move, choosing c2 = c1 ©x c. Then
let K = Dr−

c1,σ •−α D
r−
c2,σ. We know that c, σ |= K. Suppose that c′, σ′ |= K also.

Then c′2 = c′1 ©́x c′ with c′1, σ
′ |= Dr−

c1,σ and c′2, σ
′ |= Dr−

c2,σ, for some c′1, c
′
2 and

x́ = σ′(α). Thus there is no formula of rank r−, free variables in V = dom(σ),
that discriminates between (c1, σ) and (c′1, σ

′) or between (c2, σ) and (c′2, σ
′). By

the inductive hypothesis, this implies that Duplicator has a winning strategy for the
games ((c1, σ), (c′1, σ

′), r−) and ((c2, σ), (c′2, σ
′), r−), which contradicts the fact that

this move is part of Spoiler’s winning strategy. Therefore c′, σ′ /|= K and c, σ |= K.

RIG move. Suppose that Spoiler plays this move, choosing c2 = c ©x c1. Then
let K = Dr−

c1,σ −•α D
r−
c2,σ. We know that c, σ |= K. Suppose that c′, σ′ |= K also.

Then c′2 = c′ ©́x c′1 with c′1, σ
′ |= Dr−

c1,σ and c′2, σ
′ |= Dr−

c2,σ, for some c′1, c
′
2 and

23

x́ = σ′(α). Thus there is no formula of rank r−, free variables in V = dom(σ),
that discriminates between (c1, σ) and (c′1, σ

′) or between (c2, σ) and (c′2, σ
′). By

the inductive hypothesis, this implies that Duplicator has a winning strategy for the
games ((c1, σ), (c′1, σ

′), r−) and ((c2, σ), (c′2, σ
′), r−), which contradicts the fact that

this move is part of Spoiler’s winning strategy. Therefore c′, σ′ /|= K and c, σ |=
K.

The following two lemmata are useful for checking structural properties in our
adjunct-elimination results. The first establishes a relationship between the hole
labels in two contexts, which provides a convenient way of checking that composi-
tion is well-defined. The second establishes a structural similarity through games.
Both are proven by showing how Spoiler would have a winning strategy for the game
in a certain number of moves (hence the bounds on n) if the desired property did
not hold.

Lemma 33. If ((c, σ), (c′, σ′), (n, s,L)) ∈ DW with n ≥ 2, then, for x = σ(α),
x́ = σ′(α),

x ∈ fn(c) iff x́ ∈ fn(c′)

Proof. Suppose that x ∈ fn(c). We know that Spoiler would be able to play the
CMP move and split c = c ©x x. Since ((c, σ), (c′, σ′), r) ∈ DW , there exist c′1, c

′
2

with c′ = c′1 ©́x c′2 and

((x, σ), (c′2, σ
′), (n− 1, s,L)) ∈ DW . (9)

Since Spoiler could then play the VAR move with x = σ(α) on (9), it must be that
c′2 = σ′(α) = x́. Therefore, x́ ∈ fn(c′). The argument in the reverse direction is the
same.

Lemma 34. Suppose that ((c, σ), (c′, σ′), (n, s,L)) ∈ DW with n ≥ 2. If c = c1 | x
for x = σ(α) and c1 ∈ Cm, then c′ = c′1 | x́ for x́ = σ′(α) and some c′1 ∈ Cm.
Similarly, if c = x | c1 then c′ = x́ | c′1.

Proof. Suppose that c = c1 | x. We know that Spoiler could play the PAR move and
split c = c1 | x. Since ((c, σ), (c′, σ′), r) ∈ DW , we know that c′ = c′1 | c′2 so that

((x, σ), (c′2, σ
′), (n− 1, s,L)) ∈ DW . (10)

Since Spoiler could then play the VAR move with x = σ(α) on (10), it must be that
c′2 = σ′(α) = x́. Therefore, c′ = c′1 | x́, as required. The proof for the other case is
analogous.

Lemma 35 (Hole Substitution Property for Games). Suppose that

((c, σ), (c′, σ′), (n, s,L)) ∈ DW (11)

and that x /∈ fn(c) ∪ range(σ). Then

((c[x/y], σ[x/y]), (c′, σ′), (n, s,L)) ∈ DW . (12)

24

Proof. By game soundness, for every formula K of rank r = (n, s,L), c, σ |= K if and
only if c′, σ′ |= K. By Lemma 22, for every formula K of rank r, c[x/y], σ[x/y] |= K
if and only if c′, σ′ |= K. Hence, by game completeness, (12) holds.

The next lemma allows us to consider a particular response to the EXS move that
we know can give a winning strategy for Duplicator, even though there may be
other responses. The lemma essentially gives two sufficient conditions on Duplicator’s
response to the EXS move in order for it to give a winning strategy for her. The
key part is that if Spoiler introduces a fresh hole label, Duplicator may respond by
introducing any fresh hole label.

Lemma 36 (Interchangablity of Fresh Labels). If ((c, σ), (c′, σ′), (n, s,L)) ∈ DW
with n ≥ 3, then

((c, σ[α 7→ x]), (c′, σ′[α 7→ x́]), (n− 1, s,L)) ∈ DW

if either

(1) x = σ(β) and x́ = σ′(β) for some hole variable β ∈ Θ, or

(2) x /∈ fn(c) ∪ range(σ) and x́ /∈ fn(c′) ∪ range(σ′).

Proof. In the first case, suppose that Spoiler were to choose to play the EXS move
on the original game. We know then that, for x = σ(β), there exists a y such that

((c, σ[α 7→ x]), (c′, σ′[α 7→ y]), (n− 1, s,L)) ∈ DW .

By playing CMP move, choosing to split c = x©x c (using α), we get that for some
c̄′

((x, σ[α 7→ x]), (c̄′, σ′[α 7→ y]), (n− 2, s,L)) ∈ DW .

Now, Spoiler could play the VAR move (using β) and win unless c̄′ = σ′[α 7→ y](β)
(since x = σ[α 7→ x](β)) and c̄′ = σ′[α 7→ y](α) = y (since x = σ[α 7→ x](α)). Hence,
for x́ = σ′(β) = y,

((c, σ[α 7→ x]), (c′, σ′[α 7→ x́]), (n− 1, s,L)) ∈ DW .

In the second case, we know that Spoiler would be able to play the EXS move on the
original game and introduce x. As in the previous case, we know that there exists
a y such that

((c, σ[α 7→ x]), (c′, σ′[α 7→ y]), (n− 1, s,L)) ∈ DW .

By Lemma 33, since we know that x /∈ fn(c) we can conclude that y /∈ fn(c′),
and so c′[x́/y] = c′. If we suppose that y = σ′(β) for some β then, since we know
that x 6= σ(β), we can see that Spoiler would have a winning strategy by playing
the CMP move to split c′ = y ©y c′ (using α) followed by the CMP move (using β).
Therefore, we have that y /∈ range(σ′), and so (σ′[α 7→ y])[x́/y] = σ′[α 7→ x́]. Hence,
by Lemma 35,

((c, σ[α 7→ x]), (c′, σ′[α 7→ x́]), (n− 1, s,L)) ∈ DW ,

as required.

25

5 Adjunct Elimination

We now have the background required to prove adjunct elimination for CLm
Tree .

Proposition 37 is the key result. It states that, with no adjunct moves, a winning
strategy for Duplicator for the game on the composition of contexts follows from Du-
plicator’s winning strategies for its components. A consequence is that, if Duplicator
has a winning strategy without adjunct moves, then she has a winning strategy with
adjunct moves, since adjunct moves simply perform context composition. The final
theorem then translates this move elimination result into an adjunct elimination
result for the formulae of the logic.

Proposition 37 (One-step move elimination). For all ranks of the form r =
(n, 0,L), for all c1, c

′
1, c2, c

′
2 ∈ Cm, for all domain-coincident environments σ, σ′,

if

((c1, σ), (c′1, σ
′), (3n, 0,L)) ∈ DW (13)

((c2, σ), (c′2, σ
′), (3n, 0,L)) ∈ DW (14)

then, for all α ∈ dom(σ) with x = σ(α), x́ = σ′(α), if c = c1 ©x c2 and c′ = c′1 ©́x c′2
are defined then

((c, σ), (c′, σ′), (n, 0,L)) ∈ DW . (15)

Proof. The proof is by induction on n and by cases on Spoiler’s choice of move in
the game of (15). The base case, n = 0, is trivial, since Spoiler can never win a
game of such a rank. In the inductive case, where n > 0, we assume as the inductive
hypothesis that the proposition holds for all lesser values of n. Assume without loss
of generality that Spoiler selects (c, σ) for his move.

Throughout the proof, we consider strategies that Spoiler might adopt in the games
of (13) and (14). Knowing that Duplicator has a winning strategy in these games, we
can establish properties, usually concerning the structure of c′1 and c′2, and construct
a winning response for Duplicator to Spoiler’s move on (15) by way of the inductive
hypothesis.

EMP move. In order for Spoiler to be able to play this move, it must be the case
that c = ε and c′ 6= ε. Thus c1 = x and c2 = ε. Hence c′1 = x́ and c′2 = ε, so c′ = ε.
Therefore, Spoiler cannot play this move after all.

VAR move. In order for Spoiler to be able to play this move, it must be the case
that c = y = σ(β) and c′ 6= ý = σ′(β) for some β. There are three cases of the
possible structure of c1 and c2:

(1) c1 = x and c2 = y;

(2) c1 = y | x and c2 = ε;

(3) c1 = x | y and c2 = ε.

26

In the first case, c′1 = x́ and c′2 = ý, for otherwise Spoiler could play the VAR move
to win the games in (13) and (14) respectively. Hence c′ = ý, and Spoiler would not
have been able to play the VAR move after all.

In the second case, we have from (13) that c′1 = c̄′1 | ĉ′1 with

((y, σ), (c̄′1, σ
′), (3n− 1, 0,L)) ∈ DW (16)

((x, σ), (ĉ′1, σ
′), (3n− 1, 0,L)) ∈ DW . (17)

Hence c̄′1 = ý and ĉ′1 = x́, or else Spoiler would have a winning strategy for these
games by playing the VAR move. Also, by (14), c′2 = ε, or else Spoiler would have a
winning strategy for that game by playing the EMP move. We have c′ = c′1 ©́x c′2 =
(ý | x́) ©́x ε = ý, and so Spoiler would not have been able to play the VAR move after
all.

The third case is analogous to the second.

Since we know that in all cases Spoiler could not have played the VAR move (and
thereby have a winning strategy in the game (15)), we know that Spoiler does not
have a winning strategy by playing the VAR move.

LAB move. Suppose that Spoiler plays this move picking u ∈ L and d ∈ Cm with
c = u[d]. Then there are three cases of the possible structure of c1 and c2:

(1) c1 = u[d1] and d = d1 ©x c2;

(2) c1 = u[d] | x and c2 = ε;

(3) c1 = x | u[d] and c2 = ε.

In the first of these cases, Spoiler could play the LAB move on the game of (13),
with label u and context d1. Hence, by (13), c′1 = u[d′1] with

((d1, σ), (d′1, σ
′), (3n− 1, 0,L)) ∈ DW . (18)

By downward closure and the inductive hypothesis, noting that d′1 ©́x c′2 is defined,
since fn(d′1) = fn(c′1) and c′1 ©́x c′2 is defined, it follows that

((d1 ©x c2, σ), (d′1 ©́x c′2, σ
′), (n− 1, 0,L)) ∈ DW . (19)

By structural considerations, c′ = u[d′] where d′ = d′1 ©́x c′2. Thus Duplicator has a
winning strategy when Spoiler plays this way.

In the second of the cases, c′2 = ε by (14). Further, Spoiler could play the PAR move
on (13) so we have c′1 = d′1 | d′2 with

((u[d], σ), (d′1, σ
′), (3n− 1, 0,L)) ∈ DW (20)

((x, σ), (d′2, σ
′), (3n− 1, 0,L)) ∈ DW . (21)

27

Fig. 5. In left-to-right order, the three cases for splitting c = d1 | d2

Since 3n − 1 ≥ 1, by (21) we know d′2 = x́, since otherwise Spoiler could play the
VAR move. Spoiler could play the LAB move on the game in (20), using u as the
label, so that we must have d′1 = u[d′] with

((d, σ), (d′, σ′), (3n− 2, 0,L)) ∈ DW . (22)

We now have c′ = (u[d′] | x́) ©́x ε = u[d′]. Hence, Duplicator can respond and the
game continues as ((d, σ), (d′, σ′), (n − 1, 0,L)) and, by downward closure on (22),
Duplicator has a winning strategy.

The third case is analogous to the second.

In each of the three cases, Duplicator has a winning strategy, so she has a winning
strategy if Spoiler plays the LAB move.

PAR move. In this move, Spoiler splits c = d1 | d2 in one of three ways:

(1) Spoiler splits in c1 to the left of the x: that is, c1 = d1 | d3, d2 = d3 ©x c2.

(2) Spoiler splits in c1 to the right of the x: that is, c1 = d3 | d2, d1 = d3 ©x c2.
This case is essentially the same as the first, so we shall not consider it.

(3) Spoiler splits in c2. In order for this case to be applicable, the x must occur at
the top level of c1, so c1 = d̄3 | x | d̄4, c2 = d5 | d6, d1 = d̄3 | d5 and d2 = d6 | d̄4.

These three cases are illustrated by Figure 5. The shaded area indicates the c2

subtree and the dashed line indicates the splitting point. Note that the third case
does not apply to every possible choice of c1 and c2, but our example shows a choice
for which it does.

In the first case,

c1 ©x c2 = (d1 | d3)©x c2

= d1 | (d3 ©x c2).

As Spoiler could play the PAR move in the game in (13), we know that c′1 = d′1 | d′3
such that

((d1, σ), (d′1, σ
′), (3n− 1, 0,L)) ∈ DW (23)

((d3, σ), (d′3, σ
′), (3n− 1, 0,L)) ∈ DW . (24)

28

Note that fn(d′3) ⊆ fn(c′1) and x́ ∈ fn(d′3) by Lemma 33 (since x ∈ fn(d3)), so
d′2 = d′3 ©́x c′2 is defined. By downward closure on (24) and (14) and by the inductive
hypothesis,

((d3 ©x c2, σ), (d′3 ©́x c′2, σ
′), (n− 1, 0,L)) ∈ DW . (25)

Observe that

c′ = c′1 ©́x c′2
= (d′1 | d′3) ©́x c′2
= d′1 | (d′3 ©́x c′2)
= d′1 | d′2.

Thus responding with d′1 and d′2 gives Duplicator a winning strategy in this case, by
downward closure on (23) and by (25).

In the third case, we know that

c1 ©x c2 = d1 | d2

= (d3 ©x d5) | (d4 ©x d6)
d3 = d̄3 | x
d4 = x | d̄4

c1 = d3 ©x d4

= (d̄3 | x)©x (x | d̄4)
c2 = d5 | d6.

Spoiler could play the CMP move on the game in (13), so c′1 = d′3 ©́x d′4 with

((d3, σ), (d′3, σ
′), (3n− 1, 0,L)) ∈ DW (26)

((d4, σ), (d′4, σ
′), (3n− 1, 0,L)) ∈ DW . (27)

Also, Spoiler could play the PAR move on the game in (14), so c′2 = d′5 | d′6 with

((d5, σ), (d′5, σ
′), (3n− 1, 0,L)) ∈ DW (28)

((d6, σ), (d′6, σ
′), (3n− 1, 0,L)) ∈ DW . (29)

Since c′1 = d′3 ©́x d′4 and c′2 = d′5 | d′6, it follows that that x́ ∈ fn(d′3) ⊆ fn(c′1), x́ ∈
fn(d′4) ⊆ fn(c′1), fn(d′5) ⊆ fn(c′2) and fn(d′6) ⊆ fn(c′2). Hence d′1 = d′3 ©́x d′5 and
d′2 = d′4 ©́x d′6 are well-defined. By downward closure and the inductive hypothesis
on (26) and (28), and on (27) and (29), we get

((d3 ©x d5, σ), (d′3 ©́x d′5, σ
′), (n− 1, 0,L)) ∈ DW (30)

((d4 ©x d6, σ), (d′4 ©́x d′6, σ
′), (n− 1, 0,L)) ∈ DW . (31)

It remains to show that c′ = d′1 | d′2. For this to be the case, it is sufficient that
d′3 = d̄′3 | x́ and d′4 = x́ | d̄′4, which both hold by applying Lemma 34 to (26) and (27).

29

Thus, by structural considerations,

c′ = c′1 ©́x c′2
= (d′3 ©́x d′4) ©́x (d′5 | d′6)
= ((d̄′3 | x́) ©́x (x́ | d̄′4)) ©́x (d′5 | d′6)
= d̄′3 | d′5 | d′6 | d̄′4
= (d′3 ©́x d′5) | (d′4 ©́x d′6)
= d′1 | d′2.

Hence, by (30) and (31), Duplicator has a winning strategy if she responds by split-
ting c′ as d′1 | d′2.

Thus, Duplicator has a winning strategy whenever Spoiler plays the PAR move.

CMP move. In this move, Spoiler chooses y = σ(β) (let ý = σ′(β)) and splits
c1 ©x c2 as d1 ©y d2. Note that Spoiler cannot play the CMP move as the final move
of a winning strategy, so we may therefore assume that n ≥ 2. (If n = 1, Duplicator
would have a winning strategy by splitting c′ = ý ©́y c′, for instance.)

There are four cases for how Spoiler can make the splitting c = d1 ©y d2. Using
Figure 4 as an example instance of c = c1 ©x c2, the cases are illustrated in Figures 6,
7, 8 and 9. In the diagrams, the darker subtree denotes the c2 part of c = c1 ©x c2

and the dashed outline denotes the d2 part of c = d1 ©y d2. The cases are:

(1) Spoiler splits c within c2 (Figure 6), so we get c2 = d3 ©y d2 and d1 = c1 ©x d3.

(2) Spoiler splits c outside c2, including all of c2 (Figure 7), so we get c1 = d1 ©y d3

and d2 = d3 ©x c2.

(3) Spoiler splits c so that d2 consists of part of c1 and part (but not all) of c2

(Figure 8). Here, the part of c1 must be a subtree adjacent to the x hole, and
the part of c2 must be subtree at the root of c2 and on the appropriate side.

(4) Spoiler splits c so that d2 is a subtree that is completely disjoint from the hole
(Figure 9). Here, c1 = d3 ©y d2 and d1 = d3 ©x c2, providing x 6= y. We shall
also consider the case when x = y.

We consider each of these cases individually.

Case 1: Spoiler splits inside c2, as

c1 ©x c2 = c1 ©x (d3 ©y d2)
= (c1 ©x d3)©y d2

= d1 ©y d2

c2 = d3 ©y d2

d1 = c1 ©x d3.

Note that y /∈ fn(c1), since otherwise this type of splitting is not applicable.

30

Fig. 6. Splitting type 1

Fig. 7. Splitting type 2

Fig. 8. Splitting type 3

Fig. 9. Splitting type 4

31

Spoiler would be able to play the CMP move on the game in (14), so Duplicator must
be able to split c′2 as d′3 ©́y d′2 such that

((d3, σ), (d′3, σ
′), (3n− 1, 0,L)) ∈ DW (32)

((d2, σ), (d′2, σ
′), (3n− 1, 0,L)) ∈ DW . (33)

Note that fn(d′3) ⊆ fn(c′2) ∪ {ý}. Also, by Lemma 33, ý /∈ fn(c′1) since y /∈ fn(c1).
Hence d′1 = c′1 ©́x d′3 is well-defined. By downward closure on (13) and (32) and by
the inductive hypothesis,

((c1 ©x d3, σ), (c′1 ©́x d′3, σ
′), (n− 1, 0,L)) ∈ DW . (34)

By Lemma 15, since ý /∈ fn(c′1),

c′1 ©́x c′2 = c′1 ©́x (d′3 ©́y d′2)
= (c′1 ©́x d′3) ©́y d′2
= d′1 ©́y d′2.

Hence, by (34) and by downward closure on (33), Duplicator has a winning strategy
if she splits c′ as d′1 ©́y d′2.

Case 2: Spoiler splits outside c2, including all of c2 itself:

c1 ©x c2 = (d1 ©y d3)©x c2

= d1 ©y (d3 ©x c2)
= d1 ©y d2

c1 = d1 ©y d3

d2 = d3 ©x c2.

Spoiler would be able to play the CMP move on the game in (13), so Duplicator must
be able to split c′1 as d′1 ©́y d′3 such that

((d1, σ), (d′1, σ
′), (3n− 1, 0,L)) ∈ DW (35)

((d3, σ), (d′3, σ
′), (3n− 1, 0,L)) ∈ DW . (36)

Note that fn(d′3) ⊆ fn(c′1) and that, by Lemma 33, x́ ∈ fn(d′3) since x ∈ fn(d3).
Thus d′2 = d′3 ©́x c′2 is well-defined. By downward closure on (36) and (14) and by
the inductive hypothesis,

((d3 ©x c2, σ), (d′3 ©́x c′2, σ
′), (n− 1, 0,L)) ∈ DW . (37)

By Lemma 15, since either x́ = ý or x́ /∈ fn(d′1) (since x́ ∈ fn(d′3) and c′1 = d′1 ©́y d′3),

c′1 ©́x c′2 = (d′1 ©́y d′3) ©́x c′2
= d′1 ©́y (d′3 ©́x c′2)
= d′1 ©́y d′2.

Hence, by downward closure on (35) and by (37), Duplicator has a winning strategy
if she splits c′ as d′1 ©́y d′2.

32

Case 3: Spoiler splits part of c1 and part of c2:

c1 = d3 ©x d4 c2 = d5 ©y d6

where

d1 = d3 ©x d5 d2 = d4 ©x d6

with either: d4 = d̄4 | x and d5 = y | d̄5; or d4 = x | d̄4 and d5 = d̄5 | y. If the former,
for instance, we have

c1 ©x c2 = (d3 ©x d4)©x (d5 ©y d6)
= (d3 ©x (d̄4 | x))©x ((y | d̄5)©y d6)
= d3 ©x (d̄4 | d6 | d̄5)
= (d3 ©x (y | d̄5))©y ((d̄4 | x)©x d6)
= (d3 ©x d5)©y (d4 ©x d6)
= d1 ©y d2.

Spoiler could play the CMP move on (13), so c′1 = d′3 ©́x d′4 such that

((d3, σ), (d′3, σ
′), (3n− 1, 0,L)) ∈ DW (38)

((d4, σ), (d′4, σ
′), (3n− 1, 0,L)) ∈ DW . (39)

Similarly, from (14), we have that c′2 = d′5 ©́y d′6 such that

((d5, σ), (d′5, σ
′), (3n− 1, 0,L)) ∈ DW (40)

((d6, σ), (d′6, σ
′), (3n− 1, 0,L)) ∈ DW . (41)

Note that x́ ∈ fn(d′3) ⊆ fn(c′1) and fn(d′5) ⊆ fn(c′2) ∪ {ý}. Furthermore, either
y = x and ý = x́ (since otherwise Spoiler could win (13) by playing CMP followed
by VAR), or ý /∈ fn(d′3), by Lemma 33 since y /∈ fn(d3). Thus d′1 = d′3 ©́x d′5 is
well-defined. Similarly, x́ ∈ fn(d′4) ⊆ fn(c′1) and fn(d′6) ⊆ fn(c′2), so d′2 = d′4 ©́x d′6
is well-defined. Hence, by downward closure on (38), (40), (39) and (41), and by the
inductive hypothesis, we have

((d3 ©x d5, σ), (d′3 ©́x d′5, σ
′), (n− 1, 0,L)) ∈ DW (42)

((d4 ©x d6, σ), (d′4 ©́x d′6, σ
′), (n− 1, 0,L)) ∈ DW . (43)

It remains to show that c′1 ©́x c′2 = d′1 ©́y d′2. By Lemma 15,

c′1 ©́x c′2 = (d′3 ©́x d′4) ©́x (d′5 ©́y d′6)
= d′3 ©́x (d′4 ©́x (d′5 ©́y d′6)).

Now suppose that d4 = d̄4 | x and d5 = y | d̄5. By Lemma 34, we must have that
d′4 = d̄′4 | x́ and d′5 = ý | d̄′5. Thus,

d′4 ©́x (d′5 ©́y d′6) = d̄′4 | d′6 | d̄′5
= d′5 ©́y (d′4 ©́x d′6).

33

In the alternative case (where d4 = x | d̄4 and d5 = d̄5 | y) the analogous result can
be deduced. Hence, and by Lemma 15 (recalling that either ý = x́ or ý /∈ fn(d′3)),

c′1 ©́x c′2 = d′3 ©́x (d′5 ©́y (d′4 ©́x d′6))
= (d′3 ©́x d′5) ©́y (d′4 ©́x d′6)
= d′1 ©́y d′2,

as required. We can see that Duplicator could respond to Spoiler’s move by splitting
c′ as d′1 ©́y d′2 and that, by (42) and (43), this gives her a winning strategy.

Case 4 : Spoiler splits part of c1 disjoint from c2. There are two subcases on Spoiler’s
choice of y that we shall consider separately: (a) y 6= x and (b) y = x.

(a) y 6= x:

c1 ©x c2 = (d3 ©y d2)©x c2

= (d3 ©x c2)©y d2

= d1 ©y d2

c1 = d3 ©y d2

d1 = d3 ©x c2

Since y 6= x, we know that ý 6= x́, for otherwise Spoiler would have a winning strategy
for (13) by playing the CMP move followed by the VAR move. Spoiler would be able
to play the CMP move on the game in (13), so we know that c′1 = d′3 ©́y d′2 for some
d′3, d

′
2 such that

((d3, σ), (d′3, σ
′), (3n− 1, 0,L)) ∈ DW (44)

((d2, σ), (d′2, σ
′), (3n− 1, 0,L)) ∈ DW . (45)

Note that fn(d′3) ⊆ fn(c′1) ∪ {ý}. Also, by Lemma 33, x́ ∈ fn(d′3) and ý /∈ fn(c′2).
Thus d′1 = d′3 ©́x c′2 is well-defined. By downward closure on (44) and (14), and by
the inductive hypothesis,

((d3 ©x c2, σ), (d′3 ©́x c′2, σ
′), (n− 1, 0,L)) ∈ DW . (46)

By Lemma 16, since x́ ∈ fn(d′3) and ý /∈ fn(c′2), (d′3 ©́y d′2) ©́x c′2 = (d′3 ©́x c′2) ©́y d′2.
Hence, by (46) and downward closure on (45), we know that Duplicator has a winning
strategy by splitting c′ as d′1 ©́y d′2.

(b) y = x: The reason we consider this case separately is that the construction for
the previous case would give d3 with two holes labelled x. To avoid this, we rename
the x hole of c1 as the z hole of c̄1. For some z /∈ fn(c1) ∪ fn(c2) ∪ range(σ),

c = ((d3 ©x d2)©z x)©x c2

= (d3 ©x d2)©z c2

= (d3 ©z c2)©x d2

= d1 ©x d2

c1 = c̄1 ©z x

c̄1 = d3 ©x d2

d1 = d3 ©z c2.

34

Since y = x, we know that ý = x́, for otherwise Spoiler would have a winning strategy
for (13) by playing the CMP move followed by the VAR move. By Lemma 36, for
some ź /∈ fn(c′1) ∪ fn(c′2) ∪ range(σ′),

((c1, σ[γ 7→ z]), (c′1, σ
′[γ 7→ ź]), (3n− 1, 0,L)) ∈ DW (47)

((c2, σ[γ 7→ z]), (c′2, σ
′[γ 7→ ź]), (3n− 1, 0,L)) ∈ DW . (48)

Spoiler could play the CMP move on the game in (47), splitting c1 as c̄1 ©z x, so
c′1 = c̄′1 ©́z ĉ′1 such that

((c̄1, σ[γ 7→ z]), (c̄′1, σ
′[γ 7→ ź]), (3n− 2, 0,L)) ∈ DW (49)

((x, σ[γ 7→ z]), (ĉ′1, σ
′[γ 7→ ź]), (3n− 2, 0,L)) ∈ DW . (50)

Since 3n − 2 ≥ 1, (50) implies that ĉ′1 = x́. Spoiler could then play the CMP move
on the game in (49), splitting c̄1 as d3 ©x d2, so c̄′1 = d′3 ©́x d′2 such that

((d3, σ[γ 7→ z]), (d′3, σ
′[γ 7→ ź]), (3n− 3, 0,L)) ∈ DW (51)

((d2, σ[γ 7→ z]), (d′2, σ
′[γ 7→ ź]), (3n− 3, 0,L)) ∈ DW . (52)

By construction and by Lemma 33 (recalling that n ≥ 2), {x́, ź} ⊆ fn(d′3) ⊆
(fn(c′) \ fn(c′2)) ∪ {x́, ź}. Further, by Lemma 33 and by definition, neither x́ nor ź
occurs in c′2. Hence d′1 = d′3 ©́z c′2 is well-defined. Now we may apply the inductive
hypothesis, using (51) and downward closure on (48), to obtain

((d3 ©z c2, σ[γ 7→ z]), (d′3 ©́z c′2, σ
′[γ 7→ ź]), (n− 1, 0,L)) ∈ DW . (53)

By Proposition 30 and downward closure on (53) and (52), we have

((d1, σ), (d′1, σ
′), (n− 1, 0,L)) ∈ DW (54)

((d2, σ), (d′2, σ
′), (n− 1, 0,L)) ∈ DW . (55)

Note that, by construction and by Lemma 33, x́, ź /∈ fn(d′2) and x́ /∈ fn(c′2). Thus,
by Lemmata 15 and 16,

c′ = (c̄′1 ©́z x́) ©́x c′2
= ((d′3 ©́x d′2) ©́z x́) ©́x c′2
= (d′3 ©́x d′2) ©́z (x́ ©́x c′2)
= (d′3 ©́x d′2) ©́z c′2
= (d′3 ©́z c′2) ©́x d′2
= d′1 ©́x d′2.

Hence Duplicator could respond by splitting c′ as d′1 ©́x d′2 and by (54) and (55) that
gives her a winning strategy.

We have considered all of the possible cases for how Spoiler could play CMP move,
and shown that Duplicator has a winning response in each. Therefore, Duplicator has
a winning strategy if Spoiler plays the CMP move.

EXS move. In playing this move, Spoiler chooses to instantiate β as y, say. If n = 1,
any choice gives Duplicator a winning strategy, so assume n ≥ 2. We consider four
mutually exclusive cases for Spoiler’s choice:

35

(1) y ∈ range(σ);

(2) y ∈ fn(c1) but y /∈ range(σ);

(3) y ∈ fn(c2) but y /∈ range(σ); and

(4) y is fresh (that is, y /∈ fn(c1) ∪ fn(c2) ∪ range(σ)).

In case 1, y = σ(α) for some α, and Duplicator can respond with ý = σ′(α). By the
first case of Lemma 36, we know

((c1, σ[β 7→ y]), (c′1, σ
′[β 7→ ý]), (3n− 1, 0,L)) ∈ DW (56)

((c2, σ[β 7→ y]), (c′2, σ
′[β 7→ ý]), (3n− 1, 0,L)) ∈ DW (57)

and so, by downward closure and the inductive hypothesis,

((c, σ[β 7→ y]), (c′, σ′[β 7→ ý]), (n− 1, 0,L)) ∈ DW . (58)

Hence choosing ý gives Duplicator a winning strategy in this case.

In case 2, note that Spoiler could play the EXS move on the game in (13). Let ý be
Duplicator’s response for her winning strategy:

((c1, σ[β 7→ y]), (c′1, σ
′[β 7→ ý]), (3n− 1, 0,L)) ∈ DW . (59)

Since y /∈ range(σ) and 3n − 2 ≥ 2, ý /∈ range(σ′). 5 Also, since y ∈ fn(c1)
and 3n − 2 ≥ 2, ý ∈ fn(c′1) by Lemma 33. Thus, y /∈ fn(c2) ∪ range(σ) and
ý /∈ fn(c′2) ∪ range(σ′), and hence, by the second case of Lemma 36,

((c2, σ[β 7→ y]), (c′2, σ
′[β 7→ ý]), (3n− 1, 0,L)) ∈ DW . (60)

So by downward closure and the inductive hypothesis we have

((c, σ[β 7→ y]), (c, σ′[β 7→ ý]), (n− 1, 0,L)) ∈ DW . (61)

Hence choosing ý gives Duplicator a winning strategy in this case.

Case 3 is essentially the same as case 2, except that Duplicator’s choice ý is derived
from her winning response for the game in (14). Case 4 admits the same proof as
case 2 (or indeed case 3). Having examined each case, we see that Duplicator has a
winning response to Spoiler playing the EXS move.

Since we have now examined each possible move Spoiler could make in the game
of (15) and concluded that Duplicator has a winning strategy in each case, we have
shown that (15) holds.

5 To see this, suppose that Spoiler were to play the CMP move in (59) and split
c1 = y ©y c1. Then he would have a winning strategy, since there is some γ with
ý = σ′(γ) but y 6= σ(γ).

36

Corollary 38 (Multi-step Move Elimination). For all ranks r = (n, s,L), for all
c, c′ ∈ Cm and for all domain-coincident environments σ, σ′, if

((c, σ), (c′, σ′), (3s(n+ 1), 0,L)) ∈ DW (62)

then

((c, σ), (c′, σ′), (n, s,L)) ∈ DW . (63)

Proof. By induction on values of s.

If s = 0 then the conclusion follows by downward closure.

For s > 0, let us consider how an arbitrary instance of the game in (63) would
proceed. Until Spoiler first plays an adjunct move, Duplicator may respond in the
game in (63) just as she would for the game in (62), preventing Spoiler from winning
up to that point. Spoiler first plays an adjunct move for, say, the (k+ 1)th move (so
k ≤ n). At this stage, the game state is

((c1, σ1), (c′1, σ
′
1), (n− k, s,L)) (64)

and we know
((c1, σ1), (c′1, σ

′
1), (3s(n+ 1)− k, 0,L)) ∈ DW . (65)

Spoiler now plays either the LEF or the RIG move on (64); let us consider each case.

LEF move. Spoiler chooses one of c1, c
′
1 (assume without loss of generality that he

picks c1), x = σ1α (let x́ = σ′1α) and d1, d2 ∈ Cm with d2 = d1 ©x c1. By downward
closure on (65),

((c1, σ1), (c′1, σ
′
1), (3 · 3s−1(n− k + 1), 0,L)) ∈ DW . (66)

Note that σ1β = σ1γ ⇐⇒ σ′1β = σ′1γ. This follows from (65) by considering
that, if x = σ1β = σ1γ, Spoiler could play the CMP move choosing x = σ1β split
c1 = x©x c1. Duplicator’s response for her winning strategy must split c′1 = x́ ©́x c′1
with x́ = σ′1β and x́ = σ′1γ, or else Spoiler would be able to win by playing the VAR
move.

Now let d′1 be d1 with the hole labels renamed as follows: for each β, σ1β is renamed
to σ′1β; and the remaining hole labels (which are distinct from fn(c1) ∪ range(σ1))
renamed to be fresh with respect to fn(c′1) ∪ range(σ′1). From this construction,
d1, σ1 |= K ⇐⇒ d′1, σ

′
1 |= K for all K, since each variable may be instantiated

according to the renaming of hole labels. Thus, by game completeness,

((d1, σ1), (d′1, σ
′
1), (3 · 3s−1(n− k + 1), 0,L)) ∈ DW , and (67)

((d1, σ1), (d′1, σ
′
1), (n− k, s− 1,L)) ∈ DW . (68)

Notice that d′2 = d′1 ©́x c′1 is defined by construction. By Proposition 37, from (66)
and (67) we get

((d1 ©x c1, σ1), (d′1 ©́x c′1, σ
′
1), (3s−1(n− k + 1), 0,L)) ∈ DW . (69)

37

Hence, by the inductive hypothesis,

((d1 ©x c1, σ1), (d′1 ©́x c′1, σ
′
1), (n− k, s− 1,L)) ∈ DW . (70)

From (68) and (70), we see that Duplicator has a winning strategy in this case, by
playing d′1 and d′2.

RIG move. Again, Spoiler chooses, without loss of generality, c1, x = σ1α (let
x́ = σ′1α) and d1, d2 ∈ Cm with d2 = c1 ©x d1. As before,

((c1, σ1), (c′1, σ
′
1), (3 · 3s−1(n− k + 1), 0,L)) ∈ DW . (71)

Let d′1 be the relabelling of d1, as previously. By construction and by Lemma 33
(using (65), since 3s(n + 1) − k ≥ 3), d′2 = c′1 ©́x d′1 is defined. Also, by game
completeness,

((d1, σ1), (d′1, σ
′
1), (3 · 3s−1(n− k + 1), 0,L)) ∈ DW , and (72)

((d1, σ1), (d′1, σ
′
1), (n− k, s− 1,L)) ∈ DW . (73)

Thus, by Proposition 37, we get

((c1 ©x d1, σ1), (c′1 ©́x d′1, σ
′
1), (3s−1(n− k + 1), 0,L)) ∈ DW . (74)

Hence, by the inductive hypothesis,

((c1 ©x d1, σ1), (c′1 ©́x d′1, σ
′
1), (n− k, s− 1,L)) ∈ DW . (75)

So, by (73) and (75), Duplicator has a winning strategy in this case also, by playing
d′1 and d′2.

These game results are now translated to results in the logic in the following theo-
rem.

Theorem 39 (Adjunct Elimination). For any CLm
Tree formula of rank r = (n, s,L),

there exists an equivalent formula of rank r′ = (3s(n+ 1), 0,L).

Proof. Suppose that K is a formula of rank r and having free variables in V. 6

Let S = {(d, ρ) : d, ρ |= K}. By game soundness, if (c, σ) ∈ S and (c′, σ′) /∈ S
then ((c, σ), (c′, σ′), r) ∈ SW . By Corollary 38, this means ((c, σ), (c′, σ′), r′) ∈ SW .
Hence, by game completeness, there is a formula K(c,σ),(c′,σ′) of rank r′ and free
variables in V, which discriminates (c, σ) from (c′, σ′).

Therefore, by Lemma 28, there is a formula K ′ of rank r′, free variables in V, which
defines S. Hence, K ′ is equivalent to K.

6 We assume that all environments in this proof have domain V.

38

6 Conclusions

We have introduced multi-holed Context Logic for trees (CLm
Tree) and proved an

adjunct-elimination result for this logic. Our initial motivation was simply to un-
derstand if Lozes’ results for Separation Logic and Ambient Logic extended to the
original formulation of Context Logic. When we observed that this was not the
case [10], this work turned from being a routine adaptation of previous results into
a fundamental investigation of a natural version of Context Logic in which the
adjoints could be eliminated.

Many open problems remain. We studied multi-holed Context Logic initially because
we were unable to prove adjunct elimination for single-holed Context Logic with
composition. We believe the result also holds for the single-holed case, but have
not been able to prove it with current techniques. A further question, which would
imply this result, is whether, in the absence of adjoints, multi-holed and and single-
holed Context Logic with composition have equally expressive satisfaction relations
on closed formulae for analysing trees (contexts without holes). This result appears
to be difficult to prove.

Such results about expressivity on closed formulae form an important part of our
investigation into the true nature of Context Logic for trees, not only because they
provide a test on what is a natural formulation of Context Logic but also because
they allow us to link our analysis of structured data (in this case trees) with tradi-
tional results about regular languages. For example, Heuter [13] has shown that a
regular expression language, similar to multi-holed Context logic applied to ranked
trees and without structural adjoints, is as expressive as First-order Logic (FOL)
on ranked trees. Recently, Bojańczyk [14] has proved that a language equivalent to
single-holed Context Logic for unranked trees, with composition but no adjoints,
corresponds to FOL on forests. These results make use of the rich theory of formal
languages, such as automata theory, which we hope to apply to CLm

Tree to obtain a
complete understanding of its place in the study of forest-regular languages.

An intriguing question 7 is to what extent the adjoints permit properties of trees
to be expressed succinctly. The results in this paper give an upper bound: given a
formula with adjoints, a corresponding adjunct-free formula has maximum nesting
depth of non-Boolean connectives that is exponential in the maximum nesting depth
of adjoint connectives of the original formula. The total number of connectives
might be larger still, although by Lemma 24 we know it is bounded. By refining
our methods and studying examples, we expect to find closer bounds. It is not clear
whether this will lead to tight bounds on how much more succinct formulae with
adjoints can be.

Finally, we should mention Calcagno, Gardner and Zarfaty’s recent work on para-
metric expressivity [6], which compares logics on open formulae containing propo-
sitional variables. Despite our expressivity results on closed formulae in this paper,

7 We thank an anonymous referee of our conference paper [11] for this question.

39

stating that the adjoints can be eliminated, we intuitively know that adjunct connec-
tives are important for expressing weakest preconditions for local Hoare reasoning
using Separation Logic and Context Logic, and for expressing security properties in
Ambient Logic. This intuition is formally captured in [6] where it is shown that the
adjoints cannot be eliminated on open formulae. For our style of logical reasoning,
both types of expressivity result seem to be important: the expressivity on open
formulae captures our intuition that the structural connectives are important for
modular reasoning; and the expressivity on closed formulae allows us to compare
our reasoning about structured data with the literature on regular languages.

References

[1] S. S. Ishtiaq, P. W. O’Hearn, BI as an assertion language for mutable data
structures, in: POPL 2001, ACM Press, New York, 2001, pp. 14–26.

[2] J. C. Reynolds, Separation Logic: a logic for shared mutable data structures,
in: LICS 2002, IEEE Computer Society, Los Alamitos, 2002, pp. 55–74.

[3] H. Yang, P. W. O’Hearn, A semantic basis for local reasoning, in: M. Nielsen,
U. Engberg (Eds.), ETAPS 2002 and FOSSACS 2002, Vol. 2303 of LNCS,
Springer, Heidelberg, 2002, pp. 402–416.

[4] L. Cardelli, A. D. Gordon, Anytime, anywhere: modal logics for mobile
ambients, in: POPL 2000, ACM Press, New York, 2000, pp. 365–377.

[5] C. Calcagno, P. Gardner, U. Zarfaty, Context Logic and tree update, in: POPL
2005, ACM Press, New York, 2005, pp. 271–282.

[6] C. Calcagno, P. Gardner, U. Zarfaty, Context logic as modal logic: completeness
and parametric inexpressivity, in: POPL 2007, ACM Press, New York, 2007, pp.
123–134.

[7] E. Lozes, Adjuncts elimination in the static Ambient Logic, in: F. Corradini,
U. Nestmann (Eds.), EXPRESS 2003, Vol. 96 of ENTCS, Elsevier, Amsterdam,
2003, pp. 51–72.

[8] A. Dawar, P. Gardner, G. Ghelli, Adjunct elimination through games in static
Ambient Logic, in: K. Lodaya, M. Mahajan (Eds.), FSTTCS 2004, Vol. 3328 of
LNCS, Springer, Heidelberg, 2004, pp. 211–223.

[9] C. Calcagno, P. Gardner, U. Zarfaty, Separation Logic, Ambient Logic and
Context Logic: parametric inexpressivity results, unpublished (2006).

[10] T. Dinsdale-Young, Adjunct elimination in Context Logic, Master’s thesis,
Imperial College London (2006).

[11] C. Calcagno, T. Dinsdale-Young, P. Gardner, Adjunct elimination in Context
Logic for trees, in: APLAS 2007, LNCS, Springer, Heidelberg, 2007, pp. 255–
270.

40

[12] P. O’Hearn, D. Pym, Logic of bunched implications, Bulletin of Symbolic Logic
5 (2) (1999) 215–244.

[13] U. Heuter, First-order properties of trees, star-free expressions, and aperiodicity,
Informatique théorique et applications 25 (2) (1991) 125–145.

[14] M. Bojańczyk, Forest expressions, in: J. Duparc, T. A. Henzinger (Eds.), CSL
2007, Vol. 4646 of LNCS, Springer, Heidelberg, 2007, pp. 146–160.

41

