
Linear Forwarders∗

Philippa Gardner Cosimo Laneve Lucian Wischik

June 2003

Abstract

A linear forwarder is a process which receives one message on a channel
and sends it on a different channel. Such a process allows for a simple
implementation of the asynchronous pi calculus, by means of a direct
encoding of the pi calculus’ input capability (that is, where a received
name is used as the subject of subsequent input). This encoding is fully
abstract with respect to barbed congruence.

Linear forwarders are actually the basic mechanism of an earlier im-
plementation of the pi calculus called the fusion machine. We modify the
fusion machine, replacing fusions by forwarders. The result is more robust
in the presence of failures, and more fundamental.

1 Introduction

Distributed interaction has become a necessary part of modern programming
languages. We regard the asynchronous pi calculus as a basis for such a lan-
guage. In the pi calculus, a program (or process) has a collection of channels,
and it runs through interaction over these channels. A possible distributed im-
plementation is to let each channel belong to a single location. For instance,
there is one location for the channels u, v, w and another for x, y, z, and the
input resource u(a).P goes in the first location. If an output u x should arise
anywhere else in the system, it knows where it can find a matching input. This
basic scheme is used in the join calculus [7], in the π1� calculus [3], and in
the fusion machine [8]. (A different approach is taken in Dπ [2], in nomadic
pict [19], and in the ambient calculus [6], where agent migration is used for
remote interaction.)

We immediately face the problem of input capability, which is the ability
in the pi calculus to receive a channel name and subsequently accept input on it.
Consider the example x(u).u(v).Q. This program is located at (the location of)
x, but upon reaction with x w it produces the continuation w(v).Q{w/u} – and
this continuation is still at x, whereas it should actually be at w. Solving the
problem of input capability is the key challenge in distributing the pi calculus.

∗Available at www.wischik.com/lu/research/linfwd.html. This paper appears in the pro-
ceedings of CONCUR 2003, where one proof and some remarks were omitted for lack of space.

1

The point of this paper is to solve the problem of input capability with a
language that is “just right” – it neither disallows more features than necessary
(as does the join calculus), nor adds more implementation work than is necessary
(as does the fusion machine). One measure of our solution is that we obtain full
abstraction with the asynchronous pi calculus, up to weak barbed congruence.

First of all, let us consider in more detail the other solutions to input capa-
bility. The join calculus and localised pi calculus [13] simply disallow it: that is,
in a term x(u).P , the P may not contain any inputs on channel u. The prob-
lem now is how to encode input capability into such a localised calculus. An
encoding is possible, but awkward: when the term x(u).u(v).Q | x w is encoded
and then performs the reaction, it does not perform the substitution {w/u},
but rather encodes this substitution as a persistent forwarder between w and
u. Next, a firewall is needed to protect the protocol used by these forwarders.
(The forwarder is called a “merged proxy pair” in the join calculus).

The fusion machine instead implements input capability through the runtime
migration of code. In our example, w(v).Q{w/u} would migrate from x over to
w after the interaction. The migration is costly however when the continuation
Q is large. In addition, code migration requires an elaborate infrastructure. To
mitigate this, a large amount of the work on the fusion machine involved an
encoding of arbitrary programs into solos programs (ones which have only sim-
ple continuations) without incurring a performance penalty. But the encoding
used fusions, implemented through persistent trees of forwarders, which seem
awkward and fragile in the presence of failures.

The solution presented in this paper is to disallow general input capability,
and to introduce instead a limited form of input, the linear forwarder. A
linear forwarder x�y is a process which allows just one x to be turned into a y.
The essential point is that this limited form can be used to easily encode general
input capability. For example, consider the pi calculus term x(u).u(v).Q. We
will encode it as

x(u).(u′)(u�u′ | u′(v).Q′)

where the input u(v) has been turned into a local input u′(v) at the same
location as x, and where the forwarder allows one output on u to interact with
u′ instead. The encoding has the property that if the forwarder u�u′ exists,
then there is guaranteed to be an available input on u′. We remark that linearity
is crucial: if the forwarder persisted, then the guarantee would be broken; any
further u turned into u′ would become inert since there are no other inputs on
u′.

One might think of a linear forwarder x�y as the pi calculus agent x(u).y u
located at x. This agent would be suitable for a point-to-point network such
as the Internet. But we have actually turned forwarders into first-class oper-
ators in order to abstract away from any particular implementation. This is
because other kinds of networks benefit from different implementations of linear
forwarders. In a broadcast network, x�y might be located at y; whenever it
hears an offer of x u being broadcast, the machine at y can take up the offer.
Another possibility is to use a shared tuple-space such as Linda [9], and ignore

2

all linearity information. (The fusion machine also amounts to a shared state
which ignores linearity).

In this paper we show how to encode the pi calculus into a linear forwarder
calculus. Conversely, we also show how linear forwarders can be encoded into
the pi calculus. We therefore obtain full abstraction with respect to barbed
congruence.

We also describe a linear forwarder machine. It is a simplified form of our
earlier fusion machine, and more robust with respect to failures. This machine
gives an implementation of distributed rendezvous which can be performed lo-
cally. In this respect it is different from Facile [10], which assumes a three-party
handshake. This handshake is a protocol for interaction, and so prevents full
abstraction. We prove full abstraction between the machine and the linear for-
warder calculus, with respect to barbed congruence.

Related work. Forwarders have already been studied in detail by the pi com-
munity. Much work centres around the πI calculus [17] – a variant of the pi
calculus in which only private names may be emitted, as in (x)u x. Boreale uses
forwarders to encode the emission of free names [4]: the reaction u(a).Q | u x
does not perform the substitution {x/a}, but instead encodes it as a persistent
forwarder between a and x. The same technique is used by Merro and San-
giorgi [13] in proofs about the localised pi calculus; and both are inspired by
Honda’s equators [11], which are bidirectional forwarders. Something similar is
also used by Abadi and Fournet [1]. When channels are used linearly, Kobayashi
et al. [12] show that a linear forwarder can simulate a substitution.

We remark upon some differences. If substitutions are encoded as persistent
forwarders, then the ongoing execution of a program will create steadily more
forwarders. In contrast, we perform substitution directly, and in our setting
the number of forwarders decreases with execution. More fundamentally, the
πI calculus uses forwarders to effect the substitution of data, and they must be
persistent (nonlinear) since the data might be used arbitrarily many times by
contexts. We use forwarders to effect the input capability of code, and this is
linear because a given piece of source code contains only finitely many input
commands. Our proofs are similar in structure to those of Boreale, but are
much simpler due to linearity.

Structure. The structure of this paper is as follows. Section 2 gives the linear
forwarder calculus, and shows how to encode the pi calculus (with its input mo-
bility) into this calculus. Section 3 gives bisimulations for the linear forwarder
calculus, and Section 4 proves full abstraction of the pi calculus encoding. Sec-
tion 5 describes a distributed abstract machine for implementing the linear for-
warder calculus, and Section 6 proves full abstraction for this implementation.
We outline future developments in Section 7.

3

2 The Linear Forwarder Calculus

We assume an infinite set N of names ranged over by u, v, x, Names rep-
resent communication channels, which are also the values being transmitted in
communications. We write x̃ for a (possibly empty) finite sequence x1 · · ·xn of
names. Name substitutions {ỹ/x̃} are as usual.

Definition 1 (Linear forwarder calculus) Terms are given by

P ::= 0
∣∣ x ỹ

∣∣ x(ỹ).P
∣∣ (x)P

∣∣ P |P ∣∣ !P
∣∣ x�y

Structural congruence ≡ is the smallest equivalence relation satisfying the fol-
lowing and closed with respect to contexts and alpha-renaming:

P |0 ≡ P P |Q ≡ Q|P P |(Q|R) ≡ (P |Q)|R !P ≡ P |!P
(x)(y)P ≡ (y)(x)P (x)(P |Q) ≡ P | (x)Q if x �∈ fnP

Reaction is the smallest equivalence satisfying the following and closed under ≡,
(x) and | :

u(x̃).P | u ỹ → P{ỹ/x̃} x ũ | x�y → y ũ

The operators in the syntax are all standard apart from the linear forwarder
x�y. This allows one output on x to be transformed into one on y, through
the second reaction rule. In the output x ỹ and the input x(ỹ).P , the name x
is called the subject and the names ỹ are the objects. In the restriction (x)P ,
the name x is said to be bound. Similarly, in x(ỹ).P , the names ỹ are bound in
P . The free names in P , denoted fn(P), are the names in P with a non-bound
occurrence. We write (x1 · · ·xn)P for (x1) · · · (xn)P .

Next we make a localised sub-calculus, by adding the no-input-capability
constraint. It is standard from the πL calculus [13] and the join calculus that
such a constraint makes a calculus amenable to distributed implementation.

Definition 2 (Localised calculus) The localised linear forwarder calculus,
which we abbreviate L�, is the sub-calculus of the linear forwarder calculus which
satisfies the no-input-capability constraint: in x(ũ).P , the P has no free occur-
rence of ũ as the subject of an input.

We remark that the no-input-capability constraint is preserved by structural
congruence and by reaction.

The asynchronous pi calculus [5] is a sub-calculus of the linear forwarder
calculus, obtained by dropping linear forwarders. We give an encoding of the
asynchronous pi calculus into the localised linear forwarder calculus L�, showing
that the input capability can be expressed using forwarders and local inputs.
Henceforth, when we refer to the pi calculus, we mean the asynchronous pi
calculus.

4

Definition 3 (Encoding pi) The encoding [[·]] maps terms in the pi calculus
into terms in the L� calculus as follows. (In the input and restriction cases,
assume that the bound names do not clash with ũ.) Define [[P]] = [[P]]∅, where

[[x(ỹ).P]]ũ =

{
x(ỹ).[[P]]ũỹ if x /∈ ũ

(u′
i)(ui�u′

i | u′
i(ỹ).[[P]]ũỹ) if x = ui, ui ∈ ũ

[[(x)P]]ũ = (x)([[P]]ũ)
[[P |Q]]ũ = [[P]]ũ | [[Q]]ũ

[[!P]]ũ = ![[P]]ũ
[[x ỹ]]ũ = x ỹ

[[0]]ũ = 0

To understand the encoding, note that we use “primed” names to denote local
copies of names. So the encoding of x(u).u(y).P will use a new channel u′ and
a process u′(y).P , both at the same location as x. It will also create exactly one
forwarder u�u′, from the argument passed at runtime to u′. Meanwhile, any
output use of u is left unchanged.

To illustrate the connection between the reactions of a pi term and of its
translation, we consider the pi calculus reduction u y | u(x).P → P{y/x}. By
translating we obtain:

[[u y | u(x).P]]u = u y | (u′)(u�u′ | u′(x).[[P]]xu)
→ (u′)(u ′y | u′(x).[[P]]xu)
→ (u′)([[P]]xu{y/x})
≡ [[P]]xu{y/x}

Note that the final state of the translated term is subscripted on x and u, not
just on u. In effect, the translated term ends up with some garbage that was
not present in the original. Because of this garbage, it is not in general true that
Q → Q′ implies [[Q]] →∗ [[Q′]]; instead we must work up to some behavioural
congruence. The following section deals with barbed congruence.

We remark that linearity is crucial in the translation. For instance, consider
a non-linear translation where forwarders are replicated:

[[u(x).P]]u = (u′)(!u�u′ | u′(y).P)

Then consider the example

[[u().P | u().Q | u | u]]u = (u′)(!u�u′ | u′().P) | (u′′)(!u�u′′ | u′′().Q) | u | u

→ (u′)(P | !u�u′) | (u′′)(!u�u′′ | u′′().Q) | u

→ (u′)(P | u′ | !u�u′) | (u′′)(!u�u′′ | u′′().Q)

Here, both outputs were forwarded to the local name u′, even though the re-
source u′().P had already been used up by the first one. This precludes the
second one from reacting with Q — a reaction that would have been possible
in the original pi calculus term. We need linearity to prevent the possibility of
such dead ends.

5

3 Bisimulation and Congruence

We use barbed congruence [15] as our semantics for the L� calculus.

Definition 4 (Barbed congruence) The observation relation P ↓ u is the
smallest relation generated by

u x̃ ↓ u P |Q ↓ u if P ↓ u or Q ↓ u

(x)P ↓ u if P ↓ u and u �= x !P ↓ u if P ↓ u

We write ⇓ for →∗↓ and ⇒ for →∗. A symmetric relation R is a weak barbed
bisimulation if whenever P R Q then

1. P ⇓ u implies Q ⇓ u

2. P → P ′ implies Q ⇒ Q′ such that P ′ R Q′

Let
·≈ be the largest weak barbed bisimulation. Two terms P and Q are weak

barbed congruent in the L� calculus when, for every C, then C[P]
·≈ C[Q], where

C[P] and C[Q] are assumed to be terms in the L� calculus. Let ≈ be the least
relation that relates all congruent terms.

We remark that barbed bisimulation
·≈ is defined for the linear forwarder cal-

culus. However, the weak barbed congruence ≈ is predicated upon the L� sub-
calculus. Similar definitions may be given for the pi calculus, and, with abuse
of notation, we keep

·≈ and ≈ denoting the corresponding semantic relations.
As an example of ≈ congruent terms in the L� calculus, we remark that

u(x).P ≈ u(x′).(x)(!x�x′ | !x′�x | P). (1)

This is a straightforward variant of a standard result for equators [14], and we
use it in Lemma 9.

Our overall goal is to prove that the encoding [[·]] preserves the ≈ congruence.
The issue, as described near the end of the previous section, is that an encoded
term may leave behind garbage. To show that it is indeed garbage, we must
prove that [[P]]u and [[P]]ux are congruent. But the barbed semantics offer too
weak an induction hypothesis for this proof. A standard alternative technique
(used for example by Boreale [4]) is to use barbed semantics as the primary
definition, but then to use in the proofs a labelled transition semantics and its
corresponding bisimulation — which is stronger than barbed congruence. The
remainder of this section is devoted to the labelled semantics.

Definition 5 (Labelled semantics) The labels, ranged over by µ, are the

standard labels for interaction τ−→, input
u(x̃)−→ and possibly-bound output

(z̃)u x̃−→
where z̃ ⊆ x̃. The bound names bn(µ) of these input and output labels are x̃

6

and z̃ respectively.

u(x̃).P
u(x̃)−→ P u x̃

u x̃−→ 0 u�v
u(x̃)−→ v x̃

P
µ−→ P ′ y �∈ µ

(y)P
µ−→ (y)P ′

P
(z̃)u x̃−→ P ′ y �= u, y ∈ x̃\z̃

(y)P
(yz̃)u x̃−→ P ′

P |!P µ−→ P ′

!P
µ−→ P ′

P
µ−→ P ′ bn(µ) ∩ fn(Q) = ∅

P |Q µ−→ P ′|Q

P
(z̃)u ỹ−→ P ′ Q

u(x̃)−→ Q′ z̃ ∪ fn(Q) = ∅
P |Q τ−→ (z̃)(P ′|Q′{ỹ/x̃})

The transitions of P |Q have mirror cases, which we have omitted. We implicitly
identify terms up to alpha-renaming ≡α: that is, if P ≡α

µ−→ P ′ then P
µ−→ P ′.

We write
µ

=⇒ for τ−→∗ µ−→.
A symmetric relation R is a weak labelled bisimulation if whenever P R Q

then P
µ−→ P ′ implies Q

µ
=⇒ Q′. Let ≈� be the largest labelled bisimulation.

This definition is given for terms in the full linear forwarder calculus. It is a stan-
dard result that ≈� is a congruence with respect to contexts in the full calculus,
and hence also with respect to contexts in the L� calculus and the pi calculus.
The connection between labelled and barbed semantics is also standard:

Lemma 6 In the L� calculus,

1. P → P ′ iff P
τ−→≡ P ′.

2. P ↓ u iff P
(z̃)u x̃−→ P ′.

3. ≈� ⊂ ≈.

The bisimulation ≈� allows for some congruence properties to be proved
trivially: (the first will be used in Proposition 10)

u�v ≈� u(x̃).v x̃ ≈� (u′)(u�u′ | u′(x̃).v x̃). (2)
u(x).P ≈� (u′)(u�u′ | u′(x).P).

We remark that Equation 1 does not hold when we use labelled bisimulation
≈� instead of barbed congruence. In particular, in the case P = 0, the right

hand side undergoes
u(x′)−→x′(ṽ)−→ but the left does not. This illustrates why we

chose barbed congruence as our primary measure process equivalence, and left
labelled bisimulation as a technical tool for proofs.

7

4 Full Abstraction for the Pi Calculus Encoding

The L� calculus is fully abstract with respect to the pi calculus encoding: P ≈ Q
in pi if and only if [[P]] ≈ [[Q]] in L�. Informally, this is because the pi calculus
input capability can be encoded with linear forwarders (as in Definition 3);
and conversely a linear forwarder x�y can be encoded as the pi calculus term
x(ũ).y ũ. This section builds up to a formal proof of the result.

The structure of the proof follows that of Boreale ([4], Definition 2.5 to
Proposition 3.6). However, the proofs are significantly easier in our setting. We
begin with a basic lemma about the encoding [[·]].
Lemma 7 In the linear forwarder calculus,

1. [[P]]z̃ ≈� [[P]]xz̃.

2. [[P]]z̃{y/x} ≈� [[P{y/x}]]z̃.

3. [[P]]z̃{ỹ/x̃} ≈� (u′)(u ′ỹ | u′(x̃).[[P]]z̃x̃).

Proof. The first two are trivial inductions on P . The last one follows directly.�

We draw attention to the first part of Lemma 7. This is an important simpli-
fying tool. It means that, even though the encoding [[u(x).P]]u = (u′)(u′�u |
u′(x).[[P]]ux) involves progressively more subscripts, they can be ignored up to
behavioural equivalence. Thus, although a context C might receive names x̃
in input, we can ignore this fact: C

[
[[P]]x̃

] ≈� C
[
[[P]]

]
in the linear forwarder

calculus. (Notice that, given a localised term C
[
[[P]]x̃

]
, it is not necessary the

case that C
[
[[P]]

]
is also localised; hence the result does not carry over to ≈,

which is only defined for L� contexts).
Boreale [4] uses more complicated proofs than those used in this paper. In

particular, Part 1 does not hold for Boreale, and so his equivalent of Part 3
uses a significantly longer (5-page) alternative proof. The difference is that our
encoding [[P]]x merely indicates that each input use of x must be encoded via
a local channel (x′)(x�x′ | . . .). In contrast, Boreale uses a protocol instead
of linear forwarders, and his encoding {|P |}x′/x indicates that inputs on x will
use the protocol on the free channel x′, and so the protocol is observable in
{|P |}x′/x but not in {|P |}∅. This is why Part 1 does not hold. Additionally,
our encoding causes forwarders to be consumed after reaction; Boreale’s causes
them to be produced by reaction, so requiring the use of an expansion preorder
rather than our simpler labelled bisimulation.

Note that this section has even simpler proofs, using the property P ≈� [[P]]
which is deduced directly from Lemma 7 and the definition of [[·]]. However,
this property relates terms from two different sub-calculi of the linear forward
calculus, which some readers found inelegant – so we have avoided it.

Proposition 8 For P, Q in the pi calculus, P
·≈ Q if and only if [[P]]

·≈ [[Q]].

8

Proof. This is similar to Boreale’s Proposition 3.5 and 3.6. We need two lemmas:

1. P
µ−→ P ′ implies [[P]]z̃

µ
=⇒≈� [[P ′]]z̃

2. [[P]]z̃
µ−→ P ′

1 implies P
µ

=⇒ P ′ and P ′
1 ≈� [[P ′]]z̃

For Part 1 the cases of µ = (ṽ)u ỹ and µ = u(x̃) are straightforward inductions

on the derivation of
µ−→. We draw attention to the case u(x).P

u(x̃)−→ P , since
this relates specifically to linear forwarders. Suppose u ∈ z̃. Then

[[u(x̃).P]]z̃ = (u′)(u�u′ | u′(x̃).[[P]]z̃x̃) (3)
u(x̃)−→ (u′)(u ′x̃ | u′(x̃).[[P]]z̃x̃)

and by Lemma 7, this is ≈� [[P]]z̃. For µ = τ we will write out the interesting

case, of communication. Suppose P |Q τ−→ (ṽ)(P ′{ỹ/x̃}|Q′ with P
u(x̃)−→ P ′ and

Q
(z̃)u ỹ−→ Q′. By the induction hypothesis and Lemma 7.1, [[P]]z̃

u(x̃)
=⇒ P ′

1 ≈�

[[P ′]] ≈� [[P ′]]z̃ and [[Q]]z̃
(ṽ)u ỹ
=⇒ Q′

1 ≈� [[Q′]]z̃. Therefore,

[[P |Q]]z̃
τ=⇒ (

ṽ)(P ′
1{ỹ/x̃} | Q′

1
)

≈� (ṽ)
(
[[P ′]]z̃{ỹ/x̃} | [[Q′]]z̃

)
= [[(ṽ)

(
P ′{ỹ/x̃}|Q′)]]z̃.

Part 2 is similar. Again, we draw attention to the input case [[u(x̃).P]]z̃. Suppose

u ∈ z̃. Then [[u(x̃).P]]z̃
u(x)−→≈� [[P]]z̃ as in Equation 3. The original term also

has a matching transition u(x̃).P
u(x̃)−→ P , so completing the proof. �

We will also need the following lemma. It generalises Lemma 7.1 to apply to
barbed congruence rather than just labelled bisimulation. Effectively, it implies
that a non-localised context can be transformed into a localised one.

Lemma 9 For P, Q in the pi calculus, [[P]] ≈ [[Q]] implies [[P]]z̃ ≈ [[Q]]z̃.

Proof. From Lemma 7.1 we get [[P]]z̃ ≈� [[P]] ≈ [[Q]] ≈� [[Q]]z̃. The result follows
by Lemma 6.3 and the transitivity of ≈. (We thank an anonymous reviewer for
this simpler proof.) �

We are now ready to establish full abstraction for the encoding of the pi
calculus into the L� calculus.

Theorem 10 (Full abstraction) For P, Q in the pi calculus, P ≈ Q if and
only if [[P]] ≈ [[Q]] in the L� calculus.

Proof. We show that (1) P �≈ Q implies [[P]] �≈ [[Q]] and (2) [[P]] �≈ [[Q]] implies
P �≈ Q. We write Cπ and CL� to range over contexts such that Cπ[P], Cπ[Q] are
terms in the pi calculus, and CL�

[
[[P]]

]
, CL�

[
[[Q]]

]
are terms in the L� calculus.

9

To establish (1), extend the translation [[·]] to contexts in the obvious way.
Since the translation [[·]] is compositional, we get [[C[P]]] = [[C]]

[
[[P]]z̃

]
and

[[C[Q]]] = [[C]]
[
[[Q]]z̃

]
for some z̃ determined by C. Next, we reason by contra-

diction: we prove that P �≈ Q and [[P]] ≈ [[Q]] is false. Assuming P �≈ Q, there
exists a context Cπ[] such that Cπ[P] � ·≈ Cπ[Q]. By [[P]] ≈ [[Q]] and Lemma 9,
we also have [[P]]z̃ ≈ [[Q]]z̃. Therefore, in particular [[Cπ]]

[
[[P]]z̃

] ·≈ [[Cπ]]
[
[[Q]]z̃

]
and, by the above equalities, [[Cπ[P]]]

·≈ [[Cπ[Q]]]. By Proposition 8, this latter
bisimulation contradicts Cπ[P] � ·≈ Cπ[Q].

To establish (2), we show that pi contexts are as expressive as linear for-
warder contexts, by exhibiting a pi implementation of linear forwarders. To
this end, we define ·̂, which translates x�y into x(ũ).y ũ and leaves all else
unchanged. Similarly to (1), we prove that [[P]] �≈ [[Q]] and P ≈ Q are contra-
dictory. We are given a context CL�[] such that CL�[[[P]]] � ·≈ CL�[[[Q]]]. Consider
the agent [[ĈL�[P]]], which by definition is equal to [[ĈL�]]

[
[[P]]z̃

]
for some z̃.

By Lemma 7 this is ≈�-bisimilar to [[ĈL�]]
[
[[P]]

]
. Now we consider the dou-

ble translation [[̂·]]; it will convert each forwarder u�v into either u(x̃).v x̃ or
(u′)(u�u′ | u′(x̃).v x̃). Thanks to Equation 2, [[ĈL�]]

[
[[P]]

] ≈� CL�

[
[[P]]

]
. And,

with similar reasoning, the same holds for Q. The proof follows from these
results. From the assumption that P ≈ Q we get ĈL�[P]

·≈ ĈL�[Q]. By Propo-
sition 8, [[ĈL�[P]]]

·≈ [[ĈL�[Q]]]. Now we focus on P . [[ĈL�[P]]] = [[ĈL�]]
[
[[P]]z̃

]
(by

definition of [[·]]); ≈� [[ĈL�]]
[
[[P]]

]
(by Lemma 7.1); ≈� CL�

[
[[P]]

]
(by Equation 2).

Doing the same to Q, we obtain CL�

[
[[P]]

] ·≈ CL�

[
[[Q]]

]
, contradicting [[P]] �≈ [[Q]]

and so proving the result. �

5 A Linear Forwarder Machine

In this section we develop a distributed machine for the L� calculus, suitable
for a point-to-point network such as the Internet. This machine is actually very
similar to the fusion machine [8], but with linear forwarders instead of fusions
(trees of persistent forwarders). We first give a diagrammatic overview of the
machine. Then we provide a formal syntax, and prove full abstraction with
respect to barbed congruence.

We assume a set of locations. Each channel belongs to a particular location.
For instance, channels u, v, w might belong to �1 and x, y to �2. The structure
of a channel name u might actually be the pair (IP:TCP), giving the IP number
and port number of a channel-manager service on the Internet. Every input
process is at the location of its subject channel. Output processes may be
anywhere. For example,

�1:uvw

u(x).(x′)(x�x′ | x′(z).P)

�2:xy

u y | y w

10

In a point-to-point network such as the Internet, the output message u y would
be sent to u to react; in a broadcast network such as wireless or ethernet, the
offer of output would be broadcast and then �1 would accept the offer. In both
cases, the result is a reaction and a substitution {y/x} as follows:

→
�1:uvw x′

y�x′ | x′(z).P{y/x}
�2:xy

y w

The overall effect of the linear forwarder y�x′ will be to turn the y w into x ′w.
In a point-to-point network this can be implemented by migrating the y�x′ to
�2, there to push the y w to x′, as shown below. (In the following diagrams, some
steps are shown as heating transitions ⇀; these steps were abstracted away in
the L� calculus).

⇀

�1:uvw x′

x′(z).P{y/x}
�2:xy

y�x′ | y w

→
�1:uvw x′

x′(z).P{y/x}
�2:xy

x ′w

⇀

�1:uvw x′

x ′w | x′(z).P{y/x}
�2:xy

→
�1:uvw x′

P{y/x}{w/z}
�2:xy

In a broadcast network, the linear forwarder y�x′ would instead stay at �1;
later, when the offer of y a is broadcast, the linear forwarder can grab the offer.

We remark that the above machine basically avoids code migration: after
an input, the continuation remains in the same place (with the minor exception
that forwarders x�x′ and outputs x y may migrate, which is easy to imple-
ment). Because code does not migrate, there is no need for a run-anywhere
infrastructure such as Java, and it is possible to compile into CPU-specific ma-
chine code.

Distributed choice. A well-known operator in process calculi is the input-
guarded choice x(u).P + y(v).Q. In the case where x and y are at separate
locations, the choice is awkward to implement, but we can compile it into an
(easily implementable) localised choice as follows:

[[x(u).P + y(v).Q]] = (x′y′)
(

x�x′ | y�y′

| x′(u).(P | y′�y) + y′(v).(Q | x′�x)
)

11

To understand this encoding, note that the new names x′ and y′ will be created
at the same location, and so the choice between x′ and y′ will a local one.
Next, x v may be forwarded to x′, or y v to y′, or both. If the reaction with
x′ is taken, this yields y′�y to “undo” the effect of the forwarder that was
not taken. (It undoes it up to weak barbed congruence, in the sense that
(y′)(y�y′ | y′�y) ≈ 0.) Note that even if the location of x should fail, then
the y option remains open, and vice versa.

Failure. We briefly comment on the failure model for the linear forwarder
machine. It is basically the same as failure in the join calculus: either a message
can be lost, or an entire location can fail. If a linear forwarder x�y should fail,
the effect is the same as if a single future message x ũ should fail. A command
‘iffail(u) then P’ might be added to determine if u’s location is unresponsive.
The current theory was largely prompted by criticisms of the fragility of our
earlier fusion machine.

5.1 The Machine Calculus

Definition 11 (Linear forwarder machine) Localised linear forwarder ma-
chines M are given by the following grammar, where P ranges over terms in
the L� calculus (Definition 2):

M ::= 0
∣∣ x[P]

∣∣ (|x|)[P]
∣∣ M, M

The presentation here is similar to that given for the fusion machine [8]. The
basic channel-manager x[P] denotes a channel-manager at channel x containing
a body P . The local channel-manager (|x|)[P] denotes a channel-manager where
the name x is not visible outside the machine. We write chanM to denote the
set of names of all channel-managers in the machine, and LchanM for the names
of only the local channel-managers.

We assume a co-location equivalence relation L on channels. We write x@y
to mean that (x, y) ∈ L, with the intended meaning that the two channels are at
the same location. It is always possible to create a fresh channel at an existing
location: therefore let each equivalence class in L be infinitely large. In the
machine calculus, we generally assume L rather than writing it explicitly.

There are a number of well-formedness conditions on machines:
(1) Localised. All code is in the right place, and does not need to be moved

at runtime. Formally, in every channel u[P], every free input v(x̃).Q satisfies
u@v. (Also, no received name is used as the subject of input; this already holds
from the L� calculus).

(2) Singly-defined. There is exactly one channel-manager per channel. For-
mally, a machine x1[B1], · · · , xn[Bn] is singly-defined when i �= j implies xi �= xj

(xi or xj may be local).
(3) Complete. It does not make sense to write a program that refers to

channels which do not exist. We say that a machine is complete when it has

12

no such references. Formally, the free names of a machine must be contained in
chanM .

A machine is well-formed when it is localised, singly-defined and complete.
In the following, we consider only well-formed machines.

Definition 12 (Dynamics) The structural congruence for well-formed ma-
chines ≡ is the smallest equivalence relation satisfying the following laws:

M,0 ≡ M M1, M2 ≡ M2, M1 M1, (M2, M3) ≡ (M1, M2), M3

P ≡ Q implies u[P] ≡ u[Q] and (|u|)[P] ≡ (|u|)[Q]

The reduction step → and the heating step ⇀ are the smallest relations satisfying
the rules below, and closed with respect to structural congruence. Each rule
addresses generically both free and local channel-managers.

u[u ỹ | u(x̃).P | R] → u[P{ỹ/x̃} | R] (react)
u[u�v | u x̃ | R] → u[v x̃ | R] (fwd)

u[(x)P | R] ⇀ u[P{x′
/x} | R], (|x′|)[], x′ fresh, x′@u (dep.new)

u[x�y | R1], x[R2] ⇀ u[R1], x[x�y | R2], if u �= x (dep.fwd)
u[x ỹ | R1], x[R2] ⇀ u[R1], x[x ỹ | R2], if u �= x (dep.out)

u[x(ỹ).P | R1], x[R2] ⇀ u[R1], x[x(ỹ).P | R2], if u �= x, u@x (dep.in)

For every transition rule above, we close it under contexts:

M → M ′, chanM ′ ∩ chanN = ∅
M, N → M ′, N

M ⇀ M ′, chanM ′ ∩ chanN = ∅
M, N ⇀ M ′, N

We draw attention to two of the rules. The rule (dep.new) picks a fresh channel-
name x′ and this channel is deemed to be at the location where the command was
executed. The rule (dep.in) will only move an input command from one channel
u to another channel x, if the two channels are co-located; hence, there is no
“real” movement. In the current presentation we have used arbitrary replication
!P , but in a real machine we would instead use guarded replication [18], as is
used in the fusion machine. All rules preserve well-formedness.

Definition 13 (Bisimulation) The observation M ↓ u is the smallest relation
satisfying u[P] ↓ u if P ↓ u, and M1, M2 ↓ u if M1 ↓ u or M2 ↓ u. Write ⇒
for (→∗⇀∗)∗, and M ⇓ u for M ⇒↓ u. A weak barbed bisimulation R between
machines is a symmetric relation such that if M S N then

1. M ⇓ u implies N ⇓ u

2. M ⇒ M ′ implies N ⇒ N ′ such that M ′ R N ′

Let
·≈ be the largest barbed bisimulation. Two machines M1 and M2 are weak

barbed equivalent, written M1 � M2, when for every machine N , then N, M1
·≈

N, M2. (Note that N, M1 and N, M2 are assumed to be well-formed, so chanN ∩
chanM1 = chanN ∩ chanM2 = ∅.)

13

We will prove correctness using a translation calc M = (LchanM)M̂ from
machines to terms in the L� calculus, where

0̂ = 0 û[P] = P (̂|u|)[P] = P M̂1, M2 = M̂1 | M̂2

One might prefer to prove correctness of a “compiling” translation, which takes
a term and compiles it into a machine — rather than the reverse translation
calc. However, different compilers are possible, differing in their policy for which
location to upload code into. We note that all correct compilers are contained
in the inverse of calc, so our results are more general.

The correctness of the forwarder machine relies on the following lemma

Lemma 14 (Correctness) M1
·≈ M2 if and only if calc M1

·≈ calc M2

Proof. It is clear that machine operations are reflected in the calculus: M ≡ M ′

implies calc M ≡ calc M ′, and M ⇀ M ′ implies calc M ≡ calc M ′, and M → M ′

implies calc M → calc M ′, and M ↓ u implies calc M ↓ u.
The reverse direction is more difficult. We wish to establish that

1. calc M ↓ u implies M ⇀∗↓ u, and

2. calc M → P ′ implies ∃M ′ : M ⇀∗→ M ′ and P ′ ≡ calc M ′.

Both parts share a similar proof; we focus on part 2. Given the machine
M , there is also a fully-deployed machine M ′ such that M ⇀∗ M ′ and M ′ has
no heating transitions: that is, all unguarded restrictions have been used to
create fresh channels, and all outputs and forwarders are at the correct loca-
tion. Therefore calc M ≡ calc M ′ → P ′. The structure of calc M ′ has the form
(LchanM ′)M̂ ′. The reaction must have come from an output u ỹ and an input
u(x̃).P in M ′ (or from an output and a forwarder). Because M ′ is fully-deployed,
it must contain u[u ỹ | u(x̃).P]. Therefore it too must allow the corresponding
reaction. The bisimulation result follows directly from the above. �

We now prove full abstraction: that two machines are barbed equivalent if
and only if their corresponding L� calculus terms are barbed congruent. There
is some subtlety here. With the L� calculus, ≈ is closed under restriction, input
prefix and parallel contexts. With the abstract machine, � is only closed under
the partial machine composition: contexts can add new channel managers to
the machine, but not additional programs to existing ones. We defined ma-
chine equivalence around this partial closure, because this is the most natural
equivalence in the machine setting. (It is not surprising that contexts gain no
additional discriminating power through restriction and input-prefixing, since
the same holds in the asynchronous pi calculus without matching [14]: P ≈ Q

if and only if R|P ·≈ R|Q for every R.)
It has been suggested that a weaker simulation result would suffice. But we

believe that full abstraction shows our machine to be a natural implementation
of the pi calculus, in contrast to Facile and Join. Practically, full abstrac-
tion means that a program can be debugged purely at source-level rather than
machine-level.

14

Theorem 15 (Full abstraction) M1 � M2 if and only if calc M1 ≈ calc M2.

Proof. The reverse direction is straightforward, because machine contexts are
essentially parallel compositions. In the forwards direction, it suffices to prove
R| calc M1

·≈ R| calc M2 for every R. By contradiction suppose the contrary:
namely, there exists an R such that the two are not barbed bisimilar. Expanding
the definition of calc we obtain that R|(lchanM1)M̂1 � ·≈ R|(lchanM2)M̂2.

We now show how to construct a machine context MR such that MR, M1 � ·≈
MR, M2, thus demonstrating a contradiction. Without loss of generality, sup-
pose that R does not clash with the local names lchanM1 or lchanM2. This gives
(lchanM1)(R|M̂1) � ·≈ (lchanM2)(R|M̂2). In order to ensure well-formedness
of MR, M1 and MR, M2, let z̃ = chanM1 ∪ chanM2. By Lemma 7 we get
[[R]]z̃ ≈� R, and by definition [[R]]z̃ contains no inputs on z̃, so satisfying the
localised property. Now assume without loss of generality that R contains no
top-level restrictions. Let MR = u[R] for a fresh name u such that, for every
free input ui(x̃).R′ in R, then ui@u. Hence lchan MR = ∅ and M̂R = [[R]]z̃. This
yields calc MR, M1 = (lchanM1)([[R]]z̃|M̂1) ≈� (lchanM1)(R|M̂1), and similarly
for M2. And finally, by construction, both MR, M1 and MR, M2 are singly-
defined and complete. �

6 Further Issues

The point of this paper is to provide a distributed implementation of the input
capability of the pi calculus. We have shown that a limited form of input
capability (linear forwarders) is enough to easily express the full input capability.
We have expressed this formally through a calculus with linear forwarders, and
a proof of its full abstraction with respect to the pi calculus encoding.

The calculus in this paper abstracts away from certain details of imple-
mentation (such as the choice between a point-to-point or broadcast network).
Nevertheless, thanks to its localisation property, it remains easy to implement.

Coupled bisimulation. There is an interesting subtlety in the encoding of
input capability. Our first attempt at an encoding gave, for example,

[[u(x).(x().P | x().Q)]] = u(x).(x′)(x�x′ | x′().P | x�x′ | x′().Q)

That is, we tried to reuse the same local name x′ for all bound inputs. But then,
a subsequent reaction x�x′ | x z → x ′z would be a commitment to react with
one of x′().P or x′().Q, while ruling out any other possibilities. This partial
commitment does not occur in the original pi calculus expression, and so the
encoding does not even preserve behaviour. An equivalent counterexample in
the pi calculus is that τ.P |τ.Q|τ.R and τ.P |τ.(τ.Q|τ.R) are not weak bisimilar.
We instead used an encoding which has a fresh channel for each bound input:

[[u(x).(x().P | x().Q)]] = u(x).
(
(x′)(x�x′ | x′().P) | (x′′)(x�x′′ | x′′().Q)

)

15

Now, any reaction with a forwarder is a complete rather than a partial commit-
ment. In fact, both encodings are valid. The original encoding, although not
a bisimulation, is still a coupled bisimulation [16]. (Coupled bisimulation is a
less-strict form of bisimulation that is more appropriate for an implementation,
introduced for the same reasons as given here.) In this paper we chose the
normal bisimulation and the repaired encoding, because they are simpler.

The join calculus and forwarders. We end with some notes on the differ-
ence between the join calculus [7] and the L� calculus. The core join calculus
is

P ::= 0
∣∣ x ũ

∣∣ P |P ∣∣ def x(ũ)|y(ṽ) � P in Q

The behaviour of the def resource is, when two outputs x ũ′ and y ṽ′ are avail-
able, then it consumes them to yield a copy P{ũ′ṽ′

/ũṽ} of P . Note that x and
y are bound by def, and so input capability is disallowed by syntax. The core
join calculus can be translated into the pi calculus (and hence L�) as follows [7]:

[[0]] = 0 [[x ũ]] = x ũ [[P |Q]] = [[P]] | [[Q]]
[[def x(ũ)|y(ṽ) � P in Q]] = (xy)([[Q]] | !x(ũ).y(ṽ).[[P]])

If a join program is translated into the linear forwarder machine and then exe-
cuted, then the result has exactly the same runtime behaviour (i.e. same number
of messages) as the original join program. Additionally, we can provide the same
distribution of channels through the co-location operator discussed above.

A reverse translation is more difficult, because of linear forwarders. One
might try to translate x�y | R into def x(ũ) � y ũ in [[R]], analogous with the
translation of a forwarder into the pi calculus that was used in Proposition 10.
But the L� calculus allows a received name to be used as the source of a for-
warder, as in u(x).(x�y | P), and the same is not possible in the join calculus.
Therefore contexts in the L� calculus are strictly more discriminating than con-
texts in the join calculus. (As an example, def x(u) � y u in z x is equivalent to
z y in the join calculus, but the context z(a).(a�b | a |) can distinguish them
in the L� calculus.)

References

[1] M. Abadi and C. Fournet. Mobile values, new names, and secure commu-
nication. In POPL 2001, pages 104–115. ACM Press.

[2] R. Amadio, G. Boudol, and C. Lhoussaine. The receptive distributed pi-
calculus (extended abstract). In FSTTCS 1999, LNCS 1738:304–315.

[3] R. Amadio. An asynchronous model of locality, failure, and process mobil-
ity. In COORDINATION 1997, LNCS 1282:374–391.

[4] M. Boreale. On the expressiveness of internal mobility in name-passing
calculi. Theoretical Computer Science, 195(2):205–226, 1998.

16

[5] G. Boudol. Asynchrony and the π-calculus (note). Rapport de Recherche
1702, INRIA Sophia-Antipolis, 1992.

[6] L. Cardelli and A. D. Gordon. Mobile ambients. Theoretical Computer
Science, 240(1):177–213, 2000.

[7] C. Fournet and G. Gonthier. The reflexive chemical abstract machine and
the join-calculus. In POPL 1996, pages 372–385. ACM Press.

[8] P. Gardner, C. Laneve, and L. Wischik. The fusion machine. In CONCUR
2002, LNCS 2421:418–433.

[9] D. Gelernter, N. Carriero, S. Chandran, and S. Chang. Parallel program-
ming in Linda. In ICPP 1985, pages 255–263. IEEE.

[10] A. Giacalone, P. Mishra, and S. Prasad. Facile: A symmetric integration of
concurrent and functional programming. International Journal of Parallel
Programming, 18(2):121–160, 1989.

[11] K. Honda and N. Yoshida. On reduction-based process semantics. Theo-
retical Computer Science, 152(2):437–486, 1995.

[12] N. Kobayashi, B. C. Pierce, and D. N. Turner:. Linearity and the pi-
calculus. ACM Transactions on Programming Languages and Systems,
21(5):914–947, 1999.

[13] M. Merro and D. Sangiorgi. On asynchrony in name-passing calculi. In
ICALP 1998, LNCS 1443:856–867.

[14] M. Merro. On equators in asynchronous name-passing calculi without
matching. In EXPRESS 1999, volume 27 of Electronic Notes in Theoretical
Computer Science. Elsevier Science Publishers.

[15] R. Milner and D. Sangiorgi. Barbed bisimulation. In ICALP 1992,
LNCS 623:685–695.

[16] J. Parrow and P. Sjödin. Multiway synchronization verified with coupled
simulation. In CONCUR 1992, LNCS 630:518–533.

[17] D. Sangiorgi. Pi-calculus, internal mobility and agent-passing calculi. The-
oretical Computer Science, 167(1–2):235–275, 1996.

[18] D. Sangiorgi. On the bisimulation proof method. Mathematical Structures
in Computer Science, 8(5):447–479, 1998.

[19] P. Sewell, P. Wojciechowski, and B. Pierce. Location independence for
mobile agents. In ICCL 1998, LNCS 1686:1–31.

17

