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Abstract. We show how to verify four challenging concurrent fine-
grained graph-manipulating algorithms, including graph copy, a specula-
tively parallel Dijkstra, graph marking and spanning tree. We develop a
reasoning method for such algorithms that dynamically tracks the contri-
butions and responsibilities of each thread operating on a graph, even in
cases of arbitrary recursive thread creation. We demonstrate how to use
a logic without abstraction (CoLoSL) to carry out abstract reasoning in
the style of iCAP, by building the abstraction into the proof structure
rather than incorporating it into the semantic model of the logic.

1 Introduction

The verification of fine-grained concurrent algorithms is nontrivial. There has
been much recent progress verifying such algorithms modularly using variants
of concurrent separation logic [9,12, 16,15, 6,4]. One area of particular difficulty
has been verifying such algorithms that manipulate graphs. This is only to be
expected: even in a semi-formal “algorithmic” sense, the correctness arguments of
concurrent graph algorithms can be dauntingly subtle [2].

To verify such algorithms, we must not only understand these algorithmic
arguments, but must also determine a precise way to express them in a suitable
formal system. Even sequential graph algorithms are challenging to verify due to
the overlapping nature of the graph structures, preventing e.g. easy use of the
frame rule of separation logic [8]. Concurrent graph algorithms pose a number of
additional challenges, such as reasoning how the actions of each thread advance the
overall goal despite the possible interference from other threads. Unsurprisingly,
verifications of such algorithms are rare in the literature.

We verify the functional correctness of four nontrivial concurrent fine-grained
graph algorithms. We study a structure-preserving copy, a speculatively-parallel
version of Dijkstra’s shortest-path algorithm, a graph marking, and a spanning
tree algorithm. We have found common “proof patterns” for tackling these
algorithms, principally reasoning about the functional correctness of the algorithm
on abstract mathematical graphs v, defined as sets of vertices and edges. We use
such abstractions to state and prove key invariants. Another pattern is that we
track the progress of each thread using a notion of tokens to record each thread’s
portion of the computation. Informally, if the token of thread ¢ is on vertex v, then
t is responsible for some work on/around v. Our tokens are sufficiently general
to handle sophisticated parallelism. (e.g. dynamic thread creation/destruction).



We then reason about the memory safety of the algorithm by connecting our
reasoning on mathematical graphs to spatial graphs (sets of memory cells in the
heap) by defining spatial predicates that implement mathematical structures in
the heap e.g. graph(v) L ... We define our spatial predicates in such a way that
simplifies many of the proof obligations (e.g. when parallel computations join).

This pattern of doing the algorithmic reasoning on abstract states is similar to
the style of reasoning used in logics such as CaReSL [16] and iCAP [15]. CaReSL
introduced the idea of reasoning on abstract states. Later, iCAP extended the
program logic of CAP [4] to reason about higher-order code and adopted CaReSL’s
abstract states. Just as with these logics, we carry out our reasoning on abstract
states, which enables simpler proofs and lessens the burden of side conditions such
as establishing stability. With these logics, this abstract style of reasoning has
been “baked in” to the semantic models. Here, we demonstrate that this baking is
unnecessary by using a logic (CoLoSL [12]) without such built-in support. We do
not use any of the unique features of CoLoSL. As such, we believe that our proofs
and style of abstract reasoning port to other program logics without difficulty.

Related work There has been much work on reasoning about graph algorithms
using separation logic. For sequential graph algorithms, Bornat et al. presented
preliminary work on dags in [1], Yang studied the Schorr-Waite graph algo-
rithm [17], Reynolds conjectured how to reason about dags [13], and Hobor and
Villard showed how to reason about dags and graphs [8]. We make critical use of
some of Hobor and Villard’s graph-related verification infrastructure.

Many concurrent program logics have been proposed in recent years; both
iCAP and CaReSL encourage the kind of abstract reasoning we employ in our
verifications. However, published examples in these logics focus heavily on verify-
ing concurrent data structures, whereas we focus on verifying concurrent graph
algorithms. Moreover, the semantic models for both of these logics incorporate
significant machinery to enable this kind of abstract reasoning, whereas we are
able to use it without built-in support.

There has hardly been any work on concurrent graph algorithms. Raad et
al. [12] and Sergey et al. [14] have verified a concurrent spanning tree algorithm,
one of our examples. In [12], Raad et al. introduced CoLoSL and gave a shaped-
based proof of spanning tree to demonstrate CoLoSL reasoning. A full functional
correctness proof in CoLoSL was available at the time, although not using the
proof pattern presented here. Later in [14], Sergey et al. gave a full functional
correctness proof in Coq, but only that single example. We believe we are the
first to verify copy_dag, which is known to be difficult, and parrellel_dijkstra,
which we believe is the first verification of an algorithm that uses speculative
parallel decomposition [7].

Outline The rest of this paper is organised as follows. In §2 we give an overview
of the CoLoSL program logic and outline our proof pattern. We then use our
proof pattern to verify the concurrent copy_dag (§3) and parallel_dijkstra (§4)
algorithms, and finish with concluding remarks. We refer the reader to [10, 11]
for the verification of two further concurrent graph algorithms for graph marking
and computing the spanning tree of a graph.



2 Background

2.1 CoLoSL: Concurrent Local Subjective Logic

In the program logic of CoLoSL [12], the program state is modelled as a pair
comprising a thread-local state, and a global shared state accessible by all threads.
For instance, a shared counter at location x can be specified as:

def def
C=L*{Elvgmax,x.—»v*x—kl»—»male I={L: T—vAvV<mMaAr ~> r—v+1

The assertion C states that the counter at location x is a shared resource (denoted
by the ) with some value v < max, that the maximum value permitted for
the counter (max) is also a shared resource stored at location z+1, and that the
current thread holds some capability ¢ in its local state. The interference relation,
I, describes how the shared state may be updated and is specified through actions
indexed by capabilities. A thread can perform an action if it holds the capability
for that action in its local state. Here, I declares one action for incrementing the
value of z, indexed by the increment capability ¢. As such, this thread (or any
other that also holds some ¢ capability in its local state) may increment x by one,
provided that the incremented value does not exceed max.

Shared state assertions can be freely duplicated using the COPY principle in
Fig. 1. This allows us to duplicate and pass on the knowledge about the shared
state to new threads, using the standard parallel composition rule PAR. To allow
local reasoning, a thread may weaken its view of the shared state to obtain a
partial subjective view of it using the FORGET principle. For instance given the
counter specification C above, if this thread is not interested in location x+1 where

maz is stored, it may forget it and obtain [Hv < maz.T — vjl. That is, each
(subjective) shared state assertion describes (potentially) only parts of the shared
global resources. As such, subjective views may arbitrarily overlap with each other.
For instance, while this thread chooses to forget the z+1 location in C, a second
thread may choose to observe both z and z+1, and a third thread may choose to
observe 241 only. CoLoSL also allows for weakening (framing) of the interference

relation using the SHIFT principle: ;o [side-condition-omitted| e I
Hence, subjective views may also arbitrarily overlap in their interference relations.
Due to space constraints we have omitted this rule from Fig. 1 as we do not use
it in this paper. Different subjective views of the shared state can be combined
using the MERGE principle. Since subjective views may overlap both in their
resources and interference relations, we use the overlapping conjunction [8], »,
to combine the resources, and set union U to combine their interference relations.
Intuitively, Pw @ describes a state comprising two (potentially) overlapping parts
satisfying P and @, respectively.

CoLoSL is parametric in the model of its resources and may be instantiated
with any PCM (partial commutative monoid).! In the example above (counter),
our resource PCM is that of ordinary concrete heaps, Hdéf(H, w, &), with the

! CoLoSL stipulates that PCMs satisfy the cross-split property [8], which ours do.
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Figure 1: An excerpt of the reasoning principles and proof rules in CoLoSL

CoN

composition operator as the disjoint function union, and the function with empty
domain (&) as the single unit element. In the remainder of this paper, we take
our PCM elements as pairs (h, hy) in the PCM H*< (H2, (v, w), (@, @)) where
h. is the concrete heap, and h, is the ghost heap. CoLoSL is also parametric in
its capability model and may be instantiated with any PCM. In the following
sections, we choose the capability PCM on a per-example basis.!

CoLoSL borrows the consequence rule (CON) of the Views framework [3],
with = denoting the semantic consequence relation (semantic implication). That
is, we write P = ) when the set of low-level machine states described by P
are contained in that of (). This way ghost heaps may be manipulated by an
application of CON rather than explicit ghost instructions.

2.2 Proof Pattern: Combining Mathematical and Spatial Reasoning

Our graph verifications follow a common pattern which we outline as follows.
First, we select an appropriate abstract model for mathematical graphs, which
is typically sets of vertices and edges together with labels. Second, we choose
a token model. We use tokens to identify each thread uniquely and to track
the contribution of each thread to the global computation. For instance, for an
algorithm with only two threads this might be as simple as the set {red, blue},
identifying each thread as a distinct colour.

Third, we define mathematical actions to capture the operations performed by
threads. These actions model both concrete updates to the graph (e.g. removing
an edge), as well as ghost updates used solely for reasoning (e.g. adding or remov-
ing tokens to track the computation progress). Fourth, we define mathematical
assertions to describe program invariants and pre-/postconditions. These asser-
tions are on mathematical graphs and involve abstract concepts (e.g. reachability
along a path). As a key proof obligation, we must prove that our mathematical
assertions are stable with respect to our mathematical actions, i.e. they remain
true under the actions of other threads in the environment.

Fifth, we define spatial predicates (e.g. graph(y)) that describe how math-
ematical graphs are implemented in the heap. For instance, a graph may be
implemented as a set of heap-linked nodes or as an adjacency matrix. We then
combine these spatial predicates with our mathematical actions to define spa-
tial actions. Intuitively, if a mathematical action transforms ~ to 7/, then the
corresponding spatial action transforms graph(vy) to graph(y’).



3 Copying Heap-represented Dags Concurrently

The copy_dag(x) program in Fig. 4 makes a deep structure-preserving copy of
the dag (directed acyclic graph) rooted at x concurrently. To do this, each node x
in the source dag records in its copy field (x->c) the location of its copy when it
exists, or 0 otherwise. Our language is C with a few cosmetic differences. Line 1
gives the data type of heap-represented dags. The statements between angle
brackets <.> (e.g. lines 5-7) denote atomic instructions that cannot be interrupted
by other threads. We write C1 || C2 (e.g. line 9) for the parallel computation of
C1 and C2. This corresponds to the standard fork-join parallelism.

A thread running copy_dag(x) first checks atomically (lines 5-7) if x has
already been copied. If so, the address of the copy is returned. Otherwise, the
thread allocates a new node y to serve as the copy of x and updates x->c
accordingly; it then proceeds to copy the left and right subdags in parallel by
spawning two new threads (line 9). At the beginning of the initial call, none of
the nodes have been copied and all copy fields are 0; at the end of this call, all
nodes are copied to a new dag whose root is returned by the algorithm. In the
intermediate recursive calls, only parts of the dag rooted at the argument are
copied. Note that the atomic block of lines 5-7 corresponds to a CAS (compare
and set) operation. We have unwrapped the definition for better readability.

Although the code is short, its correctness argument is rather subtle as we
need to reason simultaneously about both deep unspecified sharing inside the
dag as well as the parallel behaviour. This is not surprising since the unspecified
sharing makes verifying even the sequential version of similar algorithms non-
trivial [8]. However, the non-deterministic behaviour of parallel computation
makes even specifying the behaviour of copy_dag challenging. Observe that each
node z of the source dag may be in one of the following three stages:

1. z is not visited by any thread (not copied yet), and thus its copy field is 0.

2. x has already been visited by a thread 7, a copy node 2’ has been allocated,
and the copy field of z has been accordingly updated to z’. However, the
edges of 2’ have not been directed correctly. That is, the thread copying x
has not yet finished executing line 10.

3. z has been copied and the edges of its copy have been updated accordingly.

Note that in stage 2 when x has already been visited by a thread m, if another
thread 7’ visits x, it simply returns even though x and its children may not have
been fully copied yet. How do we then specify the postcondition of thread =’
since we cannot promise that the subdag at x is fully copied when it returns?
Intuitively, thread 7’ can safely return because another thread () has copied x
and has made a promise to visit its children and ensure that they are also copied
(by which time the said children may have been copied by other threads, incurring
further promises). More concretely, to reason about copy_dag we associate each
node with a promise set identifying those threads that must visit it.

Consider the dags in Fig. 2 where a node z is depicted as i) a white circle

when in stage 1, e.g. in 2a; ii) a grey ellipse when in stage 2, e.g. in



2b where thread m has copied x to z’; and iii) a black circle when in stage 3,
e.g. @ in 2g. Initially no node is copied and as such all copy fields are 0. Let us

assume that the top thread (the thread running the very first call to copy_dag) is
identified as w. That is, thread 7 has made a promise to visit the top node = and
as such the promise set of  comprises 7. This is depicted in the initial snapshot
of the graph in Fig. 2a by the {r} promise set next to x. Thread 7 proceeds
with copying z to z’, and transforming the dag to that of Fig. 2b. In doing so,
thread = fulfils its promise to x and 7 is thus removed from the promise set of
x. Recall that if another thread now visits z it simply returns, relinquishing the
responsibility of copying the descendants of x. This is because the responsibility
to copy the left and right subdags of = lies with the left and right sub-threads of
7 (spawned at line 9), respectively. As such, in transforming the dag from Fig. 2a
to 2b, thread 7 extends the promise sets of [ and r, where 7.l (resp. 7.r) denotes
the left (resp. right) sub-thread spawned by 7 at line 9. Subsequently, the 7.l and
m.r sub-threads copy [ and r as illustrated in Fig. 2¢, each incurring a promise to
visit y via their sub-threads. That is, since both [ and r have an edge to y, they
race to copy the subdag at y. In the trace detailed in Fig. 2, the m.r.| sub-thread
wins the race and transforms the dag to that of Fig. 2d by removing .r.l from
the promise set of y, and incurring a promise at z. Since the 7.l.r sub-thread
lost the race for copying y, it simply returns (line 3). That is, 7.l.r needs not
proceed to copy y as it has already been copied. As such, the promise of 7.l.r to
y is trivially fulfilled and the copying of ! is finalised. This is captured in the
transition from Fig. 2d to 2e where 7.l.r is removed from the promise set of ¥,
and [ is taken to stage 3. Thread m.r.l.I then proceeds to copy z, transforming the
dag to that of Fig. 2f. Since z has no descendants, the copying of the subdag at z
is now at an end; thread .r.l.I thus returns, taking z to stage 3. In doing so, the
copying of the entire dag is completed; sub-threads join and the effect of copying
is propagated to the parent threads, taking the dag to that depicted in Fig. 2g.
Note that in order to track the contribution of each thread and record the
overall copying progress, we must identify each thread uniquely. To this end, we
appeal to a token (identification) mechanism that can 1) distinguish one token
(thread) from another; 2) identify two distinct sub-tokens given any token, to
reflect the new threads spawned at recursive call points; and 3) model a parent-
child relationship to discern the spawner thread from its sub-threads. We model
our tokens as a variation of the tree share algebra in [5] as described below.

Trees as tokens A tree token (henceforth a token), 7 € I1, is defined by the
grammar below as a binary tree with boolean leaves (o, o), exactly one e leaf,
and unlabelled internal nodes.

Haomi=e| x|no

We refer to the thread associated with 7 as thread 7w. To model the parent-
child relation between thread 7 and its two sub-threads (left and right), we
define a mechanism for creating two distinct sibling tokens m.l and 7.r defined
below. Intuitively, .| and 7.r denote replacing the o leaf of 7 with ; ¢ and e o,

respectively. We model the ancestor-descendant relation between threads by the
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Figure 2: An example trace of copy_dag

= ordering defined below where + denotes the transitive closure of the relation.

el=ce  (cn)l=d7 (w o) =71%
oos o O/tl o 71'13 c< {(xl,7), (mor,7) | we )T
*r=eo (Cm)r=3Smr (ro)r=rro

We write n= ' for m=7" v m=x’, and write 7 d- 7’ (resp. 7 & 7’) for —(7w = 7’)
(resp. —(w = 7’)). Observe that e is the maximal token, i.e. Vr € II.7m E . As
such, the top-level thread is associated with the e token, since all other threads are
its sub-threads and are subsequently spawned by it or its descendants (i.e. m=e
in Figs. 2a-2g). In what follows we write 7 to denote the token set comprising
the descendants of 7, i.e. 7 < {n' | 7/ = w}.

As discussed in §2.2, we carry out most of our reasoning abstractly by
appealing to mathematical objects. To this end, we define mathematical dags as
an abstraction of the dag structure in copy_dag.

Mathematical dags A mathematical dag, 6 € A, is a triple of the form (V| E, L)
where V' is the vertex set; E:V — VyxVj, is the edge function with Vo=V w {0},
where 0 denotes the absence of an edge (e.g. a null pointer); and L=V —D, is the
vertex labelling function with the label set D defined shortly. We write §¥, §® and
8%, to project the various components of 6. Moreover, we write §'(x) and 6'(z) for
the first and second projections of E(z); and write §(x) for (L(x),d'(x),d"(x))
when z € V. Given a function f (e.g. E, L), we write f[x— v] for updating f(z)
to v, and write fw[xz— v] for extending f with z and value v. Two dags are
congruent if they have the same vertices and edges, i.e. §; = 6y = Y =0y A 67=05.
We define our mathematical objects as pairs of dags (9,6") € (WsxWs), where &
and ¢’ denote the source dag and its copy, respectively.

To capture the stages a node goes through, we define the node labels as
D=(Vy x (I w {0}) xP(II)). The first component records the copy information
(the address of the copy when in stage 2 or 3; 0 when in stage 1). This corresponds
to the second components in the nodes of the dags in Fig. 2, e.g. 0 in @ The
second component tracks the node stage as described on page 5: 0 in stage 1
(white nodes in Fig. 2), some 7 in stage 2 (grey nodes in Fig. 2), and 0 in stage 3
(black nodes in Fig. 2). That is, when the node is being processed by thread m,
this component reflects the thread’s token. Note that this is a ghost component in



that it is used purely for reasoning and does not appear in the physical memory.
The third (ghost) component denotes the promise set of the node and tracks
the tokens of those threads that are yet to visit it. This corresponds to the sets
adjacent to nodes in the dags of Fig. 2, e.g. {m.l} in Fig. 2b. We write §°(x), 6°(x)
and 6P (z) for the first, second, and third projections of a’s label, respectively. We

define the path relation, x LA y, and the unprocessed path relation, x j‘-)() Y, as

.6 § . . . .
follows and write ~»* and ~»{, for their reflexive transitive closure, respectively.

c y 5'(x):y v o' (x)=y T vé%oy o o yno(x)=0n0d6(y)=0

The lifetime of a node = with label (¢, s, P) can be described as follows.
Initially,  is in stage 1 (¢=0, s=0). When thread 7 visits z, it creates a copy
node z’ and takes x to stage 2 (c=12', s=7). In doing so, it removes its token 7
from the promise set P, and adds 7.l and 7.r to the promise sets of its left and
right children, respectively. Once 7 finishes executing line 10, it takes z to stage
3 (c=2/, s=0). If another thread #’ then visits  when it is in stage 2 or 3, it
removes its token 7’ from the promise set P, leaving the node stage unchanged.

As discussed in §2.2, to model the interactions of each thread 7 with the shared
data structure, we define mathematical actions as relations on mathematical
objects. We thus define several families of actions, each indexed by a token .

Actions The mathematical actions of copy_dag are given in Fig. 3. The AL
describes taking a node x from stage 1 to 2 by thread «. In doing so, it removes
its token 7 from the promise set of x, and adds .l and 7.r to the promise sets
of its left and right children respectively, indicating that they will be visited
by its sub-threads, 7.l and =.r. It then updates the copy field of = to ¥y, and
extends the copy graph with y. This action captures the atomic block of lines 5-7
when successful. The next two sets capture the execution of atomic commands in
line 10 by thread m where A2 and A2 respectively describe updating the left and
right edges of the copy node. Once thread 7 has finished executing line 10 (and
has updated the edges of y), it takes x to stage 3 by updating the relevant ghost
values. This is described by A%. The A5 set describes the case where node x has
already been visited by another thread (it is in stage 2 or 3 and thus its copy field
is non-zero). Thread 7 then proceeds by removing its token from x’s promise set.
We write A, to denote the actions of thread m: A, = AL U A2 U A2 U AL U AD.
We can now specify the behaviour of copy_dag mathematically.

Mathematical specification Throughout the execution of copy_dag, the
source dag and its copy (4, d"), satisfy the invariant Inv below.

Inv(8,8) " acyc(8) nacyc(d') A (Vo' €8 3Nz ed. 6°(z)=z') A (Vo € 6.3z ic(z, 2/, 6,8"))
ic(z,2.6,8 )< (=0 A 2/=0) v
<x¢0/\ [('=0n 6%(z)=a"A Fy.0°(y)+T Ay M8 x)
v (ac/=|=0 az'e 8 Adm L U §(x)=((z",m,—), 1
Al'#£0 = ic(I,1',6,8") A (r'#0 = ic(r,r', 6,
v(zHF0nz e & AL, U r 8(z)=((2),0,—),1,7) A& (z)=(—,U'1")
nic(l,1',8,8") Aic(r, ', 6, 6’))])
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61,85)) | A b2(y)=((0,7,),0,7) A 65=(63, E5,05) A Es=65[y — (c1,7)]
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)) /\52( )=((0,m @) l 0) A 05=(85, E5,05) A E5=65[y — (I, cr)]
( )_((y7W7P)7l7T) A 62(:’/):((077‘—7@)761707‘) }

A1=0Ac=0 v 01(D)=c; Aci$0) A (r=0Ac,=0 v 61 (r)=cr Acr-$0)
A 01=(0Y, 01, 0t [z (,0,P)]) A 65=(03, 03, 03[y — (0,0,)])
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Figure 3: The mathematical actions of copy_dag

with acyc(d) & —3z. z o+ x, where 2.+ denotes the transitive closure of -

Informally, the invariant asserts that 6 and ¢’ are acyclic (first two conJuncts),
and that each node z’ of the copy dag §’ corresponds to a unique node x of the
source dag § (third conjunct). The last conjunct states that each node z of the
source dag (i.e. £#0) is in one of the three stages described above, via the second
disjunct of the ic predicate: 1) x is not copied yet (stage 1), in which case there is
an unprocessed path from a node y with a non-empty promise set to x, ensuring
that it will eventually be visited (first disjunct); ii) z is currently being processed
(stage 2) by thread 7 (second disjunct), and if its children have been copied they
also satisfy the invariant; iii) « has been processed completely (stage 3) and thus
its children also satisfy the invariant (last disjunct).

The mathematical precondition of copy_dag, P™(z,0), is defined below where
x identifies the top node being copied (the argument to copy_dag), m denotes
the thread identifier, and § is the source dag. It asserts that « is in the promise
set of x, i.e. thread m has an obligation to visit = (first conjunct). Recall that
each token uniquely identifies a thread and thus the descendants of 7 correspond
to the sub-threads subsequently spawned by m. As such, prior to spawning new
threads the precondition asserts that none of the strict descendants of 7 can be
found anywhere in the promise sets (second conjunct), and 7 itself is only in
the promise set of x (third conjunct). Similarly, neither 7 nor its descendants
have yet processed any nodes (last conjunct). The mathematical postcondition,
Q™ (x,y,0,0"), is as defined below and asserts that = (in ¢) has been copied to
y (in ¢'); that 7 and all its descendants have fulfilled their promises and thus
cannot be found in promise sets; and that 7 and all its descendants have finished
processing their charges and thus cannot correspond to the stage field of a node.

P™(2,6) = (z=0 v 7 € 6°(x)) A Vr'. Yy € 4.
('€ oP(y) = n'dm) A (zFy = 7 ¢ P (y)) A (6°(y)=n"= 7'tEm)
Q™ (z,y,6,8") = (z=0v (6°(x)=y Ay € §')) A Vr'.Vz € 4.
7 edP(z)v(z)=n"=>n"&n
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Observe that when the top level thread (associated with e) executing copy_dag(x)
terminates, since e is the maximal token and all other tokens are its descendants
(i.e. V. E o), the second conjunct of Q*(x, ret, d, d’) entails that no tokens can
be found anywhere in 6, i.e. Yy.dP(y)= A §°(y)=0. As such, Q*(x, ret,d,d’)
together with Inv entails that all nodes in § have been correctly copied into ¢,
i.e. only the third disjunct of ic(x, ret,d,d’) in Inv applies.

Recall from §2.2 that as a key proof obligation we must prove that our
mathematical assertions are stable with respect to our mathematical actions.
This is captured by Lemma 1 below. Part (1) states that the invariant Inv is
stable with respect to the actions of all threads. That is, if the invariant holds
for (1,02), and a thread 7 updates (d1,02) to (ds3,d4), then the invariant holds
for (3, 04). Parts (2) and (3) state that the pre- and postconditions of thread =’
(P™ and Q™) are stable with respect to the actions of all threads , but those of
its descendants (7 ¢ 7’). Observe that despite this latter stipulation, the actions
of m are irrelevant and do not affect the stability of P™ and Q™. More concretely,
the precondition P™ only holds at the beginning of the program before new
descendants are spawned (line 9). As such, at these program points P is trivially
stable with respect to the actions of its (non-existing) descendants. Analogously,
the postcondition Q™ only holds at the end of the program after the descendant
threads have completed their execution and joined. Therefore, at these program
points Q™ is trivially stable with respect to the actions of its descendants.

Lemma 1. For all mathematical objects (§1,02), (03,04), and all tokens 7,7,

|I'1V((517 (52) AN (51,62) Aﬂ— ((53,(54) = |I’1V(637 (54) (1)
P™ (2,01) A (61,02) Ay (33,04) A & 7 = P™ (z,83) (2)
Q™ (2, y,61,02) A (61,02) Az (85,04) AT ¢ = Q" (2,y,083,04) (3)

Proof. Follows from the definitions of A, Inv, P, and Q. The full proof is given
in [10].

We are almost in a position to verify copy_dag. As discussed in §2.2, in order
to verify copy_dag we integrate our mathematical correctness argument with
a machine-level memory safety argument by linking our abstract mathemat-
ical objects to concrete structures in the heap. We proceed with the spatial
representation of our mathematical dags in the heap.

Spatial representation We represent a mathematical object (d,9’) in the heap
through the icdag (in-copy) predicate below as two disjoint (*-separated) dags, as
well as a ghost location (d) in the ghost heap tracking the current abstract state
of each dag. Observe that this way of tracking the abstract state of dags in the
ghost heap eliminates the need for baking in the abstract state into the model.
That is, rather than incorporating the abstract state into the model as in [15, 16],
we encode it as an additional resource in the ghost heap. We use = for ghost
heap cells to differentiate them from concrete heap cells indicated by —. We
implement each dag as a collection of nodes in the heap. A node is represented
as three adjacent cells in the heap together with two additional cells in the ghost
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heap. The cells in the heap track the addresses of the copy (c¢), and the left (1)
and right (r) children, respectively. The ghost locations are used to track the
node state (s) and the promise set (P). It is also possible (and perhaps more
pleasing) to implement a dag via a recursive predicate using the overlapping
conjunction w (see [10]). Here, we choose the implementation below for simplicity.

icdag(81,02) = d = (01, 02) * dag(dy) * dag(d2) dag(0)= * node(z, &)
xTe
node(z,8) = 31,7 ¢, s, P.o(x)=(c, s, P),l,7 A&+ c,l,r xx =5, P

We can now specify the spatial precondition of copy_dag, Pre(x, m, §), as a CoLoSL
assertion defined below where z is the top node being copied (the argument of
copy_dag), 7 identifies the running thread, and § denotes the initial top-level dag
(where none of the nodes are copied yet). Recall that the spatial actions in CoLoSL
are indexed by capabilities; that is, a CoLoSL action may be performed by a
thread only when it holds the necessary capabilities. Since CoLoSL is parametric
in its capability model, to verify copy_dag we take our capabilities to be the
same as our tokens. The precondition Pre states that the current thread 7 holds
the capabilities associated with itself and all its descendants (7*). Thread = will
subsequently pass on the descendant capabilities when spawning new sub-threads
and reclaim them as the sub-threads return and join. The Pre further asserts that
the initial dag § and its copy currently correspond to d; and do, respectively. That
is, since the dags are concurrently manipulated by several threads, to ensure the
stability of the shared state assertion to the actions of the environment, Pre states
that the initial dag § may have evolved to another congruent dag d; (captured by
the existential quantifier). The Pre also states that the shared state contains the
spatial resources of the dags (icdag(di,d2)), that (d1,02) satisfies the invariant
Inv, and that the source dag ¢; satisfies the mathematical precondition P™. The
spatial actions on the shared state are declared in I where mathematical actions
are simply lifted to spatial ones indexed by the associated capability. That is,
if thread 7 holds the 7 capability, and the actions of = (A4,) admit the update
of the mathematical object (d1,d2) to (87,0%), then thread m may update the
spatial resources icdag(dy, d2) to icdag(d], d5). Finally, the spatial postcondition
Post is analogous to Pre and further states that node x has been copied to y.

Pre(z,m,6) < 7 * [351,52. icdag (81, 02) * (6281 Alnv(81,02) AP (z, 51))] ,

def _x

Post(w,y,,8) ™ 7" ( 361,8,. icdag(d1,02) * (6261 A Inv(61,02) A Q7 (&, 4.01.62)) |

TE ko I= {7r sicdag (01, 02) A (81, 02)Ar (87, 0%) ~ icdag(d7, 0%)

TET

Verifying copy_dag We give a proof sketch of copy_dag in Fig. 4. At each
proof point, we have highlighted the effect of the preceding command, where
applicable. For instance, after line 4 we allocate a new node in the heap at y
as well as two consecutive cells in the ghost heap at y. One thing jumps out
when looking at the assertions at each program point: they have identical spatial
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1. struct node {struct node *c, %1, x*r};
{Pre(x,ﬂ',(s)}

2. copy_dag(struct node *x) {struct node *1, *r, x11, *rr, xy; bool b;
{7 *( 301,85 icdag (61, 02) * (0201 A Inv(31,82) A P™(,01))] , }
3. if(!'x){ return 0; }

{ﬁ* « retéO*[ 361, 8z.icdag (81, 0a) * (5281 Alnv(81, 82) A Q7 (x, ret,él,éz))], }
4. 'y = malloc(sizeof(struct node));
{7 +( 361, 62. icdag (81, 62) * (6281 A Inv(61,62) A P™(,61))] Y= 0,008y =g )

5. <if(x->c){ b = false; //Perform the action A2
™ * [ 361, 0. icdag(dy, d2) * (6201 A Inv(dy,d2) A QT (, 85(x), 81, d2) A I5(X) + O)L
xy—0,— —*xy =, * b=0

6. Yelse{ x->c =y; b = true; //Perform the action AL

{ﬁ* " 361.05. icdag (51, 95) * (6261 A Inv(81.69) AVUED: ..Wé(sf(U)/\ *xb=1 }
(xfy = 735 (y)) A I, 7. 61 (X)=(y, T, —, 1,7) A y&G2 A PT(1,81) A P (1, 63 ))

>

© N

= x->1; r = x->r;

361,52 |cdag(51,5z) * (5 51 Inv(51,52) N Vyedl.frq:‘df(y)A
(xy = 1£355(y) A S1(x)=(y, T, —, L,r) A y&da A PTI(L,61) A P™"(r,51))

(-

[ [ﬂémz icdag(61.05) * (5201 A Inv(81,65) A Vyed,. w¢6$(y)A}
< :

* 7.l

X:*:y = 71_:*:55 )) A 61( ) (Y7 ST 1, r) A y€62)
71" +( 361,65 icdag (01, 62) * (5261 A Inv(81,82) A PT(L, 51))]1
« T +( 301,05, icdag(dr, ) * (6201 A Inv(61,02) A P77 (r,01))]

351 62 |cdag(61,62)*(5 61 A Inv(51 62) A VyE()l 7T¢5p( ) * Pre{l.ﬂ-,l‘(ﬂ
B Pre(r,m.r,0)

A (xFy = 7405 (y)) A 01(X)=(y,—,m,1,r) A y€da)
{Pre(1,7.1,6)}

{Pre(r,m.r,6)}
9. 11 = copy_dag(l) rr = copy_dag(r)
{Post(1,11,7.1,8)} {Post(r, rr,m.r,8)}

. 351762.icdag(51,62)* (5261 A |I’1V(517 62) A Vyeél. 7T¢5§’(y) * POSt(L 11, m.l, (S)
A (xFy = T$01(y)) A S1(x)=(y,—m,L,r) A yEd2) | *Post(r, rr,m.r. )

=+ ,[301,02.icdag (01, 02) * (9261 Alnv(1,02) A Vyedrm¢d] (y) A
(xFy=7%35(y)) A 51 (x)=(y,—,m,1,r) Ay&da A Q(L, 11,81,62) A Q7T (r, rr,61,02)) X
10. <y->1 = Wl>; <y->r = rr>; //Perform A2, A2 and A% in order.
{7 (30,02 icdag (01, 62) + (9201 A Inv(01,62) A Q7(x,y,01.02)) ), |
11. return y; {f* *(361762. icdag(d1,d2) * (6281 A Inv(d1,d2) A Q7(x, ret,&l,éz))]l}
12. }else{
{ﬁ**[afs 3. icdag(91,02) (9201 Alnv(81,65) A QF (x, 05(),01,02) A 35 (x)£0) ) Y0
1,02. 801,02 1 1,92 1,92 I*yﬁﬂg
13. free(y, sizeof(struct node)) ; return x->c;

I *[ 361,02. icdag(d1, 82) * (6261 A Inv(d1,d2) A Q™ (x, ret,él,ég))]I }
14. } } {Post(x, ret,m,4)}

Figure 4: The code and a proof sketch of copy_dag



13

parts in the shared state: icdag(dy, d2). Indeed, the spatial graph in the heap is
changing constantly, due both to the actions of this thread and the environment.
Nevertheless, the spatial graph in the heap remains in sync with the mathematical
object (41, d2), however (d1,d2) may be changing. Whenever this thread interacts
with the shared state, the mathematical object (d1,02) changes, reflected by the
changes to the pure mathematical facts. Changes to (d1,0d2) due to other threads
in the environment are handled by the existential quantification of §; and Js.
On line 3 we check if x is 0. If so the program returns and the postcondition,
Post(x, 0, d, ), follows trivially from the definition of the precondition Pre(x, d, ).
If x # 0, then the atomic block of lines 5-7 is executed. We first check if x is
copied; if so we set b to false, perform action A2 (i.e. remove 7 from the promise
set of x) and thus arrive at the desired postcondition Post(x, §§(x),r,d). On the
other hand, if x is not copied, we set b to true and perform Al. That is, we
remove 7w from the promise set of x, and add «.l and n.r to the left and right
children of x, respectively. In doing so, we obtain the mathematical preconditions
Por(l,m.l) and P% (7, 7.r). On line 8 we check whether the thread did copy x and
has thus incurred an obligation to call copy_dag on x’s children. If this is the
case, we load the left and right children of x into 1 and r, and subsequently call
copy_dag on them (line 9). To obtain the preconditions of the recursive calls, we

duplicate the shared state twice ( IC omvx? " * s *1)’ drop the irrelevant

pure assertions, and unwrap the definition of 7*. We then use the PAR rule (Fig.
1) to distribute the resources between the sub-threads and collect them back
when they join. Subsequently, we combine multiple copies of the shared states
into one using MERGE. Finally, on line 10 we perform actions A2, A3 and A% in
order to update the edges of y, and arrive at the postcondition Post(x,y, 7, ).

Copying graphs Recall that a dag is a directed graph that is acyclic. However,
the copy_dag program does not depend on the acyclicity of the dag at x and thus
copy_dag may be used to copy both dags and cyclic graphs. The specification
of copy_dag for cyclic graphs is rather similar to that of dags. More concretely,
the spatial pre- and postcondition (Pre and Post), as well as the mathematical
pre- and postcondition (P and Q) remain unchanged, while the invariant Inv is
weakened to allow for cyclic graphs. That is, the Inv for cyclic graphs does not
include the first two conjuncts asserting that § and 4’ are acyclic. As such, when
verifying copy_dag for cyclic graphs, the proof obligation for establishing the
Inv stability (i.e. Lemma 1(1)) is somewhat simpler. The other stability proofs
(Lemma 1(2) and (3)) and the proof sketch in Fig. 4 are essentially unchanged.

4 Parallel Speculative Shortest Path (Dijkstra)

Given a graph with size vertices, the weighted adjacency matrix a, and a
designated source node src, Dijkstra’s sequential algorithm calculates the shortest
path from src to all other nodes incrementally. To do this, it maintains a cost
array ¢, and two sets of vertices: those processed thus far (done), and those
yet to be processed (work). The cost for each node (bar src itself) is initialised
with the value of the adjacency matrix (i.e. c[src]=0; c[i]=a[src][i] for i%src).



14

Initially, all vertices are in work and the algorithm proceeds by iterating over work
performing the following two steps at each iteration. First, it extracts a node i
with the cheapest cost from work and inserts it to done. Second, for each vertex j,
it updates its cost (c[j]) to min{c[j], c[i]+a[i][i]}. This greedy strategy ensures
that at any one point the cost associated with the nodes in done is minimal. Once
the work set is exhausted, ¢ holds the minimal cost for all vertices.

We study a parallel non-greedy variant of Dijkstra’s shortest path algorithm,
parallel_dijkstra in Fig. 5, with work and done implemented as bit arrays. We
initialize the ¢, work and done arrays as described above (lines 2-5), and find the
shortest path from the source src concurrently, by spawning multiple threads,
each executing the non-greedy dijkstra (line 6). The code for dijkstra is given
in Fig. 5. In this non-greedy implementation, at each iteration an arbitrary node
from the work set is selected rather than one with minimal cost. Unlike the greedy
variant, when a node is processed and inserted into done, its associated cost is not
necessarily the cheapest. As such, during the second step of each iteration, when
updating the cost of node j to min{c[j], c[i]+a[i][i]} (as described above), we
must further check if j is already processed. This is because if the cost of j goes
down, the cost of its adjacent siblings may go down too and thus j needs to be
reprocessed. When this is the case, j is removed from done and reinserted into
work (lines 9-11). If on the other hand j is unprocessed (and is in work), we can
safely decrease its cost (lines 7-8). Lastly, if j is currently being processed by
another thread, we must wait until it is processed (loop back and try again).

The algorithm of parallel_dijkstra is an instance of speculative paral-
lelism [7]: each thread running dijkstra assumes that the costs of the nodes in
done will not change as a result of processing the nodes in work and proceeds
with its computation. However, if at a later point it detects that its assumption
was wrong, it reinserts the affected nodes into work and recomputes their costs.

Mathematical graphs Similar to dags in §3, we define our mathematical
graphs, v € I', as tuples of the form (V, E, L) where V is the set of vertices,
E:V— (V—W) is the weighted adjacency function with weights W = N w{co},
and L:V — D is the label function, with the labels D defined shortly. We use the
matrix notation for adjacency functions and write E[¢][j] for E(7)(j).

Unlike copy_dag in §3 where a new thread is spawned at every recursive call
point, in parallel_dijkstra the number of threads to run concurrently is decided
at the beginning (line 7) and remains unchanged thereafter. This allows for a
simpler token mechanism. We define our tokens as elements of the (countably)
infinite set t € O=N\{0, 1}. We refer to the thread with token ¢ simply as thread
t. Recall that each node z in the graph can be either: unprocessed (in work);
processed (in done); or under process by a thread (neither in work nor in done).
We define our labels as D = W x ({0,1} w ©) x (V—{o,e} & W). The first
component denotes the cost of the shortest path from the source (so far) to
the node. The second component describes the node state (0 for unprocessed,
1 for processed, and ¢ when under process by thread ¢). The last component
denotes the responsibility function. Recall that when a thread is processing a
node, it iterates over all vertices examining whether their cost can be improved.
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void parallel_dijkstra(int[][] a, int[] c, int size, src){

bitarray work[size], done[size];
for (i=0; i<size; i++){
c[i] = a[src]l[i]; work[i] = 1; done[i] = 0;
}; clsrc] = 0;
dijkstra(a,c,size,work,done) || ... || dijkstra(a,c,size,work,done)
return c;
}
void dijkstra(int[][] a, int[] c, int size, bitarray work, done){ i = 0;
while(done != 2%1%¢.1){ b = <CAS(work[i], 1, 0)>;
if(b){ cost = c[i];
for(j=0; j<size; j++){ newcost = cost + al[il[j]; b = true;
do{ oldcost = c[j];
if(newcost < oldcost){
b = <CAS(work[j], 1, 0)>;
if(b){ b = <CAS(c[j], oldcost, newcost)>; <work[j] = 1>; }
else { b = <CAS(done[j], 1, 0)>;

if(b){ b = <CAS(c[j], oldcost, newcost)>;
if(b){ < work[j] =1 > } else { < done[j] =1>1}

P}
} while(!b)
} < done[i] =1 >;
} i = (i+1l) mod size;

Figure 5: A parallel non-greedy variant of Dijkstra’s algorithm

To do this, at each iteration the thread records the current cost of node 7 under
inspection in oldcost (line 5). If the cost may be improved (i.e. the conditional
of line 6 succeeds), it then attempts to update the cost of j with the improved
value (lines 8, 10). Note that since the cost associated with j may have changed
from the initial cost recorded (oldcost), the update operation may fail and thus
the thread needs to re-examine j. To track the iteration progress, for each node
the responsibility function records whether i) its cost is yet to be examined (o);
ii) its cost has been examined (e); or iii) its cost is currently being examined
(c € W) with its initial cost recorded as ¢ (oldcost=c). We use the string notation
for responsibility functions and write e.g. e".c.o™, when the first n nodes are
mapped to e, the (n+1)st node is mapped to ¢, and the last m nodes are mapped
to o. We write O (resp. ®) for a function that maps all elements to o (resp. e).

Given a graph v=(V, E, L), we write " for V, 4* for E, and ~" for L. We
write v¢(x), v*(x) and ~"(x), for the first, second and third projections of L(x),
respectively. Two graphs are congruent if they have equal vertices and edges:
1= y2 E AV =45 A 4F=+%. We define the weighted path relation (J»c ), and its
reflexive transitive closure as:

e

5y (V) z]yl=c =Ly (z=yrc=0)v(Ici,c2,2. c=c1+Ca AT ~bey 2 A Zmt )
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Figure 6: The mathematical actions of dijkstra

Actions We define several families of actions in Fig. 6, each of which indexed
by a token t. The A} describes the CAS operation of line 2 in the algorithm: the
state of a node is changed from unprocessed to being processed by thread ¢ (i
is removed from work). The A? describes a ghost action at line 5 for iteration j
when storing the current cost of j in oldcost. The thread has not yet examined
the cost of node j (R[j]=0). It then reads the current cost (¢’) of j and (ghostly)
updates the responsibility function. The A} describes the CAS operations of lines 7
and 9 when successful: when processing i, we discovered that the cost of j may
be improved (c+E[i][j] < ¢). In the former case, j is currently unprocessed
(in work, s=0), while in the latter j is processed (in done, s=1). In both cases,
we remove j from the respective set and temporarily change its state to under
process by t until its cost is updated and it is reinserted into the relevant set.
The A} describes the CAS operations in lines 8 and 10 when successful. The cost
of j has not changed since we first read it (R[j]=¢’) and we discovered that
this cost may be improved (¢”<c’). The responsibility of ¢ towards j is then
marked as fulfilled (R'[j]=e) and the cost of j is updated until it is subsequently
reinserted into work via A?. The A? denotes the reinsertion of j into work in
lines 8 and 11 following successful CAS operations at lines 8 and 10. The state of
j is changed to 0 to reflect its insertion to work. The A% and A7 sets respectively
describe the reinsertion of j into work and done in lines 8 and 11, following failed
CAS operations at lines 8 and 10. When attempting to update the cost of j, we
discovered that the cost of j has changed since we first read it (¢'#+c¢”). We thus
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reinsert j into the relevant set and (ghostly) update the responsibility function
to reflect that j is to be re-examined (R'[j]=0). The A% describes a ghost action
in line 6 when the conditional fails: examining j yielded no cost improvement
and thus the responsibility of i towards j is marked as fulfilled. Lastly, the A
captures the atomic operation in line 14: processing of 7 is at an end since all
nodes have been examined. The state of 7 is thus changed to processed (i is

inserted into done). We write A, for actions of ¢, i.e. 4,= U A
1€{1...9}

Mathematical invariant Throughout the execution of dijkstra for a source
node src, the graph ~ satisfies the invariant Inv(src, ) described below.

Inv(y, src) =V € 7. min3"(x,7%(z))

v (3y, 2, ¢. mind(y,7(y)) A Y(y)£1 A ¥ [y][z]=0

AY «LC Z A witi’"c(’yc(y)+67 2, 33))

min3’(z, ¢) ©min{c’ | s S} =c
Wit’é;/rc src

Y

Az=z v (3dw. 2z Sow A wity “(c+c',w, )

(¢, z,x) =min"(z,¢) A 7°(2) > ¢

The Inv(vy, src) asserts that for any node z, either its associated cost from sre is
minimal; or there is a minimal path to x from a node y (via z), such that the
cost of ¢ is minimal and y is either unprocessed or is being processed. Moreover,
none of the nodes along this path (except y) are yet associated with their correct
(minimal) cost. As such, when y is finally processed, its effect will be propagated
down this path, correcting the costs of the nodes along the way. Observe that
when dijkstra terminates, since all nodes are processed (i.e. Vz.~v%(x)=1), the
Inv(7, src) entails that the cost associated with all nodes is minimal.

Lemma 2. For all mathematical graphs v,~', source nodes src, and tokens t,
the Inv(~y, src) invariant is stable with respect to Ay:

Inv(7y, sre) Ay Agy' = Inv(v/, src)

Proof. Follows from the definitions of A; and Inv. The full proof is given in [10].

Spatial representation Using the g(y) predicate below, we represent a math-
ematical graph 7 in the heap as multiple *-separated arrays: two bit-arrays for
the work and done sets, a two-dimensional array for the adjacency matrix, a one
dimensional array for the cost function, and finally two ghost arrays for the label
function (one for the responsibility function, another for the node states).

[-%

ef

g(y) = work(y) * done(~y) * adj(y) * cost(y) * resp(7) * state(v)

work(y) & * work[i] — 1)x % work[i] — O
) ie{wm:O}( [1~1) ie{ily* (1) 40} (work{i] = 0)
done(y) & * donefi] — 1)x % done[i] — 0
ie{i\V‘(i)Zl}( U] ) ie{ily*(i)+1} ( U] )
. def AT - Er-T - def . c/.
adj(y) = x (* a[i][j] = ~"[][j]) cost(y) = K (c[i] = 7°(9))

1€y jJevy i€y
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{Pre(ty0)}
1. void dijkstra(int[][] a, int[] c, int size, bitarray work, done){ i=0;
2. while(done !=2%?.1){ b=<CAS(work[i],1,0)>; //perform A} if possible
3. if(0){ {t+(37.801) * (7 A Iv(1.570) A F(E)=t A (1)=0))],
cost =c[i]; {t*[ Fv.g(7)*(voxy Alnv(y, sre) Av3(i)=t Ay (1)=@® A cost=’yc(i))]1}
for(j =0; j<size-j++){
{t* Fv.8(7) * (o2 A Inv(y, src) ays(1)=t A 97 (1)=13.05i%e"] ACOSt:’YC(i))],}
newcost =cost +a[il[j]l; b=1;

{t* 3w B(0) + (oS A Inv(y, sre) n¥(1)= mf<i>=1j.osize3j}
I

A cost ~v°(i) A newcost=cost-+~"[i][j] A b=1)

e

o

do{ OldCOSt cljl; //perform A7
“ 381 (02 Al (3, 57¢) AP (1) =t A" (1) 1101
)

/\cost— (1) Anewcost=cost+~"[1][j]Ab=1A oldcost=c

if( newcost<oldcost){

f* 3y, c.8(7) * =y Alnv(y, sre) Ay (1) =t Ay (1)=17.c.0%2e0"
/\cost =7°(1) Anewcost=cost++"[i ][J]/\oldcost ¢ A newcost<oldcost)

b <CAS(W0 rk[j1,1,0)>; //perform A? if possible

oo

Anewcost= cost+/ [i][j] A oldcost= C/\newcost<oldcostA7( )=t Av"(j)=0

b= <CAS(c[J] oldcost,newcost)>; //perform A} if possible

Hv,c g(7) x (vo=yAlnv(y,src) Av3(i)=t A cost='yc(i) A newcost<oldcost
tx . : .
b 1/\’Y ( ) 1]+1 Osue j- 1) (b O/\,yr(i):l].c.osue-]-l)) A,}/s<j):t/\,\/rtj):o) i

<wo rk[]] =1>; } //perform A} or AY depending on the value of b

37 g(7) x (vo=yAlnv(y,src) Av3(i)=t A cost=7°(1) A newcost<oldcost
b 1A,.Y ( ) ]+1 OSlZe j- 1) (b OA,yr(i):lj_Osize-j ))) ,

{t* H'y c.g(y) * (YoxyAlnv(y, src) Ay5(1)=t Ay"(1)=1.c.05%%° -1 A cost=7°(1) J }
I

Figure 7: A proof sketch of the dijkstra algorithm (continued in Fig. 8)

resp() £ % (& r[i]lj] = "[il3)) state(y) £ (s[i] = 7°()

i€y - jev i€y

We specify the spatial precondition of dijkstra, Pre(t,y0), as a CoLoSL assertion
defined below where t identifies the running thread, and -y denotes the original
graph (at the beginning of parallel_dijkstra, before spawning new threads).
We instantiate the CoLoSL capabilities to be the same as our tokens. The
precondition Pre states that the current thread ¢ holds the ¢ capability, that the
original graph 7o may have evolved to another congruent graph « (captured by
the existential quantifier) satisfying the invariant Inv, and that the shared state
contains the spatial resources of the graph g(y). As before, the spatial actions on
the shared state are declared in I by lifting mathematical actions to spatial ones
indexed by the corresponding capability. Finally, the spatial postcondition Post
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else {

. ﬂ'y c.g(y) * (Yo2y A Inv(v,src) A 75(i)=t A y"(i)=11.c.0%7¢T-1 A cost=7°(1)
A newcost cost+7"[i][j] A oldcost=c A newcost<oldcost) S

b=<CAS(done[j1,1,0)>; //perform A} if possible
lf(b){

. ﬂ'y,c g(7) * (Yo=y A Inv(y,src) A y5(i)=t A 4 (i)=13.c.0%%¢3-2 A cost=~(1)
A newcost cost+~"[i][j] A oldcost=c A newcost<oldcost A ¥*(j)=t A ¥"(j)=®) ,

10.

b= <CAS(c[]] oldcost,newcost)>; //perform A} if possible

H'y,( g(7) * (vo=y A Inv(v,src) A v5(i)=t A cost=7(1i) A newcost<oldcost
((o= 1 Ay (1)=13*1.0512¢3-1) v (b=0 A 7 (1)=1].c.0%1z1))
A newcost cost-+"[i][i] A °(5)=t A 7" (5)=1@)

I

1f(b){<work[J] 1>}else{<done[jl=1>} //A5 or A} based on b

‘x H'y g(7) * (vo=y A Inv(v,src) A 7v5(1)=t A cost=7°(1i) A newcost<oldcost
b l/\'Y() 1]+10512e]1)
1

11.

v (b=0 A yf(i)=1.0°"¢7)))
12. }}}

Iv.8(7) * (Yo=y Alnv(y, src) AyS(i)=t
newcost<oldcost Ab=1 A Af(i)=131 0size-i 1)
v (newcost<oldcost Ab=0A~"(i)=13.0%izJ)
newcost>oldcost/\b LAy (1)=11.—.0%izei-1))

/ /perform A% on 3rd disjunct

I

. HA/ g(7) x (vo=yAalnv(y,src) Av3(i)=t
((b= lm 1)=1.007e 0 1) v (b=0A97(1)=17.052¢3)) |,
13. } while(!b) {t*[ﬂﬂ/.g (7) * (vo=y Alnv(y, src)Avs(i):t/\ﬁ/’(i)zlj”.OSize']'1)]1}
14} {t+ (3600 * (uEr Al sr) A (@)=t Ay (0)=9)) |
<done[i]=1>; //perform Af) {t *(}y.g(y) * (Yo=yAlnv(y,src) A 'ys(i):l)jl}

15. } i= (i+1l) mod size;
16. } } {t*[ﬂ'y.g(’\/) * (Yo A Inv(7y,src) A V:U.’ys(x)=1)1}
{Post(t,%)}

Figure 8: A proof sketch of the dijkstra algorithm (continued from Fig. 7)

is analogous to Pre and further states that all nodes in - are processed (in done).

Pre(t,yo) = t * [37. g(v)*(yo=y A Inv(y, src))}l I={t: g(N Ay Ay ~ g(?)
Post(t,70) = t * [37. g(v)*(Yo=y A Inv(y, src) A Vaery. 'ys(m)él)]

1

Verifying parallel_dijkstra A proof sketch of dijkstra is given in Figs. 7-8.
As before, in all proof points the spatial part (g(7y)) remains unchanged, and the
changes to the graph are reflected in the changes to the pure mathematical asser-
tions. Observe that when all threads return, the pure part of the postcondition
(Inv(y,src) A Vzeq.4(xz)=1) entails that all costs in cost are minimal as per
the first (and the only applicable) disjunct in Inv(vy, src). As such, the proof of
parallel_dijkstra is immediate from the parallel rule (PAR).
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Concluding remarks We have verified two sophisticated concurrent graph
algorithms, copy_dag and parallel_dijkstra, neither of which has been verified
previously. We used several proof patterns, such as doing the tricky reasoning on
mathematical abstractions and using tokens to track the progress of cooperating
threads. We used an “iCAP-like” abstract proof style despite using CoLoSL
which does not support this proof style natively. In [10, 11] we verify two further
graph algorithms using our proof pattern: graph marking, which is the simplest
nontrivial concurrent algorithm and which accordingly enjoys the cleanest proof;
and spanning tree, which has been done previously but with different invariants.
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