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Abstract

O’Hearn, Reynolds and Yang introduced local Hoare reasoning about mutable data

structures using separation logic. They reason about the local parts of the memory

accessed by programs, and thus construct their smallest complete specifications.

Gardner et al. generalised their work, using context logic to reason about structured

data at the same level of abstraction as the data itself. In particular, we developed

a formal specification of the Document Object Model (DOM), a W3C XML update

library. Whilst we kept to the spirit of local reasoning, we were not able to retain

small specifications for all of the commands of DOM: for example, our specification

of the appendChild command was not small.

We show how to obtain such small specifications by developing a more fine-grained

context structure, allowing us to work with arbitrary segments of a data structure.

We introduce segment logic, a logic for reasoning about such segmented data struc-

tures, staring at first with a simple tree structure, but then showing how to generalise

our approach to arbitrary structured data.

Using our generalised segment logic we construct a reasoning framework for ab-

stract program modules, showing how to reason about such modules at the client

level. In particular we look at modules for trees, lists, heaps and the more complex

data model of DOM.

An important part of any abstraction technique is an understanding of how to

link the abstraction back to concrete implementations. Building on our previous

abstraction and refinement work for local reasoning, we show how to soundly imple-

ment the segment models used in our abstract reasoning. In particular we show how

to implement our fine-grained list and tree modules so that their abstract specifica-

tions are satisfied by the concrete implementations. We also show how our reasoning

from the abstract level can be translated to reasoning at the concrete level.

Finally, we turn our attention to concurrency and show how having genuine small

axioms for our commands allows for a simple treatment of abstract level concurrency

constructs.
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Notational Conventions

We outline the basic notational conventions for standard mathematical concepts and

provide a glossary of symbols that are used throughout this thesis.

Notation (Sets): Specific sets in this thesis are generally identified by names in

small-caps font with the initial letter capitalised, as in Expr. Certain mathemat-

ical sets have their own notation:

� ∅, the empty set;

� N = {0 , 1 , 2 , ...}, the set of natural numbers;

� Z = {...,−2 ,−1 , 0 , 1 , 2 , ...}, the set of integers;

� Bool = {true, false}, the set of Boolean values.

The following notations are used for set related operations:

� x ∈ S denotes that x is an element of set S;

� x 6∈ S denotes that x is not an element of set S;

� S1 ⊆ S2 denotes that all elements of S1 are also elements of S2 ;

� {f (x ) | P(x )} is set builder notation, which denotes the set of values f (x ) for

each x for which the proposition P(x ) holds;

� S1 ∪ S2 = {x | x ∈ S1 or x ∈ S2} denotes the union of sets S1 and S2 ;

� S1 ∩S2 = {x | x ∈ S1 and x ∈ S2} denotes the intersection of sets S1 and S2 ;

� S1\S2 = {x | x ∈ S1 and x 6∈ S2} denotes the set difference between S1 and

S2 ;

� S1 ] S2 denotes the disjoint union of sets S1 and S2 , that is, the union of the

sets if they are disjoint and undefined otherwise;

� S1 × S2 = {(x , y) | x ∈ S1 and y ∈ S2} denotes the Cartesian product of sets

S1 and S2 ;
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� |S| denotes the cardinality of the set S;

� P(S) = {T | T ⊆ S} denotes the powerset of S;

� Pfin(S) = {T | T ⊆ S and |T| ∈ N} denotes the finite powerset of S.

Notation (Functions): Specific functions in this thesis are generally identified by

names in italic font, as in fh.

� A→ B denotes the set of functions from A to B;

� A⇀ B denotes the set of partial functions from A to B;

� A⇀fin B denotes the set of finite partial functions from A to B;

� dom(f ) = {x | there exists y s.t. f (x ) = y} denotes the domain of function f ;

� range(f ) = {y | there exists x s.t. f (x ) = y} denotes the range of function f .

Notation (Program Code): Program code and program variables in this thesis

are written in tele-type font, as in skip and x. Values are written in italic font,

as in 1 and v . Expressions are written in ittalic-teletype font with the initial

letter capitalised, as in E and B . The following notations are also used for code and

its operational semantics:

� C is typically used to denote an arbitrary program;

� σ is typically used to denote an arbitrary variable store from the set of variable

stores Σ ;

� mod(C) denotes the set of program variables that are modified by the program

C;

Notation (Logic): We write P , Q , ... for arbitrary logical assertions throughout

this thesis. The following notations, summarised here but defined formally in the

body of the thesis, are used for logical operations:

� free(P) denotes the set of free variables in the logical assertion P ;

� emp denotes the empty heap in separation logic or the empty segment in

segment logic;

� x 7→ v denotes the single heap cell at address x with contents v ;
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� α�Pc denotes the segment at abstract address α that contains the context

satisfying the context assertion Pc;

� dPce denotes a rooted context satisfying the context assertion Pc;

� @α denotes a context that contains the label α;

� ∅ denotes the empty tree;

� ε denotes the empty list;

� − denotes a context hole in single-holed context logic;

� fh denotes the free holes function;

� fa denotes the free addresses function;

� a#b denotes the disjointness of two heaps, contexts or segments.

� ∗ denotes the separating conjunction;

� −∗ denotes the separating conjunction’s right adjoint, known as ‘magic wand’;

� ◦ denotes the context application operator;

� • denotes the context composition operator. It is parametrised by an abstract

address in multi-holed context logic;

� C and B denote the right adjoints of the context application operator ◦;

� r denotes the revelation operator;

� � denotes the right adjoint of the the revelation operator, known as ‘hiding’;

� Ndenotes the freshness quantification;

� H denotes the hidden label quantification.
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1 Introduction

1.1 Motivation and Objectives

This thesis is motivated by work on providing a formal specification for the W3C

Document Object Model (DOM) library [75]. The DOM library provides a platform

free API for manipulating XML structures on the web. However, the existing specifi-

cation is written in English, leaving it somewhat ambiguous and non-compositional.

Initial work with Smith [77] looked at a small subset of the DOM commands and pro-

vided a formal specification for them in terms of Context Logic. Smith has continued

this work in his thesis [71], extending the specification to cover the full structure and

command set of DOM Core Level 1 [76]. This initial work led to the observation

that context logic was not able to provide Small Axioms for all of the commands

of DOM. In particular, the specification for the appendChild command required a

substantial over-approximation of the command’s intuitive footprint. Smith’s thesis

was only concerned with providing a specification for DOM in a sequential setting,

and so the size of a command’s axioms was not a particularly relevant factor. Such

an over approximation could be tolerated. However, the aim was to push the DOM

specification into a concurrent setting in the future, and in this setting it is im-

portant that a command is specified in a local way. That is, the specification for a

command should only describe the part of the data structure that is affected by that

command. This allows disjoint reasoning to be used as much as possible and this has

been shown to be simple and powerful in other concurrent settings [59]. Thus, inves-

tigating how to specify a command like appendChild without over approximating

its footprint was the starting point for the work in this thesis.

The principle objectives of this PhD were:

� to provide small axioms for commands that affect multiple parts of a tree at

once, like appendChild;

� to provide a reasoning framework for abstract program modules that manip-

ulate structured data;
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� to show how to implement abstract program modules so that their abstract

specifications are satisfied by the implementation;

� to extended context logic so that it can be used to reason about update pro-

grams in a concurrent setting.

The main aim of this thesis has been to develop a reasoning system that can

break apart data structures in a more fine-grained fashion than allowed by context

logic. Initial work on reasoning about DOM led to the observation that context

logic was not able to express disjointness properties natural to separation logic.

Many programs, even at high levels of abstraction, work on disparate parts of a

data structure, so the reasoning should be able to describe these structures without

needing to fill in the connecting context. Multi-holed context logic provided a good

starting point for this work, but this was not enough on its own. This thesis develops

an abstract reasoning system based on segment logic, a logic for reasoning about

fine-grained abstract data structures.

An important part of any abstraction technique is to be able to show how one

can refine the abstraction. In particular, it should be possible to prove that a given

implementation satisfies an abstract specification. To this end, with Dinsdale-Young,

a theory of abstraction and refinement for local reasoning was developed [28]. This

thesis extends the work to incorporate the fine-grained reasoning mentioned above

and also addresses some of the criticisms of the earlier work. In particular, the theory

is modified to include a more general treatment of the ‘crust’ of an implementation.

The eventual target of this work is to provide the techniques required to reason

about an XML update library, in the style of DOM, in the concurrent setting. There

are a number of services on the web whose purpose is to allow concurrent editing of

tree-like structures: for example, collaborative publishing systems such as LiveJour-

nal, Blogger and Wordpress, and collaborative editing systems such as Wikipedia,

TWiki and Google Docs. These systems typically use a relational database [60] to

manage concurrency at the grain of pages or documents, mapping the data struc-

tures of the database into XML which is then shown to the users. This approach

seems unsatisfactory due to the rigidity of the structure of relational databases and

the coarse grain of concurrency this enforces. It should be possible to manipulate

the XML structure directly to achieve a finer grain of concurrency. Taking the con-

currency theory that has been developed for separation logic [59], this thesis applies

similar techniques to the fine-grained reasoning framework.
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1.2 Contributions

The main contributions of this thesis are:

� the development of segment logic for trees, which provides assertions that can

describe fine-grained properties of tree structures;

� the generalisation of the segment model to handle arbitrary structured data;

� the development of a fine-grained abstract local reasoning framework, based on

generalised segments, that allows for fine-grained high-level reasoning about

program modules. In particular, the fine-grained framework allows all com-

mands to be locally specified;

� the application of our fine-grained abstract local reasoning framework to rea-

soning about a number of program modules, including trees, lists, heaps and

DOM;

� the development of an abstraction and refinement theory showing how to verify

a concrete implementation against an abstract specification in our fine-grained

reasoning setting;

� the extension of our fine-grained abstract local reasoning framework to enable

reasoning about concurrent programs.

1.3 Thesis Overview

� Chapter 2 introduces the background theory on which the work in this thesis

is based. In particular, we give a brief introduction to program verification,

separation logic, context logic and reasoning about concurrency. We give a

detailed explanation of why existing context logic work is unable to provide

small axioms for certain commands, and why this is a problem.

� Chapter 3 introduces segment logic for trees, showing how to provide fine-

grained reasoning about tree structures. We also show how to generalise the

segment model to handle arbitrary structured data, such as lists and the more

complex W3C Document Object Model.

� Chapter 4 introduces the fine-grained abstract local reasoning framework,

based on the generalised segment model, which uses axiomatic semantics to
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provide fine-grained reasoning about sequential programs for manipulating

structured data such as lists and trees.

� Chapter 5 applies our fine-grained abstract local reasoning framework to the

specification of a number of abstract program modules. We look at both simple

modules, trees and heaps, as well as more complex modules for list-stores and

the W3C Document Object Model.

� Chapter 6 describes data abstraction and refinement in the fine-grained ab-

stract local reasoning framework. In particular, we show how to prove that an

implementation of a module satisfies an abstract specification of that module.

� Chapter 7 discusses how our work leads towards reasoning about concurrent

programs for manipulating structured data. We show how the segment model

allows for simple reasoning about disjoint concurrency and also show how

to reason about some additional concurrency constructs, such as conditional

critical regions, in the style of concurrent separation logic.

� Finally, chapter 8 concludes this thesis with a summary of achievements and

a discussion of applications and future work.

23



2 Background Theory

We begin by introducing the background history of program verification and recent

breakthroughs in reasoning with separation logic. In 1969, Hoare introduced a

formal reasoning framework, known as ‘Hoare reasoning’ [44], on which this thesis

is based. In §2.1 we look at this method of program verification in some detail.

Hoare reasoning allowed for reasoning about programs written in a simple while

language, but was not able to deal with heap manipulation. In 2001, O’Hearn,

Reynolds and Yang adapted Hoare’s work so that it could reason about C programs

that manipulate a heap. They developed separation logic [47][58] and its ‘local Hoare

reasoning’ framework, where programs can be specified just in terms of the resources

they access. We discuss this in §2.2. We also look at the extension of separation

logic to reasoning about concurrent programs [59][10] in §2.3. In §2.4 we look at the

area of abstract reasoning, where the reasoning is based at the level of abstraction

provided to the client. First, in §2.4.1, we look at the work of Calcagno, Gardner

and Zarfaty which generalises the ideas of separation logic to abstract structured

data. Their context logic [11] can be used for ‘abstract local Hoare reasoning’ and

has proven particularly successful for reasoning about tree structures. We then look

at a multi-holed extension to context logic [12] in §2.4.2, that allows for a uniform

treatment of contexts and data. Finally, in §2.4.3, we motivate the work of this

thesis. We discuss the size of a program’s specification in relation to that program’s

footprint (the resources accessed by it) and point out the issues with the size of

some program specifications in the abstract local Hoare reasoning framework.

2.1 Program Verification

Since the year 2000, there has been a resurgence of interest in automatic program

verification. This is largely due to the success of several verification technologies

on a number of carefully chosen systems and carefully chosen properties. For ex-

ample Microsoft’s Static Driver Verifier [2] (and its precursor, SLAM [3]) are able

to automatically prove that device drivers follow certain API usage rules. Other

prominent tools in this line include Blast [7], Magic [72] and SatAbs [21], which
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target open-source code. A reasonable degree of automation is achieved in these

tools by combining ideas from program verification with those from static program

analysis.

However, there is still a large gap between verifying carefully selected properties of

carefully chosen programs, to the more general properties required to verify general

code. The problem lies not just with the size of the target code, but also with the

tracking of specialised programming patterns, such as resource sharing and alloca-

tion. Handling resource is a central problem for program verification and we aim

to develop the theory that will allow allow more and more resource manipulating

programs to be automatically verified. With resource in mind we choose to focus

our attention on the verification technique known as ‘Hoare reasoning’.

Hoare was one of the first computer scientists to turn his attention to the field

of program verification. In the late 60’s he developed a reasoning system, known

as ‘Hoare reasoning’ [44], that used logical pre- and post-conditions to specify a

program’s behaviour. Moreover, his reasoning system provided a way of using these

specifications to derive the specifications of larger programs. The motivation behind

Hoare’s pioneering work was that the cost of testing computer programs for correct

performance was very high. Indeed, he points out in his first paper on the subject

that,

‘...the cost of an error in certain types of program may be almost incal-

culable - a lost spacecraft, a collapsed building, a crashed aeroplane, or

a world war.’

Instead, he suggested that people turn to mathematics to find ways of formally

proving the properties that they want their programs to fulfil. It is from these very

ideas that several logical reasoning systems, such as separation logic and context

logic were born.

2.1.1 Hoare Reasoning

Hoare developed a static reasoning system that allows for properties to be propa-

gated though a program without having to directly run its code. Hoare’s reasoning

technique centred around the identification of a core set of commands and the pro-

vision of axioms which described the behaviour of those commands. These basic

axioms are then combined with a set of reasoning rules that allow us to derive

properties of larger composite programs.

The axioms of core commands are given as Hoare triples of the form {P} C {Q}
where C is a program and P and Q are logical assertions that describe the pre-
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and post-conditions of the program respectively. A Hoare triple may have either a

partial or total correctness interpretation. The partial correctness interpretation of

the triple {P} C {Q} says that if the assertion P is true before initiation of the

program C, then the assertion Q will be true on its completion. The total correctness

interpretation, in addition, guarantees that the program C will terminate. We often

choose to work with the partial correctness interpretation, as program termination

proofs tend to be non-trivial, especially when we have loops in our programs. When

termination is considered important, it is common to use Hoare reasoning with the

partial correctness interpretation and prove program termination independently via

other techniques.

As an example of a Hoare triple consider the following axiom for the assignment

statement x := E :

{P [E /x]} x := E {P}

where x is a program variable and E is an expression of a programming language

without side effects, but possibly containing the variable x. Any assertion P(x)

which is true of x after the assignment is made must also have been true of the

value of expression E taken before the assignment is made.

In truth, this is really an axiom schema, it describes an infinite set of axioms

which all share a common pattern (described purely in syntactic terms). As an

example of a concrete axiom from this schema, consider the Hoare triple describing

the behaviour of the decrement command x := x− 1 (also referred to as x--):

{σ(x) = v} x := x− 1 {σ(x) = v − 1}

where we denote the value stored at x in the variable store σ by σ(x). This is

necessary to capture that the value stored in the variable x was correctly updated

by the command.

The Hoare reasoning rules are described in terms of Hoare triples. For example,

we have the rule of consequence:

P ′ ⇒ P {P} C {Q} Q ⇒ Q ′

{P ′} C {Q ′}

This rule states that if it can be shown that P ′ implies the precondition P of the

program C, then P ′ is also a valid precondition of the program C. The rule also

states that if it can be shown that the postcondition Q of program C implies the

assertion Q ′, then we can deduce that the assertion Q ′ will hold for the program

state after the program has completed. This rule lets us strengthen the precondition
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and weaken the postcondition of a program.

For example, it is easy to see that σ(x) = v ∧ σ(x) > 0 ⇒ σ(x) = v and given

v > 0 that σ(x) = v − 1 ⇒ σ(x) = v ′ ∧ σ(x) ≥ 0 . Thus, by applying the rule of

consequence to the specification of x := x−1 given above, we can deduce the Hoare

triple:

{σ(x) = v ∧ σ(x) > 0} x := x− 1 {σ(x) = v ′ ∧ σ(x) ≥ 0}

In addition to the logical reasoning rules there are rules for deducing the effects

of running compound commands. For example, the rule of sequential composition

is given as:
{P} C1 {R} {R} C2 {Q}

{P} C1 ; C2 {Q}
If, starting from P , the proven result R of the first program C1 is identical to the

precondition under which the second program C2 produces the result Q , then the

whole program will produce this result. We can also give rules for more complex

compound commands such as iteration using a while loop:

{P ∧ B} C {P}
{P} while B do C {¬B ∧ P}

Here we need to establish an invariant P that is true on entry to the loop and at

the end of each loop iteration. The rule is strengthened in that we can assume that

the condition B is true if the program reaches the start of the loop body and false

when the program exits from the loop.

We shall give a full set of inference rules for our reasoning framework, described

in detail in chapter 4, but the rules given above are enough to reason about a small

example program. Consider the following small program that takes some positive

variable and reduces it to zero in a loop:

while(x > 0 ) do x := x− 1

We can provide a proof that the variable x will indeed be reduced to 0 by the end

of the loop. We sketch the proof in Figure 2.1 with P = σ(x) = v ∧ σ(x) ≥ 0 and

B = σ(x) > 0 :

In the first step we use the rule of consequence to weaken the precondition to

generate an invariant for our while loop. We then need to show that with this in-

variant the body of the loop is satisfied and we can re-establish the invariant. Inside

the loop we add the loop condition to the loop invariant and use the rule of conse-

quence to weaken this to the precondition of the assignment command. Using the
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{σ(x) = v ∧ v > 0}
{σ(x) = v ∧ σ(x) ≥ 0}
while(x > 0 )
{σ(x) = v ∧ σ(x) ≥ 0 ∧ σ(x) > 0}
{σ(x) = v ∧ σ(x) > 0}
x := x− 1
{σ(x) = v ′ ∧ σ(x) ≥ 0}
{σ(x) = v ′ ∧ σ(x) ≥ 0 ∧ σ(x) ≤ 0}
{σ(x) = 0}

Figure 2.1: Proof sketch for while(x > 0 ) do x := x− 1

assignment axiom discussed earlier in this section we can then re-establish the loop

invariant. Finally, outside the loop, we add the negation of the loop condition to the

loop invariant and use the rule of consequence to establish the overall postcondition.

Hoare reasoning has been studied extensively, but it is poorly equipped to deal

with resources, such as the heap. However, this style of reasoning has still seen

significant practical use, for example in the Boogie [40] and ESC/Java [34] projects.

All of the assertions in Hoare reasoning are written in first-order logic and thus

describe the global program state. It is a common in many programming languages

to have to deal with pointers or dynamically modified data structures. Such con-

structs introduce complex aliasing relationships between pointers which need to be

expressed to correctly specify and prove program properties. Even in only moder-

ate sized pointer manipulating programs, it often takes more effort to describe the

pointer aliasing than the actual effect of the program.

2.2 Separation Logic

In 2001, the field of program verification took a new turn when O’Hearn, Reynolds

and Yang introduced separation logic [47][58]. Up until this point, most formalisms

had taken a global view of the whole program state when specifying programs. How-

ever, O’Hearn, Reynolds and Yang had a different viewpoint, one of local reasoning.

They summarise this idea as follows:

‘To understand how a program works, it should be possible for reasoning

and specification to be confined to the cells that the program actually ac-

cesses. The value of any other cell will automatically remain unchanged.’

Separation logic focuses on specifying the local behaviour of a set of basic commands,

such that the rest of the data structure is unaffected. One can then make use of
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a set of inference rules to infer the behaviour of these commands on larger data

structures, and to combine the effects of multiple commands into more complex

programs. This idea of local reasoning is only valid if the basic commands as well

compound commands, such as if and while, behave in a local way, that is they

must not require global information to successfully operate.

Separation logic was originally introduced to reason about the standard RAM

(Random Access Machines) model [22]. The RAM model describes the state of

a program as the combination of two components. The first of these, the data

store σ, is a finite partial function that maps variables to their values. The second

component, the heap h, is a finite partial function mapping heap addresses to their

values. The empty heap is modelled by the empty function and when we want to

reason about multiple heap cells we take the disjoint union of their functions. Thus,

the disjoint union of heaps is only defined if they have disjoint sets of heap addresses.

The assertion language of separation logic is used to express properties of the

heap. We write emp to represent the empty heap, and (x 7→ 1 ) to represent the

single cell heap shown in Figure 2.2. In our programming language we write [x ] := v

for the assignment statement that assigns the value v to the heap cell x .

x

1

Figure 2.2: The single celled heap satisfying (x 7→ 1 ).

It is frequently useful to make use of two or more heap cells that are grouped

together in memory. For example, we might want a cell x to carry multiple values,

or pointers to other cells. To enable this we introduce a cons cell notation (x 7→ 1 ,2 )

that represents the two celled heap show in Figure 2.3 which describes the disjoint

union of (x 7→ 1 ) and (x + 1 7→ 2 ). This idea can be generalised to heap cells of

arbitrary size.

x

1 2

Figure 2.3: The two celled heap satisfying (x 7→ 1 ,2 ).

The true power of the separation logic assertion language comes from the intro-

duction of two novel spatial connectives: the separating conjunction ∗ and its right

adjoint −∗. The separating conjunction ∗ decomposes the current heap into two sep-
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arate pieces of heap, whilst its right adjoint −∗ talks about properties of the current

heap when extended with certain new, or fresh, heaps. The separating conjunction

P ∗Q is true just when the current heap can be split into two disjoint components,

one of which makes P true, and the other of which makes Q true. The separating

implication P −∗ Q talks about new pieces of heap that are disjoint from the current

heap. This implication is true if for every new heap that makes P true, the disjoint

union of this new heap and the current heap will result in a heap that makes Q true.

An assertion P is said to be precise if for all program states s there is at most one

substate s ′ ⊆ s where s ′ satisfies the assertion P . For separation logic this property

can be characterised as: for all s , there is at most one s ′ satisfying P , such that

∃s0 . s = s ′ ] s0 (where ] is the disjoint union of heaps). We assume here that the

states s and s ′ have identical data store components. Later, we will see how to relax

this assumption by treating variables as an additional program resource.

Separation logic’s new connectives make it easy to express disjointness and aliasing

properties in a concise fashion. For example. the separating conjunction ∗ can be

used in the formula (x 7→ 1 ,y)∗(y 7→ 2 ,null) to describe the heap shown in Figure 2.4.

The use of ∗ ensures that the cells x and y are disjoint, and so the cell x does not

reference itself. Notice that the classical logic assertion (x 7→ 1 ,y) ∧ (y 7→ 2 ,null)

only describes the presence of two cells in the heap and that these may, or may not,

be the same cell (i.e. it is not known if x = y).

x

21

y

Figure 2.4: The heap satisfying (x 7→ 1 ,y) ∗ (y 7→ 2 ,null).

Being able to express these disjointness properties in a simple way makes reasoning

about pointer-manipulating programs far more tractable than with traditional Hoare

reasoning techniques. In particular, when working with separation logic we do not

have to consider aliasing between ∗ separated resources, as they are forced to be

disjoint (as in the example of Figure 2.4).

The −∗ connective is commonly used to talk about hypothetical properties of a

heap. For example, if we describe a heap with the formula (x 7→ −,7 ) −∗ P , then

this states that when a cons cell at x , with the second cell containing the value 7 ,

is added to the current heap, then some property P will hold. Here we use − to

state that we can have any value in the first cell at x . We shall shortly see how such

hypothetical properties can be utilised in the Hoare reasoning setting.
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2.2.1 Local Hoare Reasoning

There is an intuitive notion of the footprint that a program touches. This idea was

first introduced informally in [47] describing the footprint of a program as

‘...only those cells which are accessed by the program during execution’.

For example, the program x := x−1 given in §2.1 only accesses the variable x . The

footprint of this program is, therefore, just the variable x within the store σ.

In separation logic the idea of program footprints is taken to heart by giving

a local fault-avoiding partial-correctness interpretation of a Hoare triple. In this

interpretation, the Hoare triple {P} C {Q} says that if the state satisfies assertion

P before the program runs, then either the program C does not terminate, or if

it does C does not fault and the terminating state satisfies the assertion Q . This

interpretation allows for one to give small specifications for programs, where the

precondition describes only the footprint of the command and not the rest of the

program state. For example, consider the double assignment program set2(x , v) =

[x ] := v ; [x + 1 ] := v , which sets the contents of both cells of a binary cons cell x

to some value v . This can be specified using a small specification as follows:

{x 7→ −,−} set2(x , v) {x 7→ v ,v}

This specification is local in the sense that it only mentions the binary cons cell at

x which is modified by the command. To be able to use this specification in a larger

heap, separation logic introduces an inference rule called the frame rule:

Frame Rule:
{P} C {Q}

{P ∗ R} C {Q ∗ R}
mod(C) ∩ free(R) = {}

The frame rule states that if some program C run on a heap satisfying the assertion P

results in a heap satisfying the assertion Q , then it will still behave in the same way

if we extend this heap and, moreover, this extra heap, which satisfies the assertion

R, will not be affected by the program. The rule’s side condition ensures that the

program does not modify any of the extra heap that is added.

Using local Hoare triples and the frame rule allows program reasoning to be con-

fined to the cells that a program accesses. We can automatically derive that the rest

of the heap remains unchanged. Consider again the set2(x , v) program described

above. Our specification only mentions the cons cell x which is updated by the

program. To use this specification in the proof of a larger program we would need

to extend it to a larger heap. The frame rule provides precisely this ability, allowing
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Figure 2.5: Separation logic frame rule example.

us to infer the specification of the program in a larger heap by adding on the extra

disjoint heap with the ∗ operator. Figure 2.5 shows this in action.

To see the interaction between −∗ and ∗ assume we have a heap that contains the

cell (x 7→ 1 ,2 ) and disjointly satisfies the property (x 7→ −,7 ) −∗ P . That is, we

have a heap satisfying the assertion (x 7→ 1 ,2 ) ∗ ((x 7→ −,7 ) −∗ P). If we run the

set2(x , 7 ) program on this heap then the heap will now contain a cell satisfying the

assertion x 7→ −,7 and so, by the definition of −∗, the whole heap will satisfy the

assertion P . We give a sketch of the proof of this below:{
(x 7→ 1 ,2 ) ∗ ((x 7→ −,7 ) −∗ P)

}{
(x 7→ 1 ,2 )

}
set2(x , 7 ){

(x 7→ 7 ,7 )
}{

(x 7→ 7 ,7 ) ∗ ((x 7→ −,7 ) −∗ P)
}{

(x 7→ −,7 ) ∗ ((x 7→ −,7 ) −∗ P)
}

{
P
}�

The first step of this proof is to use the frame rule to frame off the heap not affected

by the set2(x , 7 ) program. Notice that the footprint of the program set2(x , 7 ) is

just the single cons cell at address x . We then apply the small axiom for set2(x , 7 ),

as specified above, and bring back the framed off heap. Finally, by applying the rule

of consequence, we can establish the postcondition of the program.

Calcagno, O’Hearn and Yang generalised separation logic by developing abstract

separation logic based on separation algebras [17]. A separation algebra (S , ?, u) is

a partial commutative monoid with unit u where the ? operator provides a way of
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disjointly splitting up structures. This algebra can then be used to provide a general

theory and semantic basis for separation logic’s based on variants of the heap model.

Recent work by Gardner and Raza [67] has given a more mathematical definition

of a command’s footprint in terms of local functions and limits on these functions.

They have also formally investigated what it means to provide small specifications

given their footprint definition. However, the informal description give above is

sufficient to understand the concepts presented in this thesis.

2.2.2 Abstract Predicates

What we have seen so far gives quite a low-level view of the program state. In prac-

tice many programmers provide clients with an abstract view of the program state

and allow access to the state via some abstract interface. Parnas [62] first described

the principles of information hiding and abstraction, showing that without it seem-

ingly independent program components could become tied together. Hoare provided

a logic for data abstraction [43] that used abstraction functions to hide internal im-

plementation details from the client. These ideas were later developed further by

Liskov [51] and Guttag [41] to provide what we now know as abstract datatypes.

In 1998 Reddy formally defined abstract predicates and showed their application in

reasoning about abstract datatypes in Agol-like languages. In 2002 Reynolds in-

formally introduced predicates to separation logic [70] to provide a mechanism for

abstracting program specifications. Later, in 2005, Parkinson and Bierman gave a

formal treatment of abstract predicates in separation logic [61] combing the ideas of

abstract datatypes and abstraction functions into a single definition.

Abstract predicates are useful for providing abstractions that shield a client from

the full details of how a data structure is implemented. Consider a list-deletion

program that traverses a list, deleting each node in turn.

disposeList(i) ::= j := null ;

while i 6= null do

( j := [i ] ; dispose(i) ; i := j )

In order to provide a specification for this program we must have a loop invariant

which states that the heap contains a linked list with first node i representing some

sequence α. Before the invention of separation logic this would have been described
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Figure 2.6: Some possible states that satisfy ∃α, β. list(i , α) ∧ list(j , β).

by a predicate of the form:

list(i , α)
def
= (α = ∅ ∧ i = null)

∨ (α = a : α′ ∧ ∃j . i 7→ a,j ∧ list(j , α′))

This seems simple enough. The list(i , α) predicate can be unfolded inductively,

based on the input α to determine the exact structure of the list (note that the

input α is finite, so this predicate cannot represent infinite or cyclic lists). However,

this predicate only tells us that the list exists in the program state. It does not

tell us anything else about how it may be connected with the rest of the program

state. For example, let us add to our assertion the knowledge that some other list

j , representing some sequence β is also in the program state. The obvious assertion

for the program state is now:

∃α, β. list(i , α) ∧ list(j , β)

However, this assertion makes no mention of the possible sharing of heap cells be-

tween the two lists. Both of the cases shown in Figure 2.6 satisfy the above assertion.

So deleting the list i might have some effect on the list j .

If we wanted to be sure that the two lists are fully disjoint (so we are in the first

case of Figure 2.6), then the assertion must be extended to assert that the only heap

address reachable from both i and j is null.

∃α, β. list(i , α) ∧ list(j , β)

∧ (∀x . sf reach(i , x ) ∧ reach(j , x )⇒ x = null)

where

reach(i , x )
def
= (i = x ) ∨ (∃a, y . i 7→ a,y ∧ reach(y , x ))

It is clearly undesirable to have to explicitly describe the reachable sets of addresses
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of each list as this breaks the abstraction. However, the reality is worse than this.

If we wanted to add the knowledge of a third list k representing some sequence γ

that is disjoint from the lists i and j , then the assertion would have to become:

(∃α, β, γ. list(i , α) ∧ list(j , β) ∧ list(k , γ))

(∧∀x . reach(i , x ) ∧ reach(j , x )⇒ x = null)

(∧∀x . reach(i , x ) ∧ reach(k , x )⇒ x = null)

(∧∀x . reach(j , x ) ∧ reach(k , x )⇒ x = null)

Each time we wish to consider another disjoint list we have to add in reachability

statements that describe that this additional list is disjoint from all of the other lists

we have considered so far. This growth in the number of reachability statements is

quadratic in the number of lists (adding a fourth list would require six reachability

statements, a fifth list would require ten, and so on...). As such, this approach

clearly will not scale well to large programs which work with many data structures.

Thankfully, separation logic provides the technology to reason about disjointness

without the need to provide these kinds of reachability assertions. Using separation

logic we can give an abstract predicate for a list as:

dlist(i , α)
def
= (α = ∅ ∧ i = null ∧ emp)

∨ (α = a : α′ ∧ ∃j . i 7→ a,j ∗ dlist(j , α′))

As before, this predicate can be inductively unfolded based on the input sequence α.

However, the use of the separating conjunction in the predicate definition ensures

that each cell in the list is disjoint from the others. Moreover, expressing that we

have two disjoint lists i and j is now simple:

∃α, β. dlist(i , α) ∗ dlist(j , β)

The use of ∗, in both the definition of the dlist predicate and in the assertion itself,

ensures that each heap cell in each list is separate. The assertion is not satisfiable

by any program state where this is not the case. This approach scales well to larger

programs working with multiple data structures. For example, when we add another

disjoint list k the assertion becomes:

∃α, β, γ. dlist(i , α) ∗ dlist(j , β) ∗ dlist(k , γ)

Again, the use of ∗ in the assertion tells us for free that this extra list is disjoint

from both of the previous lists. Describing such disjoint data structures is simple
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using separation logic. Moreover, it is possible to specify programs in terms of our

abstract predicates so that clients of the program do not need to understand the

programs internals. Considering again our list deletion program given above, we can

specify the behaviour of this program in terms of our list predicate as follows:{
dlist(x )

}
disposeList(x)

{
emp

}
It must be shown that the body of the disposeList program does indeed satisfy

this specification. For the disposeList program the proof is quite simple, so we

will not go into details here.

As we have seen, abstract predicates inherit some of the benefits of locality from

separation logic: an operation on one abstract predicate does not affect other ab-

stract predicates. However, clients cannot take advantage of the local behaviour

that is provided by the abstraction itself.

Consider, for example, a set module. At the abstract level, the operation of

removing some value from the set is local; it is independent of whether any other

value is in the set. However, a typical set implementation is that of a sorted singly-

linked list in the heap staring at some address h. The operation of removing a value

from the set will have to traverse the list from h. The footprint of this operation,

therefore, consists of the entire list segment from h up to the node with the desired

value. When using abstract predicates, the abstract footprint corresponds to the

concrete footprint and so, in this case, includes all elements of the set less than or

equal to the value to be removed. Consequently, abstract predicates cannot be used

to present local abstract specifications.

The generalisation to abstract separation logic [17] allows for abstract local rea-

soning for other separation algebras, such as sets, but is still unable to deal with

more complex structured data, such as trees and graphs. The recent development

of concurrent abstract predicates [27] gets a lot closer to solving the problem. We

will discuss our relation with this work at the end of chapter 7.

Using abstract predicates it is possible to hide some of the implementation details

of a program from a client. Filipovíc, O’Hearn, Torp-Smith and Yang have also

considered data refinement for local reasoning [33]. However, in both cases the client

still has to work with the low-level program model provided by Separation Logic.

In chapter 6 we shall see how a slightly different abstraction/refinement technique

can be used to obtain similar results with a more fine-grained abstract model. In

particular we will see how to make use of the locality provided by the abstraction.

We will also see the proof of a procedure that is very similar to disposeList.
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2.2.3 Practical Verification Tools

Local reasoning with separation logic has proved very successful and inspired the

creation of the reasoning tools SLAyer [68] and SpaceInvader [30] based on the

Smallfoot project [5]. Smallfoot makes use of separation logic to provide a system

for automatic assertion checking in annotated programs. It chops up these pro-

grams into Hoare triples, for certain symbolic instructions, and then checks that

these triples hold true. This approach has yielded some interesting results. Most

notably a subtle program termination error was found in a Windows device driver [6]

and several memory leaks and memory safety bugs where found in the IEEE 1394

firewire device driver [4]. These are real program errors that had been missed by

extensive testing. Finding these errors shows the practical advantages of using pro-

gram verification to prove that programs are correct rather than relying on testing.

The early identification of these errors has saved a great deal of time and money

that would have been spent in the future when, or even if, the effects of the errors

were eventually noticed.

The number of tools based on of separation logic has continued to grow in recent

years. In particular techniques such as bi-abduction [13] have been developed to

try and remove the need to provide program annotations. The more recent tools

have also been tackling more complex program languages, such as jStar [31] which

principally deals with Java programs, and others, such as VeriFast [48], have been

designed to provide interactive proof assistants which can be used on the fly to prove

as you code.

In this thesis we focus on the backing theory behind such verification tools, rather

than on their development. As such, we are not going to give a detailed account of

symbolic execution techniques here.

2.3 Concurrent Separation Logic

Separation logic has been extended by O’Hearn [59] and Brookes [10] to incorporate

reasoning for concurrent programs. Their approach centred around two key ideas:

ownership and separation. The ownership hypothesis, from [59], states that:

‘A code fragment can access only those portions of state that it owns.’

With this idea the separation property, also from [59], is stated as:

‘At any time, the state can be partitioned into that owned by each process

and each grouping of mutual exclusion.’
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This property is key in establishing a setting that allows for independent reasoning

about components of concurrent programs. Additionally, the meaning of a Hoare

Triple is extended so that when {P} C {Q} holds, not only is the program C free of

faults, but the program is also free of any race conditions. A race condition occurs

when two or more threads attempt to access the same memory location at the same

time. It is possible that these accesses may interfere with one another and lead to

unexpected behaviours. Note that this initial work regards both concurrent read

accesses and concurrent write accesses as a race condition. This is restrictive. It is

more common to define a race condition to require at least one of the accesses to

be a write. Boyland introduced fractional permissions in separation logic [9] which

allow for this refinement.

The first step in reasoning about concurrent programs was to deal with disjoint

concurrency. In disjoint concurrency, programs are constructed so that they do not

ever attempt to access the same memory locations. The parallel thread programming

construct C1 || C2 is used to denote the creation of two threads, C1 and C2 , which

are then executed in parallel. The reasoning rule for disjoint concurrency can then

be given as:

Parallel Rule :
{P1} C1 {Q1} {P2} C2 {Q2}
{P1 ∗ P2} C1 || C2 {Q1 ∗Q2}

with the side condition that C1 does not modify any variables free in P2 ,C2 ,Q2 and

C2 does not modify any variables free in P1 ,C1 ,Q1 . We can use this rule to prove

that programs which act on separate parts of the heap are safe to run in parallel.

For example, consider the following proof sketch for the program [x ] := 5 || [y ] := 6 ,

{x 7→ − ∗ y 7→ −}
{x 7→ −} {y 7→ −}
[x ] := 5 [y ] := 6

{x 7→ 5} {y 7→ 6}
{x 7→ 5 ∗ y 7→ 6}

The overall precondition states that the cells x and y are disjoint. We make use of

the Parallel Rule to split the state across the two program threads and update the

cells appropriately. If the assignments were not being made to disjoint cells then the

program would have a race condition. For example, in the program [x ] := 5 || [x ] :=

6 we would not know the value stored in x at the end of the program. Moreover,

depending on how the heap assignments interact, the value may not necessarily even
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be one of 5 or 6 . Such a program is not provable in this setting as the assertion

x 7→ − cannot be split so that it is sent to both threads, as is required to satisfy the

precondition of each assignment axiom.

Reasoning about disjoint concurrency alone would not be very interesting. The

next step was to introduce a simple model of process interaction based around the

declaration of shared resources and then restricting all accesses to these resources to

be with mutual exclusion. The resource declaration statement res r in C creates

a new resource r which can then be used in the rest of the program. This resource

will be associated with a resource invariant in the reasoning and will initially own

the portion of the program state described by this invariant. It is important, for

soundness, that these resource invariants be precise assertions so that they describe

an exact part of the program state.

In order to use a resource a program must make use of a conditional critical

region (or CCR) command with r when B do C. Two with commands for the

same region r cannot be executed at the same time. Additionally, in order to enter

the region some Boolean expression B must evaluate to true. If the expression B is

not true, then the process must wait until the condition is satisfied. The proof rules

provided for these commands are given as follows:

Resource Rule :
{P}C {Q}

{P ∗ RI } res r in C {Q ∗ RI }

CCR Rule :
{(P ∗ RI ) ∧ B }C {Q ∗ RI }
{P} with r when B do C {Q}

where the CCR rule has the side condition that no other process modifies variables

free in P or Q and in both rules the resource invariant RI is required to be precise.

With these new rules, we can now reason about programs which share some

program state. For example, consider the simple producer/consumer program below.

x := alloc(a, b) ;

with buf when ¬full do

c := x ;

full := true

with buf when full do

y := c ;

full := false

dispose(y)

Here we have two threads running in parallel with a shared buffer buf . The left-hand

thread produces a cell and then, when the buffer is empty, passes a reference to this

cell into the buffer setting the buffer’s flag to full. The right-hand thread waits for

the buffer to be full, then copies the cell reference out of the buffer and sets the
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{emp}
{emp ∗ emp}

{emp}
x := alloc(a, b) ;
{x 7→ −,−}
with buf when ¬full do

{(x 7→ −,− ∗ RIbuf ) ∧ ¬full}
{(¬full ∧ emp) ∗ x 7→ −,−}
c := x ;
full := true
{full ∧ c 7→ −,−}
{RIbuf }
{RIbuf ∗ emp}
{emp}

{emp}
with buf when full do

{(emp ∗ RIbuf ) ∧ full}
{full ∧ c 7→ −,−}
y := c ;
full := false ;
{y 7→ −,− ∧ ¬full}
{(¬full ∧ emp) ∗ y 7→ −,−}
{RIbuf ∗ y 7→ −,−}
{y 7→ −,−}
dispose(y)
{emp}

{emp ∗ emp}
{emp}

Figure 2.7: Proof outline for the simple producer/consumer program.

buffer’s flag to empty. It then disposes this cell as an example of consuming the

data obtained form the buffer. In practice this kind of code is likely to be encased

in a looping structure of some kind, but here we consider just a single use of the

buffer. The reasoning can easily scale to more complex examples that make use of

the buffer more than once. For simplicity, lets assume that this code is operating

in a setting where the shared buffer buf has already been initialised with resource

invariant RIbuf given as:

(full ∧ c 7→ −,−) ∨ (¬full ∧ emp)

We can then provide a proof sketch for the program as shown in Figure 2.7. Notice

how the CCRs transfer the ownership of the cell x through the buffer buf from

the left-hand thread to the right-hand thread. It is also important to note that

the dispose and alloc commands are able to run outside of the CCRs in this

program, despite accessing the same cell. The synchronisation provided by the

CCRs ensures that there is no possibility of a race condition occurring between

these two commands.

Proving the soundness of these new concurrent separation logic inference rules is

not a simple matter. Originally Brookes provided an operational semantics for the

language of concurrent separation logic [10], but the resulting proof of soundness

was very complex and hard to understand. Calcagno, O’Hearn and Yang used their
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abstract separation logic [17] and a denotational trace semantics to provided a more

readable soundness proof. More recently, Vafeiadis has given a much simpler proof

of soundness for concurrent separation logic [73] in terms of its original operational

semantics.

With the approach taken in concurrent separation logic it is easy to verify simple

concurrent programs. However, this style of reasoning with resource invariants is

only really suited to programs that have statically declared critical regions. To

handle more dynamic uses of concurrency it is necessary to use concepts such as

rely-guarantee [49], or the more recent development of deny-guarantee [32]. Each of

these approaches to reasoning about concurrency have been applied to the work of

separation logic to produce novel concurrent reasoning systems [74][27].

In this thesis, we carry out an initial investigation into the realms of abstract

concurrency following the simple style of concurrent separation logic. Linking our

work to more recent developments in concurrency reasoning is probably one of the

more interesting future steps to undertake. We will discuss this further in chapter 8.

2.4 Abstract Reasoning

As we have already seen, the view of a program’s state provided by Separation

Logic is a low-level one. The heap is often considered as a finite set of data cells

with pointers between them and we build up more complex structures out of this

heap spaghetti. However, we sometimes want to think of a program’s data structure

at a higher level of abstraction than this. We want to allow the clients of a data

structure to be able to reason about the structure at the level of abstraction that

has been presented to them, for example viewing the program state as a tree rather

than as a collection of heap cells.

We have seen that it is possible to abstract away from the low-level details using

abstract predicates, but it is also possible to directly base our reasoning on more

abstract data models. We will introduce the concept of abstract addresses. These

are addresses that allow us to describe portions of a data structure, but that do

not necessarily correspond directly to the internal representation of the structure.

Such abstract addresses are available to the client when reasoning about the data

structure, but are not accessible by a program itself, for example they cannot be

stored in program variables. These addresses provide an instrumentation of the

data structure that will allow us to reason in a local fashion about updates upon

the structure.

Consider, as an example, a program library that manipulates trees. The speci-
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fication of such a library should be independent of its underlying implementation.

Any implementation of such a library will have to take great care in maintaining

the correct pointer structure of the tree, especially when moving or deleting nodes

within a tree. However, so long as the implementations of such commands satisfy

the library’s abstract specification, a client of the library need not be concerned

with these implementation details. To them, all of this pointer update is occurring

‘under the hood’ of the library. It is enough for the client to be able to identify

the subtrees that will be affected by the library’s commands. Abstract addresses

provide the client with this functionality.

2.4.1 Context Logic

In 2004, inspired by the successes of separation logic and ambient logic [19], Calcagno,

Gardner and Zarfaty created context logic [11]. This new logic provided a way to

tackle program reasoning at a higher level of abstraction whilst also maintaining the

idea of local reasoning. The key idea was to reason at the level of abstraction pro-

vided to the client. Rather than reasoning about modules in terms of their internal

details, we can instead reason about them in terms of their abstract interfaces. The

initial work was on a simple tree model, but this has since been expanded and im-

proved to handle more realistic data structures [14][16] and the logic’s expressivity

has been analysed [15]. Additionally, work on abstraction and refinement [28] has

shown how to prove whether a given implementation satisfies a library’s abstract

specification.

For this overview we concentrate on a simple tree model of context logic. Trees are

one of the most common data structures encountered in computing. For example,

trees are typically used to store ordered data for quick retrieval. However, of more

interest to us is their use in recording structured data such as XML or DOM objects.

Web-based and distributed programs often communicate with, or manipulate, tree

structured data such as XML. If we want to be able to reason about these programs,

then we are going to need to understand what it means to manipulate tree structures

correctly.

In a similar fashion to separation logic, context logic for trees models the state

of a program as the combination of two components. The first of these, just as

in separation logic, is the data store σ: a finite partial function mapping variables

to their values. However, in context logic for trees, the second component of the

program state models the tree structure our programs manipulate in a direct, high-

level, fashion.

42



We model trees as finite, uniquely-labelled, unranked and ordered forests.

� They are finite since their branching and their depth are both required to be

finite.

� They are uniquely-labelled since each node in a tree has an associated label

which is unique to that node, similar to node identifiers in DOM.

� They are unranked since a node can have any number of children, regardless

of its label. The number of children of a node can change as the tree structure

is updated.

� They are ordered since the children of each node occur in a fixed sequence,

from first to last, that can only be changed by updating the tree.

� They are really forests since any number of nodes can occur at the root level

of the tree. We call them trees, in part to link with DOM which has a set of

trees at the root level.

The context logic tree model is defined in terms of trees and their associated contexts.

Formally, trees t ∈ TId are defined inductively as:

tree t ::= ∅ | n[t ] | t ⊗ t

where ∅ is the empty tree, the node identifiers n ∈ Id are unique in the tree and

the ⊗ operator is associative, but not commutative, with identity ∅. The syntax

n[t ] describes a tree node identified by n that contains the subtree t . The syntax

t1 ⊗ t2 describes the trees t1 and t2 in an ordered sequence. We work with unique

node identifiers, in the style of DOM, allowing us to specify commands that take

node identifiers as arguments. Another option would be to work with paths, as in

[56], but we choose to focus on a simple model here.

n

m p

n

m p

Figure 2.8: The tree n[m[∅]⊗ p[∅]].

The small three node tree, shown in Figure 2.8, is represented as n[m[∅]⊗ p[∅]].

Notice that we do not need to directly record the left/right sibling relationship

between the nodes m and p as this information is encoded in the abstract model
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by the ⊗ connective. It is essential that the ⊗ connective be non-commutative so

that sibling order is correctly represented. To encode the same information in a

separation logic heap model we would have to add explicit pointers between all such

sibling nodes. The assertion (n 7→ m,p) ∗ (m 7→ ∅) ∗ (p 7→ ∅) might seem to

describe a heap with the same structure as the tree, but consider what happens if

we remove the node n from the data structure, say when working with the frame

rule. In the high-level tree model we are left with m[∅]⊗ p[∅] which still contains

the information that m and p are siblings. However, the separation logic assertion

(m 7→ ∅) ∗ (p 7→ ∅) only specifies that we have two disjoint nodes. We have lost all

information about the sibling relationship between the nodes m and p. We could

add explicit sibling pointers to the heap representation, resulting in a rather more

complex low-level model of the tree. For example we could represent each node by a

cons cell of the form n 7→ l ,u,d ,r where the cell’s contents are pointers to the node’s

left sibling l , parent u, first child d and right sibling r . We could then represent

our three node tree by the heap (n 7→ null,null,m,null) ∗ (m 7→ null,n,null,p) ∗ (p 7→
m,n,null,null), as shown in Figure 2.9. Either heap representation, however, requires

us to make a choice about how the tree structure is implemented, breaking the

abstraction. Moving our reasoning to a higher level can help us to overcome low-

level and implementation specific issues, such as pointer update, and concentrate on

more interesting features of such data structures.

n

m p

n

m p

Figure 2.9: The heap (n 7→ null,null,m,null) ∗ (m 7→ null,n,null,p) ∗ (p 7→
m,n,null,null).

In our example tree structure, the tree nodes do not have any contents besides

their child nodes. It is trivial to extend the data structure, and the reasoning to

follow, such that the tree nodes carry some extra data such as labels, colours or

integers. We will see some examples of other data structures in chapter 3.

As mentioned above, context logic for trees also requires the definition of a tree

context structure. Tree contexts have the same shape as trees, but can also contain

a single context hole (−) at some point. We can place data into this context hole

and obtain a complete tree.
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=
Q

K

P

Figure 2.10: Context application Q = K ◦ P .

Tree contexts c ∈ CId are defined inductively as:

tree context c ::= − | n[c] | c ⊗ t | t ⊗ c

where node identifiers n ∈ Id are unique in the tree context and the ⊗ operator is

associative, but not commutative, with identity ∅ as before.

This context structure comes with a notion of context composition and context

application. Context composition • is the combination of two tree contexts, resulting

in another tree context where the second tree context is put in place of the hole of

the first tree context. This operation is associative. Context application ◦ is the

combination of a tree context and a complete tree, resulting in a complete tree where

the hole of the tree context has been filled. This operation associates with context

composition, i.e. c1 ◦(c2 ◦t) = (c1 •c2 )◦t . Context composition • : CId×CId → CId

and context application ◦ : CId × TId → TId are each defined inductively on the

structure of tree contexts as:

− • c2
def
= c2

n[c1 ] • c2
def
= n[c1 • c2 ]

(c1 ⊗ t) • c2
def
= (c1 • c2 )⊗ t

(t ⊗ c1 ) • c2
def
= t ⊗ (c1 • c2 )

− ◦ t2
def
= t2

n[c] ◦ t2
def
= n[c ◦ t2 ]

(c ⊗ t1 ) ◦ t2
def
= (c ◦ t2 )⊗ t1

(t1 ⊗ c) ◦ t2
def
= t1 ⊗ (c ◦ t2 )

The assertion language of context logic for trees is used to express properties of a

tree. For example, the number of children beneath a node, the identifier of a node’s

right sibling or that a node contains an empty subtree. Our assertions for concrete

trees and contexts use the same syntax as our model, for example, the assertion ∅
describes the empty tree, the assertion n[m[∅]⊗ p[∅]] describes the small tree from

2.8, and so on. For simplicity, we sometimes drop the ∅ from our assertions, for

example, writing n[m ⊗ p] for the assertion n[m[∅]⊗ p[∅]].

As with separation logic, the power of context logic’s assertion language comes

from the use of new spatial connectives. For context logic these connectives are

45



=

Q

K
P

Figure 2.11: Right adjoint Q = K C P .

=
Q

K

P

Figure 2.12: Right adjoint K = P B Q .

the application connective ◦ (the lifting of context application to the logical level),

and its right adjoints C and B. The assertions of our reasoning system describe

only complete trees, so our assertion language only includes application ◦ and not

also composition • (although it is simple to extend the assertions to include the

composition connective).

We use context application ◦ to break apart the tree by pulling out some subtree

and putting a context hole in its place. The assertion K ◦ P is satisfied by any

tree that can be split into some tree context satisfying K and a tree satisfying

P (see Figure 2.10). The adjoint assertion K C P is satisfied by any tree that,

when inserted it into a tree context satisfying K , results in a tree satisfying P

(see Figure 2.11). Finally, the adjoint assertion P B Q is satisfied by any tree

context that, when applied to a tree satisfying P , results in a tree satisfying Q (see

Figure 2.12).

Abstract Local Hoare Reasoning

Context logic, like separation logic, uses the local fault avoiding interpretation of a

Hoare Triple, often considering just partial correctness. However, the Hoare triples

are now defined directly in terms of tree assertions. As with separation logic we give

small (or local) specifications for our basic commands (we shall see in §2.4.3 that in

some cases we cannot give completely small specifications).

When working at the high-level we no longer think of our data structures in terms

of heap cells, but we still want our specifications to be given over just the structures
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ndeleteTree(   )

Frame Rule

ndeleteTree(   )
n
t

n
t

Figure 2.13: Context logic abstract frame rule example.

that are accessed by a program. The context logic assertion language allows us to

specify commands and programs directly at the high-level. For example, the tree

deletion command deleteTree(n), which deletes the node n and its entire subtree,

only access nodes within the tree structure at n. The footprint of this command is,

therefore, subtree from the node n and can be specified as follows:{
n[t ]

}
deleteTree(n)

{
∅
}

This local specification mentions just the subtree that is affected by the command.

As with separation logic, to be able to use this specification as part of the proof

of a larger program, context logic includes a frame rule.

Abstract Frame Rule:
{P} C {Q}

{K ◦ P} C {K ◦Q}
mod(C) ∩ free(K ) = {}

The abstract frame rule lets us frame on a context to both the pre- and postcondition

of a program’s specification using the application connective ◦. This added context

will not be affected by the program C, as ensured by the rule’s side condition. For

example, in Figure 2.13 we apply the frame rule to the deleteTree command given

before.

The first right adjoint of application C is used for hypothetical reasoning and so

does not seem to have a role in reasoning about programs. The second right adjoint

of application B is quite similar to −∗, the right adjoint of separation logic, and

is often used to describe future properties of the data structure. The application

connective ◦ and its right adjoint B interact in much the same way as ∗ and −∗.
For example, the formula n[p[∅]] B P states that if the node n with a single child p

is inserted into the current context, then some property P will hold. Assume that we

have the tree n[m[∅]⊗p[∅]], from Figure 2.8, and that this tree is in a context that
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satisfies property P if its hole is filled with the tree with node m removed. That is we

have an overall tree that satisfies the assertion (n[p[∅]] B P)◦(n[m[∅]⊗p[∅]]). If we

run the deleteTree(m) command on this tree then the subtree at m will be removed

and the subtree at n will then satisfy property n[p[∅]]. Thus, by the definition of

B, the overall tree will satisfy the assertion P . This precondition is similar to the

weakest, or most general, precondition of the deleteTree(m) command. We give a

sketch of the proof of this below:{
(n[p[∅]] B P) ◦ (n[m[∅]⊗ p[∅]])

}{
n[m[∅]⊗ p[∅]]

}{
n[−⊗ p[∅]] ◦m[∅]

}{
m[∅]

}
deleteTree(m){

∅
}{

n[−⊗ p[∅]] ◦∅
}{

n[p[∅]]
}{

(n[p[∅]] B P) ◦ (n[p[∅]])
}{

P
}

The first step of the proof is to use the abstract frame rule to frame off the parts

of the tree that are not affected by the command. We do this in two steps, first

framing of the context and then breaking apart the subtree at m from the sub-

tree at n and framing off the new context at n. Notice that the footprint of the

deleteTree(m) command is just the subtree at m. We then apply the small axiom

for deleteTree(m) and bring back the framed of context at n, collapsing this back

into a complete tree. Finally, by applying the rule of consequence with the definition

of B we establish the postcondition of the command.

Context logic provides a useful tool for reasoning about data structures at the

level of abstraction provided to the client. Probably the most notable application of

context logic to date has been its use in providing a formal specification of the W3C

Document Object Model (DOM) [36][37] a library for manipulating XML structure

on the web. In this project, a core subset of DOM commands, called Featherweight

DOM, was identified and given a Hoare style context logic specification in place of

its existing English specification. The extension of this work to the full DOM Core

Level 1 specification [76] was the topic of Smith’s thesis [71].
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2.4.2 Multi-Holed Context Logic

So far we have seen a model where each context has exactly one context hole. Con-

text logic has been extended to the multi-holed case, where a context can have any

number of holes (including possibly none), by Calcagno, Dinsdale-Young and Gard-

ner [12]. This allows for a uniform treatment of contexts and data, as data is just

a context that has no holes. Using multi-holed context logic, Calcagno, Dinsdale-

Young and Gardner where able to give a number of adjunct elimination properties

that it was not possible to prove in the original context logic.

To keep track of the context holes each is labelled from a set of hole identifiers X.

Multi-holed tree contexts c ∈ TId,X are then defined inductively as:

tree context c ::= ∅ | x | n[c] | c ⊗ c

where ∅ is the empty tree, each hole identifier x ∈ X and node identifier n ∈ Id

occur at most once in a tree context c, and the ⊗ operator is associative, but not

commutative, with identity ∅. The set of hole identifiers that occur in a tree context

c is denoted by fn(c). We use t , t1 , t2 ... to denote tree contexts with no holes, i.e.

complete trees.

Just as in the single-holed context model, the multi-holed context structure comes

with a notion of an associative context composition. Since we work only with con-

texts (recall that data is just a context with no holes) we do not require a notion of

context application in the multi-holed setting. Context composition is defined as a

set of partial functions •x : TId,X×TId,X → TId,X indexed by hole identifiers x ∈ X.

c1 •x c2
def
=

{
c1 [c2/x ] if x ∈ fn(c1 ) and fn(c1 ) ∩ fn(c2 ) ⊆ {x}
undefined otherwise

where c1 [c2/x ] denotes the tree context c1 with tree context c2 in place of the

context hole x in c1 .

The assertion language of multi-holed context logic follows much the same style

as that of context logic. As before our assertions for concrete tree contexts use the

same syntax as our model, except that we replace each occurrence of a hole label

with a logical label variable α, β, .... For example, the assertion n[α] describes a

multi-holed tree context of the form n[x ] where the logical environment e maps α

to the hole label x . Additionally, we lift context composition • into the assertion

language, for example, writing n[α] •α t to describe the complete tree n[t ] split into

a context n[x ] and tree t at some hole label x where e(α) = x .
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Using multi-holed contexts as the basis for defining a Hoare reasoning system

enables a finer level of reasoning at the high-level. Whereas before our reasoning

system dealt with tree assertions, we now have a reasoning system that treats context

assertions as first class citizens. Consider, for example, a command deleteNode(n)

that deletes just a single node n from the tree (with the side effect of promoting all

of the node’s children up to n’s original level). We could specify this as follows:{
n[α]

}
deleteNode(n)

{
α
}

Notice that we use a logical context hole variable α in both the pre- and postcon-

ditions, so this specification only mentions the node n which is being deleted. This

matches the footprint of the command, which only accesses the node and not the

subtree beneath it. As expected the deleteNode(n) command has a much smaller

specification footprint than the deleteTree(n) command. Similarly, when specify-

ing commands that read data from a node or look up sibling or parent information,

the natural footprint does not contain the subtree beneath these nodes.

If we want to specify the behaviour of the deleteNode(n) command on a larger

tree, we need to use an abstract frame rule. In the multi-holed case there are, in fact,

two frame rules: one for wrapping a context around the current context, and one for

filling context holes in the current context. These rules are, naturally, indexed by

hole identifier variables α. Multi-holed context logic was introduced to investigate a

number of meta-theoretical results and has never seen much use in terms of program

verification. Therefore, we omit a detailed discussion of these abstract frame rules

of multi-holed context logic here.

Using multi-holed context logic we can still reason about programs that affect

entire subtrees. For example, we specify the deleteTree command just as in the

single-holed case: {
n[t ]

}
deleteTree(n)

{
∅
}

Note that it is important in this specification that t in the precondition be a complete

tree, a context with no context holes, otherwise this axiom would not be sound

under the frame rule. If the precondition were allowed to contain a context hole, for

example n[α], then this hole would not be present in the postcondition ∅. So a frame

composition that would be defined on the precondition, such as n[α] •α t = n[t ],

would be not be defined on the postcondition, since ∅•α t is undefined for all α and

t . Thus, using the frame rule, we would be able to deduce the specification:{
n[t ]

}
deleteTree(n)

{
false

}
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Figure 2.14: appendChild disjoint case.

This could only be true if the deleteTree command were to diverge, which it does

not.

We shall discuss the multi-holed context model and multi-holed context logic in

more detail in chapter 3.

2.4.3 Introducing Segment Logic

Context logic works well for reasoning about simple tree update. When reasoning

about DOM we realised that the axiom we gave for the command called appendChild

was not small. The appendChild(n,m) command removes the subtree at m from

the tree and reinserts it as the last child of the node n. There are three possible

relationships between the nodes n and m: either they are in completely disjoint

parts of the tree; n is an ancestor of m; or m is an ancestor of n. If the two

nodes are completely disjoint, then the appendChild(n,m) command simply pulls

the subtree at m out of its current position and inserts it as the last child of n (see

Figure 2.14). If n is an ancestor of m, then m is contained somewhere within the

subtree beneath n and the effect of the appendChild(n,m) command is to pull the

subtree at m further up the tree to the level below n (see Figure 2.15). However, if

m is an ancestor of n, then n is contained somewhere within the subtree beneath m

and the effect of the appendChild(n,m) command is to pull the subtree at m within

itself, introducing a cycle into the tree structure (see Figure 2.16). When specifying

the appendChild(n,m) command, we need to ensure that our precondition rules

out the case where m is an ancestor of n, as this results in an invalid program state.

Moving away from the complexities of the DOM data structure, and concentrating

on a simple tree structure, let us investigate the specification of the appendChild(n,m)

command. Using context logic for trees, as introduced in §2.4.1, the best specifica-

tion we can provide for the appendChild command is:{
(∅ B (c ◦ n[t1 ])) ◦m[t2 ]

}
appendChild(n,m)

{
c ◦ n[t1 ⊗m[t2 ]]

}
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Figure 2.16: appendChild faulting case.

Concentrating on the precondition, we have a formula which describes a tree that

must be able to be split up in a particular way. The formula (∅ B (c ◦n[t1 ]))◦m[t2 ]

states that the tree can be split into a subtree m[t2 ] and a context that satisfies

(∅ B (c ◦ n[t1 ])). If we fill this context’s hole (where the tree m[t2 ] was just

removed from) with the empty tree ∅, then the resulting tree satisfies c ◦ n[t1 ].

What this means is that if we were to replace the subtree m[t2 ] with ∅, then the

resulting tree can be split into some arbitrary context c and a tree n[t1 ] with top

node n. In other words, if we remove the subtree at m the remaining context still

contains the node n. So, m cannot be an ancestor of n.

The postcondition describes the structure of the tree after the appendChild(n,m)

command has been executed. The formula c ◦ n[t1 ⊗m[t2 ]] states that the tree can

be split into the context c (the same context c as from the precondition) and a tree

n[t1 ⊗m[t2 ]] that has the tree m[t2 ] as a child (note that these are the same trees

t1 and t2 as from the precondition).

The complex precondition is necessary to avoid the possibility of the command

breaking the tree structure. However, it also makes a substantial over-approximation

of the command’s footprint. The precondition describes the resource that is neces-

sary for appendChild(n,m) not to result in a fault, but the specification we have

given is not small. The precondition additionally describes some arbitrary linking
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context c (see Figure 2.17). Intuitively, we shouldn’t need to reason about this extra

context as it is not modified by the command.

We saw in §2.4.2 that a multi-holed context model could be used in place of the

single-holed model in order to refine our specifications. However, even if we use

a multi-holed tree context model, we still cannot obtain a small specification for

the appendChild(n,m) command. The best we can manage with the multi-holed

context logic is a specification of the form:{
(c1 •α n[c2 ]) •β m[t ]

}
appendChild(n,m)

{
(c1 •α n[c2 ⊗m[t ]) •β ∅

}
This specification is certainly simpler and, due to the context c2 beneath node n,

may include less of the subtree at n. However, the specification still requires the

connecting context variable c1 , so the specification has the same significant over-

approximation as in the single-holed case.

Ideally, we should not have to consider the context c1 , as it is not affected by the

command. We should be able to use the frame rule to add this context onto our

commands local specification. The issue here is that the formula n[c2 ]•βm[t ] is only

able to describe a tree context where the tree m[t ] is connected to the tree context

n[c2 ]. As we have already seen, the nodes n and m may be in disjoint parts of the

tree, but our existing logic can only make such an assertion by describing the whole

of the tree context that connects n[c2 ] with m[t ]. We could add additional assertions

to the formula to force the context connecting n[c2 ] with m[t ] to be minimal. For

example: {
(c1 •α n[c2 ]) •β m[t ] ∧ ¬∃γ. ((¬γ) •γ (true •α n[c2 ]) •β m[t ])

}
This formula describes the same state as before, but places an additional constraint

on the form of the context c. In particular it states that this context cannot be

split into a part that contains both n[c2 ] and m[t ] and some non-trivial (non hole)

context. Thus, the context must be the minimal structure that connects n[c2 ] with

53



m[t ]. However, this specification still has to describe more of the tree than is being

affected by the command and is significantly more complex than we would wish.

In specifying DOM, the only place that this problem arises is with the appendChild

command. However, if we consider specifying other tree libraries then we may en-

counter other commands that behave in a similar way. Consider, for example, a

double-deletion program delete2Trees that performs two tree deletion commands

one after the other.

delete2Trees(n,m) ::= deleteTree(n) ; deleteTree(m)

This command should not fault unless there is some overlap between the two trees

at n and m. We know how to specify the individual deleteTree commands in a

local fashion: {
n[t1 ]

}
deleteTree(n)

{
∅
}

{
n[t2 ]

}
deleteTree(m)

{
∅
}

However, we do not have compositional way of generating a local specification for the

delete2Trees command from the local specifications of the individual deleteTree

commands. Any specification would have to mention some connecting context c.

Just as with appendChild, the issue is that we cannot locally express when the two

trees n[t1 ] and m[t2 ] are in disjoint parts of the tree.

The kind of disjoint behaviour we have been trying to describe so far is fairly

uncommon in sequential programs, but if we look at concurrent programs we see that

this pattern of manipulating multiple disjoint locations at the same time is incredibly

common. A number of concurrent algorithms, such as merge-sort, parallel deletion

and map-reduce all use the idea of disjointness at the very core of their design.

As an example consider an algorithm that deletes a binary tree using parallel

recursive calls:

parTreeDelete(n) ::= local l, r in

if n 6= null then

l := n.left ;

r := n.right ;

parTreeDelete(l) parTreeDelete(r)

dispose(n)

This algorithm carries out some local work to set up the left and right subtrees and

then makes a pair of parallel recursive calls to itself to delete these subtrees. Once
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both of the parallel calls have completed both subtrees will have been deleted and

all that remains is to remove the top node.]

Such algorithms ensure correctness by operating on completely disjoint parts of

the data structure. If threads were to attempt to access the same structures at the

same time, there would be a race to determine which gets access to the structure

first. Later accesses to the same structure might not be tolerant to earlier changes

and this may cause faults or undesired program behaviour. One could reason about

such an example by breaking into the implementation of the tree structure and

using concurrent separation logic, but we want to be able to reason about this at

the high-level.

Our current high-level reasoning techniques are poorly equipped to handle reason-

ing about disjoint portions of a data structure that are not contiguously connected.

The context composition and application connectives are suited to expressing con-

tainment relationships. This issue with disjointness had not appeared before our

work on DOM, and in particular the appendChild command, as all of our previous

commands had only acted on individual parts of a data structure. The appendChild

command, however, effectively operates on two pieces of the tree at the same time.

Being unable to reason about disjoint structures in the sequential setting merely

leads to some inelegant specifications. However, being unable to reason about dis-

joint structures in the concurrent setting is totally impractical.

In the next chapter, we introduce the segment model in order to express disjoint-

ness of trees in a local way, without having to mention connecting contexts. We will

use the appendChild command as the driving motivation for our development of

segment logic. We shall see several interesting example programs in chapter 5 which

make use of the basic appendChild command. In chapter 7, we will consider how

to extend our reasoning system to deal with high-level concurrency.
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3 Segment Logic

Segment logic provides a fine-grained analysis of abstract data structures. We take

the idea of disjoint reasoning, introduced by separation logic, and apply it to abstract

data structures. Our disjoint reasoning for abstract data structures allows for a more

fine-grained analysis of data than context logic. This allows us to naturally express

properties that may hold over disparate parts of a data structure. In particular,

we are able to describe properties of disjoint sub-structures. This will enable us to

provide small axioms for commands which current techniques are forced to over-

specify. In addition, it will open the door for reasoning about disjoint concurrency

at the abstract level.

We introduce segment logic for trees, first giving tree segments in §3.1 and then

giving the logic itself in §3.2. Our tree segments provide an instrumented model

of trees that enriches the tree structure with additional information that aids our

reasoning. From segment logic for trees, we generalise to arbitrary segment algebras

and a general segment logic in §3.3. In chapters 4 and 5 we show how segment logic

can be used to provide fine-grained local reasoning about structured data.

3.1 Tree Segments

We define multi-holed tree contexts and tree segments following the informal presen-

tation of multi-holed tree contexts given in chapter 2. Here, we work with a simple

tree structure. In chapter 5 we will extend these ideas to the complex tree structure

of DOM.

Throughout this section, we use the countably infinite, disjoint sets Id = {m, n, ...}
for location names and X = {x , y , z , ...} for hole labels.

3.1.1 Trees

As in chapter 2, we model trees as finite, uniquely-labelled, unranked and ordered

forests.
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Definition 3.1 (Trees). The set of trees TId, ranged over by t , t1 , ..., is defined

inductively as:

t ::= ∅ | n[t ] | t ⊗ t

where ∅ is the empty tree, each location name n ∈ Id occurs at most once in a tree

t , and ⊗ is associative with identity ∅.

Example 3.2 (Trees). The following are all examples of trees:

∅
n[m[∅]]

n[∅]⊗m[∅]

p[n[∅]⊗m[∅]]

p[n[∅]⊗m[∅]]⊗ q [r [∅]⊗ s [∅]⊗ t [∅]]

whereas n[∅] ⊗ n[∅] and n[n[∅]] are not examples of trees as they do not have

unique location names.

3.1.2 Multi-holed Tree Contexts

We have already introduced the idea of multi-holed tree contexts in chapter 2. Here

we give the formal definition.

Definition 3.3 (Multi-holed Tree Contexts). The set of multi-holed tree contexts

TId,X, ranged over by ct , ct1 , ..., is defined inductively as:

ct ::= ∅ | x | n[ct ] | ct ⊗ ct

where ∅ is the empty tree, each hole label, x ∈ X, and location name, n ∈ Id, occur

at most once in a tree context ct , and ⊗ is associative with identity ∅.

Example 3.4 (Tree Contexts). The following are all examples of multi-holed tree

contexts:
∅
x

n[m[∅]]

n[x ]

n[x ]⊗ y

p[x ⊗ n ⊗ y ]

p[x ⊗m[∅]]⊗ y ⊗ q [z ]
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whereas p[x ⊗ p[∅]], n[x ⊗ x ] and q [x ] ⊗ x are not examples of multi-holed tree

contexts as they do not have unique location names or unique hole labels.

Notation: Notice that a tree is just a multi-holed tree context that has no context

holes. We use t , t1 , t2 to denote complete trees. We often omit the ∅ leaves from

a tree context to make it more readable, for example writing n[m ⊗ p] instead of

n[m[∅]⊗ p[∅]].

We provide a function that keeps track of the free hole labels in a multi-holed tree

context.

Definition 3.5 (Context Hole labels). The free holes function

fhT : TId,X → Pfin(X),

is defined by induction on the structure of multi-holed tree contexts as:

fhT(∅)
def
= ∅

fhT(x )
def
= {x}

fhT(n[ct ])
def
= fhT(ct)

fhT(ct1 ⊗ ct2 )
def
= fhT(ct1 ) ∪ fhT(ct2 )

We provide a similar free names function which keeps track of the location names

that are assigned in a multi-holed tree context.

Definition 3.6 (Location Names). The free names function

fnT : TId,X → Pfin(Id)

is defined by induction on the structure of multi-holed tree contexts as:

fnT(∅)
def
= ∅

fnT(x )
def
= ∅

fnT(n[ct ])
def
= {n} ∪ fnT(ct)

fnT(ct1 ⊗ ct2 )
def
= fnT(ct1 ) ∪ fnT(ct2 )

Definition 3.7 (Non-Conflicting Tree Contexts). Two tree contexts ct1 and ct2 are

non-conflicting, written as ct1 #T ct2 , when:

� fhT(ct1 ) ∩ fhT(ct2 ) = ∅ (that is, their hole labels are disjoint);
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� fnT(ct1 ) ∩ fnT(ct2 ) = ∅ (that is, their location names are disjoint).

Multi-holed tree contexts come with a notion of context composition which allows

us to compose two tree contexts. Context composition takes three arguments: a

label x ∈ X, and two tree contexts ct1 , ct2 ∈ TId,X. The composition replaces the

label x in ct1 with the tree context ct2 . If the label x is not in the tree context ct1

then the composition is undefined.

Definition 3.8 (Context Composition). The context composition operator

• : X×TId,X ×TId,X ⇀ TId,X

is defined by induction on the structure of multi-holed tree contexts as:

•(x ,∅, ct)
def
= undefined

•(x , y , ct)
def
=

{
ct if y = x

undefined otherwise

•(x , n[ct ′], ct)
def
=

{
n[•(x , ct ′, ct)] if x ∈ fhT(ct ′) and n 6∈ fnT(ct)

undefined otherwise

•(x , (ct1 ⊗ ct2 ), ct)
def
=


(•(x , ct1 , ct)⊗ ct2 if x ∈ fhT(ct1 ) and ct #T ct2

ct1 ⊗ (•(x , ct2 , ct) if x ∈ fhT(ct2 ) and ct #T ct1

undefined otherwise

Notation: We write ct1 •x ct2 to mean •(x , ct1 , ct2 ).

It is possible for the composition ct1 •x ct2 to be defined even if the tree context

ct2 contains the hole x , since the composition will fill (replace) the hole x in ct1 .

Thus the unique label constraint will not be violated.

Under certain conditions, and taking undefined terms to be equal, context com-

position is associative and commutative.

Lemma 3.9 (Semi-Associativity). For all x , y ∈ X and ct1 , ct2 , ct3 ∈ TId,X, if y = x

or y 6∈ fhT(ct1 ) then

ct1 •x (ct2 •y ct3 ) = (ct1 •x ct2 ) •y ct3

Lemma 3.10 (Semi-Commutativity). For all x , y ∈ X and ct1 , ct2 , ct3 ∈ TId,X, if

y 6= x and x , y ∈ fhT(ct1 ) and y 6∈ fhT(ct2 ) and x 6∈ fhT(ct3 ) then

(ct1 •x ct2 ) •y ct3 = (ct1 •y ct3 ) •x ct2
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Figure 3.1: Splitting of a tree into contexts.

Both of these lemmas follow trivially from the definition of context composition.

Definition 3.11 (Substitution). We write ct1 [ct2/x ] to denote the substitution of

tree context ct2 for hole label x in tree context ct1 . We define substitution in terms

of context composition:

ct1 [ct2/x ]
def
=

{
ct1 •x ct2 if x ∈ fhT(ct1 )

ct1 otherwise

3.1.3 Tree Segments

In order to provide fine-grained reasoning about trees, we need a refined notion of

what it means to decompose trees. Tree contexts give us a way of breaking up a

tree structure into a context and a subtree. We can update this subtree and then

join it together with the context to get the overall updated tree. However, the

example of appendChild shows that this is not enough and that we need a finer

way of breaking up the tree structure. We introduce tree segments which allow this

fine-grained separation of tree structures.

The intuition behind the tree segment model is appealingly simple. Rather than

modelling complete trees or subtrees, we instead model pieces (or segments or frag-

ments) of a tree. In contrast to the multi-holed tree context model, we do not require

that these pieces of tree be connected. That is, the pieces may describe completely

disjoint parts of the tree.

When we work with multi-holed tree contexts we use composition to split the

working tree into contexts and subtrees (see Figure 3.1). However, when we do this,
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Figure 3.3: Fine-grained splitting of a tree into segments.

the structures lose information about where they originated from. It is the compo-

sition function that determines which holes get filled when contexts are composed.

When we work with tree segments we split the working tree into a commutative

structure (or bag) of pieces, each of which knows how it joins up with the other

pieces. In Figure 3.2 we consider a splitting of a tree, using tree segments, which is

similar to that obtained using contexts in Figure 3.1. The hole labels (in the holes)

and the address labels (on the arrows) determine which segments fill which holes.

The tree segment model is also able to break up a tree structure in a more fine-

grained fashion. In Figure 3.3 we show how with segments we can do more than

just mimic the context splitting of Figure 3.1. In particular, we can break apart

the tree into disjoint chunks that can be viewed in any combination (note that lack
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of bracketing) even if they are not connected. In both cases of Figure 3.3 the tree

segment with top node n can be split into the single node segment n at address x with

hole label z , plus a tree segment at address z which contains the children of node n.

As discussed in §2.4.3, the node n and the tree with top node m form the intuitive

footprint of the appendChild command. Thus, Figure 3.3 demonstrates how we

may uniformly extract the minimal data required to reason about the appendChild

command.

It is possible to take our notion of separation to the extreme, by cutting up the

tree structure into individual nodes, with hole labels and address labels showing

how the nodes are joined together. (This spaghetti of wires is not far off of a heap

representation of a tree.) However, such an approach does not make full use of the

abstraction available here. Our instrumented view of the program state allows us

to minimally cut up the tree and get at exactly the data about which we wish to

reason.

We can think of tree segments as abstract heaps mapping addresses to pieces

of tree. However, there is an important difference between abstract addresses and

heap address. Heap addresses are a real part of the data structure which can be

manipulated by our programs. By contrast, abstract addresses are merely an instru-

mentation that allow us to reason about the tree, they cannot be seen or manipulated

by our programs. Later, in chapter 6, we shall see that abstract addresses corre-

spond to concrete interfaces and stability requirements on an implementation of our

abstract data structure.

When working with general data, the notion of nesting of data (e.g. in trees), or

ordering of data (e.g. in lists) is important for describing particular properties. For

example, in our tree model the trees n[m1 ⊗m2 ] and n[m2 ⊗m1 ] are distinct. It is

important to keep track of such relations when we break apart our data structures.

This is achieved in the segment model by introducing hole labels and addresses

whenever we split data apart. It is important that such labels be disjoint from the

internal identifiers of the model, as we may wish to capture arbitrary shapes of data

with a single address. For example, in the tree case we may wish to describe a

segment that contains a forest structure (m1 ⊗m2 ). We could probably capture the

same information with the tree identifiers, but such an approach would be ad-hoc

and would not generalise to arbitrary data structures.

Recall the definition of multi-holed tree contexts TId,X from Definition 3.3. Infor-

mally, tree segments consist of sets of labelled tree contexts (as illustrated above).

We first define the notion of a pre-tree segment, which has the correct structure,

and then define tree segments as pre-tree segments that are cycle-free.
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Definition 3.12 (Pre Tree Segments). Given the set of multi-holed tree contexts

TId,X, the set of labels X0 is the set X extended by the empty label 0 . The set of

pre tree segments PST, ranged over by st , st1 , ... is then defined inductively as:

st ::= ∅ | x�ct | st + st

where ∅ is the empty segment, tree contexts ct ∈ TId,X, address labels x ∈ X0 , hole

labels y ∈ X and location names n ∈ Id are unique in a pre tree segment st , and +

is associative and commutative with identify ∅.

Notation: We write dcte as shorthand for 0�ct .

We label our tree contexts with either some label x ∈ X, or with the special empty

label 0 . The empty label 0 is used to indicate that a tree context is rooted, that

is, it does not have a parent and may never acquire one through any extension of

the pre tree segment. The definition above requires that the empty label 0 occurs

at most once in a pre tree segment and only ever as an address label. That is, our

pre tree segments are representing parts of a single rooted tree. In particular, this

means that (0 , ct) ] (0 , ct ′) is undefined regardless of the choices of ct and ct ′. In

general, we can choose to provide a set of empty labels to allow there to be multiple

rooted contexts, for example when modelling DOM. We will see that the concept of

an empty label is useful for describing rooted structures and that different segment

models place different restrictions upon the use of the empty label.

In definitions 3.5 and 3.6 we defined the notion of free holes and free location

names for tree contexts. There is a natural lifting of these concepts to pre tree

segments. We provide a free addresses function, a free holes functions and a free

names function that keep track of these sets in a pre tree segment. In the following

definitions we intentionally overload the functions fhT and fnT for contexts and

segments.
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Definition 3.13 (Segment Addresses, Holes, Labels and Location Names). The free

addresses function

faT : PST → Pfin(X)

is defined by induction on the structure of pre tree segments as:

faT(∅) def
= ∅

faT(x�ct)
def
=

{
∅ if x = 0

{x} otherwise

faT(st1 + st2 )
def
= faT(st1 ) ∪ faT(st2 )

The free holes function

fhT : PST → Pfin(X)

is defined by induction on the structure of pre tree segments as:

fhT(∅) def
= ∅

fhT(x�ct)
def
= fhT(ct)

fhT(st1 + st2 )
def
= fhT(st1 ) ∪ fhT(st2 )

The free labels function

flT : PST → Pfin(X)

is defined on pre tree segments as:

flT(st)
def
= faT(st) ∪ fhT(st)

The free names function

fnT : PST → Pfin(Id)

is defined by induction on the structure of pre tree segments as:

fnT(∅) def
= ∅

fnT(x�ct)
def
= fnT(ct)

fnT(st1 + st2 )
def
= fnT(st1 ) ∪ fnT(st2 )

Definition 3.14 (Tree Segments). Given the set TId,X, the set of tree segments

ST ⊆ PSS, with PST as in Definition 3.12, is defined as the set of cycle-free pre tree

segments, that is:

ST
def
= {st | st ∈ PST ∧ ∀x ∈ flT(st).¬cycle(x , st)}
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where

cycle(x , st)
def
= path(x , x , st)

path(x , y , st)
def
= ∃st ′, ct . (st = x�ct + st ′) ∧ y ∈ fhT(ct)

∨ ∃z , st ′, st ′′. (st = st ′ + st ′′) ∧ path(x , z , st ′) ∧ path(z , y , st ′′)

The functions faT, fhT, flT and fnT all have the obvious lifting to tree segments.

Notation: Unless otherwise stated, from this point whenever we write st we are

referring to a tree segment.

Definition 3.15 (Non-Conflicting Tree Segments). Two tree segments st1 and st2

are non-conflicting, written as st1 # st2 , when:

� faT(st1 ) ∩ faT(st2 ) = ∅
(that is, their address labels are disjoint);

� fhT(st1 ) ∩ fhT(st2 ) = ∅
(that is, their hole labels are disjoint);

� fnT(st1 ) ∩ fnT(st2 ) = ∅
(that is, their location names are disjoint);

� ¬∃x , y . path(x , y , st1 ) ∧ path(y , x , st2 )

(that is, there are no cycles between the tree segments).

The second and third requirements given above can also be defined in terms of

the non-conflicting property for tree contexts #T applied to the tree contexts stored

in each tree segment in a pairwise fashion. When we later generalise the segment

structure we shall use exactly this approach.

Note that the definition of non-conflicting tree segments describes exactly the

case where the combination of two tree segments results in a tree segment. This is

captured by the following Lemma:

Lemma 3.16 (Well-Formed Tree Segments). For all st1 , st2 ∈ ST,

st1 # st2 ⇒ st1 + st2 ∈ ST
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Example 3.17 (Tree Segments). The following are all examples of tree segments:

∅
dxe

x�n[m[∅]]

dn[x ]e+ x�m

z�p[n ⊗ x ] + x�y + y�m

dp[x ]⊗ q [r ⊗ y ]e+ x�n ⊗m + y�s ⊗ t

whereas the following are not examples of tree segments:

x�n[ct ] + x�m[ct ′]

x�n[z ] + y�m[z ]

x�n[ct ] + y�n[ct ′]

x�n[y ] + y�m[x ]

In the first cases the address labels are not unique. In the second case the hole labels

are not unique. In the third case the location names are not unique. Finally, in the

fourth case, the segment is not cycle-free.

Tree segments can be thought of as sets of labelled tree contexts. It is natural to

combine such sets when their addresses, hole labels and location names are disjoint

and no cycles are introduced. Such a combination of tree segments allows us to

describe disjoint tree structures without having to include any connecting context.

Definition 3.18 (Tree Segment Combination). The tree segment combination op-

erator

+S : ST × ST ⇀ ST

is defined as:

st1 +S st2
def
=

{
st1 + st2 st1 # st2

undefined otherwise

Tree segment combination is associative and commutative with identity ∅.

As well as being able to combine tree segments when their addresses, hole labels

and location names are disjoint, we also require a method of compressing tree seg-

ments when one contains hole label x and the other has address label x . Notice

that the hole labels and address labels in Figure 3.2 and Figure 3.3 are bracketed.

We shall see that this bracketing corresponds to compressing the segments at those

labels.

66



=

(x)

(x)
+

Figure 3.4: Compressing a tree segment with address x and hole label x .

(x)

=

Figure 3.5: Compressing a tree segment with just address x .

Just as context application is defined on top of tree contexts, so segment compres-

sion is defined on top of tree segments. Segment compression takes two arguments:

a label x ∈ X and a tree segment st ∈ ST. If the label x does not occur in the

tree segment st , then the compression leaves st unmodified. If the label x occurs as

both an address label and a hole label in the tree segment st , then the compression

removes the segment x�ct from st and replaces the hole label x by the tree context

ct . This is illustrated in Figure 3.4. If the label x occurs only as an address label

in the tree segment st , then the compression replaces x by 0 , creating a new rooted

tree context. This is illustrated in Figure 3.5. Finally, if the label x occurs only as a

hole label in the tree segment st , then the compression results in an undefined tree

segment. In our model we choose to interpret this compression as preventing the

hole from being filled, which means the segment would never be able to represent

a complete tree (it is possible to interpret this compression in other ways, such as

filling the hole with an empty tree).

In this last case the compression operation is analogous to context composition

for multi-holed tree contexts. At the end of this chapter we will give a more detailed

discussion of our choice to have a segment compression operator in our model. We

now give the formal definition of tree segment compression.

Notation: We write st [y/x ] to denote the substitution of label y for label x in pre

tree segment st . This substitution replaces both address labels and hole labels and

has the obvious definition.
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Definition 3.19 (Tree Segment Compression). The tree segment compression func-

tion

comp : X× ST ⇀ ST

is defined as:

comp(x , st)
def
=



st if x 6∈ flT(st)

st ′ + z�(ct •x ct ′) if ∃st ′, z , ct , ct ′. st = st ′ + z�ct + x�ct ′

and x ∈ fhT(ct)

st ′ + 0�ct if ∃st ′, ct . st = st ′ + x�ct

and x 6∈ fhT(st ′)

undefined otherwise

Notation: We write (x )(st) as shorthand for comp(x , st).

The segment compression function allows us to describe when two tree segments

are actually connected by some label. Conversely it can also be thought of as giving

us a way of breaking apart a contiguous tree segment into two tree segments. The

segment compression function has properties analogous to those of the restriction

operator in Milner’s π-calculus [53].

Lemma 3.20 (Compression Properties). Tree segment compression satisfies the

following properties: for all x , y ∈ X, st , st ′ ∈ ST and ct1 , ct2 ∈ TId,X,

(x )(∅) = ∅ (3.1)

(x )(y)(st) = (y)(x )(st) (3.2)

(x )(st) = (y)(st [y/x ]) if y 6∈ flT(st) (3.3)

(x )(st +S st ′) = (x )(st) +S st ′ if x 6∈ flT(st ′) (3.4)

y�(ct1 •x ct2 ) = (x )(y�ct1 +S x�ct2 ) if x ∈ fhT(ct1 ) and x 6= y (3.5)

The first four properties (3.1, 3.2, 3.3 and 3.4) are directly analogous to from the π-

calculus. The final property (3.5), which we call the collapse-expand property, allows

us to use compression to expand a tree segment into two disjoint tree segments. The

label x , introduced to be the splitting point, cannot occur in the current segment

due to the properties of •. In a right to left reading it also allows us to collapse two

tree segments when they are connected by a common label.

Segment compression is a natural concept, but it also greatly simplifies our rea-

soning. In our segment model we have two important operators for describing data.
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The segment combination operator +S allows us to describe disjoint portions of pro-

gram state (just as in separation logic). The compression function comp allows us

to join together (and split apart) pieces of the program state when necessary. Both

of these operators provide an instrumentation of the program state that helps our

reasoning.

We could consider an abstract model that did not include a compression operator,

instead defining a enriched segment combination operator +SC that includes the

behaviour of compression, i.e. x�y +SC y�z = x�z . However, extending segment

combination with this extra behaviour stops it from being associative. For example,

(y�∅ +SC x�y) +SC y�z = x�∅ +SC y�z

y�∅ +SC (x�y +SC y�z ) = y�∅ +SC x�z

The intuitive meaning of st1 +S st2 is that the tree segments st1 and st2 are disjoint.

When we talk about the disjointness of multiple objects we should not care about

the order in which we consider them. Thus, it is natural for our +S operator to

be both associative and commutative, as ? is in a separation algebra. Using the

non-associative +SC operator would seem to be somewhat unnatural.

Compression helps to control the bracketing that would otherwise be required of

the model, and ensures that every element of the model describes a unique struc-

ture. Moreover, compression is a local and compositional property. If we want to

try and move a segment over a compression operator, rather than having to check

for label name clashes in the whole segment, we only need to check that the seg-

ment we are moving does not mention the label being compressed. Notice, that in

the penultimate compression property (3.4) discussed above, to move s ′ across the

compression of x we only have to check that the label x is not contained within s ′.

This is a simple property to check. If we had a model without compression and with

our non-associative +SC operator, then we would need to replace this property with

one that describes when it is safe to re-bracket a segment:

st1 +SC (st2 +SC st3 ) = (st1 +SC st2 ) +SC st3 if flT(st1 ) ∩ flT(st2 ) ∩ flT(st3 ) = ∅

Notice that to switch the brackets we have to check that none of the labels in st2

occur in both st1 and st3 , otherwise we would be changing how these segments are

compressed together when we re-bracket the segment. This property still isn’t very

complex, but it requires much more work to check that it holds each time we wish

to change our view of the model.

Another reason to choose compression over non-associativity, is that it leads to
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a simple notion of alpha equivalence (property 3.3 discussed above). Compression

gives us a natural bound on the occurrence of a particular label. Outside of the

compression the label is hidden from the rest of the data structure, which means

that its actual value is not important. If we work with a model that does not

include compression then the concept of a bound name becomes more complicated.

In general it is not safe to rename a free variable. However if a label occurred as

both a free address label and a free hole label, then it would be possible to rename

this label. For example, x�n[y ] +SC y�∅ = x�n[∅] = x�n[z ] +SC z�∅.

Work by Back [1] uses a refinement calculus which has a similar definition to

our tree segments, except that it allows for cycles and does not include the notion

of a compression function. Back’s work provides refinement diagrams as a way

of representing the architecture of large software systems. Here we represent the

abstract program state and how that state is affected by state update operations.

In particular, we view segments as an instrumented view of the program state (in this

case trees), not as the program state itself. The compression function is important

as a tool that relates our instrumented segment model back to the real abstract data

model.

The cost of using compression is a slightly more complicated model, but the

reward is a more intuitive way of handling the update of structured data. We have

to take care when introducing our general reasoning framework, in chapter 4, that

our reasoning rules work well with compression. For the sequential case we can follow

the style of Gabbay and Pitts [35]. However, we shall see that for our concurrent

reasoning, in chapter 7, we have to be more cautious.

3.2 Segment Logic for Trees

We have given a model for tree segments. We now introduce segment logic for trees

in order to reason about this model. First, we present the logical environment which

contains logical variables for tree contexts, tree segments and labels.

Definition 3.21 (Logical Environments). A logical environment maps logical vari-

ables to their concrete values. Given distinct sets of

� tree context variables LVarT ranged over by ct , ...,

� tree segment variables LVarS ranged over by st , ...,

� label variables LVarX ranged over by α, β, ...,
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the set of logical environments Env, ranged over by e, ..., consists of functions

defined by:

e : (LVarT ⇀fin TId,X)× (LVarS ⇀fin ST)× (LVarX ⇀fin X)

Notation: We write e[v 7→ u] for the logical environment e overwritten with

e(v) = u, where v is a generic logical variable and u is a generic value. We also

write x#e, st to mean that the label x is fresh with respect to the logical environment

e and the tree segment st , that is, x 6∈ flT(st) and there does not exist v such that

e(v) = x .

Definition 3.22 (Logical Formulae). The formulae of segment logic for trees are

divided into two sets: the segment formulae P ,Q , ... and the tree context formulae

PT ,QT , .... The segment formulae P are defined inductively as:

P ::= P ⇒ P | false Classical Assertions

| α�PT | st Tree Segment Assertions

| emp | P ∗ P | αrP | P−∗P | P�α Structural Assertions

| ∃v .P | Nα.P Quantification

The tree context formulae PT are defined inductively as:

PT ::= PT ⇒ PT | falseT Classical Assertions

| ∃v .PT Quantification

| ∅ | α | n[PT ] | PT ⊗ PT | ct | @α Tree Specific Assertions

Notation: We write free(P) for the set of variables that occur free in the formula

P . Note that α is free in α�PT , αrP and P�α, but bound in Nα.P .

Just as in context logic and BI, the logic of bunched implications [57] that under-

pins separation logic, the segment formulae consist of classical formulae, structural

formulae and specific formulae for describing the structure of data (in this case

trees).

The standard separation conjunction ∗, its unit emp and its right adjoint (magic

wand)−∗, are structural formulae which are, by now, well known from the separation

logic literature: the formula P ∗ Q describes a tree segment that can be split into

two disjoint parts, one satisfying P and the other satisfying Q ; the formula emp

describes an empty tree segment; and the formula P −∗ Q describes a tree segment

that, when combined (disjointly) with a tree segment satisfying P , results in a tree
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segment satisfying Q .

The revelation connective r and its right adjoint (also called hiding) �, are also

structural formulae and, as far as we are aware, have not been used in the local

reasoning setting. They have been used in the Ambient Logic [20] to represent

hidden locations, following the work of Pitts and Gabbay [35]. The formula αrP

describes a tree segment which has been compressed at the label value of α and

where the uncompressed tree segment satisfies P . The formula P�α describes a

tree segment which satisfies P if it is compressed at the label value of α. We shall

see in Example 3.31 that revelation, and its right adjoint, are important for giving

the weakest preconditions of commands.

In addition we have the quantification formulae ∃v .P and Nα.P . The formula

∃v .P describes a tree segment that, with some value bound to variable v , satisfies P .

The formula Nα.P describes a tree segment that, with a fresh label bound to variable

α, satisfies P . Both existential quantification and freshness quantification serve to

allow us to forget about actual values of location names and labels. Existential

quantification is sufficient for most properties, but to be able to describe certain

properties of labels we also need the freshness quantification. In particular, when

we split a tree segment into two tree segments we need to ensure that the label at

which the splitting takes place is a fresh label.

In his thesis [25] Dinsdale-Young shows that, in multi-holed context logic, it is

possible to replace existential quantification with freshness quantification. However,

the analogous result does not seem to hold in segment logic. The details are subtle,

but we will illustrate them when we look at some example formulae in §3.2.1.

We use a segment specific formula emp to describe the empty tree segment ∅. We

also use a specific segment formula α�PT to describe a tree segment x�ct where x is

the value of the variable α and the tree context ct satisfies the tree context formula

PT . The majority of the remaining tree formulae simply describe the structure of a

tree context. However, the tree context formula @α states that the hole stored in the

variable α occurs in the tree context. This formula will be needed in our specification

appendChild which requires an assertion expressing that a tree context is complete

(has no holes). We will show how to derive such an assertion shortly.

To keep our tree specific formulae simple, rather than using context logic to de-

scribe the tree contexts, we instead choose to use tree context formulae in the style of

Ambient Logic [20]. However, we could also have chosen that PT be a context logic

formula, a first-order logical formula for describing trees or even XDuce types [45].

Note that the multi-holed context logic formula P •α Q can be expressed by the

segment logic formula Nα. αr(P ∗α�Q). Similarly the context logic formula P ◦Q
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e, st � P ⇒ Q ⇔ e, st � P ⇒ e, st � Q
e, st � false never
e, st � emp ⇔ st = ∅
e, st � α�PT ⇔ ∃ct , x . e(α) = x ∧ st = x�ct ∧ e, ct �T PT

e, st � st ′ ⇔ e(st ′) = st
e, st � P ∗Q ⇔ ∃st1 , st2 . st = st1 +S st2 ∧ e, st1 � P ∧ e, st2 � Q
e, st � αrP ⇔ ∃x , st ′. e(α) = x ∧ st = (x )(st ′) ∧ e, st ′ � P
e, st � P −∗ Q ⇔ ∀st ′. e, st ′ � P ∧ ∃st ′′. st ′′ = st +S st ′ ⇒ e, st ′′ � Q
e, st � P�α ⇔ ∃x . e(α) = x ∧ ∀st ′. st ′ = (x )(st) ⇒ e, st ′ � P
e, st � ∃v .P ⇔ ∃u. e[v 7→ u], st � P
e, st � Nα.P ⇔ ∃x . x#e, st ∧ e[α 7→ x ], st � P

Figure 3.6: Satisfaction relation for segment formulae.

e, ct �T PT ⇒ QT ⇔ e, ct �T PT ⇒ e, ct �T QT

e, ct �T falseT never
e, ct �T ∅ ⇔ ct = ∅
e, ct �T α ⇔ ∃x . e(α) = x ∧ ct = x
e, ct �T n[PT ] ⇔ ∃ct ′. ct = n[ct ′] ∧ e, ct ′ �T PT

e, ct �T PT ⊗QT ⇔ ∃ct1 , ct2 . ct = ct1 ⊗ ct2 ∧ e, ct1 �T PT ∧ e, ct2 �T QT

e, ct �T ct ′ ⇔ e(ct ′) = ct
e, ct �T @α ⇔ e(α) = x ∧ x ∈ fv(ct)
e, ct �T ∃v .PT ⇔ ∃u. e[v 7→ u], ct �T PT

Figure 3.7: Satisfaction relation for tree formulae.

can be expressed by the segment logic formula Nα. αr(P [α/−] ∗ α�Q).

Definition 3.23 (Satisfaction Relations). Given a logical environment e, the se-

mantics of segment logic for trees is given in Figure 3.6 and Figure 3.7 by two

satisfaction relations e, st � P and e, ct �T PT defined on tree segments and tree

contexts respectively.

Derived Formulae

The classical logic connectives ¬P , true, P ∨Q , P ∧Q and ∀v .P , are derived from

false, ⇒ and ∃ as normal. We derive the hidden label quantification of Ambient

logic [20] Hα.P from freshness Nand revelation r:

Hα.P
def
= Nα. αrP
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The hidden label quantification allows us to talk about restricted labels in a tree

segment. We also give a number of notational shorthands for freshness, revelation

and hiding:

Nα, β.P
def
= Nα. ( Nβ.P)

α, βrP
def
= αr(βrP)

P�α, β def
= (P�α)�β

Finally we give two further derived formulae that describe structural properties of

tree contexts:

tree(PT )
def
= PT ∧ ¬∃α.@α

◦[PT ]
def
= ∃m.m[PT ] if m 6∈ free(PT )

The complete tree formula tree(PT ) describes a tree context ct satisfying PT where

there are no context holes in ct , i.e fv(ct) = ∅. Notice that tree(PT )⊗ tree(QT )⇔
tree(PT ⊗QT ) follows from the definitions of ⊗ and tree. We use ◦[PT ] to drop the

identifier of a tree node when it is not necessary to know its value.

The binding convention of our connectives, from strongest to weakest, is given by:

¬,�,r, ∗,∧,∨,�,−∗,⇒,⇔, N,∀,∃.

Notice that the structure of the segment formulae is orthogonal to the structure

of the tree context formulae. Segment logic can easily be tailored to reason about

other data structures, such as lists and heaps, by replacing the tree context formulae

with some other formulae. In §3.3 we will look at formally generalising the segment

model so that it may be used to reason about any structured data.

3.2.1 Segment Logic Examples

We give a number of examples that illustrate how segment logic can be used to

capture properties about trees.

Example 3.24 (Simple Segments). The simplest type of non empty tree segment

is that describing a single labelled tree context. The formula α�n[γ] describes a

segment consisting of a node n with address α and context hole γ.

Example 3.25 (Disjointness). Our segment formulae allow us to express properties

about disjoint parts of a tree. The formula α�n[γ]∗β�m[δ] describes a tree segment

consisting of a node n with address α and context hole γ, and node m with address
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β and context hole δ. The use of the separating conjunction means that n and m

cannot be the same location, α and β cannot be the same address and γ and δ

cannot be the same hole label.

Example 3.26 (Tree Contexts). Our tree formulae are mostly used to describe the

exact structure of some piece of the tree. The formula n[m⊗p] describes a tree with

top node n that has just two children m and p. Our use of multi-holed contexts

also lets us capture more fine-grained properties. The formula n[m[α]⊗β] describes

a tree with top node n with first child m. The children of m and any further

children of n have been replaced by context holes. This formula tightly captures the

information that m is the first child of n.

Example 3.27 (Complete Trees). Our tree predicate allows us to describe properties

of complete trees. The formula n[tree(ct)] describes a complete tree (a tree context

with no holes) with top node n. Being able to describe complete trees is essential if

we want to describe the safety preconditions of programs that manipulate complete

trees. We have to be sure that our specifications for such programs captures the

update on all of the complete tree. If we didn’t rule out the possibility of such trees

containing context holes then it would be possible for some arbitrary amount of the

subtree to remain unaffected by the program.

Example 3.28 (Rooted Trees). Our segment formulae allow us to express properties

about the root of a tree. The formula Hα. (α�n[β]) describes a tree with a single

node n at the root level. Being able to describe rooted trees is essential if we want

to describe the safety preconditions of programs whose behaviour may be modified

at the root level. For example, a program that looks up the parent of a node will

return the node’s parent, or null if the node is at the root level.

Example 3.29 (Specifying Append). Using properties of complete trees and dis-

jointness we can construct the safety precondition of the appendChild(n, m) com-

mand discussed in §2.4.3. Assume that we have a variable store σ with σ(n) = n and

σ(m) = m. The segment formula α�n[γ] ∗ β�m[tree(ct)] describes a tree segment

consisting of a single node n at address α and a complete tree with top node m at

address β. In particular, the formula states that m is not an ancestor of n, since n

is required to be disjoint from the tree m[ct ]. This elegantly captures both the case

where the trees at n and m are disjoint and the case where n is an ancestor of m.

Example 3.30 (Revelation). We use revelation to compose and decompose tree

segments. The formula α, βr(δ�r [α⊗β]∗α�n[γ]∗β�m[tree(ct)]) describes a tree

segment consisting of a node n with address α and context hole γ and a complete
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tree with top node m, where in addition the holes α and β are the only siblings

beneath node r at address δ. The use revelation tells us that the labels stored in

α and β are compressed in this tree segment. This means that the nodes n and

m are in fact siblings beneath node r . The formula logically implies the formula

δ�r [n[γ] ⊗ m[tree(ct)]] which describes the same tree segment. When a label is

revealed we can choose to collapse the logical description of a tree segment. Working

backwards through this example we can see how to split up (or expand) a tree

segment into multiple segments, although in this case the labels in variables α and

β would need to be fresh.

Example 3.31 (Adjoints). To describe hypothetical properties of a tree, such as

weakest preconditions, we need to make use of the revelation adjoint (hiding) �
as well as the separating conjunction adjoint (magic wand) −∗, which is standard.

Consider the formula ∃n, ct .Hα. ( (α�∅ −∗ (P�α))∗α�n[tree(ct)] ). This describes

a tree segment which can be separated into a complete tree, with top node n at an

address x denoted by the bound label α, and a tree segment st satisfying α�∅ −∗
(P�α). If this tree segment is extended to a segment st ′ = (x )(x�∅ +S st) it will

satisfy P (note that x is bound in this tree segment). Assuming that we have a

variable store σ with σ(n) = n, this formula describes the weakest precondition of a

program that deletes the subtree at n. The effect of running such a program is to take

a state satisfying α�n[tree(ct)] to a state satisfying α�∅. When called on a state

satisfying the weakest precondition ∃n, ct .Hα. ( (α�∅ −∗ (P�α)) ∗ α�n[tree(ct)] )

the tree deletion program will result in a state satisfying Hα. ( (α�∅ −∗ (P�α)) ∗
α�∅ ). Now, by the definitions of ∗ and r, and their the adjoints −∗ and �, it

follows that (P −∗ Q) ∗ P ⇔ Q and αr(P�α)⇔ P . Thus, we can show that this

resulting state is equivalent to P as follows:

Hα. ( (α�∅ −∗ (P�α)) ∗ α�∅ ) ⇔ Hα. (P�α)

⇔ Nα. αr(P�α)

⇔ Nα.P

⇔ P

Note that the last step holds due to the fact that α cannot occur free in P. This

follows from the definition of the revelation adjoint �.

Example 3.32 (Existential Quantification). Our main use of existential quantifi-

cation is to allow us to forget the actual values of location names. For example, the

formula ∃m. α�n[m[β]⊗γ] describes a node n that has at least one child (although
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we do not know its name). Such a formula is useful for describing the precondition

of a program that identifies if a node has any children.

Example 3.33 (Freshness Quantification). Our main use of the freshness quantifica-

tion is to ensure that when we split apart a tree segment we do so using a fresh label.

In particular, our logic includes the following equivalence Hα. (β�PT ∗ α�QT ) ⇔
β�PT [QT/α] if α ∈ free(PT ). The left to right reading of this equivalence, the

collapse, follows without the freshness part included in the hiding quantification

over α. However, the right to left reading of the equivalence, the expansion, is only

possible with some quantification over label α (which does not occur free on the

right-hand-side). The choice of freshness quantification ensures that the label used

to perform the splitting is fresh.

Example 3.34 (Existential vs. Freshness). In our logic we find it useful to have both

existential and freshness quantification. Consider the formula ∃α. (αr(β�n[γ] ∗
α�∅)). The use of existential quantification means that it is possible to choose

e(α) to be equal to e(γ) and thus have the two segments collapse together. This

means that the tree segment y�n[∅] satisfies the formula if e(β) = y . Replac-

ing the existential quantification with a freshness quantification gives the formula

Nα. (αr(β�n[γ] ∗ α�∅)). The use of the freshness quantification means that it is

not possible to choose e(α) to be equal to e(γ), so we know that the two segments

are separate. This means that the tree segment y�n[∅] does not satisfy the formula.

In most cases we use existential quantification for location names and the freshness

quantification for labels.

3.3 Generalising Segment Logic

The fundamental property of being able to split up data structures into different

pieces, or segments, is not unique to trees, but can be applied to many other data

structures, such as lists and heaps. To generalise our approach we define a segment

algebra for arbitrary data structures and a general segment logic for reasoning about

such structures. We will see that tree segments and segment logic for trees form a

special case of this approach.

3.3.1 Multi-holed Context Algebras

We build up our notion of a segment algebra from the existing concept of a multi-

holed context algebra, first introduced in Dinsdale-Young’s thesis [25]. A multi-holed
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context algebra generalises the idea of a multi-holed tree contexts (Definition 3.3) to

arbitrary structured data. We extend the original definition of a multi-holed context

algebra to also require a definition of non-conflicting contexts.

Definition 3.35 (Pre Multi-holed Context Algebra). A pre multi-holed context al-

gebra M = (C,X , fhC,#C, •) consists of:

� a set of multi-holed contexts, C;

� a countably infinite set of hole labels, X with X ⊆ C;

� a free holes function fhC : C → Pfin(X );

� a non-conflicting contexts function #C: C × C → Bool;

� a partial context composition operator • : X × C × C ⇀ C;

where Pfin(X ) is the finite power set of labels in X .

Notation: Recall that we write c1 •x c2 , instead of •(x , c1 , c2 ) for the composition

of contexts c1 and c2 at label x .

Definition 3.36 (Multi-holed Context Algebra). A multi-holed context algebra is a

pre multi-holed context algebra satisfying the following properties: for all c, c1 , c2 , c3 ∈
C and x , y ∈ X ,

� fhC(x ) = {x};

� if c1 #C c2 then fhC(c1 ) ∩ fhC(c2 ) = ∅
(that is, non-conflicting contexts must have disjoint sets of free labels);

� if the context composition c1 •x c2 is defined then x ∈ fhC(c1 ), fhC(c1 ) ∩
fhC(c2 ) ⊆ {x} and fhC(c1 •x c2 ) = (fhC(c1 )\{x}) ∪ fhC(c2 );

� if c1 #C c2 and x ∈ fhC(c1 ) then the context composition c1 •x c2 is defined;

� if the context composition c1 •x c2 is defined and x 6∈ fhC(c2 ) then c1 #C c2 ;

� x •x c = c

(that is x behaves as the left identity of •x );

� c •x x = c if x ∈ fhC(c)

(that is, x behaves as the right identity of •x when x ∈ fhC(c));
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� (c1 •x c2 ) •y c3 = c1 •x (c2 •y c3 ) if x = y or y 6∈ fhC(c1 )

(we say that composition is semi-associative);

� (c1 •x c2 ) •y c3 = (c1 •y c3 ) •x c2 if x 6= y , x 6∈ fhC(c3 ) and y 6∈ fhC(c2 )

(we say that composition is semi-commutative).

(Undefined terms are considered equal.)

Our multi-holed context algebras do not necessarily have to contain an empty

element (such as the empty tree). This allows us to expresses a greater number of

models, including terms in term rewriting. The examples considered in this thesis,

however, do tend to include an empty element.

3.3.2 Multi-holed Context Algebra Examples

We give a number of examples of multi-holed context algebras that represent com-

mon data structures, including trees, lists and heaps. We will later extend these

context structures to segment structures following the style of tree segments.

Example 3.37 (Multi-holed Tree Context Algebra). We have already seen how

to define multi-holed tree contexts in §3.1.2. The multi-holed tree context algebra

is defined by MT = (TId,X,X, fhT,#T, •) where fhT, #T and • are as defined in

Definitions 3.5, 3.7 and 3.8 respectively. It is not difficult to show that the conditions

of a multi-holed context algebra are satisfied by these definitions.

Example 3.38 (Multi-holed List Context Algebra). Lists are finite sets of elements

where ordering is important. They can also be viewed as a special case of the tree

model where all the nodes are at the root level. The multi-holed list context algebra

is defined by ML = (LVal,X,X, fhL,#L, •) where,

� the set of multi-holed list contexts LVal,X, ranged over by cl , cl1 , ..., is defined

inductively as:

cl ::= ε | x | u | cl : cl

with the restriction that u ∈ Val ranges over values, each hole label x ∈ X

occurs at most once in a list context cl and the assumption that : is associative

with identity ε (the empty list).

� the free holes function

fhL : LVal,X → Pfin(X)
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is defined by induction on the structure of multi-holed list contexts as:

fhL(ε)
def
= ∅

fhL(x )
def
= {x}

fhL(u)
def
= ∅

fhL(cl1 : cl2 )
def
= fhL(cl1 ) ∪ fhL(cl2 )

� the non-conflicting list context function

#L: LVal,X × LVal,X → Bool

is defined as:

cl1 #L cl2 ⇔ fhL(cl1 ) ∩ fhL(cl2 ) = ∅

� the context composition operator

• : X× LVal,X × LVal,X ⇀ LVal,X

is defined by induction on the structure of multi-holed list contexts as:

ε •x cl
def
= undefined

y •x cl
def
=

{
cl if y = x

undefined otherwise

u •x cl
def
= undefined

(cl1 : cl2 ) •x cl
def
=


(cl1 •x cl) : cl2 if x ∈ fhL(cl1 ) and cl #L cl2

cl1 : (cl2 •x cl) if x ∈ fhL(cl2 ) and cl #L cl1

undefined otherwise

Again, it is not difficult to show that the conditions of a multi-holed context algebra

are satisfied by these definitions.

The model we have given above is for arbitrary lists, but we can also place ad-

ditional constraints upon the lists, such as uniqueness of elements or ordering in

increasing size of elements. These additional constraints can be useful for repre-

senting lists with certain assumed properties. For example, in chapter 5 we will be

reasoning about lists of unique addresses.

Example 3.39 (Multi-holed Heap Context Algebra). The heap model of separation

logic views heaps as finite partial functions from addresses to values. Disjoint heap

union is then the union of heaps with disjoint domains. Here, we define heaps
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syntactically. The set of heap addresses Adr, ranged over by a, a1 , a
′, ..., is typically

taken to be the positive integers (i.e. Adr = Z+). The set of values Val, ranged

over by u, u ′, ..., can be arbitrary, but is taken to include the set of heap address

(i.e. Adr ⊆ Val). We add holes x , y , ... ∈ X to the heap structure to be used as

place-holders for missing parts of the heap. The multi-holed heap context algebra

is defined by MH = (HAdr,X,X, fhH,#H, •) where,

� the set of multi-holed heap contexts HAdr,X, ranged over by ch, ch1 , ..., is

defined inductively as:

ch ::= emp | x | a 7→ u | ch ? ch

with the restriction that each hole label x ∈ X and address a ∈ Adr occur

at most once in a heap context ch, u ∈ Val ranges over values, and the

assumption that ? is associative and commutative with identity emp.

� the free holes function

fhH : HAdr,X → Pfin(X)

is defined by induction over the structure of multi-holed heap contexts as:

fhH(emp)
def
= ∅

fhH(x )
def
= {x}

fhH(a 7→ u)
def
= ∅

fhH(ch1 ? ch2 )
def
= fhH(ch1 ) ∪ fhH(ch2 )

� the non-conflicting heap context function

#L: HAdr,X ×HAdr,X → Bool

is defined as:

ch1 #H ch2 ⇔ fhH(ch1 ) ∩ fhH(ch2 ) = ∅ ∧ fha(ch1 ) ∩ fha(ch2 ) = ∅

where the free heap address function fha : HAdr,X → Pfin(Adr) is defined by
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induction on the structure of multi-holed heap contexts as:

fhH(emp)
def
= ∅

fhH(x )
def
= ∅

fhH(a 7→ u)
def
= {a}

fhH(ch1 ? ch2 )
def
= fhH(ch1 ) ∪ fhH(ch2 )

� the context composition operator

• : X×HAdr,X ×HAdr,X ⇀ HAdr,X

is defined by induction on the structure of multi-holed heap contexts as:

emp •x ch
def
= undefined

y •x ch
def
=

{
ch if y = x

undefined otherwise

(a 7→ u) •x ch
def
= undefined

(ch1 ? ch2 ) •x ch
def
=


(ch1 •x ch) ? ch2 if x ∈ fhH(ch1 ) and ch #H ch2

ch1 ? (ch2 •x ch) if x ∈ fhH(ch2 ) and ch #H ch1

undefined otherwise

Due to the associativity and commutativity of ? we can contract all holes to the

end of the heap. It is this uniformity that allows separation logic to work without

explicitly tracking the holes. In effect, every heap can be thought of as having a

hole in it. We choose to track the holes in our model of heaps in order to have a

uniform treatment of data. In chapter 4 we will see that this allows us to provide

a single framework for reasoning about imperative programs, regardless of the data

structures they manipulate.

Example 3.40 (Separation Algebras as Multi-holed Context Algebras). In [17],

Calcagno, O’Hearn and Yang consider abstract models for separation logic, of which

the heap model is an instance. Separation algebras are defined to be partial com-

mutative monoids (S, ?, u). Any such separation algebra gives rise to a multi-holed

context algebra MS = (SX,X, fhS,#S, •) where,

� the set of multi-holed contexts SX is defined as:

SX
def
= {(h, x̄ ) | h ∈ S, x̄ ∈ Pfin(X)}
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� the free holes function

fhS : SX → Pfin(X)

is defined as:

fhS((h, x̄ ))
def
= x̄

� the non-conflicting context function

#S: SX × SX → Bool

is defined as:

(h1 , x̄ ) #S (h2 , ȳ) ⇔ fhS((h1 , x̄ )) ∩ fhS((h2 , ȳ)) = ∅ ∧ h1 ? h2 is defined

� the context composition operator

• : X× SX × SX ⇀ SX

is defined as:

(h1 , x̄ ) •x (h2 , ȳ)
def
=

{
(h1 ? h2 , (x̄\{x}) ∪ ȳ) if x ∈ x̄ and (h1 , x̄ ) #S (h2 , ȳ)

undefined otherwise

The context elements (h, x̄ ) can be thought of as adding the hole labels x̄ onto the

end of h with ?. As with the multi-holed heap context model, this allows us to treat

arbitrary segment algebras in a uniform fashion.

Example 3.41 (Multi-holed List Pair Context Algebra). As an example of a some-

what more unusual context algebra we consider representing a pair of lists. In

chapter 5 we will extend this idea to provide a model of a list store that can contain

an arbitrary number of lists. This will allow us to define a list module, containing a

number of lists, which we use to implement a tree model. The multi-holed list pair

algebra is defined by MLP = (LPVal,X,X×X, fhLP,#LP, •) where,

� the set of multi-holed list pair contexts LPVal,X, ranged over by clp, clp1 , ...,

is defined as:

clp ::= (cl , cl)

with cl ∈ LVal,X as defined in Example 3.38.
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� the free holes function

fhLP : LPVal,X → Pfin(X)× Pfin(X)

is defined as:

fhLP((cl1 , cl2 ))
def
= (fhL(cl1 ), fhL(cl2 ))

where fvL is the free holes function for multi-holed list contexts as defined in

Example 3.38.

� the non-conflicting context function

#LP: LPVal,X × LPVal,X → Bool

is defined as:

(cl1 , cl2 ) #LP (cl ′1 , cl ′2 ) ⇔ cl1 #L cl ′1 ∧ cl2 #L cl ′2

where #L is the non-conflicting list context function as defined in Exam-

ple 3.38.

� the context composition operator

• : (X×X)× LPVal,X × LPVal,X ⇀ LPVal,X

is defined as:

(cl1 , cl2 ) •(x ,y) (cl ′1 , cl ′2 )
def
= (cl1 •x cl ′1 , cl2 •y cl ′2 )

where •z is the context composition operator for multi-holed list contexts as

defined in Example 3.38. If either of the list compositions is undefined then

the entire list pair composition is undefined.

Example 3.42 (Multi-holed Context Algebra Composition). In general, if we are

given a pair of multi-holed context algebras M1 = (C1 ,X1 , fh1 ,#1 , •1 ) and M2 =

(C2 ,X2 , fh2 ,#2 , •2 ), then their direct product is M1 × M2 = (C ′,X ′, fh ′,#′, •′)
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where
C ′ def

= C1 × C2

X ′ def
= X1 ×X2

fh ′(c1 , c2 )
def
= (fh1 (c1 ), fh2 (c2 ))

(c1 , c2 ) #′ (c ′1 , c
′
2 ) ⇔ c1 #1 c ′1 ∧ c2 #2 c ′2

(c1 , c2 ) •′x ,y (c ′1 , c
′
2 )

def
= (c1•1 x c ′1 , c2•2 yc ′2 )

for c1 , c
′
1 ∈ C1 , x ∈ X1 , c2 , c

′
2 ∈ C2 , y ∈ X2 and where •′ is undefined if either of •1

or •2 return an undefined result. The result of the direct productM1 ×M2 is also

a multi-holed context algebra.

For example MH ×MLP combines heaps with list pairs. In Chapter 6 we will

combine a heap structure with a list store structure (an addressable set of lists) in

order to implement a tree structure.

Context Hole Uniqueness

In many examples of multi-holed context algebras, hole labels occur uniquely in

the context structure, such as in Examples 3.37 - 3.39. However, in the general

case, hole labels need not be unique. Notice that in the list pair context algebra

(Example 3.41) hole labels may occur in both of the lists. For example, the list pair

context (a : x , b : x ) is well formed. The hole x is unique within each list, so there is

never any confusion about which hole is being filled by a composition. In order for

context composition for some pair of labels (x , y) to be defined in this model, the

lists must contain labels x and y respectively. However, despite having non-unique

hole labels, the list pair structure still satisfies all of the properties for a multi-holed

context algebra.

The list pair example shows that context holes do not need to be syntactically

unique. However, they must still satisfy some uniqueness conditions with respect to

context composition. That is, context composition should behave deterministically

if defined. This is captured by the following lemma.

Lemma 3.43 (Filling Context Holes). Given an arbitrary multi-holed context al-

gebra M = (C,X , fhC,#C, •), for all c ∈ C and x , y ∈ X ,

(a) c •x y is only defined if y 6∈ fhC(c) or x = y ,

(b) (c •x y) •x z is undefined if x 6= y

Part (a) states that we cannot add duplicate holes to a context with context com-

position. Part (b) states that a context hole may only be filled once.
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Proof. (a) If c •x y is defined then fhC(c) ∩ fhC(y) ⊆ {x} and fhC(y) = {y} by

definition. Thus either y 6∈ fhC(c) or y = x .

(b) If x = y then the result is trivial, so assume that x 6= y . If x 6∈ fhC(c) then

c •x y is undefined by definition so the result holds. If x ∈ fhC(c) and y ∈ fhC(c) then

c •x y is undefined by definition and the result holds. If x ∈ fhC(c) and y 6∈ fhC(c)

then c •x y is defined and then fhC(c •x y) = (fhC(c)\{x}) ∪ {y}. Since x 6= y we

know that x 6∈ fh(c •x y) and thus (c •x y)•x z is undefined and the result holds.

Hole Substitution

It is natural to define the substitution of hole labels in multi-holed contexts. Rather

than having to define this operation directly, we can use context composition to en-

code the standard substitution of free labels in multi-holed contexts. We will see that

this treatment of substitution still satisfies the standard properties of substitution.

Definition 3.44 (Hole Substitution). Given an arbitrary multi-holed context al-

gebra M = (C,X , fhC,#C •), c1 , c2 ∈ C and x ∈ X , label substitution is defined

as:

c1 [c2/x ]
def
=

{
c1 •x c2 if x ∈ fhC(c1 )

c1 otherwise

We now prove that this definition of substitution satisfies the following standard

substitution lemmas, given for example in [42].

Lemma 3.45. Given an arbitrary multi-holed context algebra M = (C,X , fhC,#C
, •), for all c, c1 , c2 ∈ C and x ∈ X ,

(a) c[x/x ] = c,

(b) c1 [c2/x ] = c1 if x 6∈ fhC(c1 ),

(c) fhC(c1 [c2/x ]) = (fhC(c1 )\{x})∪fhC(c2 ) if x ∈ fhC(c1 ) and fhC(c1 )∩fhC(c2 ) ⊆ {x}.

Proof. (a) There are two cases to consider. If x 6∈ fhC(c) then the result follows from

the definition of substitution. If x ∈ fhC(c), we can show:

c[x/x ] = c •x x (substitution definition)

= c (right identity of •x)

(b) This follows immediately from the definition of substitution.

(c) By the definition of substitution, if x ∈ fhC(c1 ) then c1 [c2/x ] = c1 •x c2 . Since

x ∈ fhC(c1 ) and fhC(c1 ) ∩ fhC(c2 ) ⊆ {x}, c1 •x c2 is defined and thus fhC(c1 • c2 ) =

(fhC(c1 )\{x}) ∪ fhC(c2 ) as required.
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Lemma 3.46. Given an arbitrary multi-holed context algebra M = (C,X , fhC,#C
, •), for all c, c1 , c2 , c3 ∈ C and x , y ∈ X with x 6= y ,

(a) c1 [y/x ][c2/y ] = c1 [c2/x ] if y 6∈ fhC(c1 )

(b) c[y/x ][x/y ] = c if y 6∈ fhC(c)

(c) c1 [c2/x ][c3/y ] = c1 [c2 [c3/y ]/x ] if y 6∈ fhC(c1 )

(d) c1 [c2/x ][c3/y ] = c1 [c3/y ][c2/x ] if x 6∈ fhC(c3 ) and y 6∈ fhC(c2 )

(e) c1 [c2/x ][c3/x ] = c1 [c2 [c3/x ]/x ]

Proof. (a) There are two cases to consider. If x 6∈ fhC(c1 ), then c1 [y/x ][c2/y ] =

c1 [c2/y ] and since y 6∈ fhC(c1 ), c1 [c2/y ] = c1 . Similarly c1 [c2/x ] = c1 so the result

holds. Otherwise, if x ∈ fhC(c1 ) then we can show:

c1 [y/x ][c2/y ] = (c1 •x y)[c2/y ] (definition)

= (c1 •x y) •y c2 (definition)

= c1 •x (y •y c2 ) (semi-associativity)

= c1 •x c2 (left identity of •y)
= c1 [c2/x ] (definition)

(b) Using (a) with c2 = x we have c[y/x ][x/y ] = c[x/x ] and, by Lemma 3.45,

c[x/x ] = c as required.

(c) There are three cases to consider. If x 6∈ fhC(c1 ) then both sides are equal to

c1 since y 6∈ fhC(c1 ). If x ∈ fhC(c1 ) and y 6∈ fhC(c2 ) then we can show:

c1 [c2/x ][c3/y ] = c1 [c2/x ] Lemma 3.45

= c1 [c2 [c3/y ]/x ] Lemma 3.45

Otherwise x ∈ fhC(c1 ) and y ∈ fhC(c2 ) and we can show:

c1 [c2/x ][c3/y ] = (c1 •x c2 )[c3/y ] substitution definition

= (c1 •x c2 ) •y c3 substitution definition

= c1 •x (c2 •y c3 ) semi-associativity

= c1 •x c2 [c3/y ] substitution definition

= c1 [c2 [c3/y ]/x ] substitution definition

(d) There are three cases to consider. If x 6∈ fhC(c1 ) then by Lemma 3.45 both sides

are equal to c1 [c3/y ] since fhC(c1 [c3/y ]) = (fhC(c1 )\y) ∪ fhC(c3 ) and x 6∈ fhC(c3 ). If
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y 6∈ fhC(c1 ) then by Lemma 3.45 both sides are equal to c1 [c2/x ] since y 6∈ fhC(c2 ).

Otherwise if x ∈ fhC(c1 ) and y ∈ fhC(c1 ) then we can show:

c1 [c2/x ][c3/y ] = (c1 •x c2 )[c3/y ] substitution definition

= (c1 •x c2 ) •y c3 substitution definition

= (c1 •y c3 ) •x c2 semi-commutativity

= (c1 •y c3 )[c2/x ] substitution definition

= c1 [c3/y ][c2/x ] substitution definition

(e) There are three cases to consider. If x 6∈ fhC(c1 ) then both sides are equal

to c1 . Similarly, if x 6∈ fhC(c2 ) then both sides are equal to c1 [c2/x ]. Otherwise, if

x ∈ fhC(c1 ) and x ∈ fhC(c2 ) then we can show:

c1 [c2/x ][c3/x ] = (c1 •x c2 )[c3/x ] substitution definition

= (c1 •x c2 ) •x c3 substitution definition

= c1 •x (c2 •x c3 ) semi-associativity

= c1 •x (c2 [c3/x ]) substitution definition

= c1 [c2 [c3/x ]/x ] substitution definition

3.3.3 Segment Algebras

Recall the definition of a multi-holed context algebra M from Definition 3.36. We

build up segment algebras from multi-holed context algebras in a similar fashion to

how we generated a tree segment model from a tree context model in §3.1.3. We

define the components that will make up a segment algebra, then give the actual

segment algebra definition. Recall that we write XE for the set of labels X extended

by E .

The first step is to define the set of pre segments that have the structure of

segments, but without the requirement that they be free from label cycles. Recall

that for tree segments we had the requirement that the tree contexts contained in a

segment be disjoint from one another. In general we do not know what the definition

of disjoint contexts will be, so we must parametrise our definition in terms of the

non-conflicting context function #C provided by the multi-holed context algebra.

Definition 3.47 (Pre Segments). Given the multi-holed context algebra M =

(C,X , fhC,#C, •) and a set of labels E disjoint from X , the set of pre segments
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PSC, ranged over by s , s1 , ... is defined inductively as:

s ::= ∅ | x�c | s + s

where ∅ is the empty segment, contexts c ∈ C, addresses labels x ∈ XE are unique in

a pre segment s , and + is associative and commutative with identity ∅. Additionally,

the contexts in a pre segment are required to be pairwise disjoint, that is, ∀c1 , c2 ∈
con(s). c1 #C c2 where

con : PSC → Pfin(C)

is defined by induction on the structure of pre segments as:

con(∅) def
= ∅

con(x�c)
def
= {c}

con(s1 + s2 )
def
= con(s1 ) ∪ con(s2 )

Notation: The set of pre segments PSC is really the set PSMC , however we

choose to drop the M from the annotation in order to simplify our presentation.

Pre segments come with a notion of free addresses, free holes and free labels that

are captured by a number of functions.

Definition 3.48 (Free Addresses). The free addresses function

fa : PSC → Pfin(X )

is defined by induction on the structure of pre segments as:

fa(∅) def
= ∅

fa(x�c)
def
=

{
∅ if x ∈ E
{x} otherwise

fa(s1 + s2 )
def
= fa(s1 ) ∪ fa(s2 )

Definition 3.49 (Free Holes). The free holes function

fh : PSC → Pfin(X )
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is defined by induction on the structure of pre segments as:

fh(∅) def
= ∅

fh(x�c)
def
= fhC(c)

fh(s1 + s2 )
def
= fh(s1 ) ∪ fh(s2 )

Definition 3.50 (Free Labels). The free labels function

fl : PSC → Pfin(X )

is defined on pre segments as:

fl(s)
def
= fa(s) ∪ fh(s)

As in the tree segment case, we choose for the set of segments to be those pre

segments that are cycle free.

Definition 3.51 (Segments). The set of segments SC is defined as:

SC
def
= {s | s ∈ PSC ∧ ∀x ∈ fl(s).¬cycle(x , s)}

where

cycle(x , s)
def
= path(x , x , s)

path(x , y , s)
def
= ∃s ′, c. (s = s ′ + x�c) ∧ y ∈ fh(c)

∨ ∃z , s ′, s ′′. (s = s ′ + s ′′) ∧ path(x , z , s ′) ∧ path(z , y , s ′′)

The functions con, fa, fh and fl all have the obvious lifting to segments.

The concept of non-conflicting segments can be generalised in terms of the defi-

nition of non-conflicting contexts from the underlying multi-holed context algebra.

Definition 3.52 (Non-Conflicting Segments). The non-conflicting segments func-

tion

#: SC × SC → Bool

is defined on segments as:

s1 # s2 ⇔ fa(s1 ) ∩ fa(s2 ) = ∅
∧ ∀c1 ∈ con(s1 ), c2 ∈ con(s2 ). c1 #C c2

∧ ¬∃x , y . path(x , y , s1 ) ∧ path(y , x , s2 )
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With this notion of non-conflicting segments we can now generalise the concept

of combining segments together.

Definition 3.53 (Segment Combination). The segment combination operator

+S : SC × SC ⇀ SC

is defined on segments as:

s1 +S s2
def
=

{
s1 + s2 if s1 # s2

undefined otherwise

Segment combination is associative and commutative with identity ∅ and, if defined,

results in a well-formed segment.

Lemma 3.54 (Segment Combination Properties). For all s1 , s2 , s3 ∈ SC,

� if s1 +S s2 is defined, then fa(s1 ) ∩ fa(s2 ) = ∅ and fh(s1 ) ∩ fh(s2 ) = ∅
(that is, free addresses and free hole labels are unique in a segment);

� s +S ∅ = s (that is, ∅ is the identity of +S);

� s1 +S s2 = s2 +S s1 (that is, +S is commutative);

� s1 +S (s2 +S s3 ) = (s1 +S s2 ) +S s3 (that is, +S is associative);

where undefined terms are considered equal.

We can now also generalise the concept of compression for arbitrary segment

models.

Definition 3.55 (Segment Compression). The segment compression function

comp : X × SC ⇀ SC

is defined on segments as:

comp(x , s)
def
=



s if x 6∈ fl(s)

s ′ + z�(c •x c ′) if ∃s ′, z , c, c ′. s = s ′ + z�c + x�c ′

and x ∈ fh(c)

s ′ + 0�c if ∃0 , s ′, c. s = s ′ + x�c,

x 6∈ fh(s ′), 0 ∈ E and 0 6∈ fa(s ′)

undefined otherwise
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Notation: We write (x )(s) in place of comp(x , s). This intentionally mirrors the

restriction notation from the π-calculus [53].

Lemma 3.56 (Segment Compression Properties). For all s1 , s2 ∈ SC, c1 , c2 ∈ C
and x , y ∈ X ,

� if (x )(s) is defined, then fa((x )(s)) = fa(s)\{x} and fh((x )(s)) = fh(s)\{x};

� (x )(∅) = ∅;

� (x )(y)(s) = (y)(x )(s);

� (x )(s) = (y)(s [y/x ]) if y 6∈ fl(s) ;

� (x )(s1 +S s2 ) = (x )(s1 ) +S s2 if x 6∈ fl(s2 );

� y�(c1 •x c2 ) = (x )(y�c1 +S x�c2 ) if x ∈ fhC(c1 ) and x 6= y

(we call this the collapse-expand property);

where undefined terms are considered equal and the substitution of free labels in

segments s [y/x ] is defined inductively on the structure of segments as:

∅[y/x ]
def
= ∅

(z�c)[y/x ]
def
=

{
y�c if z = x

z�c[y/x ] otherwise

(s1 + s2 )[y/x ]
def
= s1 [y/x ] + s2 [y/x ]

Hole substitution for contexts c[y/x ] is as given in Definition 3.44.

As discussed before, restriction is well known as a mechanism for hiding names

in Milner’s π-calculus [53] and similarly for hiding wires in process graphs [54].

Compression satisfies all of the properties of restriction from the π-calculus. The

collapse-expand property is new. Figure 3.4 introduces the intuition of collapsing

and expanding a segment. When we expand a segment, we break it into two pieces

and introduce a fresh label to track the location at which the splitting took place.

This label is added as a hole in one segment and as the address of the other segment.

Conversely, collapsing a segment allows us to join together two pieces that share a

common restricted label, as a hole in one piece and as the address of the other. We

shall see that these concepts are crucial in our reasoning. We say that a segment is

in its compressed form if it cannot be compressed further using the collapse-expand

property in a right-to-left reading.
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Notation: Since the ordering of compression is not important we write (x̄ )(s)

where x̄ ⊆ X to mean the compression of the segment s by each of the labels x ∈ x̄ .

Finally, we can provide the definition of a segment algebra in terms of the struc-

tures, functions and operators that we have given above.

Definition 3.57 (Segment Algebra). Given a multi-holed context algebra M =

(C,X , fhC,#C, •), and a set of labels E disjoint from X , the segment algebra S(M, E) =

(SC, fa, fh,#,+S, comp) consists of:

� a set of segments SC defined in Definition 3.51;

� a free addresses function fa : PSC → Pfin(X ) defined in Definition 3.48;

� a free holes function fh : PSC → Pfin(X ) defined in Definition 3.49;

� a non-conflicting segments function #: SC × SC → Bool defined in Defini-

tion 3.52;

� a partial segment combination function + : SC × SC ⇀ SC defined in Defini-

tion 3.53;

� a partial compression function comp : X ×SC ⇀ SC defined in Definition 3.55;

3.3.4 Segment Algebra Examples

We give a number of examples of segment algebras, used to provide fine-grained

representations of some common data structures, including trees, lists and heaps.

These extend the multi-holed context algebras that we introduced in §3.3.2.

Example 3.58 (Tree Segment Algebra). We have already seen how to define the

tree segment model in §3.1. Taking the set of empty labels E to be {0}, where

0 6∈ X, we can see that the tree segment model is the same as the tree segment

algebra defined by S(MT, {0}) = (ST, fa, fh,#,+S, comp).

Example 3.59 (List Segment Algebra). Recall the multi-holed list context algebra

ML = (LVal,X,X, fhL,#L, •) from Example 3.38. Informally, list segments consist of

sets of labelled list contexts. In a similar fashion to the tree segment algebra, taking

the set of empty labels E to be {0}, where 0 6∈ X, gives rise to the list segment

algebra S(ML, {0}) = (SL, fa, fh,#,+S, comp).
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Example 3.60 (Heap Segment Algebra). Recall the multi-holed heap context al-

gebraMH = (HAdr,X,X, fhH,#H, •) from Example 3.39. Informally, heap segments

consist of sets of labelled heap contexts. We choose to take the set of empty labels

E to be EN = {0i | i ∈ N} where 0 6∈ X. This gives rise to the heap segment algebra

S(MH, EN) = (SH, fa, fh,#,+S, comp).

Our choice of empty label set EN allows us to have multiple rooted heaps in the

heap segment model, so long as their heap addresses are disjoint. We additionally

choose to introduce a notation that allows us to forget the exact root label used for

rooted heap segments dche def
= ∃i . 0i�ch. If we insist on having each heap cell stored

in a rooted context, and make use of the above notation, then we end up with a

model that looks very similar to that of separation logic where +S behaves in much

the same way as ? over heaps.

Example 3.61 (Separation Algebras as Segment Algebras). Given a separation

algebra (S , ?, u) we have seen how this gives rise to a multi-holed context algebra

MS = (SX,X, fhS,#S, •) in Example 3.40. Taking the set of empty labels E to be

EN, as defined in the heap segment algebra example above, gives rise to the segment

algebra S(MS, EN) = (SS, fa, fh,#,+S, comp).

As with the heap segment algebra example given above, the choice of empty label

set EN allows us to have multiple rooted elements of the separation algebra. We

can again introduce a notation for forgetting the exact root label used for rooted

elements dcse def
= ∃i . 0i�cs . Also, as above, we can work with a model that closely

resembles that of separation logic if we insist on each separation algebra element

being stored in its own rooted context.

Example 3.62 (Segment Algebra Composition). Given a pair of segment algebras

S(M1 , E1 ) and S(M2 , E2 ), their composition is defined as:

S(M1 , E1 )× S(M2 , E2 )
def
= S(M1 ×M2 , E1 × E2 )

That is, first take the direct product of the underlying multi-holed context algebras

and then lift this to a segment algebra. In Chapter 6 we will be combining a heap

segment algebra with a list-store segment algebra in order to implement the structure

of a tree segment algebra.

Sub-Separation Algebra

Given an arbitrary multi-holed context algebra M = (C,X , fhC,#C, •) and the seg-

ment algebra lifting of this S(M, E) = (SC, fa, fh,#,+S, comp), the sub-algebra

94



(SC,+S, ∅) forms a separation algebra. All of the properties required of a separation

algebra follow from the definition of +S and the empty segment ∅.
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4 Fine-grained Abstract Local

Reasoning

We have shown how to refine context logic to obtain a more fine-grained analysis

of abstract data. We shall now introduce a general framework for reasoning about

fine-grained abstract data structures, building on similar work for context logic [28].

In particular we will introduce local Hoare reasoning based on segment logic.

First, in §4.1, we introduce the simple imperative programming language about

which we are going to reason. This language will be parametrised by some choice of

basic commands, allowing us to tailor the language to different domains. In §4.2 we

give the operational and axiomatic semantics of this programming language. The

operational semantics provide us with a computational model for our programming

language. By contrast, the axiomatic semantics, given in the style of local Hoare

reasoning, allows us to express abstract properties of programs written in our lan-

guage. Finally, in §4.3, we show that our axiomatic semantics is sound with respect

to our operational semantics. This means that any properties we prove in our local

Hoare reasoning system are also true of the underlying computational model.

4.1 Programming Language

We introduce our imperative programming language, which includes mutable vari-

ables and standard control-flow constructs, such as while loops and procedure calls.

As well as manipulating variables, our programs also operate on a mutable data

store. Our programming language is parametrised by a set of basic commands

Cmd, ranged over by ϕ, that manipulate this data store. The choice of these ba-

sic commands depends on the domain over which the language is to be used: for

instance, to work with a tree the commands lookup, node insertion, subtree dele-

tion and subtree movement are natural; to work with a list the commands lookup,

element insertion and element removal are natural; and to work with the heap the

commands allocation, mutation, lookup and heap cell disposal are natural.

We assume a fixed set of program variables Var which are interpreted over a set
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of values Val that at least includes integers (Z ⊆ Val). Our value expressions are

similarly assumed to include syntax for basic arithmetic and comparisons, as well as

variables and the standard Boolean operators. The actual definition of expression

syntax is open-ended, allowing us to extend them to include values besides just

integers. When no additional values are necessary, we implicitly work with the

minimal expression definitions meeting our assumptions.

Assumption 1 (Expression Syntax). Assume we have a set of value expressions

Expr ranged over by E , E 1 , ..., such that, for all E 1 , E 2 ∈ Expr,

Val ⊆ Expr

Var ⊆ Expr

E 1 + E 2 ∈ Expr

E 1 − E 2 ∈ Expr

Also assume we have a set of Boolean expressions BExpr ranged over by B , B 1 , ...,

such that, for all E 1 , E 2 ∈ Expr and B 1 , B 2 ∈ BExpr,

E 1 = E 2 ∈ BExpr

E 1 < E 2 ∈ BExpr

false ∈ BExpr

B 1 ⇒ B 2 ∈ BExpr

The remaining standard Boolean expressions for ¬, true, ∨, ∧, >, ≤ and ≥ can

be derived.

Definition 4.1 (Programming Language Syntax). Given a set of basic commands

Cmd ranged over by ϕ, the set of commands of language LCmd, ranged over by

C,C1 , ..., is defined as:

C ::= ϕ | skip | x := E | C;C
| if B then C else C | while B do C
| procs −→r1 := f1 (−→x1 ){C}, ...,−→rk := fk(−→xk ){C} in C
| call −→r := f(

−→
E ) | local x in C

where x, r, . . . ∈ Var range over program variables, −→xi ,
−→ri ,
−→r ∈ Var∗ range over

lists of program variables, E , E 1 , . . . ∈ Expr range over value expressions,
−→
E ∈

Expr∗ ranges over lists of value expressions, B ∈ BExpr ranges over boolean

expressions, and f, f1 , . . . ∈ PName, where PName is the set of procedure names.

The names f1 , . . . , fk of procedures defined in a single procs−in block are required
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to be pairwise distinct. The parameter and return variables are also required to be

pairwise distinct within each procedure definition.

4.2 Semantics

We give two different ways of providing the semantics of our programming language,

one in the operational style and one in the axiomatic style. In §4.3, we show that

our axiomatic semantics is sound with respect to our operational semantics.

Both styles of semantics will need a way of representing the current valuation of

the accessible program variables at each point in the program. We model this using

a variable store.

Definition 4.2 (Variable Stores). The set of variable stores Σ , ranged over by

σ, σ1 , ..., is the set of finite partial functions σ : Var ⇀fin Val mapping program

variables to values. The disjoint union of variable stores ] is defined only when the

variable stores have disjoint domains.

Notation: We write ∅ for the empty variable store, σ[x 7→ u] for the variable store

σ overwritten with σ(x) = u and dom(σ) for the domain of σ.

We define the semantics of expressions in terms of partial functions so that our

expression semantics may be open ended. This allows us to have expressions in our

syntax that do not evaluate in a meaningful way. For example, comparing a string

value to an integer value or subtracting a Boolean value from an integer value are

not typically well defined operations. Of course, if we do decide to give these kinds

of expressions some meaning, then our framework is flexible enough to allow us to

do so.

Assumption 2 (Expression Semantics). The semantics of value expressions is given

by the function EJ(·)K : Expr→ (Σ ⇀ Val). The semantics of boolean expressions

is given by the function BJ(·)K : Expr→ (Σ ⇀ Bool), where Bool = {true, false}.
These functions are required to satisfy the following conditions:
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for all σ ∈ Σ , n, n1 , n2 ∈ Z, x ∈ Var, E 1 , E 2 ∈ Expr and B 1 , B 2 ∈ BExpr,

EJnKσ = n

EJxKσ =

{
σ(x) if x ∈ dom(σ)

undefined otherwise

EJE 1 + E 2 Kσ =

{
n1 + n2 if EJE 1 Kσ = n1 and EJE 2 Kσ = n2

undefined otherwise

EJE 1 − E 2 Kσ =

{
n1 − n2 if EJE 1 Kσ = n1 and EJE 2 Kσ = n2

undefined otherwise

BJE 1 = E 2 Kσ =


true if EJE 1 Kσ = EJE 2 Kσ
false if EJE 1 Kσ 6= EJE 2 Kσ
undefined if EJE 1 Kσ or EJE 2 Kσ is undefined

BJE 1 < E 2 Kσ =


true if EJE 1 Kσ < EJE 2 Kσ
false if EJE 1 Kσ ≥ EJE 2 Kσ
undefined if EJE 1 Kσ 6∈ Z or EJE 2 Kσ 6∈ Z

BJfalseKσ = false

BJB 1 ⇒ B 2 Kσ =


true if BJB 1 Kσ = true⇒ BJB 2 Kσ = true

false if BJB 1 Kσ = true 6⇒ BJB 2 Kσ = true

undefined if BJB 1 Kσ or BJB 2 Kσ is undefined

Notice that the semantics of an expression can be undefined for a particular vari-

able store, for instance if some variable in the expression is not assigned in the

variable store.

4.2.1 Operational Semantics

We now introduce a big-step operational semantics for our programming language.

The semantics will depend on the interpretation of the set of basic commands Cmd.

In general, the state of a program will not only consist of a variable store, but also of

some other data structure that is accessed exclusively through the basic commands,

such as a tree, list or heap.

Assumption 3 (Data Structure). Assume an arbitrary set of complete data struc-

tures D, ranged over by d , d ′, d1 , ....

The set of program states is then PState = D × Σ , the set of pairs of complete

data structures and variable stores. We assume that the basic commands of our

language have a semantic interpretation over these program states.
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Assumption 4 (Semantics of Basic Commands). Assume we have a semantic in-

terpretation function for basic commands,

CJ(·)K : Cmd→ (PState⇀ P(PState)).

Furthermore, assume that for each ϕ ∈ Cmd, CJϕK preserves the domain of the

variable store. That is, for all (d , σ), (d ′, σ′) ∈ PState if (d ′, σ′) ∈ CJϕK(d , σ) then

dom(σ) = dom(σ′).

The semantics of a basic command is a partial function. When CJϕK(d , σ) is

undefined, we say that the command faults when run on program state (d , σ). When

CJϕK(d , σ) is defined, then either the command does not terminate, in which case

CJϕK(d , σ) = ∅, or the command non-deterministically results in one of the states

in the non-empty set CJϕK(d , σ) .

In order to define our operational semantics, it is necessary to provide two addi-

tional definitions. The first of these is for procedure definition environments which

are used to interpret procedure calls. When a procs− in block is encountered, the

semantics will create a procedure definition environment for each of the procedures

defined in that block. This environment is then added to the stack of procedure

definitions that are used to interpret the procedure calls within the block. This

method of managing procedure calls allows us to provide a semantics for programs

with recursive procedure calls.

Definition 4.3 (Procedure Definition Environments). The set of procedure defini-

tion environments PDef, ranged over by µ, µ′, µ1 , ..., is the set of partial functions

µ : PName⇀fin (Var∗×LCmd×Var∗) from procedure names to triples of a list of

input variables, a program and a list of output variables.

Notation: We write Vari when we know that the list of variables is of length i .

Definition 4.4 (Procedure Definition Stacks). The set of procedure definition stacks

PDef∗, ranged over by γ, γ′, γ1 , ..., is the set of finite sequences of procedure defi-

nition environments.

When we look up a procedure in a procedure definition stack we want to return

the most recent definition of that procedure. However, we also want to ensure that

any procedure calls made by this procedure have the behaviour as defined at the

point the procedure was defined. To ensure that this is the case we also return the

procedure definition environment that was available to that procedure at the time

it was defined.
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Definition 4.5 (Procedure Lookup). The operation of looking up a procedure in a

procedure definition stack,

lookup : PName× (Pdef∗) ⇀ (Var∗ × LCmd ×Var∗)× (PDef∗)

is defined as:

lookup(f, µ : γ)
def
=

{
(µ(f), µ : γ) if f ∈ dom(µ)

lookup(f, γ) otherwise

where µ ∈ PDef and γ ∈ PDef∗.

The lookup procedure returns a pair consisting of the procedure definition and

the procedure definition stack that should be used in executing the procedure. This

procedure definition stack contains the procedure definitions that were in scope at

the point when the procedure in question was defined, as well as the procedure

definitions that were defined at the same time as the procedure in question. This

last point is key in allowing for the definition of mutually recursive procedures.

Using procedure definition stacks, our operational semantics provides static (lexi-

cal) scoping for procedure calls. For example, if some procedure f calls a procedure

named g in its body, the procedure invoked will always be the most recently de-

fined procedure named g at the point f was defined. By contrast, dynamic typing

would instead invoke the most recently defined procedure named g at the point f

was invoked.

Finally, we define the set of outcomes Out, ranged over by o, o ′, ..., generated by

executing a program. The result of a successful program execution will always result

in some program state, if it terminates. However, not every program execution is

necessarily successful. For example, a execution that tries to dereference a variable

that is not defined is considered to fail. Such executions are called faulting execu-

tions, and we denote them with the symbol  . The set of outcomes is then taken to

be the set of program states plus the faulting outcome: Out = PState ∪ { }
Notice that we do not know if a program will terminate from a given initial state.

It is possible for programs to loop forever. However, we are primarily concerned with

terminating executions, so non-terminating executions are ignored by the semantics.

We define the big-step semantics for programs, given by judgements of the form

C, γ, d , σ ⇓ o denoting that, when run in the context of a procedure definition stack

γ, data structure d and variable store σ, the program C results in the outcome o.
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Definition 4.6 (Operational Semantics). The big-step operational semantics for

the language LCmd is defined by the relation ⇓,

⇓: (LCmd ×PDef∗ ×D × Σ )×Out

which is given by the rules given in Figure 4.1 and Figure 4.2.

Notation: We write |−→x | for the length of the list of variables −→x , and similarly for

lists of expressions.

The operational semantics of our programming language is given in terms of a

complete data structure d . In the next section, §4.2.2, we define an axiomatic

semantic for our programming language that treats the data structure as a segment

algebra.

4.2.2 Axiomatic Semantics

We define an axiomatic semantics for the language LCmd using local Hoare reasoning.

This semantics treats the space of program states as pairs (s , σ) consisting of a

segment s ∈ SC from a segment algebra S(M, E) = (SC, fa, fh,#,+S, comp), as

defined in Definition 3.57, and a variable store σ ∈ Σ , as defined in Definition 4.2.

That is, State = SC × Σ . Recall that segment logic can describe properties of

incomplete data structures, whereas our operational semantics can only describe

the effects of programs on complete data structures. In §4.3 we will show how to

relate our axiomatic semantics on segments to our operational semantics on complete

data structures.

The axiomatic semantics is parametrised by both the choice of S(M, E) and the

axioms given for the basic commands. This gives us a fixed way of treating program

variables, but allows for a flexible choice of the remaining data structure.

Before we define our axiomatic semantics, we shall take a moment to discuss the

treatment of program variables. In the background chapter we were quite relaxed

about punning program variables and logical variables. However, such a pun does

mean that some inference rules, the frame rule in particular, need side conditions

and the axiom for assignment is more complex than we would like. From this point

forward, we choose to be more formal and treat the variable store as another program

resource. The idea of ‘variables as resource’ was first introduced in separation logic

by Bornat, Calcagno and Yang [8]. The main advantage of working with variables

as resource is that it removes the side condition from the frame rule and simplifies
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(d ′, σ′) ∈ CJϕK(d , σ)

ϕ, γ, d , σ ⇓ d ′, σ′ skip, γ, d , σ ⇓ d , σ

EJE K(σ[x 7→ u]) = u ′

x := E , γ, d , σ[x 7→ u] ⇓ d , σ[x 7→ u ′]

C1 , γ, d , σ ⇓ d ′, σ′ C2 , γ, d
′, σ′ ⇓ d ′′, σ′′

C1 ; C2 , γ, d , σ ⇓ d ′′, σ′′

BJB Kσ = true C1 , γ, d , σ ⇓ d ′, σ′

if B then C1 else C2 , γ, d , σ ⇓ d ′, σ′

BJB Kσ = false C2 , γ, d , σ ⇓ d ′, σ′

if B then C1 else C2 , γ, d , σ ⇓ d ′, σ′

BJB Kσ = true C ; while B do C, γ, d , σ ⇓ d ′, σ′

while B do C, γ, d , σ ⇓ d ′, σ′

BJB Kσ = false

while B do C, γ, d , σ ⇓ d , σ

C, [f1 7→ (−→x1 ,C1 ,
−→r1 ), ..., fk 7→ (−→xk ,Ck ,

−→rk )] : γ, d , σ ⇓ d ′, σ′

(procs −→r1 := f1 (−→x1 ){C1}, ...,−→rk := fk(−→xk ){Ck} in C), γ, d , σ ⇓ d ′, σ′

lookup(f, γ) = ((−→x ,C,−→y ), γ′) EJ−→E Kσ = −→v
−→r ∈ dom(σ) |−→E | = |−→x | |−→r | = |−→y |

C, γ′, d , ∅[−→y 7→ −→w ][−→x 7→ −→v ] ⇓ d ′, σ′ σ[−→r 7→ EJ−→y Kσ′] = σ′′

call −→r := f(
−→
E ), γ, d , σ ⇓ d ′, σ′′

x 6∈ dom(σ) x 6∈ dom(σ′) C, γ, d , σ[x 7→ v ] ⇓ d ′, σ′[x 7→ w ]

local x in C, γ, d , σ ⇓ d ′, σ′

C, γ, d , σ[x 7→ v ] ⇓ d ′, σ′[x 7→ w ]

local x in C, γ, d , σ[x 7→ u] ⇓ d ′, σ′[x 7→ u]

Figure 4.1: Operational semantics for LCmd (non-faulting cases).
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CJϕK(d , σ) undefined

ϕ, γ, d , σ ⇓  
EJE Kσ undefined

x := E , γ, d , σ ⇓  
x 6∈ dom(σ)

x := E , γ, d , σ ⇓  

C1 , γ, d , σ ⇓  
C1 ; C2 , γ, d , σ ⇓  

C1 , γ, d , σ ⇓ d ′, σ′ C2 , γ, d
′, σ′ ⇓  

C1 ; C2 , γ, d , σ ⇓  

BJB Kσ = true C1 , γ, d , σ ⇓  
if B then C1 else C2 , γ, d , σ ⇓  

BJB Kσ = false C2 , γ, d , σ ⇓  
if B then C1 else C2 , γ, d , σ ⇓  

BJB Kσ undefined

if B then C1 else C2 , γ, d , σ ⇓  

BJB Kσ = true C ; while B do C, γ, d , σ ⇓  
while B do C, γ, d , σ ⇓  

BJB Kσ undefined

while B do C, γ, d , σ ⇓  

C, [f1 7→ (−→x1 ,C1 ,
−→r1 ), ..., fk 7→ (−→xk ,Ck ,

−→rk )] : γ, d , σ ⇓  
procs −→r1 := f1 (−→x1 ){C1}, ...,−→rk := fk(−→xk ){Ck} in C, γ, d , σ ⇓  

lookup(f, γ) undefined

call −→r := f(
−→
E ), γ, d , σ ⇓  

|−→E | = i |−→r | = j lookup(f, γ) 6∈ ((Vari × LCmd ×Varj )×PDef∗)

call −→r := f(
−→
E ), γ, d , σ ⇓  

1 ≤ k ≤ |−→E | EJE kKσ undefined

call −→r := f(
−→
E ), γ, d , σ ⇓  

lookup(f, γ) = ((−→x ,C,−→y ), γ′) EJ−→E Kσ = −→v |−→E | = |−→x |
C, γ′, d , ∅[−→y 7→ −→w ][−→x 7→ −→v ] ⇓  
call −→r := f(

−→
E ), γ, d , σ ⇓  

1 ≤ k ≤ |−→r | rk 6∈ dom(σ)

call −→r := f(
−→
E ), γ, d , σ ⇓  

C, γ, d , σ[x 7→ v ] ⇓  
local x in C, γ, d , σ ⇓  

Figure 4.2: Operational semantics for LCmd (faulting cases).
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the assignnment axiom.

Assertion Language

For simplicity, rather than working with satisfaction relations, as in §3.2, we instead

choose for our logical assertions to describe sets of program states, similar to the

practice of Calcagno, O’Hearn and Yang [17]. We call such assertions ‘predicates’

and interpret them over a generalised logical environment e ∈ Env that maps logical

variables, including label variables (α, β, γ...), to their values. The definition of our

predicates, and their semantics, is parametric on the choice of multi-holed context

algebra M = (C,X , fhC,#C, •) and context formula PC. It is necessary for these

context formulae to at least include the assertion α which describes a hole label

with the value e(α).

Definition 4.7 (Predicates). The set of state predicates Pred, ranged over by

P ,Q ,R,P ′,P1 , ..., is defined inductively as:

P ::= P ⇒ P | false Classical Assertions

| α�PC Segment Specific Assertions

| emp | x⇀⇁ v | P ∗ P | αrP | P−∗P | P�α Structural Assertions

| ∃v .P | Nα.P Quantification

where α ∈ LVarX the set of of logical label variables, x ∈ Var the set of program

variables and v ∈ LVarVal the set of logical value variables.

Definition 4.8 (Predicate Semantics). The semantics of predicates is given by the

function PJ(·)K : Pred→ (Env→ P(State)) which is defined as:

PJP ⇒ QKe def
= {(s , σ) | (s , σ) ∈ PJPKe ∩ PJQKe or (s , σ) 6∈ PJPKe}

PJfalseKe def
= ∅

PJα�PCKe
def
= {(x�c, ∅) | e(α) = x and e, c �C PC}

PJempKe def
= {(∅, ∅)}

PJx⇀⇁ vKe def
= {(∅, σ) | dom(σ) = {x} and σ(x ) = e(v)}

PJP ∗QKe def
= {(s1 +S s2 , σ1 ] σ2 ) | (s1 , σ1 ) ∈ PJPKe and (s2 , σ2 ) ∈ PJQKe}

PJαrPKe def
= {((x )(s), σ) | e(α) = x and (s , σ) ∈ PJPKe}

PJP −∗ QKe def
= {(s , σ) | (s ′, σ′) ∈ PJPKe and (s +S s ′, σ ] σ′) ∈ PJQKe}

PJP�αKe def
= {(s , σ) | e(α) = x and ((x )(s), σ) ∈ PJPKe}

PJ∃v .PKe def
= {(s , σ) | (s , σ) ∈ PJPKe[v 7→ u] and u ∈ Val}

PJ Nα.PKe def
= {(s , σ) | (s , σ) ∈ PJPKe[α 7→ x ] and x#e, s and x ∈ X}
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As with segment logic for trees, we can derive the standard classical connectives

¬P , true, P ∨ Q , P ∧ Q and ∀v .P , from false, ⇒ and ∃. We denote an arbitrary

variable store with the assertion σ (punning the variable store syntax) defined as:

σ ::= emp | x⇀⇁ v | σ ∗ σ

We also derive the hidden label quantification and several notational short-hands as

follows:
x⇀⇁ − def

= ∃v . x⇀⇁ v

Hα.P
def
= Nα. αrP

Nα, β.P
def
= Nα. ( Nβ.P)

Hα, β.P
def
= Hα. (Hβ.P)

α, βrP
def
= αr(βrP)

P�α, β def
= (P�α)�β

The binding convention of our assertions, from strongest to weakest, is given by:

¬, �, r, ∗ , ∧ , ∨ , �, −∗ , ⇒ , ⇔ , N, ∀, ∃.

From the semantics of our predicates and the properties of the segment algebra

S(M, E) we have a number of equivalences that we make use of in our reasoning

framework. All of the standard classical equivalences hold. The associativity and

commutativity of + with identity emp gives rise to a number of logical equivalences

that are analogous to those of separation logic:

P ∗ emp ⇔ P

P ∗Q ⇔ Q ∗ P

P ∗ (Q ∗ R) ⇔ (P ∗Q) ∗ R

(P ∨Q) ∗ R ⇔ (P ∗ R) ∨ (Q ∗ R)

(P ∧Q) ∗ R ⇒ (P ∗ R) ∧ (Q ∗ R)

The last property only holds in one direction as the state described by R is not

necessarily the same in the assertions P ∗R and Q ∗R. The definition of −∗ is also

analogous to that of separation logic, and so leads to the following equivalence:

P ∗ (P −∗ Q) ⇔ Q

The properties of compression from Definition ?? give rise to the following equiv-
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alences, analogous to those from ambient logic [20]:

αremp ⇔ emp

αr(βrP) ⇔ βr(αrP)

αrP ⇔ βrP [β/α] if β 6∈ free(P)

αr(P ∗Q) ⇔ αr(P) ∗Q if ∀β. β ∈ free(Q)⇒ α 6= β

αr(β�PC ∗ α�QC) ⇒ β�PC[QC/α] if α ∈ free(PC)

Hα. (β�PC ∗ α�QC) ⇔ β�PC[QC/α] if α ∈ free(PC)

Notice that in the penultimate case, where the label α is not certainly fresh, that

the property is only one way. When we collapse a segment we are forgetting about

a label. However, when we expand a segment we introduce a new label and we must

ensure that this label does not clash with any existing labels. Thus, the property

can only be an equivalence if the label α is known to be fresh.

The revelation connective r has a right adjoint �, just as in §3.2. This leads to

the following equivalence, analogous to that of ambient logic:

αr(P�α) ≡ P

Finally, the properties of address and hole label uniqueness result in the following

equivalences:

α�PC ∗ α�QC ≡ false

α�PC ∗ β�QC ≡ false if free(PC) ∩ free(QC) 6= ∅

Hoare Reasoning

We now introduce our Hoare reasoning framework. The judgements of our proof sys-

tem make assertions about the program state and have the form e,Γ ` {P} C {Q},
where P ,Q ∈ Pred are predicates, C ∈ LCmd is a program, e ∈ Env is a logical

environment and Γ is a procedure specification environment. A procedure specifica-

tion environment associates procedure names with pairs of pre- and post-conditions

(parametrised by the arguments and return values of the procedure respectively).

The interpretation of judgements is that, in environment e, in the presence of pro-

cedures satisfying Γ , when executed from a state satisfying P , the program C will

either diverge or terminate in a state satisfying Q .

When we define a procedure in our framework, we introduce a set of specifications

for that procedure, which the procedure body must satisfy. These specifications are

then used to determine the behaviour of calls to that procedure.
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Definition 4.9 (Procedure Specifications). A procedure specification f : P � Q

consists of:

� a procedure name f ∈ PName;

� a parametrised precondition P : Vali → (Env→ P(SStore));

� a parametrised postcondition Q : Valj → (Env→ P(SStore));

where i = |−→x | is the number of input values of f and j = |−→r | is the number of

return values of f. The set of procedure specifications is denoted PSpec.

In a procedure specification, the precondition is parametrised by the arguments

with which the procedure is called, whilst the postcondition is parametrised by the

return values of the procedure. The number of parameters and return values used

when the procedure is called must match the number expected by the specification

when the procedure is defined, otherwise the program will fault. We do not allow

procedures to access variables outside of their own scope (we do not provide global

variables) so the pre- and post-conditions of a procedure specification are given as

predicates over just the segment algebra part of the program state.

Definition 4.10 (Procedure Specification Environments). A procedure specification

environment Γ ∈ P(PSpec) is a set of procedure specifications. The set of proce-

dure specification environments is denoted PSEnv.

Notation: In our proof judgements, we write Γ ,Γ ′ to stand for the set union Γ∪Γ ′.

To simplify the presentation of our inference rules we define a predicate-valued

semantics for boolean expressions. This semantics interprets a boolean expression

as a predicate describing the set of states in which that boolean expression holds.

Definition 4.11 (Predicate-Valued Semantics of Boolean Expressions). The predicate-

valued semantics of Boolean expressions PJ(·)K : BExpr→ (Env→ P(State)) is

defined by:

PJB Ke def
= {(s , σ) | BJB Kσ = true}

Since the semantics of expressions is partial, it is also convenient to define safety

predicates, which simply assert that the state permits the evaluation of a given

expression.
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Definition 4.12 (Safety Predicates). Given a value expression E ∈ Expr, the

expression safety predicate for E , denoted vsafe(E ), is defined as:

vsafe(E )
def
= {(s , σ) | EJE Kσ is defined}

Similarly, given a Boolean expression B ∈ BExpr, the expression safety predicate

for B , denoted bsafe(B ), is defined as:

bsafe(B )
def
= {(s , σ) | BJB Kσ is defined}

Finally, in order to define the axiomatic semantics, we need axioms for the basic

commands of the language. We often have just one axiom for each basic command,

but some basic commands have multiple axioms that describe disjoint cases of the

command. For this reason we have a set of axioms for each basic command.

Assumption 5 (Axioms for Basic Commands). Assume a set of axioms for the

basic commands,

AxJ(·)K : Cmd→ Pfin(Pred×Pred).

Definition 4.13 (Inference Rules). The Hoare Logic Rules for LCmd are given in

Figure 4.3 and Figure 4.4.

The axiom rule (Axiom) allows us to use the specifications given for our basic

commands in Assumption 5.

The separating frame rule (Sep Frame) is analogous to the frame rule from

separation logic [58] and embodies the basic principle of local reasoning: if a program

runs without faulting on some state, then we can extend that state with additional,

disjoint state as long as it is not affected by the current program. In order for

the separation frame rule to work the precondition must include all of the state

that is accessed while running the program, otherwise adding additional state may

change the program’s behaviour. Our treatment of variables as resource removes

the requirement for a side-condition on the separation frame rule. This is because,

with variables as resource, the variables in the frame are automatically disjoint from

the variables used in the program. In order for e,Γ ` {P}C {Q} to hold, P must

include assertions about every variable that occurs free in C. The separation frame

rule can be used to add assertions about program variables that have the same

name as locally scoped variables within the program. However, since their scopes

are different, the variables themselves are also considered to be different, so this

does not cause any problems.
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Axiom :
(P ,Q) ∈ AxJϕK

e,Γ `
{

P
}
ϕ
{

Q
}

Sep Frame :
e,Γ `

{
P
}

C
{

Q
}

e,Γ `
{

P ∗ R
}

C
{

Q ∗ R
}

Rev Frame :
e,Γ `

{
P
}

C
{

Q
}

e,Γ `
{
αrP

}
C
{
αrQ

}
Cons :

PJP ′Ke ⊆ PJPKe e,Γ `
{

P
}

C
{

Q
}
PJQKe ⊆ PJQ ′K

e,Γ `
{

P ′
}

C
{

Q ′
}

Disj :
for all i ∈ I . e,Γ `

{
Pi

}
C
{

Qi

}
e,Γ `

{ ∨
i∈I Pi

}
C
{ ∨

i∈I Qi

}
Exsts :

there exists u ∈ Val. e[v 7→ u],Γ `
{

P
}

C
{

Q
}

e,Γ `
{
∃v .P

}
C
{
∃v .Q

}
Fresh :

there exists fresh x ∈ X. e[α 7→ x ],Γ `
{

P
}

C
{

Q
}

e,Γ `
{

Nα.P
}

C
{

Nα.Q
}

Figure 4.3: Generic reasoning rules for LCmd.

The revelation rule (Rev Frame) can also be viewed as a frame rule. This is

because revealing a label in the data structure does not change the behaviour of a

program over that structure, it simply changes our view of the program state. The

revelation corresponds to compression of a label at the model level. This either takes

a segment and roots it (cutting off its addresses label) or it compresses together two

pieces of the segment. It does not add or remove any program state, so the behaviour

of the program cannot change.

The consequence rule (Cons), disjunction rule (Disj), existential quantification

rule (Exsts), freshness quantification rule (Fresh), skip rule (Skip) and sequencing

rule (Seq) are all standard.

The if statement rule (If) requires a precondition from which we can derive

the precondition of the first branch when the expression B evaluates to true and

for the second branch when the expression B evaluates to false. The condition

PJPKe ⊆ bsafe(B ) ensures that the expression B can be evaluated without the

program faulting.

The while statement rule (While) requires us to prove that P is a loop invariant.

This means that the loop body reestablishes P when run from P in a state where

the expression B evaluates to true. If P holds before the loop starts, then it will
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Skip :
e,Γ `

{
emp

}
skip

{
emp

}
Seq :

e,Γ `
{

P
}

C1

{
R
}

e,Γ `
{

R
}

C2

{
Q
}

e,Γ `
{

P
}

C1 ;C2

{
Q
}

If :

PJPKe ⊆ bsafe(B )
e,Γ `

{
P ∧ PJB K

}
C1

{
Q
}

e,Γ `
{

P ∧ ¬PJB K
}

C2

{
Q
}

e,Γ `
{

P
}
if B then C1 else C2

{
Q
}

While :
PJPKe ⊆ bsafe(B ) e,Γ `

{
P ∧ PJB K

}
C
{

P
}

e,Γ `
{

P
}
while B do C

{
P ∧ ¬PJB K

}
Assgn :

PJx⇀⇁ v ∗ σKe ⊆ vsafe(E )

e,Γ `
{
x⇀⇁ v ∗ σ

}
x := E

{
x⇀⇁ EJE Kσ[x 7→ v ] ∗ σ

}
Local :

PJPKe ∩ vsafe(x) ≡ ∅ e,Γ `
{
x⇀⇁ − ∗ P

}
C
{
x⇀⇁ − ∗Q

}
e,Γ `

{
P
}
local x in C

{
Q
}

PDef :

∀(fi : Pi � Qi) ∈ Γ . e,Γ ′,Γ `

{
∃−→vi .Pi(

−→vi ) ∗ −→xi ⇀⇁
−→vi ∗ −→ri ⇀⇁ −

}
Ci{

∃−→wi .Qi(
−→wi ) ∗ −→xi ⇀⇁ − ∗ −→ri ⇀⇁

−→wi

}
for all f : P� Q ∈ Γ , there exists i s.t f = fi

for all f : P� Q ∈ Γ ′, for all i , f 6= fi

e,Γ ′,Γ `
{

P
}

C
{

Q
}

e,Γ ′ `

{
P
}

procs −→r1 := f1 (−→x1 ){C1}, . . . ,−→rk := fk(−→xk ){Ck} in C{
Q
}

PCall :
PJ−→r ⇀⇁ −→v ∗ σKe ⊆ vsafe(

−→
E )

e,Γ , (f : P� Q) `

{
P
(
EJ−→E Kσ[−→r 7→ −→v ]

)
∗ −→r ⇀⇁ −→v ∗ σ

}
call −→r := f(

−→
E ){

∃−→w .Q (−→w ) ∗ −→r ⇀⇁ −→w ∗ σ
}

PWeak :
e,Γ `

{
P
}

C
{

Q
}

e,Γ ,Γ ′ `
{

P
}

C
{

Q
}

Figure 4.4: Language specific reasoning rules for LCmd.
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also hold on termination of the loop and the expression B must then evaluate to

false. As with the if statement rule, the condition PJPKe ⊆ bsafe(B ) ensures that

the expression B can be evaluated without the program faulting.

The assignment rule (Assgn) requires that the target variable is in scope and that

it is safe to evaluate the expression E in the current state. In the postcondition, the

target variable is updated so that its value is now that of the evaluated expression

and the rest of the state is left unchanged. The evaluation of the expression may

depend on other variables in the store, but the vsafe condition ensures that the

expression can be evaluated without the program faulting.

The local variable rule (Local) allows us to declare local variables in a program.

Recall that the predicate P is evaluated to a set of segment-store pairs (s , σ). The

predicate x⇀⇁ − can only be evaluated to the pair (∅, ∅[x 7→ v ]) for some choice of v ,

the initial value of x. We can only extend the predicate P with this predicate if the

variable x is not already in P , which is ensured by the condition PJPKe∩vsafe(x) ≡ ∅.
However, it is possible for the variable x to already be in scope, in which case the

separating frame rule (Sep Frame) can be used to frame off this variable before

we apply the local variable rule. The outer scoped x then has no effect on the inner

scoped x and its value will be unchanged after the inner scope is closed.

The procedure definition rule (PDef) uses the procedure specifications Γ to spec-

ify a set of procedures. Each procedure specification for fi gives it a parametrised

precondition Pi and postcondition Qi . For each specification, the corresponding

procedure body must, for each instantiation of the parameters −→xi with arguments
−→vi , take a state with segment Pi(

−→vi ) to one with segment Qi(
−→wi ) and return vari-

ables −→ri holding values −→wi . The procedure bodies are verified using the procedure

specifications in scope, as well as their own procedure specifications, making it pos-

sible to verify mutually recursive procedure definitions. The procedure specification

environment Γ must only specify the procedures that are defined in the procs block

under consideration, and these procedures must have different names to any that

occur in the existing procedure specification environment Γ ′. To deal with proce-

dures that redefine existing procedures we have to use the procedure weakening rule

(PWeak) to forget the old specification.

The procedure call rule (PCall) allows us to reason about procedure calls. The

arguments for the procedure call are obtained by evaluating the expressions
−→
E and

the vsafe condition ensures that these expressions can be evaluated without the

program faulting. The precondition required by the procedure’s specification must

hold initially, and afterwards its postcondition holds for the values returned in the

result variables −→r .
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The procedure weakening rule (PWeak) allows for the procedure specification

environment to be weakened (i.e. more procedure specifications can be added). This

rule can also be used in conjunction with the procedure definition rule (PDef) to

redefine an existing procedure in an inner procedure scope.

The Conjunction Rule

Notice that the conjunction rule (Conj) is absent from our reasoning framework’s

inference rules given in Figure 4.3 and Figure 4.4.

Conj :
for all i ∈ I, e,Γ `

{
Pi

}
C
{

Qi

}
e,Γ `

{ ∧
i∈I Pi

}
C
{ ∧

i∈I Qi

}
The conjunction rule can be problematic if there are multiple specifications of basic

commands in a program module. The following two conditions on basic commands

ϕ ∈ Cmd are sufficient to establish that at most one axiom describes the behaviour

of the command from any given state:

� for all (P ,Q), (P ′,Q ′) ∈ AxJϕK with (P ,Q) 6= (P ′,Q ′), P ∧ P ′ ⇔ false; and

� the predicate
∨
{P | (P ,Q) ∈ AxJϕK} is precise.

A segment logic predicate P is precise if, for every e ∈ Env and (s , σ) ∈ State

there is at most one (s ′, σ′) ∈ State such that (s ′, σ′) ∈ PJPKe, s = (x̄ )(s0 +S s ′)

and σ = σo ] σ′ for some x̄ ⊆ X , s0 ∈ SC and σ0 ∈ Σ .

Thus, the basic command specifications are guaranteed to have mutually exclusive

preconditions and the conjunction rule cannot be used to derive a stronger postcon-

dition for any of the basic commands. Its omission is then justified since nothing

would be gained from its inclusion in our set of inference rules.

4.3 Soundness

In §4.2.1 we defined an operational semantics defined for compete data structures. In

§4.2.2 we gave an axiomatic semantics defined over segments of a data structure. In

order to prove that our axiomatic semantics is sound with respect to our operational

semantics we need to be able to relate segments of a data structure to complete data

structures. Recall that, in the multi-holed context setting, complete data is treated

as a context that contains no context holes. We can relate segments to complete

data in a similar way. Complete data can be treated as a segment that contains no
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holes, is fully compressed (i.e. consists of just one piece) and has its address label

restricted (so it cannot be extended).

Definition 4.14 (Segment/Complete Data Relation). Given a segment algebra

S(M, E) = (SC, fa, fh,#,+S, comp), parametrised by a multi-holed context alge-

bra M = (C,X , fhC,#C, •), and a set of labels E disjoint from X , we define the

complete data set D as:

D def
= {d | d ∈ C and fhC(d) = ∅}

and we define the relation 'S∈ SC ×D as follows:

(x )(x�d) 'S d

where x ∈ X and d ∈ D.

Note that under this definition we are not, in general, able to relate the segment

(x , y)(x�d +S y�d ′) with any piece of complete data. This is because the segment

combination operator +S does not necessarily have an interpretation in the complete

data structure. For example, in the tree model from §3.1.1 we can represent trees

that are siblings, but have no notion of disjoint trees.

We choose to interpret the behaviour of a program on a segment as the behaviour

of that program on any complete data that is obtained by extending the segment.

Definition 4.15 (Segment Completion). The completion of a segment-store pair

(s , σ) is any program state (d , σ′) ∈ D × Σ such that there exists x̄ ∈ Pfin(X ),

s ′ ∈ SC and σ0 ∈ Σ with (x̄ )(s ′ +S s) 'S d and σ′ = σ ] σ0 .

We introduce a local Hoare triple judgement e,Γ � {P}C {Q} which holds in

exactly this case. Informally the meaning of e,Γ � {P} C {Q} is that for every

segment-store pair (s , σ) ∈ PJPKe the program C will not fault when run in the

context of procedures satisfying Γ on any program state (d , σ1 ) that is a completion

of (s , σ) and, assuming the command terminates, the resulting program state (d ′, σ2 )

will be a completion of a segment-store pair (s ′, σ′) ∈ PJQKe.

We build up the formal definition of a local Hoare triple in terms of procedure

definition environment specific local Hoare triples and the satisfaction of a procedure

specification environment.

A procedure definition environment specific local Hoare triple captures the stan-

dard fault avoiding interpretation of a Hoare triple in the context of the procedures

defined in a procedure definition environment γ.
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Definition 4.16 (Procedure Definition Environment Specific Local Hoare Triples).

Take an arbitrary segment algebra S(M, E) = (SC, fa, fh,#,+S, comp), parametrised

by a multi-holed context algebraM = (C,X , fhC,#C, •), and a set of labels E disjoint

from X . Let e ∈ Env, γ ∈ PDef∗, P ,Q ∈ P(State) and C ∈ LCmd.

e, γ � {P}C {Q} ⇔ for all (s , σ) ∈ PJPKe, o ∈ Out, d1 ∈ D, s0 ∈ SC, σ0 ∈ Σ , x̄ ⊆ X
whenever (x̄ )(s0 +S s) 'S d1 and there exists σ1 s.t σ0 ] σ = σ1

=⇒
C, γ, d1 , σ1 ⇓ o =⇒ o 6=  and

there exist (s ′, σ′) ∈ PJQKe, d2 ∈ D, σ2 ∈ Σ s.t.

o = (d2 , σ2 ), (x̄ )(s0 +S s ′) 'S d2 and σ0 ] σ′ = σ2

A logical environment and procedure definition environment are said to satisfy a

procedure specification environment when the body of each function in the procedure

definition environment satisfies the specification of that function in the procedure

specification environment.

Definition 4.17 (Procedure Specification Environment Satisfaction). Let e ∈ Env,

γ ∈ PDef∗, P ,Q ∈ P(State) and Γ ∈ PSEnv.

e, γ � Γ ⇔ for all (f : P� Q) ∈ Γ

there exist −→x ,−→r ∈ Var∗, C ∈ LCmd, γ′ ∈ PDef∗ s.t.

((−→x ,C,−→r ), γ′) = lookup(f, γ) and

e, γ′ �

{
∃−→v .P(−→v ) ∗ −→x ⇀⇁ −→v ∗ −→r ⇀⇁ −

}
C{

∃−→w .Q(−→w ) ∗ −→x ⇀⇁ − ∗ −→r ⇀⇁ −→w
}

A local Hoare triple then holds only when the corresponding procedure definition

environment specific local Hoare triples hold for every procedure definition environ-

ment that satisfies the given procedure specification environment.

Definition 4.18 (Local Hoare Triples). Let e ∈ Env, P ,Q ∈ P(State), C ∈ LCmd

and Γ ∈ PSEnv.

e,Γ � {P}C {Q} ⇔ for all γ ∈ PDef∗. e, γ � Γ =⇒ e, γ � {P}C {Q}

Our operational semantics assumes a semantic interpretation function for the

basic commands. Our axiomatic semantics assumes a set of axioms for the basic

commands. In order for our reasoning system to be sound, these assumed semantics
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must be compatible. We require that every basic command behaves operationally

in the same way as described by its axioms.

Assumption 6 (Axiom Soundness). For all e ∈ Env, ϕ ∈ Cmd, (P ,Q) ∈ AxJϕK,
(s , σ) ∈ PJPKe, d1 ∈ D, s0 ∈ SC, σ0 ∈ Σ and x̄ ⊆ X , if (x̄ )(s0 +S s) 'S d1

and there exists σ1 ∈ Σ such that σ0 ] σ = σ1 then CJϕK(d1 , σ1 ) is defined and

there exist (s ′, σ′) ∈ PJQKe, d ′ ∈ D and σ2 ∈ Σ such that CJϕK(d1 , σ1 ) = (d2 , σ2 ),

(x̄ )(s0 +S s ′) 'S d2 and σ0 ] σ′ = σ2 .

The above assumption also captures the property that every basic command must

behave in a local fashion. That is, their behaviour does not change when run with

additional program state and, moreover, they leave this additional state unchanged.

This is essential for the soundness of the separation and revelation frame rules.

In order for the set of basic command axioms to be sound it is necessary that each

axiom preserves the free addresses and free labels of a segment from its precondition

to its postcondition. The axioms describe the behaviour of our basic commands and

these are not aware of the segment structure, which exists only at the logic level.

Therefore, the effects of the axioms should be limited to the data contained within

the segments and should not modify the segment structure. As an example, consider

a skip like command foo specified as:{
α�∅

}
foo()

{
β�∅

}
This specification may seem innocent enough, but if we apply the separation frame

rule to add the frame β�∅, then we end up with the following derivation:{
α�∅

}
foo()

{
β�∅

}
Sep Frame{

α�∅ ∗ β�∅
}

foo()
{
β�∅ ∗ β�∅

}
Cons{

α�∅ ∗ β�∅
}

foo()
{

false
}

This resulting specification can only be satisfied if the foo command were to di-

verge, which simply isn’t the case. The issue here is not with the soundness of the

frame rule, but with the definition of the axiom for the foo command. This axiom

changes the segment identifier α to β which cause two problems. Firstly, we have no

guarantee that the label β is not already in use in the wider segment and this could

clash as in the example above. However, the wider segment could also contain an α

hole that is expecting to be filled by the α addressed segment in the precondition.
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In the postcondition this segment no longer exists, so when α is later compressed we

will have α occurring as just a segment hole, so the compression would be undefined.

What we have seen here is that label preservation is part of the requirement that

our basic command axioms describe some local behaviour (Assumption 6).

We also require that the semantics of expression evaluation behave locally.

Assumption 7 (Expression Locality). For all value expressions E ∈ Expr and

variable stores σ, σ′ ∈ Σ with EJE Kσ and σ]σ′ both defined, EJE K(σ]σ′) = EJE Kσ.

Similarly, for all Boolean expressions B ∈ BExpr and variable stores σ, σ′ ∈ Σ with

BJB Kσ and σ ] σ′ both defined, BJB K(σ ] σ′) = BJB Kσ.

In practice, this last assumption is trivial to check as most expression constructors

are indifferent to the variable store. The only case that might be affected by the

variable store is variable lookup, but treating variables as resource does not allow

for an extension to the variable store to overwrite the value of any existing variables.

Theorem 4.19 (Soundness). For all e ∈ Env, Γ ∈ PSEnv, P ,Q ∈ Pred and

C ∈ LCmd,

e,Γ ` {P}C {Q} =⇒ e,Γ � {P}C {Q}.

4.3.1 Proof of Soundness

Much of our soundness proof follows along similar lines as other soundness proofs

of this kind. The cases for the majority of our inference rules are standard. There

are two noticeable exceptions to this: the separating frame rule Sep Frame and

the revelation frame rule Rev Frame. Due to the nature of our Hoare triple

interpretation, the soundness of these rules follows almost by definition. In effect,

when we reason about the behaviour of a program over a segment of the data

structure, we are actually considering the behaviour of the program over all possible

completions of this segment. When we apply either of the frame rules, we are simply

reducing the space of possible completions that are now valid.

Proof of Theorem 4.19

The proof is by induction on the structure of the derivation of e,Γ ` {P}C {Q}.
In each case we consider the last inference rule applied.

Axiom case:

Fix e ∈ Env. In this case C = ϕ for some ϕ ∈ Cmd and (P ,Q) ∈ AxJϕK.
Suppose that e, γ � Γ , (s , σ) ∈ PJPKe, o ∈ Out , d1 ∈ D, s0 ∈ SC, σ0 , σ1 ∈ Σ and
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x̄ ⊆ X such that d1 'S (x̄ )(s0 +S s), σ1 = σ0 ]σ and ϕ, γ, d1 , σ1 ⇓ o. If o =  then

our operational semantics requires that CJϕK(d1 , σ1 ) is undefined, which violates as-

sumption 6 (Axiom Soundness). Thus o = (d2 , σ2 ) for some (d2 , σ2 ) ∈ CJϕK(d1 , σ1 ).

Furthermore, Assumption 6 implies that d2 'S (x̄ )(s0 +S s ′), σ2 = σ0 ] σ′ and

(s ′, σ′) ∈ PJQKe, as required.

Sep Frame case:

Fix e ∈ Env. In this case P = P ′ ∗ R and Q = Q ′ ∗ R for some P ′,Q ′,R with

e,Γ � {P ′}C {Q ′} by the inductive hypothesis. Suppose that e, γ � Γ and (s , σ) ∈
PJP ′ ∗ RKe. It follows that (s , σ) = (sp +S sr , σp ] σr) for some (sp , σp) ∈ PJP ′Ke
and (sr , σr) ∈ PJRKe.

Now choose any d1 ∈ D, s0 ∈ SC, σ0 , σ1 ∈ Σ and x̄ ⊆ X with d1 'S (x̄ )(s0 +Ss) =

(x̄ )(s0 +S sr +S sp) and σ1 = σ0 ] σp . Since e,Γ � {P ′}C {Q ′} we know that

C, γ, d1 , σ1 6⇓  . Moreover, C, γ, d1 , σ1 ⇓ d2 , σ2 for some d2 ∈ D and σ2 ∈ Σ where

d2 'S (x̄ )(s0 +Ssr +Ssq), σ2 = σ0]σq and (sq , σq) ∈ PJQ ′Ke. Since (sr , σr) ∈ PJRKe
it follows that (sq +S sr , σq ] σr) ∈ PJQ ′ ∗ RKe, as required.

Rev Frame case:

Fix e ∈ Env. In this case P = αrP ′ and Q = αrQ ′ for some P ′,Q ′, α with

e,Γ � {P ′}C {Q ′} by the inductive hypothesis. Suppose that e, γ � Γ and (s , σ) ∈
PJαrP ′Ke. It follows that (s , σ) = ((x )(sp), σ) with e(α) = x and (sp , σ) ∈ PJP ′Ke.

Now choose any d1 ∈ D, s0 ∈ SC, σ0 , σ1 ∈ Σ and ȳ ⊆ X with d1 'S (ȳ)(s0 +S

(x )(sp)) and σ1 = σ0 ] σ. We have to be careful as x could be free in s0 . Choose x ′

fresh with respect to s0 and sp . Given the properties of a segment algebra it follows

that d1 'S (ȳ)(s0 +S (x )(sp)) = (ȳ)(s0 +S (x ′)(sp [x ′/x ])) = (x ′)(ȳ)(s0 +S sp [x ′/x ]).

Since e,Γ � {P ′}C {Q ′}, and we do not allow our programs to manipulate ab-

stract addressess or holes, we also know that e[α 7→ x ′],Γ � {P ′}C {Q ′}. This

means that C, γ, d1 , σ1 6⇓  . Moreover, C, γ, d1 , σ1 ⇓ d2 , σ2 for some d2 ∈ D and

σ2 ∈ Σ where d2 'S (x ′)(ȳ)(s0 +S sq [x ′/x ]), σ2 = σ0 ] σq and (sq , σq) ∈ PJQ ′Ke.

Now (x ′)(ȳ)(s0 +S sq [x ′/x ]) = (ȳ)(s0 +S (x ′)(sq [x ′/x ])) = (ȳ)(s0 +S (x )(sq)) and

since e(α) = x it follows that ((x )(sq), σq) ∈ PJαrQ ′Ke, as required.

Cons case:

Fix e ∈ Env. In this case PJPKe ⊆ PJP ′Ke and PJQ ′Ke ⊆ PJQKe for some

P ′,Q ′ with e,Γ � {P ′}C {Q ′} by the induction hypothesis. Suppose that e, γ � Γ

and that (s , σ) ∈ PJPKe. It follows that (s , σ) ∈ PJP ′Ke also, and since e,Γ �

{P ′}C {Q ′} we know that for all d1 ∈ D, s0 ∈ SC, σ0 , σ1 ∈ Σ and x̄ ⊆ X
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with d1 'S (x̄ )(s0 +S s) and σ1 = σ0 ] σ that C, γ, d1 , σ1 6⇓  . Moreover,

C, γ, d1 , σ1 ⇓ d2 , σ2 for some d2 ∈ D and σ2 ∈ Σ where d2 'S (x̄ )(s0 +S s ′),

σ2 = σ0 ] σ′ and (s ′, σ′) ∈ PJQ ′Ke. Since PJQ ′Ke ⊆ PJQKe it follows that

(s ′, σ′) ∈ PJQKe, as required.

Disj case:

Fix e ∈ Env. In this case P =
∨

i∈I Pi and Q =
∨

i∈I Qi for some Pi ,Qi with

e,Γ � {Pi}C {Qi} for each i ∈ I , by the inductive hypothesis. Suppose that

e, γ � Γ and that (s , σ) ∈ PJPKe. It follows that (s , σ) ∈ PJPj Ke for some j ∈ I .

Since e,Γ � {Pj}C {Qj} we know that for all d1 ∈ D, s0 ∈ SC, σ0 , σ1 ∈ Σ and

x̄ ⊆ X with d1 'S (x̄ )(s0 +S s) and σ1 = σ0 ] σ that C, γ, d1 , σ1 6⇓  . Moreover,

C, γ, d1 , σ1 ⇓ d2 , σ2 for some d2 ∈ D and σ2 ∈ Σ where d2 'S (x̄ )(s0 +S s ′),

σ2 = σ0 ] σ′ and (s ′, σ′) ∈ PJQj Ke. Since PJQj Ke ⊆ PJQKe it follows that

(s ′, σ′) ∈ PJQKe, as required.

Exsts case:

Fix e ∈ Env. In this case P = ∃v .P ′ and Q = ∃v .Q ′ for some P ′,Q ′ with

e[v 7→ u],Γ � {P ′}C {Q ′} for some u ∈ Val by the induction hypothesis. Suppose

that e, γ � Γ and that (s , σ) ∈ PJ∃v .P ′Ke. It follows that (s , σ) ∈ PJP ′Ke[v 7→ u]

for some u ∈ Val.

Since e[v 7→ u],Γ � {P ′}C {Q ′} we know that for all d1 ∈ D, s0 ∈ SC, σ0 , σ1 ∈ Σ

and x̄ ⊆ X with d1 'S (x̄ )(s0 +S s) and σ1 = σ0 ] σ that C, γ, d1 , σ1 6⇓  . More-

over, C, γ, d1 , σ1 ⇓ d2 , σ2 for some d2 ∈ D and σ2 ∈ Σ where d2 'S (x̄ )(s0 +S s ′),

σ2 = σ0 ] σ′ and (s ′, σ′) ∈ PJQ ′Ke[v 7→ u]. It follows that (s ′, σ′) ∈ PJ∃v .QKe, as

required.

Fresh case:

Fix e ∈ Env. In this case P = Nα.P ′ and Q = Nα.Q ′ for some P ′,Q ′, α with

e[α 7→ x ],Γ � {P ′}C {Q ′} for some fresh x ∈ X by the induction hypothesis.

Suppose that e, γ � Γ and that (s , σ) ∈ PJ Nα.P ′Ke. It follows that (s , σ) ∈
PJP ′Ke[α 7→ x ] for some fresh x ∈ X .

Since e[α 7→ x ],Γ � {P ′}C {Q ′} we know that for all d1 ∈ D, s0 ∈ SC, σ0 , σ1 ∈ Σ

and x̄ ⊆ X with d1 'S (x̄ )(s0 +S s) and σ1 = σ0 ] σ that C, γ, d1 , σ1 6⇓  . More-

over, C, γ, d1 , σ1 ⇓ d2 , σ2 for some d2 ∈ D and σ2 ∈ Σ where d2 'S (x̄ )(s0 +S s ′),

σ2 = σ0 ]σ′ and (s ′, σ′) ∈ PJQ ′Ke[α 7→ x ]. Since x was chosen to be fresh, we know

that x#e, s , and so (s ′, σ′) ∈ PJ Nα.QKe, as required.
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Skip case:

Fix e ∈ Env. In this case C = skip and P = emp = Q . Suppose that e, γ � Γ ,

d1 ∈ D, s0 ∈ SC, σ0 ∈ Σ and x̄ ⊆ X such that d1 'S (x̄ )(s0 +S ∅). The operational

semantics states that skip, γ, d1 , σ0 ⇓ d1 , σ0 and since P = Q the result follows

trivially.

Seq case:

Fix e ∈ Env. In this case C = C1 ; C2 for some C1 ,C2 ∈ LCmd where

e,Γ � {P}C1 {R} and e,Γ � {R}C2 {Q} for some R, by the inductive hypothesis.

Suppose that e, γ � Γ , and that (s , σ) ∈ PJPKe. Also suppose that C, γ, d1 , σ1 ⇓ o

for some d1 ∈ D, σ1 ∈ Σ and o ∈ Out. The operational semantics requires that

C1 , γ, d1 , σ1 ⇓ d2 , σ2 and C2 , γ, d2 , σ2 ⇓ o for some d2 ∈ D and σ2 ∈ Σ .

Since e,Γ � {P}C1 {R} we know that for all d1 ∈ D, s0 ∈ SC, σ0 , σ1 ∈ Σ and

x̄ ⊆ X with d1 'S (x̄ )(s0 +S s) and σ1 = σ0 ] σ that C, γ, d1 , σ1 6⇓  . Moreover,

C, γ, d1 , σ1 ⇓ d2 , σ2 for some d2 ∈ D and σ2 ∈ Σ where d2 'S (x̄ )(s0 +S s ′),

σ2 = σ0 ] σ′ and (s ′, σ′) ∈ PJRKe.

Then, since e,Γ � {R}C2 {Q} we also know that for all d2 ∈ D, s0 ∈ SC, σ0 , σ2 ∈
Σ and x̄ ⊆ X with d2 'S (x̄ )(s0 +S s ′) and σ2 = σ0 ]σ that C, γ, d2 , σ2 6⇓  . More-

over, C, γ, d2 , σ2 ⇓ d3 , σ3 for some d3 ∈ D and σ3 ∈ Σ where d3 'S (x̄ )(s0 +S s ′′),

σ3 = σ0 ] σ′′ and (s ′′, σ′′) ∈ PJQKe, as required.

If case:

Fix e ∈ Env. In this case C = if B then C1 else C2 for some B ∈ BExpr,

C1 ,C2 ∈ LCmd and PJPKe ⊆ bsafe(B ) where e,Γ � {P ∧PJB K}C1 {Q} and e,Γ �

{P ∧ ¬PJB K}C2 {Q} by the induction hypothesis. Suppose that e, γ � Γ and that

(s , σ) ∈ PJPKe. Since PJPKe ⊆ bsafe(B ) we know that BJB Kσ is defined. Suppose

that C, γ, d1 , σ1 ⇓ o for some d1 ∈ D, σ1 ∈ Σ and o ∈ Out.

If BJB Kσ1 = true then the operational semantics requires that C1 , γ, d1 , σ1 ⇓ o.

Since e,Γ � {P ∧ PJB K}C1 {Q} we know that for all d1 ∈ D, s0 ∈ SC, σ0 , σ1 ∈ Σ

and x̄ ⊆ X with d1 'S (x̄ )(s0 +Ss) and σ1 = σ0]σ that C1 , γ, d1 , σ1 6⇓  . Moreover,

C1 , γ, d1 , σ1 ⇓ d2 , σ2 for some d2 ∈ D and σ2 ∈ Σ where d2 'S (x̄ )(s0 +S s ′),

σ2 = σ0 ] σ′ and (s ′, σ′) ∈ PJQKe as required.

If, instead, BJB Kσ1 = false then the operational semantics requires that C2 , γ, d1 , σ1 ⇓
o. Since e,Γ � {P ∧¬PJB K}C2 {Q} we know that for all d1 ∈ D, s0 ∈ SC, σ0 , σ1 ∈
Σ and x̄ ⊆ X with d1 'S (x̄ )(s0 +S s) and σ1 = σ0 ]σ that C2 , γ, d1 , σ1 6⇓  . More-

over, C2 , γ, d1 , σ1 ⇓ d2 , σ2 for some d2 ∈ D and σ2 ∈ Σ where d2 'S (x̄ )(s0 +S s ′),

σ2 = σ0 ] σ′ and (s ′, σ′) ∈ PJQKe as required.

120



While case:

Fix e ∈ Env. In this case C = while B do C′ for some B ∈ BExpr, C′ ∈ LCmd,

Q = P ∧ ¬PJB K and PJPKe ⊆ bsafe(B ) where e,Γ � {P ∧ PJB K}C′ {P} by the

inductive hypothesis. Suppose that e, γ � Γ and that (s , σ) ∈ PJPKe. Since

PJPKe ⊆ bsafe(B ) we know that BJB Kσ is defined.

Suppose that C, γ, d1 , σ1 ⇓ o for some d1 ∈ D, σ1 ∈ Σ and o ∈ Out. We need to

establish that o 6=  and o = d2 , σ2 with d2 'S (x̄ )(s0 +S s ′) and σ2 = σ0 ] σ′ for

some d2 ∈ D, σ0 , σ2 ∈ Σ , x̄ ⊆ X , s0 ∈ S and where (s ′, σ′) ∈ PJQKe. We proceed

by induction on the structure of derivation of the operational semantics.

If BJB Kσ1 = true then the operational semantics requires that C′ ; C, γ, d1 , σ1 ⇓ o.

Since e,Γ � {P ∧ PJB K}C′ {P} and (s , σ) ∈ PJP ∧ PJB KKe we know that for all

d1 ∈ D, s0 ∈ SC, σ0 , σ1 ∈ Σ and x̄ ⊆ X with d1 'S (x̄ )(s0 +S s) and σ1 = σ0 ] σ
that C′, γ, d1 , σ1 6⇓  . Moreover, C′, γ, d1 , σ1 ⇓ d ′1 , σ

′
1 for some d ′1 ∈ D and σ′1 ∈ Σ

where d ′1 'P (x̄ )(s0 +S s ′′), σ′1 = σ0 ] σ′′ and (s ′′, σ′′) ∈ PJPKe. Applying the

inductive hypothesis for this inner induction, we can conclude that o 6=  and

(s ′, σ′) ∈ PJQKe, as required.

If, instead, BJB Kσ1 = false then the operational semantics requires that o =

(d1 , σ1 ) and it follows that (s , σ) ∈ PJ(P ∧ ¬PJB K)Ke = PJQKe, as required.

Assgn case:

Fix e ∈ Env. In this case C = x := E for some x ∈ Var, E ∈ Expr, P =

x ⇀⇁ v ∗ σ and PJx ⇀⇁ v ∗ σKe ⊆ vsafe(E ) for some v ∈ Val and σ ∈ Σ and

Q = x⇀⇁ EJE Kσ[x 7→ v ] ∗ σ. Suppose that e, γ � Γ and (∅, σ[x 7→ v ]) ∈ PJPKe. By

the definition of vsafe there is some v ′ ∈ Val such that EJE Kσ[x 7→ v ] = v ′.

Now suppose that d1 ∈ D, s0 ∈ SC, σ0 , σ1 ∈ Σ and x̄ ⊆ X with d1 'S (x̄ )(s0 +S∅)
and σ1 = σ0 ] σ[x 7→ v ]. The operational semantics states that x := E , γ, d1 , σ1 ⇓
d1 , σ1 [x 7→ v ′] and hence we have (∅, σ[x 7→ v ′]) ∈ PJQKe, as required.

Local case:

Fix e ∈ Env. In this case C = local x in C′ for some x ∈ Var, C′ ∈ LCmd and

PJPKe ∩ vsafe(x) ≡ ∅ with e,Γ � {x ⇀⇁ − ∗ P}C′ {x ⇀⇁ − ∗ Q} by the inductive

hypothesis. Suppose that e, γ � Γ and (s , σ) ∈ PJPKe. By the definition of vsafe,

and since PJPKe ∩ vsafe(x) ≡ ∅, we know that (s , σ[x 7→ v ]) ∈ PJx ⇀⇁ − ∗ PKe for

every v ∈ Val and x 6∈ dom(σ).

Since e,Γ � {x ⇀⇁ − ∗ P}C′ {x ⇀⇁ − ∗ Q} we know that for all d1 ∈ D, s0 ∈ SC,

σ0 , σ1 ∈ Σ , and x̄ ⊆ X with d1 'S (x̄ )(s0 +S s) and σ1 = σ0 ] σ[x 7→ v ] that

121



C′, γ, d1 , σ1 6⇓  . Moreover, C′, γ, d1 , σ1 ⇓ d2 , σ2 for some d2 ∈ D and σ2 ∈ Σ where

d2 'S (x̄ )(s0 +S s ′), σ2 = σ0 ]σ′, x 6∈ dom(σ′) and (s ′, σ′[x 7→ w ]) ∈ PJx⇀⇁ −∗QKe
for some v ,w ∈ Val. It follows that (s ′, σ′) ∈ PJQKe, as required.

PDef case:

Fix e ∈ Env. In this case C = procs −→r1 := f1 (−→x1 ){C1}, ...,−→rk := fk(−→xk ){Ck} in C′,
Γ ′ makes no reference to any fi , and, for some Γ that refers only to the fi proce-

dures, e,Γ ′,Γ � {P}C′ {Q} and

∀(fi : Pi � Qi) ∈ Γ . e,Γ ′,Γ �

{
∃−→vi .Pi(

−→vi ) ∗ −→xi ⇀⇁
−→vi ∗ −→ri ⇀⇁ −

}
Ci{

∃−→wi .Qi(
−→wi ) ∗ −→xi ⇀⇁ − ∗ −→ri ⇀⇁

−→wi

}
by the inductive hypothesis. Suppose that e, γ � Γ ′, (s , σ) ∈ PJPKe and C, γ, d1 , σ1 ⇓
o for some d1 ∈ D, σ1 ∈ Σ and o ∈ Out. The operational semantics requires that

C′, [f1 7→ (−→x1 ,C1 ,
−→r1 ), ..., fk 7→ (−→xk ,Ck ,

−→rk )] : γ, d1 , σ1 ⇓ o.

By the semantic triples for the procedure bodies, and the fact that e, γ � Γ ′, it

must be the case that e, [f1 7→ (−→x1 ,C1 ,
−→r1 ), ..., fk 7→ (−→xk ,Ck ,

−→rk )] : γ � Γ ′,Γ . Since

e,Γ ′,Γ � {P}C′ {Q} we know that for all d1 ∈ D, s0 ∈ SC, σ0 , σ1 ∈ Σ and x̄ ⊆ X
with d1 'S (x̄ )(s0 +S s) and σ1 = σ0 ] σ that

C′, [f1 7→ (−→x1 ,C1 ,
−→r1 ), ..., fk 7→ (−→xk ,Ck ,

−→rk )] : γ, d1 , σ1 6⇓  .

Moreover,

C′[f1 7→ (−→x1 ,C1 ,
−→r1 ), ..., fk 7→ (−→xk ,Ck ,

−→rk )] : γ, d1 , σ1 ⇓ d2 , σ2

for some d2 ∈ D and σ2 ∈ Σ where d2 'S (x̄ )(s0 +S s ′), σ2 = σ0 ] σ′ and

(s ′, σ′) ∈ PJQKe, as required.

PCall case:

Fix e ∈ Env. In this case C = call −→r := f(
−→
E ) for some (f : P� Q) ∈ Γ and

where
P = {P(EJ−→E Kσ′′[−→r 7→ −→v ]) ∗ −→r ⇀⇁ −→v ∗ σ′′}

Q = {Q(−→w ) ∗ −→r ⇀⇁ −→w ∗ σ′′}
PJ−→r ⇀⇁ −→v ∗ σ′′Ke ⊆ vsafe(

−→
E )

Suppose e, γ � Γ , (s , σ) ∈ PJPKe and C, γ, d1 , σ1 ⇓ o for some d1 ∈ D, σ1 ∈ Σ
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and o ∈ Out. By definition of e, γ � Γ it must be that, for some −→x ,−→y ∈ Var∗,

C′ ∈ LCmd and γ′ ∈ PDef∗ with ((−→x ,C′,−→y ), γ′) = lookup(f, γ)

e, γ′ �

{
∃−→u .P(−→u ) ∗ −→x ⇀⇁ −→u ∗ −→y ⇀⇁ −

}
C′{

∃−→w .Q(−→w ) ∗ −→x ⇀⇁ − ∗ −→y ⇀⇁ −→w
} .

We now rule out the faulting cases of the call statement from Figure 4.2. Since

lookup(f, γ) is defined and has the correct type (enforced by the types of P and Q)

the first two faulting cases do not apply. By the vsafe condition, it follows that

EJ−→E Kσ′′[−→r 7→ −→v ] = −→u is defined, and so the third faulting case does not apply

either. If the fourth faulting case applied, then for some −→w

C′, γ′, d1 , σ1 [−→y 7→ −→w ][−→x 7→ −→u ] ⇓  .

However, this would violate the precondition that f has a valid specification in the

procedure definition environment, and so the fourth faulting case does not apply.

The fifth and final faulting case is ruled out by the fact that P is only satisfied by

a state where the return variables −→r are present in the variable store.

This leaves just the successful case, which requires that o = (d2 , σ2 ) for some

d2 ∈ D and σ2 ∈ Σ where σ2 = σ[−→r 7→ σ′(−→y )] for some σ′ such that

C′, γ′, d2 , ∅[−→y 7→ −→w ][−→x 7→ −→u ] ⇓ d2 , σ
′.

By our assumption that f has a valid specification in the procedure definition en-

vironment, it must be that d2 = (x̄ )(s0 +S s ′) for some x̄ ⊆ X , s0 , s
′ ∈ SC with

s ′ ∈ Q(σ′(−→y )). It follows that (s ′, σ[−→r 7→ σ′(−→y )]) ∈ PJQKe, as required.

PWeak case:

Fix e ∈ Env. In this case Γ = Γ1 ,Γ2 for some Γ1 ,Γ2 with e,Γ1 � {P}C {Q} by

the inductive hypothesis. Suppose that e, γ � Γ , then we also know that e, γ � Γ1

and so e, γ � {P}C {Q}, as required.
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5 Fine-grained Reasoning for

Program Modules

We have introduced a framework that provides fine-grained abstract reasoning for

programs. Our programming language is parametrised by the choice of basic com-

mands and our program state is parametrised by the choice of data structure that

these commands manipulate. The reason for this parametrisation is to be able to

apply our reasoning to different levels of abstraction.

We now consider a number of different abstractions such as trees, lists and heaps.

We show how our reasoning framework can be applied to these different data models

and how we use our framework to reason about client-level programs. In each case

we construct an abstract module that can be plugged into our general reasoning

framework.

5.1 Fine-grained Abstract Modules

A fine-grained abstract module is a collection of operations on some fine-grained

abstract state model. For example, a tree module typically provides operations for

traversing the tree structure, and adding, removing and moving nodes or subtrees;

a list module typically provides operations for adding, removing and querying list

elements; and similarly a heap module typically provides operations that allocate

and dispose blocks of heap cells, and that fetch and mutate values stored in heap

cells.

The programming language introduced in Chapter 4 can be instantiated for such

abstract modules by the choice of basic commands Cmd. Our reasoning framework

can be similarly instantiated for such abstract modules by the choice of the segment

algebra S(M, E) and the axiomatisation of the basic commands AxJ(·)K. Together,

these three parameters constitute the notion of a fine-grained abstract module in

our formalism.
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Definition 5.1 (Fine-grained Abstract Module). A fine-grained abstract module

A = (CmdA,S(MA, EA),AxJ(·)KA) consists of:

� a set of basic commands CmdA;

� a segment algebra S(MA, EA) = (SA, fa, fh,#,+S, comp);

� an axiomatisation for the basic commands

AxJ(·)KA : CmdA → P(PredA ×PredA),

where PredA is the set of predicates that are evaluated to sets of program

states in P(SA × Σ ).

Recall that variable stores σ ∈ Σ are finite partial functions σ : Var ⇀fin Val.

We have deliberately left the definition of the value set Val open ended so that

it can be tailored to different abstract modules. We will mention any assumptions

about the value set in the definition of each of our fine-grained abstract modules.

Notation: We denote the language determined by the abstract module A as LA.

We denote the axiomatic semantic judgement determined by the abstract module A
as `A. When the abstract module A can be inferred from context, the subscript A

may be dropped.

The concept of an abstract module was originally introduced in work on abstrac-

tion and refinement for local reasoning [28]. The main difference here is that we

choose to base our fine-grained abstract modules on segment algebras rather than

on context algebras. We have not made the basic commands of the module any more

fine-grained, in most cases they are the same modules as were introduced before.

It is our specifications and the resulting reasoning system that are fine-grained. By

using segment algebras we are able to give small axioms for all of our module basic

commands and we are also to derive small specifications for arbitrary programs that

use these commands.

We now give a number of examples of fine-grained abstract modules, including a

tree module (the original motivation for context logic [14]) and a heap module (the

basis of separation logic [47][70]). We also show that our approach is scalable to

more complex examples by considering a featherweight DOM module.
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5.2 Fine-grained Tree Module

Trees have been the most common example of abstract reasoning to date, so it should

be no surprise that the first abstract module we consider is one for manipulating

tree structures T = (CmdT,S(MT, {0}),AxJ(·)KT). Its commands consist of node-

relative traversal, node creation, subtree deletion and tree move (append). The tree

model consists of uniquely-labelled trees, where each label may only occur once in

any given tree, context or segment. This ensures that nodes in a tree are uniquely

addressable by their labels. It is therefore assumed that the set of tree labels, Id, is

contained within the value set, Val; that is, Id ⊆ Val.

We also need a constant value null, the null reference, to indicate the absence of

such a reference. We require that null 6∈ Id, so that it cannot be confused with a

valid node reference, and that null ∈ Val, so that it may be stored in variables. The

set Idnull
def
= Id ∪ {null} consists of all valid node references and the null reference.

Definition 5.2 (Tree Update Commands). The set of tree update commands CmdT

is defined as:

CmdT ::= n := getUp(E ) get parent

n := getLeft(E ) get left sibling

n := getRight(E ) get right sibling

n := getFirst(E ) get first child

n := getLast(E ) get last child

newNodeAfter(E ) node creation

deleteTree(E ) subtree deletion

appendChild(E , E ′) tree move

where n ∈ Var ranges over program variables and E ∈ Expr ranges over value

expressions.

The intuitive meaning of these commands, which will be realised by their ax-

iomatic semantics, is as follows:

� getUp(E ), getLeft(E ) and getRight(E ) retrieve, respectively, the identifier

of the immediate parent, left sibling and right sibling (if any) of the node

identified by E . Require that E identifies a node that exists or they fault;

� getFirst(E ) and getLast(E ) retrieve, respectively, the identifiers of the first

and last children (if any) of the node identified by E . Require that E identifies

a node that exists or they fault;
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� newNodeAfter(E ) creates a new node with a fresh identifier and no children,

which is inserted into the tree as the right sibling of the node identified by E .

Requires that E identifies a node that exists or it faults;

� deleteTree(E ) deletes the subtree rooted at the node identified by E . Re-

quires that E identifies a node that exists or it faults; and

� appendChild(E , E ′) removes the subtree rooted at the node identified by E ′

and reinserts it into the tree as the last child of the node identified by E .

Requires that E and E ′ identify nodes that exist, and that the node identified

by E ′ is not an ancestor of the node identified by E , or it faults.

We have already seen the tree segment algebra S(MT, {0}) in Example 3.58. In

this model the nodes that are assigned in the tree are the resources available to the

program. Node traversal and movement may only be performed on tree nodes that

are available to the program; node creation makes new tree nodes available; and

subtree deletion makes available tree nodes unavailable and clears their contents.

Definition 5.3 (Tree Axiomatisation). The tree axiomatisation

AxJ(·)KT : CmdT → P(PredT ×PredT)

is given in Figure 5.1 and Figure 5.2. Rather than using the form AxJϕKT = (P ,Q),

the axioms are given in the more traditional form of {P} ϕ {Q}.

Notation: Recall from § 4.2.2 that our predicates are parametrised by a multi-holed

context algebra and its context formulae. In particular, for the tree module, we use

tree(PT ) to describe a complete tree (a tree context that has no context holes). We

also lift the rooted tree shorthand dcte, from Definition 3.12, to predicates, writing

dPTe for Hα. (α�PT ).

Most of our axioms should be unsurprising, although many now have smaller spec-

ifications than was possible with context logic. In particular, we now have a genuine

small axiom for the appendChild command. The precondition of appendChild,

α�n[γ] ∗ β�m[tree(ct)] ∗ σ ∧ EJE Kσ = n ∧ EJE ′Kσ = m, does not refer to any ex-

tra context, but describes just the node n and subtree at m being affected by the

command and the variables need to evaluate the command’s parameters.
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{
α�m[β ⊗ w [δ]⊗ γ] ∗ n⇀⇁ n ∗ σ ∧ EJE Kσ[n 7→ n] = w

}
n := getUp(E ){

α�m[β ⊗ w [δ]⊗ γ] ∗ n⇀⇁ m ∗ σ
}

{
dw [β]e ∗ n⇀⇁ n ∗ σ ∧ EJE Kσ[n 7→ n] = w

}
n := getUp(E ){

dw [β]e ∗ n⇀⇁ null ∗ σ
}

{
α�m[β]⊗ w [γ] ∗ n⇀⇁ n ∗ σ ∧ EJE Kσ[n 7→ n] = w

}
n := getLeft(E ){

α�m[β]⊗ w [γ] ∗ n⇀⇁ m ∗ σ
}

{
α�m[w [β]⊗ γ] ∗ n⇀⇁ n ∗ σ ∧ EJE Kσ[n 7→ n] = w

}
n := getLeft(E ){

α�m[w [β]⊗ γ] ∗ n⇀⇁ null ∗ σ
}

{
α�w [β]⊗m[γ] ∗ n⇀⇁ n ∗ σ ∧ EJE Kσ[n 7→ n] = w

}
n := getRight(E ){

α�w [β]⊗m[γ] ∗ n⇀⇁ m ∗ σ
}

{
α�m[β ⊗ w [γ]] ∗ n⇀⇁ n ∗ σ ∧ EJE Kσ[n 7→ n] = w

}
n := getRight(E ){

α�m[β ⊗ w [γ]] ∗ n⇀⇁ null ∗ σ
}

{
α�w [m[β]⊗ γ] ∗ n⇀⇁ n ∗ σ ∧ EJE Kσ[n 7→ n] = w

}
n := getFirst(E ){

α�w [m[β]⊗ γ] ∗ n⇀⇁ m ∗ σ
}

{
α�w [∅] ∗ n⇀⇁ n ∗ σ ∧ EJE Kσ[n 7→ n] = w

}
n := getFirst(E ){

α�w [∅] ∗ n⇀⇁ null ∗ σ
}

{
α�w [β ⊗m[γ]] ∗ n⇀⇁ n ∗ σ ∧ EJE Kσ[n 7→ n] = w

}
n := getLast(E ){

α�w [β ⊗m[γ]] ∗ n⇀⇁ m ∗ σ
}

{
α�w [∅] ∗ n⇀⇁ n ∗ σ ∧ EJE Kσ[n 7→ n] = w

}
n := getLast(E ){

α�w [∅] ∗ n⇀⇁ null ∗ σ
}

Figure 5.1: Small axioms for the tree module look-up commands.
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{
α�w [β] ∗ σ ∧ EJE Kσ = w

}
newNodeAfter(E ){

∃m. α�w [β]⊗m[∅] ∗ σ
}

{
α�w [tree(ct)] ∗ σ ∧ EJE Kσ = w

}
deleteTree(E ){

α�∅ ∗ σ
}

{
α�n[γ] ∗ β�m[tree(ct)] ∗ σ ∧ EJE Kσ = n ∧ EJE ′Kσ = m

}
appendChild(E , E ′){

α�n[γ ⊗m[tree(ct)]] ∗ β�∅ ∗ σ
}

Figure 5.2: Small axioms for the tree module modification commands.

5.2.1 Tree Reasoning Examples

We now consider some example programs written using our tree module and show

how to reason about these programs in our reasoning framework.

Example 5.4 (Double Tree Deletion). The first example program we consider is

the delete2Trees program discussed in chapter 2.

delete2Trees(n, m) ::= deleteTree(n) ;

deleteTree(m)

With our old context-based style of reasoning we were not able to compositionally

build up a specification of the overall program from the specifications of the indi-

vidual deleteTree commands. However, with our new reasoning framework we can

build up the programs specification compositionally.{
α�n[tree(ct1 )] ∗ β�m[tree(ct2 )] ∗ n⇀⇁ n ∗ m⇀⇁ m

}
delete2Trees(n, m){

α�∅ ∗ β�∅ ∗ n⇀⇁ n ∗ m⇀⇁ m
}

This is illustrated by the proof sketch given in Figure 5.3. The key step in the proof

is the use of the separation frame rule to ignore the unused tree at each program

step. The uses of the frame rule in the proof sketch are denoted by indentation. In

the rest of our examples we will not be so explicit about the use of the frame rule,

often directly applying the axioms of our commands to larger states. Notice that the

precondition of the delete2Trees program is only valid for a program state where

the variables n and m contain identifiers for nodes with completely disjoint subtrees.
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{
α�n[tree(ct1 )] ∗ β�m[tree(ct2 )] ∗ n⇀⇁ n ∗ m⇀⇁ m

}{
α�n[tree(ct1 )] ∗ n⇀⇁ n

}
deleteTree(n) ;{
α�∅ ∗ n⇀⇁ n

}{
α�∅ ∗ β�m[tree(ct2 )] ∗ n⇀⇁ n ∗ m⇀⇁ m

}{
β�m[tree(ct2 )] ∗ m⇀⇁ m

}
deleteTree(m){
β�∅ ∗ m⇀⇁ m

}{
α�∅ ∗ β�∅ ∗ n⇀⇁ n ∗ m⇀⇁ m

}
Figure 5.3: Proof sketch for the delete2Trees program.

Example 5.5 (Node manipulation). Our new reasoning framework allows us to be

a great deal more local in our specifications than was possible before. This point is

illustrated by programs that only manipulate a small number of nodes, rather than

complete subtrees. Consider a program getNephew that returns the first child of a

node’s right sibling if it exists (or null if it does not).

n := getNephew(m) ::= n := getRight(m) ;

if n 6= null then

n := getFirst(n)

else

skip

The specification for the case where the command does not return null can be given

as follows: {
α�a[β]⊗ b[c ⊗ γ] ∗ n⇀⇁ v ∗ m⇀⇁ a

}
n := getNephew(m){

α�a[β]⊗ b[c ⊗ γ] ∗ n⇀⇁ c ∗ m⇀⇁ a
}

Notice that this specification does not need to make any mention of the children of

node a or of children besides the first of node b. The specification is constrained to

just those nodes which are being accessed by the program. This specification can

be built up from the definition of the program body as illustrated by the sketch

proof in Figure 5.4. In the cases where node a has no right sibling or node b has no

children, the command will instead return null. We could specify, and prove, these

cases in a similar fashion as above.
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{
α�a[β]⊗ b[c ⊗ γ] ∗ n⇀⇁ v ∗ m⇀⇁ a

}
n := getRight(m) ;{
α�a[β]⊗ b[c ⊗ γ] ∗ n⇀⇁ b ∗ m⇀⇁ a

}
if n 6= null then{

α�a[β]⊗ b[c ⊗ γ] ∗ n⇀⇁ b ∗ m⇀⇁ a
}

n := getFirst(n){
α�a[β]⊗ b[c ⊗ γ] ∗ n⇀⇁ c ∗ m⇀⇁ a

}
else{

false
}

skip{
α�a[β]⊗ b[c ⊗ γ] ∗ n⇀⇁ c ∗ m⇀⇁ a

}{
α�a[β]⊗ b[c ⊗ γ] ∗ n⇀⇁ c ∗ m⇀⇁ a

}
Figure 5.4: Proof sketch for the success case of the getNephew program.

Example 5.6 (Swapping Children). We can also specify more complex updates.

Consider a program childSwap which takes two nodes in the tree and swaps their

subtrees so long as they are disjoint (it will fault otherwise).

childSwap(n, m) ::= local x in

newNodeAfter(n) ;

x := getRight(n) ;

appendAll(n, x) ;

appendAll(m, n) ;

appendAll(x, m) ;

deleteTree(x)

This program uses a helper function appendAll which appends all of the children of

its first target node to its second target node. Again these nodes must have disjoint

subtrees or the program will fault.

appendAll(n, m) ::= local y in

y := getFirst(n) ;

while y 6= null do

appendChild(m, y) ;

y := getFirst(n)

We could specify the childSwap program as follows:{
α�n[tree(ct1 )] ∗ β�m[tree(ct2 )] ∗ n⇀⇁ n ∗ m⇀⇁ m

}
childSwap(n, m){

α�n[tree(ct2 )] ∗ β�m[tree(ct1 )] ∗ n⇀⇁ n ∗ m⇀⇁ m
}
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The proof sketch for this program is a little more complex than for those given

above due to the use of while loops in the helper function. We must first provide a

specification for the appendAll program.{
α�n[tree(ct1 )] ∗ β�m[tree(ct2 )] ∗ n⇀⇁ n ∗ m⇀⇁ m

}
appendAll(n, m){

α�n[∅] ∗ β�m[tree(ct2 )⊗ tree(ct1 )] ∗ n⇀⇁ n ∗ m⇀⇁ m
}

The proof sketch in Figure 5.5 shows that this specification holds for the appendAll

program. We need to construct a loop invariant for the while loop. This step is not

as straightforward as the other reasoning steps and requires a bit of thought. In this

case we choose the invariant to be,(
∃a, ct , ct ′, ct ′′. ct ⊗ a[ct ′]⊗ ct ′′ = ct1 ∧
α�n[tree(a[ct ′]⊗ ct ′′)] ∗ β�m[tree(ct2 ⊗ ct)] ∗ n⇀⇁ n ∗ m⇀⇁ m ∗ y⇀⇁ a

)
∨
(
α�n[∅] ∗ β�m[tree(ct2 ⊗ ct1 )]) ∗ n⇀⇁ n ∗ m⇀⇁ m ∗ y⇀⇁ null

)
The first disjunct covers the case where the subtree beneath node n is not empty and

there is still some work for the while loop to do. It also ensures that the trees a[ct ′],

ct ′′ and ct all combine to give the original subtree ct1 that was beneath node n.

The second disjunct covers the case where the subtree beneath node n is empty, and

hence the whole subtree has been moved. The next test of the while loop condition

will then return false. Note that when we enter the loop for the first time, either

ct1 = ∅ and we are in the second case or there is some choice of a[ct ′] and [ct ′′]

with ct = ∅ that puts us in the first case.

We can now go on to prove the overall childSwap program making use of our

derived specification for appendAll. The proof sketch can be found in Figure 5.6.
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{
α�n[tree(ct1 )] ∗ β�m[tree(ct2 )] ∗ n⇀⇁ n ∗ m⇀⇁ m

}
local y in{

α�n[tree(ct1 )] ∗ β�m[tree(ct2 )] ∗ n⇀⇁ n ∗ m⇀⇁ m ∗ y⇀⇁ −
}

y := getFirst(n) ;
(
∃a, ct , ct ′. a[ct ]⊗ ct ′ = ct1 ∧
α�n[tree(a[ct ]⊗ ct ′)] ∗ β�m[tree(ct2 )] ∗ n⇀⇁ n ∗ m⇀⇁ m ∗ y⇀⇁ a

)
∨
(
α�n[∅] ∗ β�m[tree(ct2 )]) ∗ n⇀⇁ n ∗ m⇀⇁ m ∗ y⇀⇁ null

)


(
∃a, ct , ct ′, ct ′′. ct ⊗ a[ct ′]⊗ ct ′′ = ct1 ∧
α�n[tree(a[ct ′]⊗ ct ′′)] ∗ β�m[tree(ct2 ⊗ ct)] ∗ n⇀⇁ n ∗ m⇀⇁ m ∗ y⇀⇁ a

)
∨
(
α�n[∅] ∗ β�m[tree(ct2 ⊗ ct1 )]) ∗ n⇀⇁ n ∗ m⇀⇁ m ∗ y⇀⇁ null

)


while y 6= null do{
∃a, ct , ct ′, ct ′′. ct ⊗ a[ct ′]⊗ ct ′′ = ct1 ∧
α�n[tree(a[ct ′]⊗ ct ′′)] ∗ β�m[tree(ct2 ⊗ ct)] ∗ n⇀⇁ n ∗ m⇀⇁ m ∗ y⇀⇁ a

}
appendChild(m, y) ;{
∃a, ct , ct ′, ct ′′. ct ⊗ a[ct ′]⊗ ct ′′ = ct1 ∧
α�n[tree(ct ′′)] ∗ β�m[tree(ct2 ⊗ ct ⊗ a[ct ′])] ∗ n⇀⇁ n ∗ m⇀⇁ m ∗ y⇀⇁ a

}
y := getFirst(n)
 ∃a, ct , ct ′, ct ′′. ct ⊗ a[ct ′]⊗ ct ′′ = ct1 ∧

α�n[tree(a[ct ′]⊗ ct ′′)] ∗ β�m[tree(ct2 ⊗ ct)]
∗ n⇀⇁ n ∗ m⇀⇁ m ∗ y⇀⇁ a


∨
(
α�n[∅] ∗ β�m[tree(ct2 ⊗ ct1 )]) ∗ n⇀⇁ n ∗ m⇀⇁ m ∗ y⇀⇁ null

)
{

α�n[∅] ∗ β�m[tree(ct2 ⊗ ct1 )]) ∗ n⇀⇁ n ∗ m⇀⇁ m ∗ y⇀⇁ null
}{

α�n[∅] ∗ β�m[tree(ct2 )⊗ tree(ct1 )] ∗ n⇀⇁ n ∗ m⇀⇁ m ∗ y⇀⇁ null
}{

α�n[∅] ∗ β�m[tree(ct2 )⊗ tree(ct1 )] ∗ n⇀⇁ n ∗ m⇀⇁ m
}

Figure 5.5: Proof sketch for the appendAll program.
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{
α�n[tree(ct1 )] ∗ β�m[tree(ct2 )] ∗ n⇀⇁ n ∗ m⇀⇁ m

}
local x in{

α�n[tree(ct1 )] ∗ β�m[tree(ct2 )] ∗ n⇀⇁ n ∗ m⇀⇁ m ∗ x⇀⇁ −
}

newNodeAfter(n) ;{
∃a. α�n[tree(ct1 )]⊗ a[∅] ∗ β�m[tree(ct2 )] ∗ n⇀⇁ n ∗ m⇀⇁ m ∗ x⇀⇁ −

}
x := getRight(n) ;{
∃a. α�n[tree(ct1 )]⊗ a[∅] ∗ β�m[tree(ct2 )] ∗ n⇀⇁ n ∗ m⇀⇁ m ∗ x⇀⇁ a

}
appendAll(n, x) ;{
∃a. α�n[∅]⊗ a[tree(ct1 )] ∗ β�m[tree(ct2 )] ∗ n⇀⇁ n ∗ m⇀⇁ m ∗ x⇀⇁ a

}
appendAll(m, n) ;{
∃a. α�n[tree(ct2 )]⊗ a[tree(ct1 )] ∗ β�m[∅] ∗ n⇀⇁ n ∗ m⇀⇁ m ∗ x⇀⇁ a

}
appendAll(x, m) ;{
∃a. α�n[tree(ct2 )]⊗ a[∅] ∗ β�m[tree(ct1 )] ∗ n⇀⇁ n ∗ m⇀⇁ m ∗ x⇀⇁ a

}
deleteTree(x){
∃a. α�n[tree(ct2 )] ∗ β�m[tree(ct1 )] ∗ n⇀⇁ n ∗ m⇀⇁ m ∗ x⇀⇁ a

}{
α�n[tree(ct2 )] ∗ β�m[tree(ct1 )] ∗ n⇀⇁ n ∗ m⇀⇁ m

}
Figure 5.6: Proof sketch for the childSwap program.

5.3 Fine-grained List Module

Next we consider the list module L = (CmdL,S(ML, EAdr),AxJ(·)KL) which is a

somewhat more exotic example of an abstract module. The list module provides an

addressable set of lists of unique elements which we call a list-store. Each list can

be manipulated independently in a number of ways, new lists can be constructed

and existing lists can be deleted. Later, in chapter 6, we will see that this module

can be used as part of an implementation of the tree module considered above. In

particular, we will store a tree node’s children in a list from this module.

It is assumed that the set of list addresses, Adr, is contained within the value set,

Val; that is, Adr ⊆ Val. We also need a constant value null, the null reference,

for use in situations where a list address or list value does not occur, to indicate the

absence of such a value. We require that null 6∈ Adr, so that it cannot be confused

with a valid list address, and that null ∈ Val, so that it may be stored in variables.

The set Adrnull
def
= Adr ∪ {null} consists of all valid list addresses and the null

reference.

Definition 5.7 (List Update Commands). The set of list update commands CmdL
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is defined as:

CmdL ::= x := getHead(E ) get first value

x := getTail(E ) get last value

x := getNext(E , E ′) get next value

x := getPrev(E , E ′) get previous value

x := pop(E ) stack-style pop

push(E , E ′) stack-style push

remove(E , E’ ) value removal

insert(E , E ′, E ′′) value insertion

x := newList() list creation

deleteList(E ) list deletion

where x ∈ Var ranges over program variables and E , E ′, ... ∈ Expr range over value

expressions.

The intuitive meaning of these commands, which will be realised by their ax-

iomatic semantics, is as follows:

� getHead(E ) and getTail(E ) retrieve, respectively, the first and last elements

(if any) of the list identified by E . Require that E identifies a list that exists

or they fault;

� getNext(E , E ′) and getPrev(E , E ′) retrieve, respectively, the elements (if any)

following and preceding the element E ′ in the list identified by E . Require

that E identifies a list that exists and that E ′ identifies an element in the list

identified by E or they fault;

� pop(E ) retrieves and removes the first element of the list identified by E (if

the list is empty it simply returns null). Requires that E identifies a list that

exists or it faults;

� push(E , E ′) adds the element E ′ to the start of the list identified by E . Requires

that E identifies a list that exists and that E ′ identifies an element that is not

in the list identified by E or it faults;

� remove(E , E ′) removes the element E ′ from the list identified by E . Requires

that E identifies a list that exists and that E ′ identifies an element in the list

identified by E or it faults;

� insert(E , E ′, E ′′) inserts the element E ′′ immediately following E ′ in the list

identified by E . Requires that E identifies a list that exists, that E ′ identifies
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an element in the list identified by E , and that E ′′ identifies an element that

is not in the list identified by E or it faults;

� newList() creates a new list, initially empty, and returns its address; and

� deleteList(E ) deletes the list identified by E . Requires that E identifies a

list that exists or it faults.

We require that elements occur at most once in any given list. Thus getNext,

getPrev and insert are unambiguous and push and insert fault if they are used

to attempt to insert elements that are already present in the list.

We gave a list segment algebra in Example 3.59. However, this segment algebra

only described properties of a single list. List-stores are similar to heaps in the

sense that they are finite maps from addresses to values, except that now the values

have intrinsic structure: they are lists of unique elements. We introduce a list-store

segment algebra that can model such structures.

List-Store Segment Algebra

Recall the multi-holed list context algebra ML = (LVal,X,X, fhL,#L, •) from Ex-

ample 3.38. These contexts can only be used to model a single list. To enable us to

model multiple lists we add annotations for list addresses to our labels. That is, we

work with labels xi ∈ XAdr where x ∈ X and i ∈ Adr. The intuition is that a hole

xi can only occur within the corresponding list i . We also extend our definition of

a list context cl to require that each value is unique in the list context.

We then use these modified label set and list context set to define the multi-holed

unique-valued list context algebra ML = (LVal,XAdr ,XAdr, fhL,#L, •) where,

� the set of multi-holed unique-valued list contexts LVal,XAdr , ranged over by cl ,

cl1 , ..., is defined inductively as:

cl ::= ε | xi | u | cl : cl

with the restriction that each value u ∈ Val and each hole label x ∈ XAdr

occur at most once in a list context cl and the assumption that : is associative

with identity ε (the empty list).

� the free holes function

fhL : LVal,XAdr → Pfin(XAdr)
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is defined by induction on the structure of multi-holed unique-valued list con-

texts as:
fhL(ε)

def
= ∅

fhL(xi)
def
= {xi}

fhL(u)
def
= ∅

fhL(cl1 : cl2 )
def
= fhL(cl1 ) ∪ fhL(cl2 )

� the non-conflicting unique-valued list context function

#L: LVal,XAdr × LVal,XAdr → Bool

is defined as:

cl1 #L cl2 ⇔ fhL(cl1 ) ∩ fhL(cl2 ) = ∅ ∧ fvL(cl1 ) ∩ fvL(cl2 ) = ∅

where the free values function fvL : LVal,XAdr → Pfin(Val) is defined by induc-

tion on the structure of multi-holed unique-valued list contexts as:

fvL(ε)
def
= ∅

fvL(xi)
def
= ∅

fvL(u)
def
= {u}

fvL(cl1 : cl2 )
def
= fvL(cl1 ) ∪ fvL(cl2 )

� the context composition operator

• : X× LVal,XAdr × LVal,XAdr ⇀ LVal,XAdr

is defined by induction on the structure of multi-holed unique-valued list con-

texts as:

ε •xi cl
def
= undefined

yj •xi cl
def
=

{
cl if yj = xi

undefined otherwise

u •xi cl
def
= undefined

(cl1 : cl2 ) •xi cl
def
=


(cl1 •xi cl) : cl2 if xi ∈ fhL(cl1 ) and cl #L cl2

cl1 : (cl2 •xi cl) if xi ∈ fhL(cl2 ) and cl #L cl1

undefined otherwise

Notation: We write l , l ′, ... for list contexts with no contexts holes.
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We now model the list store using a segment algebra. Informally, list-stores seg-

ments consist of sets of labelled unique-valued list contexts. These labels can either

be some xi ∈ XAdr, corresponding to some piece of the list at address i , or the

special label 0i , used to indicate that a list context is rooted. A rooted list context,

as before, cannot be extended to the left or right. We define the set of empty labels

to be EAdr = {0i | i ∈ Adr}, where 0 6∈ X. The list-store segment algebra is then

defined as S(ML, EAdr) = (SL, fa, fh,#,+S, comp).

It is necessary to include complete lists in our model in order to specify a number

of the update and lookup commands on lists. For example, getHead returns the

first item in a list. Given the partial list-store segment xi�(u1 : u2 ), it is not clear

that u1 is the first element of the list. Indeed, if the list-store segment also contains

zi�(u0 : xi) then u1 is certainly not the first element of list i . However, given the

rooted list-store segment 0i�(u1 : u2 ) it is certain that u1 is the first element of list i .

We use segment combination to talk about properties of different lists.

0i�cl +S 0j�cl ′

Compression is then used to join together and break apart pieces of the same list.

comp(xi , zi�(u1 : xi) + xi�(u2 : u3 )) = zi�(u1 : u2 : u3 )

The segment model allows us to interleave these two types of composition so that

we can describe arbitrary parts of the list-store structure.

Notation: We write i Z⇒ [ cl ] as shorthand for 0i�cl .

Definition 5.8 (List Axiomatisation). The list axiomatisation

AxJ(·)KL : CmdL → P(PredL ×PredL)

is given in Figure 5.7 and Figure 5.8.

Notation: We lift the shorthand i Z⇒ [ cl ] to predicates, writing i Z⇒ [ PL ] for

Hαi . (αi�PL).

The axioms for the basic commands of the list module describe just the state that

is required or modified by the command. For example, the getHead command either

needs to know which node is at the head of the list, or that the list is empty. In
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the first case it does not need any information about the rest of the list. Similarly,

the getNext command only needs to know about the target list element and either

the next element in the list or that the target node is at the end of the list. Slightly

more complicated are the commands insert and push, which add nodes to a list. In

order to be sure that the element to be added is not already in the list, the axioms

needs to include the whole of the list in the precondition.

5.3.1 List Reasoning Examples

Reasoning about programs written in the list module is very similar to reasoning

about programs written in the tree module. We shall cover one example here to

illustrate the similarities in the reasoning.

Example 5.9 (List reversal). One of the most common examples of list reasoning

in the literature is that of list reversal. Here we consider a program that takes a list

and returns a new list which contains all of the contents of the old list in the reverse

order.
x := listReverse(i) ::= local y in

x := newList() ;

y := pop(i) ;

while y 6= null do

push(x, y) ;

y := pop(i)

deleteList(i)

We can specify this program as follows:{
i Z⇒ [ l ] ∗ x⇀⇁ − ∗ i⇀⇁ i

}
x := listReverse(i){

∃j . j Z⇒ [ l � ] ∗ x⇀⇁ j ∗ i⇀⇁ i
}

where we write l � for the reflection of list l . For example, (a : b : c)� = (c : b : a).

This specification is derived from the specification of the body of the program as

shown in Figure 5.9.

There are many other common programming patterns for list usage and using

similar techniques we could also provide their specifications.
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{
i Z⇒ [ u : βi ] ∗ x⇀⇁ v ∗ σ ∧ EJE Kσ[x 7→ v ] = i

}
x := getHead(E ){

i Z⇒ [ u : βi ] ∗ x⇀⇁ u ∗ σ
}

{
i Z⇒ [ ε ] ∗ x⇀⇁ v ∗ σ ∧ EJE Kσ[x 7→ v ] = i

}
x := getHead(E ){

i Z⇒ [ ε ] ∗ v⇀⇁ null ∗ σ
}

{
i Z⇒ [ βi : u ] ∗ x⇀⇁ v ∗ σ ∧ EJE Kσ[x 7→ v ] = i

}
x := getTail(E ){

i Z⇒ [ βi : u ] ∗ x⇀⇁ u ∗ σ
}

{
i Z⇒ [ ε ] ∗ x⇀⇁ v ∗ σ ∧ EJE Kσ[x 7→ v ] = i

}
x := getTail(E ){

i Z⇒ [ ε ] ∗ x⇀⇁ null ∗ σ
}

{
αi�(w : u) ∗ x⇀⇁ v ∗ σ ∧ EJE Kσ[x 7→ v ] = i ∧ EJE ′Kσ[x 7→ v ] = w

}
x := getNext(E , E ′){

αi�(w : u) ∗ x⇀⇁ u ∗ σ
}

{
i Z⇒ [ βi : w ] ∗ x⇀⇁ v ∗ σ ∧ EJE Kσ[x 7→ v ] = i ∧ EJE ′Kσ[x 7→ v ] = w

}
x := getNext(E , E ′){

i Z⇒ [ βi : w ] ∗ x⇀⇁ null ∗ σ
}

{
αi�(u : w) ∗ x⇀⇁ v ∗ σ ∧ EJE Kσ[x 7→ v ] = i ∧ EJE ′Kσ[x 7→ v ] = w

}
x := getPrev(E , E ′){

αi�(u : w) ∗ x⇀⇁ u ∗ σ
}

{
i Z⇒ [ w : βi ] ∗ x⇀⇁ v ∗ σ ∧ EJE Kσ[x 7→ v ] = i ∧ EJE ′Kσ[x 7→ v ] = w

}
x := getPrev(E , E ′){

i Z⇒ [ w : βi ] ∗ x⇀⇁ null ∗ σ
}

Figure 5.7: Small axioms for the list module look-up commands.
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{
i Z⇒ [ u : βi ] ∗ x⇀⇁ v ∗ σ ∧ EJE Kσ[x 7→ v ] = i

}
x := pop(E ){

i Z⇒ [ βi ] ∗ x⇀⇁ u ∗ σ
}

{
i Z⇒ [ ε ] ∗ x⇀⇁ v ∗ σ ∧ EJE Kσ[x 7→ v ] = i

}
x := pop(E ){

i Z⇒ [ ε ] ∗ x⇀⇁ null ∗ σ
}

{
i Z⇒ [ l ] ∗ σ ∧ v 6∈ l ∧ EJE Kσ = i ∧ EJE ′Kσ = v

}
push(E , E ′){

i Z⇒ [ v : l ] ∗ σ
}

{
αi�v ∗ σ ∧ EJE Kσ = i ∧ EJE ′Kσ = v

}
remove(E , E ′){
αi�ε ∗ σ

}
{

i Z⇒ [ l : v : l ′ ] ∗ σ ∧ (u 6∈ l + v + l ′) ∧ EJE Kσ = i ∧ EJE ′Kσ = v ∧ EJE ′′Kσ = u
}

insert(E , E ′, E ′′){
i Z⇒ [ l : v : u : l ′ ] ∗ σ

}
{
x⇀⇁ −

}
x := newList(){
∃i . i Z⇒ [ ε ] ∗ x⇀⇁ i

}
{

i Z⇒ [ l ] ∗ σ ∧ EJE Kσ = i
}

deleteList(E ){
σ
}

Figure 5.8: Small axioms for the list module modification commands.
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{
i Z⇒ [ l ] ∗ x⇀⇁ − ∗ i⇀⇁ i

}
local y in{

i Z⇒ [ l ] ∗ x⇀⇁ − ∗ i⇀⇁ i ∗ y⇀⇁ −
}

x := newList() ;{
∃j . i Z⇒ [ l ] ∗ j Z⇒ [ ε ] ∗ x⇀⇁ j ∗ i⇀⇁ i ∗ y⇀⇁ −

}
y := pop(i) ;{

(∃a, l ′, j . i Z⇒ [ l ′ ] ∗ j Z⇒ [ ε ] ∗ x⇀⇁ j ∗ i⇀⇁ i ∗ y⇀⇁ a ∧ a : l ′ = l)
∨ (∃j . i Z⇒ [ ε ] ∗ j Z⇒ [ ε ] ∗ x⇀⇁ j ∗ i⇀⇁ i ∗ y⇀⇁ null)

}
{ (
∃a, l ′, l ′′, j . i Z⇒ [ l ′ ] ∗ j Z⇒ [ l ′′ ] ∗ x⇀⇁ j ∗ i⇀⇁ i ∗ y⇀⇁ a ∧ l ′′� : a : l ′ = l

)
∨
(
∃j . i Z⇒ [ ε ] ∗ j Z⇒ [ l � ] ∗ x⇀⇁ j ∗ i⇀⇁ i ∗ y⇀⇁ null

) }
while y 6= null do{
∃a, l ′, l ′′, j . i Z⇒ [ l ′ ] ∗ j Z⇒ [ l ′′ ] ∗ x⇀⇁ j ∗ i⇀⇁ i ∗ y⇀⇁ a ∗ σ ∧ l ′′� : a : l ′ = l

}
push(x, y) ;{
∃a, l ′, l ′′, j . i Z⇒ [ l ′ ] ∗ j Z⇒ [ a + l ′′ ] ∗ x⇀⇁ j ∗ i⇀⇁ i ∗ y⇀⇁ a ∧ l ′′� : a : l ′ = l

}
y := pop(i){ (
∃a, l ′, l ′′, j . i Z⇒ [ l ′ ] ∗ j Z⇒ [ l ′′ ] ∗ x⇀⇁ j ∗ i⇀⇁ i ∗ y⇀⇁ a ∧ l ′′� : a : l ′ = l

)
∨
(
∃j . i Z⇒ [ ε ] ∗ j Z⇒ [ l � ] ∗ x⇀⇁ j ∗ i⇀⇁ i ∗ y⇀⇁ null

) }
{
∃j . i Z⇒ [ ε ] ∗ j Z⇒ [ l � ] ∗ x⇀⇁ j ∗ i⇀⇁ i ∗ y⇀⇁ null

}
deleteList(i){
∃j . j Z⇒ [ l � ] ∗ x⇀⇁ j ∗ i⇀⇁ i ∗ y⇀⇁ null

}{
∃j . j Z⇒ [ l � ] ∗ x⇀⇁ j ∗ i⇀⇁ i

}
Figure 5.9: Proof sketch for the listReverse program.
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5.4 Fine-grained Heap Module

Those familiar with separation logic will probably be used to thinking about heap

modules. We consider a fine-grained heap module, H = (CmdH,S(MH, EN),AxJ(·)KH)

in our reasoning framework. Its commands consist of the usual heap allocation, dis-

posal, mutation and lookup. Heaps are often thought of as finite partial functions

from heap addresses (Adr) to values (Val). The address set is assumed to be

the positive integers, i.e. Adr = Z+, which is contained within the value set,

i.e. Adr ⊆ Val. This enables program variables and heap cells to hold pointers

to other heap cells and arithmetic operations to be performed on heap addresses

(pointer arithmetic). Again, we work with the address set Adrnull
def
= Adr ∪ {null}

consisting of all valid addresses plus the null reference.

Definition 5.10 (Heap Update Commands). The set of heap update commands

CmdH is defined as:

CmdH ::= x := alloc(E ) allocation

dispose(E , E ′) disposal

[E ] := E ′ mutation

x := [E ] lookup

where x ∈ Var ranges over program variables and E , E ′ ∈ Expr range over value

expressions.

The intuitive meaning of these commands, which will be realised by their ax-

iomatics semantics, is as follows:

� x := alloc(E ) allocates a contiguous block of cells in the heap of length E ,

returning the address of the first cell in x. Requires that E evaluates to a

positive integer or it faults;

� dispose(E , E ′) deallocates a contiguous block of cells in the heap at address E

of length E ′. Requires that all cells in the range E to E + E ′ exist or it faults;

� [E ] := E ′ stores the value E ′ in the heap cell at address E . Requires that E

identifies a cell that exists or it faults; and

� x := [E ] loads the contents of the heap cell at address E into x. Requires that

E identifies a cell that exists or it faults.
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We have already seen the heap segment algebra S(MH, EN) in Example 3.60. In

this model the cells that have values specified in the heap are the resources available

to the program. Loads and stores can only be performed on heap cells that are

available to the program; allocation makes new heap cells available; and deallocation

makes available heap cells unavailable.

As discussed in Example 3.39, addresses and hole labels are used to track the

parts of the heap when we break them apart. This gives us a way of logically identi-

fying arbitrary portions of the heap. Due to the associativity and commutativity of

disjoint heap union, heaps can be considered to have an arbitrary hole at their end.

This uniformity of the structure is what allows separation logic to work without

tracking labels. However, we choose to be more explicit with these labels so that all

of our data structures are defined in a uniform style.

Recall, from Example 3.60, that we can choose to store each heap cell in a rooted

context. Making such a choice, our segment logic reasoning closely resembles the

corresponding separation logic reasoning. In particular, our small axioms for the

basic heap update commands should look very similar to the analogous separation

logic small axioms.

Definition 5.11 (Heap Axiomatisation). The heap axiomatisation

AxJ(·)KH : CmdH → P(PredH ×PredH)

is given in Figure 5.10.

Notation: We lift the shorthand dche to predicates, writing dPH e for Hα. (α�PH ).

Note that we could use a similar treatment as for heaps above to model the

variable store as a segment algebra. This would allow us to reason about regions in

the variable store. However, we have not found a need to think about the variable

store in this way. The variable store is also the only component that is the same in

each of our program modules, so we have chosen to work with a simplified model.

5.4.1 Heap Reasoning Examples

Even though we have a more complex model, our heap reasoning still closely resem-

bles that of separation logic. We give a couple of simple examples that illustrate this.

Notation: We make use of the standard binary cons cell notation dx 7→ a,be which

stands for dx 7→ ae ∗ dx + 1 7→ be.
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{
x⇀⇁ v ∗ σ ∧ w ≥ 1 ∧ EJE Kσ[x 7→ v ] = w

}
x := alloc(E ){

∃y . dy 7→ −e ∗ ... ∗ dy + w 7→ −e ∗ x⇀⇁ y ∗ σ
}

{
dw 7→ −e ∗ ... ∗ dw + v 7→ −e ∗ σ ∧ EJE Kσ = w ∧ EJE ′Kσ = v

}
dispose(E , E ′){

σ
}

{
dw 7→ −e ∗ σ ∧ EJE Kσ = w ∧ EJE ′Kσ = v

}
[E ] := E ′{
dw 7→ ve ∗ σ

}
{
dw 7→ ye ∗ x⇀⇁ v ∗ σ ∧ EJE Kσ[x 7→ v ] = w

}
x := [E ]{

dw 7→ ye ∗ x⇀⇁ y ∗ σ
}

Figure 5.10: Small axioms for the heap module.

Example 5.12 (Simple Heap Update). As a simple illustration of heap reasoning,

consider the following heap update program that uses allocation and mutation to

construct a two-element cyclic structure containing relative addresses:

smallList(x, y) ::= x := alloc(2 ) ;

y := alloc(2 ) ;

[x + 1 ] := y− x ;

[y + 1 ] := x− y ;

The behaviour of the smallList program can be specified as follows:{
x⇀⇁ − ∗ y⇀⇁ −

}
smallList(x, y){

∃x , o. dx 7→ −,oe ∗ d(x + o) 7→ −,(−o)e ∗ x⇀⇁ x ∗ y⇀⇁ (x + o)
}

The proof sketch in Figure 5.11 shows that this specification does indeed hold for

the smallList program.

Example 5.13 (Abstract Predicates). Our fine-grained abstract reasoning system

still permits the use of abstract predicates. Consider the following program for
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{
x⇀⇁ − ∗ y⇀⇁ −

}
x := alloc(2) ;{
∃x . dx 7→ −,−e ∗ x⇀⇁ x ∗ y⇀⇁ −

}
y := alloc(2) ;{
∃x , y . dx 7→ −,−e ∗ dy 7→ −,−e ∗ x⇀⇁ x ∗ y⇀⇁ y

}
[x + 1 ] := y− x ;{
∃x , y . dx 7→ −,(y − x )e ∗ dy 7→ −,−e ∗ x⇀⇁ x ∗ y⇀⇁ y

}
[y + 1 ] := x− y ;{
∃x , y . dx 7→ −,(y − x )e ∗ dy 7→ −,(x − y)e ∗ x⇀⇁ x ∗ y⇀⇁ y

}{
∃x , o. dx 7→ −,oe ∗ d(x + o) 7→ −,(−o)e ∗ x⇀⇁ x ∗ y⇀⇁ (x + o)

}
Figure 5.11: Proof sketch for the smallList program.

recursively deleting a singly-linked list:

delList(x) ::= local y in

if x 6= null then

y := [x + 1 ] ;

dispose(x, 2 ) ;

delList(y)

else skip

We can specify the behaviour of this program in terms of an abstract list predicate

list(i) which is defined as:

list(i)
def
= (i = null ∧ emp) ∨ (∃j . di 7→ −,j e ∗ list(j ))

This abstract predicate describes a list of binary cons cells in memory, with arbitrary

contents in their first cell. The specification for the delList program can then be

given as: {
list(i) ∗ x⇀⇁ i

}
delList(x){

x⇀⇁ i
}

Assuming that this specification holds for the recursive call, Figure 5.12 shows that

this specification holds for the whole program. Notice how the abstract predicate is

unfolded by one step at each pass through the recursive call. The base case of the

induction is covered by the else branch of the if-then-else statement. The other

branch of the if-then-else statement covers the inductive step.
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{
list(i) ∗ x⇀⇁ i

}
local y in{

list(i) ∗ x⇀⇁ i ∗ y⇀⇁ −
}{

(i = null ∧ emp) ∨ (∃j . di 7→ −,j e ∗ list(j )) ∗ x⇀⇁ i ∗ y⇀⇁ −
}

if x 6= null then{
∃j . di 7→ −,j e ∗ list(j ) ∗ x⇀⇁ i ∗ y⇀⇁ −

}
y := [x + 1 ] ;{
∃j . di 7→ −,j e ∗ list(j ) ∗ x⇀⇁ i ∗ y⇀⇁ j

}
dispose(x, 2 ) ;{
∃j . list(j ) ∗ x⇀⇁ i ∗ y⇀⇁ j

}
delList(y){
∃j . x⇀⇁ i ∗ y⇀⇁ j

}{
x⇀⇁ i ∗ y⇀⇁ −

}
else{

i = null ∧ emp ∗ x⇀⇁ i ∗ y⇀⇁ −
}

skip{
i = null ∧ emp ∗ x⇀⇁ i ∗ y⇀⇁ −

}{
x⇀⇁ i ∗ y⇀⇁ −

}{
x⇀⇁ i ∗ y⇀⇁ −

}{
x⇀⇁ i

}
Figure 5.12: Proof sketch for the delList program.
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5.5 Fine-grained DOM Module

Probably the most notable use of abstract local reasoning to date has been the formal

specification of the W3C Document Object Model (or DOM). In joint work with

Gardner, Smith and Zarfaty [36][37], we identified and formally specified a core

subset of the DOM commands for manipulating the tree-like structure of DOM.

However, as mentioned before, we were not able to provide a small axiom for the

appendChild command.

Having developed a fine-grained abstract local reasoning system, it would seem

pertinent to return to DOM which motivated this work in the first place. In our

previous work on DOM we chose to focus on a minimal subset of the DOM Core Level

1 tree update commands. In his thesis [71] Smith extended our work to cover all of

DOM Core Level 1. In this section we provide an abstract module for featherweight

DOM D = (CmdD,S(MD, EN),AxJ(·)KD). This work could be extended to cover all

of DOM Core Level 1 using similar techniques to those in Smith’s thesis.

The data structure presented in the DOM specification [75] is significantly more

complex than that of a simple tree structure. In our previous work on providing a

formal specification for the DOM specification [37], we made the decision to focus on

the basic XML tree structure of the DOM specification, with simple text content.

Our abstract data structure consisted of trees, forests, groves and strings. Trees

t corresponded to part of the Node interface. Forests f were lists of trees and

corresponded to sub-collections of the NodeList interface. Complete forests [f ]fid

with identifier fid corresponded directly to the NodeList interface. Groves g were

sets of rooted trees and corresponded to the object store in which Nodes exist.

Strings str corresponded to the DOMString type from the DOM specification.

The DOM specification updates data in place. This means that we must be

able to refer to sub-data directly. Each node and child list must therefore have

a unique identifier which can be directly referenced by programs through program

variables. We assume we have a countable infinite set of identifiers Id and a finite

set Ch = {a, b, c, ...} of text characters with a distinguished character #. We assume

that expressions are extended to include string expressions SExpr ranged over by

S , S 1 , etc, and also that program variables are able to store strings. As with trees,

we work with the identifier set Idnull
def
= Id ∪ {null} consisting of all valid identifiers

and the null reference.

The featherweight DOM module represents the essence of the Node view of the

DOM API with a minimal and sufficient set of update commands. We present the

library in an imperative fashion, abandoning object orientated notation, to simplify
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the presentation and reuse our existing fine-grained abstract reasoning framework.

Each method of the Node interface is, therefore, specified as an imperative command

over the working grove. For example, the method call E .appendChild(E ′) from the

DOM specification becomes the command appendChild(E , E ′) in our module.

We are only interested in the read-only properties of DOM nodes (the node’s

name and the relationships with other nodes), so we represent each of these with

a get command. For example, the E .parentNode attribute is represented by the

getParentNode(E ) command. If we wanted to consider attributes that were not

read only these would be represented by a pair of get and set commands, with the

set commands defined in a similar fashion.

We omit some of the Node interface attributes and methods either because they

are not concerned with the tree or text structure, or because they are redun-

dant and may be expressed as the composition of other commands. For example,

insertBefore can be implemented in terms of iterated appendChild.

In the DOM module the removeChild(E , E ′) command does not delete the tree at

E′, it just moves it to the root level of the grove. It is not possible to a delete a tree

from the grove in Featherweight DOM. Instead, it is natural to think of programs

written in Featherweight DOM as being garbage collected programs. This follows the

DOM specification, which deliberately declines to specify any destructive memory

management methods in order to leave open the question of whether memory should

be managed manually or be garbage collected. This choice is one of several that

ensure that the DOM specification remains implementation independent. One could

easily extend Featherweight DOM with destructive memory management commands

if one wanted to reason about such a module.

Finally, we observe that neither the Node or NodeList interface provides a means

of creating new nodes in the grove. However, the Document interface provides does

provide the commands createElement and createTextNode with this functional-

ity. We do not want to consider the full complexity of the Document interface

and Element nodes, so we choose to add two new commands, createNode(S ) and

createTextNode(S ), to featherweight DOM. These allow us to create new nodes

and new text nodes respectively.

Definition 5.14 (Featherweight DOM Update Commands). The set of feather-
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weight DOM update commands CmdD is defined as:

CmdD ::= x := createNode(S ) new element node

x := getNodeName(E ) get node name

x := getParentNode(E ) get parent node

x := getChildNodes(E ) get children

x := item(E , E ′) get forest element

appendChild(E , E ′) append tree

removeChild(E , E ′) remove tree

x := createTextNode(S ) new text node

x := substringData(E , E ′, E ′′) get substring

appendData(E , S ) append string

deleteData(E , E ′, E ′′) erase substring

The command names are chosen to match those of the existing DOM specifica-

tion [75]. The intuitive meaning of these commands, which will be realised by their

axiomatic semantics, is as follows:

� x := createNode(S ) creates a new element node at the root level of the grove,

with its nodeName set to S , fresh node identifier i and fresh forest identifier

j , and assigns this identifier i to the program variable x. Requires that S is a

valid element name (S does not contain the # character).

� x := getNodeName(E ) assigns to the program variable x the nodeName value

of the node identified by E , or #text if E identifies a text node. Requires that

E identifies a node that exists or it faults.

� x := getParentNode(E ) assigns to the program variable x the identifier of the

parent of the node identified by E , if it exists, and null otherwise. Requires

that E identifies a node that exists or it faults.

� x := getChildNodes(E ) assigns to the program variable x the identifier of the

child forest of the node identified by E . Requires that E identifies a node that

exists and is not a text node, or it faults.

� x := item(E , E ′) assigns to the program variable x the identifier of the (E ′ +

1 )th node in the child list identified by E , setting it to null if (E ′+1 ) evaluates

to an invalid index. Requires that E identifies a child list that exists and that

E ′ evaluates to an integer or it faults.
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� appendChild(E , E ′) moves the subtree at the node identified by E ′ to the end

of the child list of the node identified by E . Requires that E identifies a node

that exists and is not a text node, and that E ′ identifies a node that exists

and is not an ancestor of the node identified by E , or it faults.

� removeChild(E , E ′) removes the subtree at the node identified by E ′ from the

child list of the node identified by E and re-inserts it as a separate DOM tree at

the grove level. Requires that E identifies a node that exists and E ′ identifies

a node that is a child of the node identified by E , or it faults.

� x := createTextNode(S ) creates a new text node at the root level of the grove,

with fresh identifier i , which contains the string S , and assigns this identifier i

to the program variable x. Requires that S is a valid string (does not contain

any illegal characters) or it faults.

� x := substringData(E , E ′, E ′′) assigns to the program variable x the substring

of length E ′′ from the string of the text node identified by E starting at the E ′th

character. If E ′ + E ′′ exceeds the string length, then all the characters from

the E ′th character to the string end are returned. Requires that E identifies a

text node that exists, E ′ and E ′′ be non-negative integers and E ′ be at most

the string length, or it faults.

� appendData(E , S ) appends the string S to the end of the string contained in

the text node identified by E . Requires that E identifies a text node that exists

or it faults.

� deleteData(E , E ′, E ′′) deletes the substring of the string of text node identified

by E starting at the E ′th character with length E ′′. If E ′ + E ′′ exceeds the

string length, then all the characters from the E ′th character to the string end

are deleted. Requires that E identifies a text node that exists, E ′ and E ′′ be

non-negative integers and E ′ be at most the string length, or it faults.

DOM Segment Algebra

We now give the data structure for our abstract DOM module, starting with the

definition of a multi-holed DOM context algebra and then lifting this to a DOM

segment algebra.

DOM makes use of strings in both node labels and the contents of text nodes.
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The set of strings SCh, ranged over by str , str1 , ..., is defined inductively as:

str ::= ε | c | str : str

where ε is the empty string, characters c ∈ Ch and string concatenation : is asso-

ciative with identity ε.

In our previous work on DOM we found it necessary to give a context structure

for trees, forest and groves. However, if we treat groves as sets of rooted trees, then

it is enough for us to work with a more traditional tree structure, similar to that

encountered in §5.2

The multi-holed DOM context algebra is defined by MD = (DId,X,X, fhD,#D, •)
where,

� the set of multi-holed DOM contexts DId,X, ranged over by cdt , cdt1 , ..., is

defined inductively as:

cdt ::= ∅ | x | stri [cdt ]j | #texti [str ] | cdt ⊗ cdt

with the restriction that hole labels x ∈ X and identifiers i , j ∈ Id occur at

most once in a DOM tree context cdt , and the assumption that ⊗ is associative

with identity ∅ (the empty tree).

� the free holes function

fhD : DId,X → Pfin(X)

is defined by induction on the structure of multi-holed DOM contexts as:

fhD(∅)
def
= ∅

fhD(x )
def
= {x}

fhD(stri [cdt ]j )
def
= fiD(cdt)

fhD(#texti [str ])
def
= ∅

fhD(cdt1 ⊗ cdt2 )
def
= fhD(cdt1 ) ∪ fhD(cdt2 )

� the non-conflicting DOM context function

#D: DId,X ×DId,X → Bool

is defined as:

cdt1 #D cdt2 ⇔ fhD(cdt1 ) ∩ fhD(cdt2 ) = ∅ ∧ fiD(cdt1 ) ∩ fiD(cdt2 ) = ∅
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where the free identifiers function fiD : DId,X → Pfin(X) is defined by induction

on the structure of multi-holed DOM contexts as:

fiD(∅)
def
= ∅

fiD(x )
def
= ∅

fiD(stri [cdt ]j )
def
= {i , j} ∪ fhD(cdt)

fiD(#texti [str ])
def
= {i}

fiD(cdt1 ⊗ cdt2 )
def
= fiD(cdt1 ) ∪ fiD(cdt2 )

� the context composition operator

• : X×DId,X ×DId,X ⇀ DId,X

is defined by induction on the structure of multi-holed DOM contexts as:

∅ •x cdt
def
= undefined

y •x cdt
def
=

{
cdt if y = x

undefined otherwise

stri [cdt ′]j •x cdt
def
=

{
stri [cdt ′ •x cdt ]j if x ∈ fhD(cdt ′) and i , j 6∈ fiD(cdt)

undefined otherwise

#texti [str ] •x cdt
def
= undefined

(cdt1 ⊗ cdt2 ) •x cdt
def
=


(cdt1 •x cdt)⊗ cdt2 if x ∈ fhD(cdt1 ) and cdt #D cdt2

cdt1 ⊗ (cdt2 •x cdt) if x ∈ fhD(cdt2 ) and cdt #D cdt1

undefined otherwise

DOM trees are built out of two different types of nodes: element nodes stri [cdt ]j

and text nodes #texti [str ]. Element nodes contain a list of their children while text

nodes contain a single string. Both types of node have a unique identifier i which

allows for direct access to that node. Element nodes additionally have a child list

identifier j which allows direct access to their children. In particular, the DOM

specification provides a command called getChildNodes which returns a pointer to

a node’s child list. Both types of node have a node label. In the case of text nodes

this is always the string #text which is prefixed with the distinguished character

#. The node label of an element node is a string which must not include the #

character. In the full DOM specification there are other special node labels which

are also prefixed with the # character.

Notation: We use a shorthand for strings writing abc for a : b : c. We write
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Names ⊂ SCh to denote the set of strings without #.

Example 5.15 (Featherweight DOM Data Structure). As an example of our data

structure, consider the following XML structure:

〈student〉
〈name〉Joe Bloggs〈/name〉
〈year〉2007〈/year〉
〈course〉Computing〈/course〉
〈/student〉

If this XML is passed into DOM then, for some choice of identifiers, we would have

the DOM tree:
studenti1 [

namei2 [#texti5 [Joe Bloggs]]j2

⊗ yeari3
[#texti6 [2007]]j3

⊗ coursei4 [#texti7 [Computing]]j4

]j1

We now model the DOM data structure using a segment algebra. Informally,

DOM segments can be thought of as sets of labelled DOM contexts. These labels

can either be some x ∈ X, corresponding to some fragment of the DOM structure,

or the special label 0i used to indicate that a DOM context is rooted at the grove

level. A grove-rooted DOM tree context is required to be a single tree node with

no parent node. The DOM structure allows for there to be an unordered collection

(or bag) of trees rooted at the grove level. We therefore define the set of empty

labels to be EN = {0i | i ∈ N}, where 0 6∈ X so that we can have an arbitrary

number of rooted trees. The DOM segment algebra is then defined as S(MD, EN) =

(SD, fa, fh,#,+S, comp).

The DOM segment algebra S(MD, EN) is quite similar to the tree segment algebra

S(MT, {0}) from Example 3.58. However, we shall see that the grove-rooted trees

play a more significant role in our specification of the fine-grained DOM module

than the rooted trees did in the specification of the fine-grained tree module in §5.2.

There are several featherweight DOM commands that directly manipulate the grove

level of the DOM data structure.

Definition 5.16 (Featherweight DOM Axiomatisation). The featherweight DOM

axiomatisation

AxJ(·)KD : CmdD → P(PredD ×PredD)

is given in Figure 5.13, Figure 5.14 and Figure 5.15.
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Notation: We denote the set of DOM tree formulae as PD . The DOM tree formulae

are identical to the tree formulae PT with the obvious addition of node names and

forest identifiers to the structure. We add a shorthand to predicates allowing us to

forget the labelling of rooted address, writing dPDe for Hα. (α�PD). We write |N |
for the length of list N and similarly |str | for the length of string str .

We choose to split our axioms into three separate sets, one for describing the

behaviour of commands on element nodes, one for describing the behaviour of com-

mands on text nodes and one for describing the behaviour of commands on text.

Splitting up our axioms in this way leads to a larger axiom set, but simpler individ-

ual axioms. Unlike our previous work on DOM, we now have genuine small axioms

for all of our basic commands, including appendChild.

The specification of the item command makes use of a predicate Ls(N ) which

describes a one-layer list of nodes N . This predicate allows us to capture the min-

imal amount of resource required in order to locally describe the behaviour of the

command. The Ls(N ) predicate is defined inductively in terms of N as follows:

Ls([ ]) = ∅
Ls((str , α, i , j ) : N ) = stri [α]j ⊗ Ls(N )

Ls((#text, i , str) : N ) = #texti [str ]⊗ Ls(N )

It is interesting to note the use of the tree(PD) predicate in our axioms. Recall

that this predicate is used to indicate a subtree that is complete (contains no context

holes). In our fine-grained tree module axiomatisation (§5.2) our tree deletion and

tree move commands required a complete tree in their precondition. Similarly, in

our featherweight DOM axiomatisation the appendChild command requires that we

move a complete subtree in order to avoid introducing a loop in the data structure.

However, notice that the removeChild command does not require a complete tree

in its precondition, even though it is moving the whole subtree. Recall that the

removeChild command does not delete a subtree, but instead just moves it to the

top level of the grove. Thus, there is no chance of breaking the structure or creating

a loop within the data structure, so we do not need to rule out these possibilities

in the precondition. Knowing that the root of the subtree has moved is enough to

infer that the rest of the tree has also moved with it, since the root node has the

same context hole beneath it both before and after the execution of the command.
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{
x⇀⇁ i ∗ σ ∧ EJS Kσ[x 7→ i ] = str ∧ str ∈ Names

}
x := createNode(S ){

∃i , j . dstri [∅]j e ∗ x⇀⇁ i ∗ σ
}

{
α�stri [β]j ∗ x⇀⇁ v ∗ σ ∧ EJE Kσ[x 7→ v ] = i

}
x := getNodeName(E ){
α�stri [β]j ∗ x⇀⇁ str ∗ σ

}
{
α�str ′j [β ⊗ stri [γ]i2 ⊗ δ]k ∗ x⇀⇁ v ∗ σ ∧ EJE Kσ[x 7→ v ] = i

}
x := getParentNode(E ){

α�str ′j [β ⊗ stri [γ]i2 ⊗ δ]k ∗ x⇀⇁ j ∗ σ
}

{
dstri [α]j e ∗ x⇀⇁ v ∗ σ ∧ EJE Kσ[x 7→ v ] = i

}
x := getParentNode(E ){
dstri [α]j e ∗ x⇀⇁ null ∗ σ

}
{
α�stri [β]j ∗ x⇀⇁ v ∗ σ ∧ EJE Kσ[x 7→ v ] = i

}
x := getChildNodes(E ){
α�stri [β]j ∗ x⇀⇁ j ∗ σ

}
{
α�stri [Ls(N )⊗ str ′k [γ]k2 ⊗ δ]j ∗ x⇀⇁ v ∗ σ
∧ EJE Kσ[x 7→ v ] = j ∧ EJE ′Kσ[x 7→ v ] = |N |

}
x := item(E , E ′){

α�stri [Ls(N )⊗ str ′k [γ]k2 ⊗ δ]j ∗ x⇀⇁ k ∗ σ
}

{
α�stri [Ls(N )]j ∗ x⇀⇁ v ∗ σ ∧ EJE Kσ[x 7→ v ] = j
∧ EJE ′Kσ[x 7→ v ] = i ∧ (i < 0 ∨ i ≥ |N |)

}
x := item(E , E ′){

α�stri [Ls(N )]j ∗ x⇀⇁ null ∗ σ
}

{
α�stri [γ]j ∗ β�str ′k [tree(cdt)]k2 ∗ σ ∧ EJE Kσ = i ∧ EJE Kσ = k

}
appendChild(E , E ′){

α�stri [γ ⊗ str ′k [tree(cdt)]k2 ]j ∗ β�∅ ∗ σ
}

{
α�stri [β ⊗ str ′k [γ]k2 ⊗ δ]j ∗ σ ∧ EJE Kσ = i ∧ EJE ′Kσ = k

}
removeChild(E , E ′){

α�stri [β ⊗ δ]j ∗ dstr ′k [γ]k2e ∗ σ
}

Figure 5.13: Featherweight DOM axioms for element node manipulation.
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{
α�#texti [str ] ∗ x⇀⇁ v ∗ σ ∧ EJE Kσ[x 7→ v ] = i

}
x := getNodeName(E ){

α�#texti [str ] ∗ x⇀⇁ #text ∗ σ
}

{
α�str ′j [β ⊗ #texti [str ]⊗ γ]k ∗ x⇀⇁ v ∗ σ ∧ EJE Kσ[x 7→ v ] = i

}
x := getParentNode(E ){

α�str ′j [β ⊗ #texti [str ]⊗ γ]k ∗ x⇀⇁ j ∗ σ
}

{
d#texti [str ]e ∗ x⇀⇁ v ∗ σ ∧ EJE Kσ[x 7→ v ] = i

}
x := getParentNode(E ){
d#texti [str ]e ∗ x⇀⇁ null ∗ σ

}
{
α�stri

[
Ls(N )⊗ #textk [str ′]⊗ δ

]
j
∗ x⇀⇁ v ∗ σ

∧ EJE Kσ[x 7→ v ] = j ∧ EJE ′Kσ[x 7→ v ] = |N |

}
x := item(E , E ′){

α�stri [Ls(N )⊗ #textk [str ′]⊗ δ]j ∗ x⇀⇁ k ∗ σ
}

{
α�stri [γ]j ∗ β�#textk [str ′] ∗ σ ∧ EJE Kσ = i ∧ EJE Kσ = k

}
appendChild(E , E ′){

α�stri [γ ⊗ #textk [str ′]]j ∗ β�∅ ∗ σ
}

{
α�stri [β ⊗ #textk [str ′]⊗ δ]j ∗ σ ∧ EJE Kσ = i ∧ EJE ′Kσ = k

}
removeChild(E , E ′){

α�stri [β ⊗ δ]j ∗ d#textk [str ′]e ∗ σ
}

{
x⇀⇁ i ∗ σ ∧ EJS Kσ[x 7→ i ] = str

}
x := createTextNode(S ){
∃i . d#texti [str ]e ∗ x⇀⇁ i ∗ σ

}
Figure 5.14: Featherweight DOM axioms for text node manipulation.
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{
α�#texti [str1 : str : str2 ] ∗ x⇀⇁ v ∗ σ ∧ EJE Kσ[x 7→ v ] = i
∧ EJE ′Kσ[x 7→ v ] = |str1 | ∧ EJE ′′Kσ[x 7→ v ] = |str |

}
x := substringData(E , E ′, E ′′){

α�#texti [str1 : str : str2 ] ∗ x⇀⇁ str ∗ σ′
}

{
α�#texti [str1 : str ] ∗ x⇀⇁ s ∗ σ ∧ EJE Kσ[x 7→ s ] = i
∧ EJE ′Kσ[x 7→ s ] = |str1 | ∧ EJE ′′Kσ[x 7→ s ] > |str |

}
x := substringData(E , E ′, E ′′){

α�#texti [str1 : str ] ∗ x⇀⇁ str ∗ σ′
}

{
α�#texti [str ] ∗ σ ∧ EJE Kσ = i ∧ EJS Kσ = str ′

}
appendData(E , S ){

α�#texti [str : str ′] ∗ σ
}

{
α�#texti [str1 : str : str2 ] ∗ σ ∧ EJE Kσ = i ∧ EJE ′Kσ = |str1 | ∧ EJE ′′Kσ = |str |

}
deleteData(E , E ′, E ′′){
α�#texti [str1 : str2 ] ∗ σ

}
{
α�#texti [str1 : str ] ∗ σ ∧ EJE Kσ = i ∧ EJE ′Kσ = |str1 | ∧ EJE ′′Kσ > |str |

}
deleteData(E , E ′, E ′′){
α�#texti [str1 ] ∗ σ

}

Figure 5.15: Featherweight DOM axioms for text manipulation.
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5.5.1 DOM Reasoning Examples

Even though the featherweight DOM model is more complex than the other models

we have seen so far, reasoning about programs written in this module is still rela-

tively simple. We consider a few examples here: one where we implement a simple

DOM Core Level 1 command using featherweight DOM; one showing a more com-

plex DOM Core Level 1 command implementation; and one where we show how to

apply our reasoning techniques to proving schema invariants.

Example 5.17 (Implementing DOM Core Level 1). Featherweight DOM provides

a minimal subset of the DOM Core Level 1 commands, but there are several basic

update commands which we have chosen not to provide as basic module commands.

We can implement each of these extra commands with our featherweight DOM

module. As an example of this consider the getFirstChild command which returns

the first child of some node, or null if the node has no children.

x := getFirstChild(i) ::= x := getChildNodes(i) ;

x := item(x, 0 )

We can derive a specification for this program as follows:{
α�stri [str ′k [β]⊗ γ]j ∗ i⇀⇁ i ∗ x⇀⇁ −

}
x := getChildNodes(i) ;{
α�stri [str ′k [β]⊗ γ]j ∗ i⇀⇁ i ∗ x⇀⇁ j

}
x := item(x, 0 ){
α�stri [str ′k [β]⊗ γ]j ∗ i⇀⇁ i ∗ x⇀⇁ k

}
The two remaining cases: where the first child is a text node; or the node has no

children, are both similar to this case. In our original work on DOM [36][37] we

show how to implement other DOM Core Level 1 commands. We can apply similar

techniques in our fine-grained reasoning system.

Example 5.18 (Basic Commands vs. Implementable Commands). Using analogous

techniques to those in Smith’s thesis [71] we could implement all of the commands

of DOM Core Level 1. However, in doing so we do not always produce the most

elegant specifications for those commands we choose not to take as basic commands.

As an example of this, consider the insertBefore command, which behaves in a

similar way to the appendChild command.
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� insertBefore(E , E ′, E ′′) moves the subtree at the node identified by E ′ to

be the left sibling of the node identified by E ′′ which is a child of the node

identified by E . If E ′′ evaluates to null then the subtree is instead moved to be

the last child of the node identified by E (This is the behaviour of append).

Requires that E identifies a node that exists and is not a text node, and that

E ′ identifies a node that exists and is not an ancestor of the node identified

by E , or it faults. If E ′′ does not evaluate to null then it also requires that E ′′

identifies a node that is a child of the node identified by E .

For the rest of this example, we assume that the expression parameters E , E ′ and E ′′

have been evaluated and their values stored in the variables n, m and r respectively.

One way to implement the insertBefore command in our featherweight DOM

module is with the following program:

insertBefore(n, m, r) ::= local c, x, y in

appendChild(n, m) ;

if r = null then

skip

else

c := 0 ;

x := getChildNodes(n) ;

y := item(x, c) ;

while y 6= r do

c := c + 1 ;

y := item(x, c) ;

while y 6= m do

appendChild(n, y) ;

y := item(x, c) ;

This program first moves m to the end of the list of n’s children. The first while-loop

then scans through the children of n looking for r. The second while-loop appends

the children from r up to (but not including) m to the end of the list of n’s children.

The effect of this is to move m to the left of r in the list of n’s children. Note that

the second while-loop does not need to increment the counter c. When we append

the cth node to the end of the list, the c + 1 th node drops down the list one space

and becomes the cth node in the list for the next loop iteration.

From this program we can derive the following specification for insertBefore in
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the case where the reference node identifier r is not null:{
α�strn [Ls(N )⊗ str ′r [tree(cdt1 )]j ⊗ tree(cdt2 )]i ∗ β�str ′′m [tree(cdt)]k

∗ n⇀⇁ n ∗ m⇀⇁ m ∗ r⇀⇁ r

}
insertBefore(n, m, r){

α�strn [Ls(N )⊗ str ′′m [tree(cdt)]k ⊗ str ′r [tree(cdt1 )]j ⊗ tree(cdt2 )]i ∗ β�∅
∗ n⇀⇁ n ∗ m⇀⇁ m ∗ r⇀⇁ r

}

We omit the specification for the case where r = null as insertBefore simply

behaves as appendChild in this case. Note that the specification needs to include

the one-layer list Ls(N ) in order to be able to apply the axiom for item. Similarly,

the specification needs to include the entire subtree beneath (cdt1 ) and after (cdt2 )

the node r in order to be able to apply the axiom for appendChild.

The proof sketch for this program, showing that the above specification holds,

is given in Figure 5.161. Notice that the derived specification is not the smallest

specification that we could give for this behaviour of the command. If we instead

chose to take insertBefore as one of our basic commands we could provide its

axiom for the case where r 6= null as:{
α�strn [γ ⊗ str ′r [δ]j ⊗ ζ]i ∗ β�str ′′m [tree(cdt)]k

∗ n⇀⇁ n ∗ m⇀⇁ m ∗ r⇀⇁ r

}
insertBefore(n, m, r){

α�strn [γ ⊗ str ′′m [tree(cdt)]k ⊗ str ′r [δ]j ⊗ ζ]i ∗ β�∅
∗ n⇀⇁ n ∗ m⇀⇁ m ∗ r⇀⇁ r

}

In our derived axiom we needed to include the list of nodes Ls(N ) that proceed the

reference node r , the complete tree cdt1 beneath r and the complete tree cdt2 that

follows node r . Specifying the command directly, we need only mention the state

required for the update to proceed without faulting. Unsurprisingly, the choice

of basic commands affects the specifications that we can derive for programs of

our modules. The choice of basic commands in the featherweight DOM module is

sufficient to allow us to describe a wide range XML update programs.

Example 5.19 (Schema Invariants). So far, all of our reasoning examples have con-

centrated on capturing the precise updates to the program state during a program’s

execution. However, it is sometimes desirable to prove a particular property about a

1We condense much of the proof sketch to concentrate on a few key steps. The full proof is
moderately involved, due to the need to provide loop invariants for the while loops, but this is
orthogonal to our discussion here.
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{
α�strn [Ls(N )⊗ str ′r [tree(cdt1 )]j ⊗ tree(cdt2 )]i ∗ β�str ′′m [tree(cdt)]k
∗ n⇀⇁ n ∗ m⇀⇁ m ∗ r⇀⇁ r

}
local c, x, y in{

α�strn [Ls(N )⊗ str ′r [tree(cdt1 )]j ⊗ tree(cdt2 )]i ∗ β�str ′′m [tree(cdt)]k
∗ n⇀⇁ n ∗ m⇀⇁ m ∗ r⇀⇁ r ∗ c⇀⇁ − ∗ x⇀⇁ − ∗ y⇀⇁ −

}
appendChild(n, m) ;{
α�strn [Ls(N )⊗ str ′r [tree(cdt1 )]j ⊗ tree(cdt2 )⊗ str ′′m [tree(cdt)]k ]i ∗ β�∅
∗ n⇀⇁ n ∗ m⇀⇁ m ∗ r⇀⇁ r ∗ c⇀⇁ − ∗ x⇀⇁ − ∗ y⇀⇁ −

}
if r = null then
skip{

false
}

else

c := 0 ;
x := getChildNodes(n) ;
y := item(x, c) ;{
α�strn [Ls(N )⊗ str ′r [tree(cdt1 )]j ⊗ tree(cdt2 )⊗ str ′′m [tree(cdt)]k ]i ∗ β�∅
∗ n⇀⇁ n ∗ m⇀⇁ m ∗ r⇀⇁ r ∗ c⇀⇁ 0 ∗ x⇀⇁ i ∗ y⇀⇁ −

}
while y 6= r do

c := c + 1 ;
y := item(x, c) ;{
α�strn [Ls(N )⊗ str ′r [tree(cdt1 )]j ⊗ tree(cdt2 )⊗ str ′′m [tree(cdt)]k ]i ∗ β�∅
∗ n⇀⇁ n ∗ m⇀⇁ m ∗ r⇀⇁ r ∗ c⇀⇁ |N | ∗ x⇀⇁ i ∗ y⇀⇁ r

}
while y 6= m do

appendChild(n, y) ;
y := item(x, c) ;{
α�strn [Ls(N )⊗ str ′′m [tree(cdt)]k ⊗ str ′r [tree(cdt1 )]j ⊗ tree(cdt2 )]i ∗ β�∅
∗ n⇀⇁ n ∗ m⇀⇁ m ∗ r⇀⇁ r ∗ c⇀⇁ |N | ∗ x⇀⇁ i ∗ y⇀⇁ m

}
{
α�strn [Ls(N )⊗ str ′′m [tree(cdt)]k ⊗ str ′r [tree(cdt1 )]j ⊗ tree(cdt2 )]i ∗ β�∅
∗ n⇀⇁ n ∗ m⇀⇁ m ∗ r⇀⇁ r

}

Figure 5.16: Proof sketch for the insertBefore program.
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program rather than proving the whole specification. One example of this is proving

that programs satisfy XML schema invariants. As an example, we consider writing

a program to update an XML document which satisfies the following XML schema:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified">

<xs:element name="studentDB">

<xs:element name="student" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:element name="name" type="string"/>

<xs:element name="year" type="string"/>

<xs:element name="course" type="string" />

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:element>

This schema describes a document that stores information about students enrolled

at a particular university. The schema asserts that the root node of the document

should be a studentDB node, whose children should be zero or more student nodes.

Each student node should contain one name node, one year node and one course

node. Each of these third level nodes should contain data of type string; that is,

data in a text node. Note that we can use the DOM node identifiers as unique

student ids.

In order to specify such an XML schema we need to provide some additional

derived formulae, specific to DOM trees, given as follows:

stri [cdt ]
def
= ∃j . stri [cdt ]j

str [cdt ]j
def
= ∃i . stri [cdt ]j

str [cdt ]
def
= ∃i , j . stri [cdt ]j

♦⊗P
def
= true⊗ P ⊗ true

�⊗P
def
= ¬♦⊗¬P

The first three formulae allow us to drop node and node-list identifiers when they

are not important. The penultimate formula describes the property that P holds

somewhere at this level of the tree. The last formula describes the property that P

holds everywhere at this level of the tree.
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We can now specify this XML schema with a DOM segment formula SDB :

SDB
def
= dstudentDB[students]e

where

students
def
= �⊗(∃str , cdt . str [cdt ])⇒ student[name⊗ year ⊗ course]

name
def
= ∃str . name[#text[str ]]

year
def
= ∃str . year[#text[str ]]

course
def
= ∃str . course[#text[str ]]

The SDB assertion describes a node studentDB all of whose children must be

student nodes containing name, year and course data.

Now consider a featherweight DOM program which updates the studentDB doc-

ument when a specified student sid changes course or leaves the university. We

assume that if the student is leaving the university, then the input course to the

program is null. Thus, the program checks if the course input is null and if it is it

deletes the student record, and if it is not it updates that student’s course appro-

priately.

courseChange(sid, crs) ::= local x, y in

x := getParentNode(sid) ;

if crs = null then

removeChild(x, sid)

else

y := createNode(‘course’) ;

x := createTextNode(crs) ;

appendChild(y, x) ;

x := getChildNodes(sid) ;

x := item(x, 2 ) ;

removeChild(sid, x) ;

appendChild(sid, y)

In order for this program to run without faulting we need to know that the variable

sid refers to a student node that is stored in the document. This safety property

can be captured by the formula S (i) assuming that sid maps to identifier i in the

variable store.

S (i)
def
= Hα, β. (α�studenti [β] ∗ true)
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Notice that the use of true in the formula allows for there to be any other program

state present. We can now prove that the courseChange program maintains the

schema formula SDB provided that this safety formula also holds. That is, we can

prove: {
SDB ∧ S (i) ∗ sid⇀⇁ i ∗ crs⇀⇁ c

}
courseChange(sid, crs){

SDB ∗ true ∗ sid⇀⇁ i ∗ crs⇀⇁ c
}

The proof of this specification is given in Figure 5.17. Recall that we treat feather-

weight DOM as a garbage collected language. We thus use true in the postcondition

to refer to any uncollected garbage that was generated by the program. This garbage

will no longer be used and can be safely ignored. Note that we could choose to more

precisely characterise the garbage if doing so were of interest. In this case the

garbage would either be a single student record, in the case where crs = null, or a

single course node, in the remaining case.

5.6 Combining Fine-grained Abstract Modules

It is often useful when programming to be able to make use of several modules. For

example, in chapter 6 we show how to use a combination of the heap module H and

the list module L to provide an implementation of the tree module T.

Just as it is natural to combine segment algebras, as in Example 3.62, it is also

natural to be able to combine the reasoning for multiple fine-grained abstract mod-

ules. The most intuitive approach is to take the union of the basic command sets

of each module, whilst interpreting the basic commands over the product of their

segment algebras. If the modules want to share any information, this must be done

through the common variable store.

Definition 5.20 (Module Combination). Given fine-grained abstract modules

A1 = (CmdA1 ,S(MA1 , EA1 ),AxJ(·)KA1 ) and A2 = (CmdA2 ,S(MA2 , EA2 ),AxJ(·)KA2 ),

their combination

A1 + A2
def
= (CmdA1 ⊕CmdA2 ,S(MA1 , EA1 )× S(MA2 , EA2 ),AxJ(·)KA1+A2 )

is a fine-grained abstract module, where

� CmdA1 ⊕ CmdA2

def
= (CmdA1 × {1}) ∪ (CmdA2 × {2}) is the discriminated

union of the command sets;
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{
SDB ∧ S (i) ∗ sid⇀⇁ i ∗ crs⇀⇁ c

}{
dstudentDB[students⊗ studenti [name⊗ year ⊗ course]⊗ students]e
∗ sid⇀⇁ i ∗ crs⇀⇁ c

}
local x, y in{

dstudentDB[students⊗ studenti [name⊗ year ⊗ course]⊗ students]e
∗ sid⇀⇁ i ∗ crs⇀⇁ c ∗ x⇀⇁ − ∗ y⇀⇁ −

}
x := getParentNode(sid) ;{
∃j . dstudentDBj [students⊗ studenti [name⊗ year ⊗ course]⊗ students]e
∗ sid⇀⇁ i ∗ crs⇀⇁ c ∗ x⇀⇁ j ∗ y⇀⇁ −

}
if crs = null then
removeChild(x, sid){
∃j . dstudentDBj [students⊗ students]e ∗ dstudenti [name⊗ year ⊗ course]e
∗ sid⇀⇁ i ∗ crs⇀⇁ c ∗ x⇀⇁ j ∗ y⇀⇁ −

}
{

SDB ∗ true ∗ sid⇀⇁ i ∗ crs⇀⇁ c ∗ x⇀⇁ − ∗ y⇀⇁ −
}

else

y := createNode(‘course’) ;{
∃j , k . dstudentDBj [students⊗ studenti [name⊗ year ⊗ course]⊗ students]e
∗ dcoursek [∅]e ∗ sid⇀⇁ i ∗ crs⇀⇁ c ∗ x⇀⇁ j ∗ y⇀⇁ k

}
x := createTextNode(crs) ;{
∃j , k . dstudentDB[students⊗ studenti [name⊗ year ⊗ course]⊗ students]e
∗ dcoursek [∅]e ∗ d#textj [c]e ∗ sid⇀⇁ i ∗ crs⇀⇁ c ∗ x⇀⇁ j ∗ y⇀⇁ k

}
appendChild(y, x) ;{
∃j , k . dstudentDB[students⊗ studenti [name⊗ year ⊗ course]⊗ students]e
∗ dcoursek [#textj [c]]e ∗ sid⇀⇁ i ∗ crs⇀⇁ c ∗ x⇀⇁ j ∗ y⇀⇁ k

}
x := getChildNodes(sid) ;{
∃j , k . dstudentDB[students⊗ studenti [name⊗ year ⊗ course]j ⊗ students]e
∗ dcoursek [#text[c]]e ∗ sid⇀⇁ i ∗ crs⇀⇁ c ∗ x⇀⇁ j ∗ y⇀⇁ k

}
x := item(x, 2 ) ;
∃j , k , c ′.
dstudentDB[students⊗ studenti [name⊗ year ⊗ coursej [#text[c ′]]]⊗ students]e
∗ dcoursek [#text[c]]e ∗ sid⇀⇁ i ∗ crs⇀⇁ c ∗ x⇀⇁ j ∗ y⇀⇁ k


removeChild(sid, x) ;{
∃j , k , c ′. dstudentDB[students⊗ studenti [name⊗ year]⊗ students]e
∗ dcoursek [#text[c]]e ∗ dcoursej [#text[c ′]]e ∗ sid⇀⇁ i ∗ crs⇀⇁ c ∗ x⇀⇁ j ∗ y⇀⇁ k

}
appendChild(sid, y)
∃j , k , c ′.
dstudentDB[students⊗ studenti [name⊗ year ⊗ coursek [#text[c]]]⊗ students]e
∗ dcoursej [#text[c ′]]e ∗ sid⇀⇁ i ∗ crs⇀⇁ c ∗ x⇀⇁ j ∗ y⇀⇁ k

{
SDB ∗ true ∗ sid⇀⇁ i ∗ crs⇀⇁ c ∗ x⇀⇁ − ∗ y⇀⇁ −

}{
SDB ∗ true ∗ sid⇀⇁ i ∗ crs⇀⇁ c ∗ x⇀⇁ − ∗ y⇀⇁ −

}{
SDB ∗ true ∗ sid⇀⇁ i ∗ crs⇀⇁ c

}
Figure 5.17: Schema preservation derivation.
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� S(MA1 , EA1 )× S(MA2 , EA2 ) is the product of the segment algebras; and

� AxJ(·)KA1+A2 : CmdA1 ⊕CmdA2 → P(PredA1×A2 ×PredA1×A2 ) is defined as

AxJ(ϕ, 1 )KA1+A2

def
= {(π1 (P), π1 (Q)) | (P ,Q) ∈ AxJϕKA1}

AxJ(ϕ, 2 )KA1+A2

def
= {(π2 (P), π2 (Q)) | (P ,Q) ∈ AxJϕKA2}

where
PJπ1 (P)Ke def

= {(s1 , ∅, σ) | (s1 , σ) ∈ PJPKe}
PJπ2 (P)Ke def

= {(∅, s2 , σ) | (s2 , σ) ∈ PJPKe}

Notation: When the command sets CmdA1 and CmdA2 are disjoint, we drop the

tags when referring to the commands in the combined abstract module. When the

tags are necessary, we indicate them with an appropriately placed subscript.

5.7 Remarks

We have shown how to provide fine-grained abstract modules for a range of different

data structures. This demonstrates that the concept of a segment algebra is applica-

ble to a wide range of data structures. Moreover, the use of segment algebras allows

us to provide genuinely local specifications for the basic commands of our modules.

This is a particular achievement for the append and remove commands in the tree

and DOM modules for which we have been unable to provide small axioms in the

past.

5.7.1 Locality

In his thesis [71], Smith discusses the issue of locality for certain module commands.

As an example, consider DOM’s getParentNode command. The footprint of this

command is not uniform in size: if the target node is at the root level, then the

footprint is just that node; if the target node is not at the root level, then the

footprint is that node plus the node above it. Such behaviour is tricky to capture

using context logic specifications.

In order to establish the soundness of his reasoning system, Smith had to refine the

notion of locality to that of local with respect to some formula P . This allowed him

to handle commands which had different behaviours at different levels of locality,

such as getParentNode, by restricting the possible frames that could be applied to

a state.
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In our approach to soundness, as given in chapter 3, we interpret segment logic

assertions in any possible extension to a complete data structure. By introducing

the notion of a rooted segment, we can rule out any extensions that would try

to add data above this segment. This allows us to provide disjoint specifications

that capture the different behaviours of commands like getParentNode. Note that

getParentNode has two axioms in each of Figure 5.13 and Figure 5.14. The first

axiom captures that case where the target node has some parent, the second where

it does not. Both cases are disjoint; that is, any given state can only satisfy one of

the preconditions for getParentNode.

In general, our segment model is able to describe when data is complete (cannot

be further extended) and so we have a more traditional interpretation of locality.

5.7.2 Copy Commands

In the modules considered above we have provided commands that analyse data

structures, commands that create new data structures and commands that dispose

of existing data structures. If one wanted to copy a data structure this would be

possible using the analysis commands and the creation commands along with some

careful looping/recursion. However, it would also be possible to extend the basic

command sets with primitive copy commands. DOM, our motivating example of an

abstract module, does not include any copy commands, which is why we have not

considered them so far.

As an example of how to deal with copy commands, let us consider extending our

tree module, from §5.2. In order to be able to specify such commands we require

a notion of a tree-shape. A tree-shape stores the structure of a tree, but not the

identifiers associated with that tree. For example, the tree p[n[∅] ⊗m[∅]] has the

shape ◦[◦[∅]⊗ ◦[∅]]. More formally, we define tree-shapes t◦ ∈ T◦ inductively as:

t◦ ::= ∅ | ◦[t◦] | t◦ ⊗ t◦

where ◦ is a constant that represents a node and ⊗ is associative with identity ∅.

Note that tree-shapes do not include context holes, so we only describe the shape

of complete trees. We write 〈ct〉 for the shape of a tree context ct , with

〈∅〉 = ∅
〈x 〉 = undefined

〈n[ct ]〉 = ◦[〈ct〉]
〈ct1 ⊗ ct2 〉 = 〈ct1 〉 ⊗ 〈ct2 〉
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{
α�n[tree(ct)] ∗ t⇀⇁ v ∗ σ
∧ EJE Kσ[t⇀⇁ v ] = n

}
t := copyTree(E )

{
α�n[tree(ct)]
∗ t⇀⇁ 〈ct〉 ∗ σ

}
{
α�n[β] ∗ σ ∧ EJE Kσ = n

}
insertTreeAfter(E , T )

{
α�(n[β]⊗ T ) ∗ σ

}
Figure 5.18: Small axioms for the tree module commands involving tree-shapes

We write ct1 ' ct2 when 〈ct1 〉 = 〈ct2 〉. We then extend the variable store with

tree-shape variables t ∈ VarT◦ which allow us to store tree-shapes and we also

extend our expressions to include tree-shape expressions T , which have the form:

T ::= ∅ | t | ◦[T ] | T ⊗ T .

With these modifications to the variable store and expressions we can now extend

the set of basic tree update commands with a tree copy command t := copyTree(E )

and a tree insertion command insertTreeAfter(E , T ). The intuitive meaning of

these commands, which will be realised by their axiomatic semantics, is as follows:

� t := copyTree(E ) creates a copy of the shape of the subtree starting at the

node identified by E and stores it in the program variable t. Requires that E

identifies a node that exists or it faults;

� insertTreeAfter(E , T ) creates a new tree, with a shape given by tree shape

expression T , and inserts it into the working tree as the right sibling of the

node identified by E . Requires that E identifies a node that exists or it faults.

We can then give the axioms for our two new commands as shown in Figure 5.18.

We interpret the predicate ◦[P ] as ∃n. n[P ] allowing us to describe the shape of a

tree in the program state for some arbitrary (but legal) choice of node identifiers

in that tree. In particular, this allows us to interpret tree shape expressions T as

assertions describing the shape of some complete tree.

5.7.3 Weakest Preconditions

The reasoning style presented above is very much focused on forwards reasoning.

We start from some precondition and move through the program step by step until

we arrive at a postcondition. This style has been used in the majority of separation

logic tools to date.

Another common style of reasoning is backwards reasoning where you start with

an arbitrary postcondition P and step backwards through the program using the
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weakest preconditions of each of the program steps to establish the most general

precondition of a program. This style is commonly used to show completeness

results, in particular completeness for straight-line code [78]

Our reasoning system, from chapter 4, is also able to provide weakest precondi-

tions for our module commands. However, doing so requires the use of the separating

conjunction adjoint −∗ as well as the revelation adjoint �, which have not shown

up in the reasoning thus far. Both of these adjoints are used to express hypothet-

ical properties about a program state. As an example let us consider the weakest

precondition of the deleteTree command from the tree module given in §5.2.{
∃n, ct .Hα. (((α�∅ ∗ σ) −∗ (P�α)) ∗ (α�n[tree(ct)] ∗ σ) ∧ EJE Kσ = n)

}
deleteTree(E ){

P
}

We have briefly discussed a similar weakest precondition as one of our examples in

chapter 3. The precondition here is given in our formal reasoning system, and is a

little more complicated due to assertions about the variable store. When evaluated

in an environment e, the precondition describes a set of states PJHα. ((α�∅ ∗ σ −∗
(P�α)) ∗ α�n[tree(ct)] ∗ σ) ∧ EJE Kσ = nKe for some choice of n and ct . Each

program state in this set is of the form ((x )(st0 ), σ0 ) for some fresh label x stored at

α. The assertion furthermore states that, after uncompressing x , the state (st0 , σ0 )

can be separated into two parts. The first part satisfies (α�∅ ∗ σ) −∗ (P�α). This

assertion describes a state that, when extended with an empty tree at address x

and some variables σ, will satisfy P once x is compressed. The second part, which

satisfies α�n[tree(ct)]∗σ, consists of a complete tree, with top node n at an address

x , and some variables σ which are needed to evaluate the expression E .

Recall the small axiom for the deleteTree(E ) command:{
α�n[tree(ct)] ∗ σ ∧ EJE Kσ = n

}
deleteTree(E ){

α�∅ ∗ σ
}

When the expression E evaluates to node identifier n the command removes the

whole of the subtree with top node n from the working tree. Our frame rules tell us

that running this command on a program state satisfying,

∃n, ct .Hα. (((α�∅ ∗ σ) −∗ (P�α)) ∗ (α�n[tree(ct)] ∗ σ) ∧ EJE Kσ = n)
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will result in a program state satisfying,

∃n, ct .Hα. (((α�∅ ∗ σ) −∗ (P�α)) ∗ (α�∅ ∗ σ))

which is equivalent to P .

In his thesis [78] investigated the completeness of context logic. He showed that if

you could derive the weakest preconditions for each of a module’s basic commands

from their small axioms, then his reasoning was complete for straight-line programs;

that is, anything that is true for programs that contain no loops or recursion is

provable in his reasoning framework. His result can be easily extended to segment

logic and our fine-grained abstract reasoning framework.

We show, for the tree module from §5.2, how to derive the weakest precondition

of deleteTree(E ) from the small axiom of deleteTree(E ). We have already dis-

cussed this informally above, but the proof in Figure 5.19 shows the derivation in

detail. The separating frame rule is used to add on the program state which will col-

lapse to satisfy P once the command has updated the existing program state. The

consequence rule is used to rewrite the precondition and collapse the postcondition

and the revelation frame rule is used to compress the tree segment at the label in

variable α. Then the existential and freshness quantification rules are used to gen-

eralise the precondition. Finally, the consequence rule is used to further collapse the

postcondition into the required form.
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{
α�n[tree(ct)] ∗ σ ∧ EJE Kσ = n

}
deleteTree(E ){
α�∅T ∗ σ

}
Sep Frame{

α�n[tree(ct)] ∗ σ ∧ EJE Kσ = n ∗ (α�∅T ∗ σ −∗ (P�α))
}

deleteTree(E ){
α�∅T ∗ σ ∗ (α�∅T ∗ σ −∗ (P�α))

}
Cons{

(α�∅T ∗ σ −∗ (P�α)) ∗ α�n[tree(ct)] ∗ σ ∧ EJE Kσ = n
}

deleteTree(E ){
P�α

}
Rev Frame{

αr((α�∅T ∗ σ −∗ (P�α)) ∗ α�n[tree(ct)] ∗ σ ∧ EJE Kσ = n)
}

deleteTree(E ){
αr(P�α)

}
Exsts/Fresh{

∃n, ct . Nα. αr((α�∅T ∗ σ −∗ (P�α)) ∗ α�n[tree(ct)] ∗ σ ∧ EJE Kσ = n)
}

deleteTree(E ){
∃n, ct . Nα. αr(P�α)

}
Cons{

∃n, ct .Hα.r((α�∅T ∗ σ −∗ (P�α)) ∗ α�n[tree(ct)] ∧ EJE Kσ = n)
}

deleteTree(E ){
P
}

Figure 5.19: Derivation of the weakest precondition for deleteTree(E ) from its
small axiom.
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6 Abstraction and Refinement for

Fine-grained Local Reasoning

Abstraction allows clients of a program module to reason about the module, with-

out having to understand the specifics of how that module is implemented. This

is essential for modular programming, as it allows for a program to be replaced by

any other program that meets the same specification. However, it is not enough for

our reasoning to be confined just to the abstract level. An important part of any

abstraction technique is to be able to refine the abstraction to a specific implemen-

tation. Moreover, we must be able to show that this implementation satisfies the

abstract specification that is being provided to the module’s clients.

Traditional abstraction techniques [69][55] take a concrete program and produce

an abstract specification for that program. Traditional refinement techniques [43][24]

take an abstract specification and produce a correct implementation of that specifi-

cation. Both approaches result in a program that correctly implements an abstract

specification. Both are also well-established techniques in program verification, but

have only been initially understood in the context of local reasoning.

Separation logic was extended with abstract predicates by Parkinson and Bier-

man [61] to enable program specifications to be abstracted. To the client, an abstract

predicate is an opaque object that encapsulates some unknown representation of an

abstract data-type. As discussed in chapter 2, abstract predicates inherit some of

the benefits of disjointness and locality from separation logic. In particular, an oper-

ation on one abstract predicate does not affect other abstract predicates. However,

it is not always possible for the client to take full advantage of the local behaviour

that is provided by the abstraction itself. Our set module example, as discussed

before, shows how value removal at the abstract level has a different footprint to

value removal in an implementation. That is, at the abstract level the footprint of

the command is just the value in question. However, the concrete level footprint

depends heavily on the choice of set implementation. Consequently, abstract pred-

icates cannot be used to present a local abstract specification for value removal in

sets. Concurrent abstract predicates (also known as CAP) have recently been in-
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troduced by Dinsdale-Young, Dodds, Gardner, Parkinson and Vafeiadis [27] and do

provide a method for capturing abstract level locality. We shall discuss how our

work relates to CAP in chapter 7.

Filipovíc, O’Hearn, Torp-Smith and Yang have previously considered data refine-

ment for local reasoning [33]. They studied modules built on top of the standard

separation logic heap model. They observed that a client could violate a module’s

abstract boundary by dereferencing pointers into the module’s internal state, and

thereby break the refinement between abstract modules and their concrete imple-

mentations. In their motivating example, a simple memory allocator, a client could

violate the concrete allocator’s free list through memory pointers that had been

deallocated. The abstract allocator, which maintains a set of free cells, is unaffected

by such an access, so the refinement has been broken. The solution to this prob-

lem was to “blame the client” by introducing a modified operational semantics that

treats such memory access violations as faulting executions. Using special simula-

tion relations they were able to recover the soundness of data refinement. These

techniques can be adapted to different data store models, however it is necessary for

both the module and the client to use the same underlying heap model. We believe

that the client should be able to work with whatever model they find most natural

to them, and so we seek an alternative technique.

Our initial work on abstraction and refinement for local reasoning [28] applies

data refinement to local reasoning to demonstrate that local reasoning is sound for

module implementations. In contrast with [33] we worked with the axiomatic se-

mantics of the language, rather than its operational semantics. We defined proof

transformations which established that concrete implementations are correct with

respect to abstract specifications. This approach avoided having to consider badly

behaved client programs, as the proof system only makes guarantees about well be-

haved client programs. Moreover, the abstract and concrete levels in our refinements

typically have different data store models, meaning that the concept of locality it-

self is different at each level. When we encountered a mismatch in the locality of

the abstract and concrete levels we found a simple way to resolve the problem (we

include some extra context in our proof transformations). Our work was based on

context logic, but as we have already seen this causes problems with providing small

axioms for certain types of commands. This means that our previous work would

not scale to concurrent programs, nor could it be directly applied to segment logic.

We present the next step in our abstraction and refinement work, basing our

reasoning on segment logic rather than context logic. Not only does this allow

us to work with fine-grained abstract modules, as introduced in chapter 5, but it
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Figure 6.1: Module translations presented in chapter 6

also allows us to handle locality mismatches in a more structured fashion. The

simple locality fix from our previous work is not applicable to our new reasoning

framework. Instead we must reason about the potential sharing that is taking place

between segments that are disjoint at the abstract level, but possibly overlapping

at the concrete level.

We consider how to provide implementations for a number of our modules in-

troduced in chapter 5. The implementations we shall consider are illustrated in

Figure 6.1. Our first refinement τ1 , described in detail in §6.2.2, provides an imple-

mentation of our fine-grained list module L in our heap module H, where each list is

represented by a standard singly-linked list of heap cells. We then provide two ways

of refining our fine-grained tree module T into our heap module H. The first of these

τ2 , described in detail in §6.3.2, provides a direct implementation of abstract trees

in the heap, where each tree node is represented by a contiguous block of heap cells.

The second tree refinement uses our fine-grained list module L as an intermediate

step in the refinement. We first provide an implementation of our fine-grained tree

module T in terms of a combined heap and list module H + L. This refinement τ3

is described in detail in §6.3.3. Since our approach is modular, this translation can

be extended by the translation τ1 to give a translation from the combined heap and

list module H+L to a paired heap module H+H. This is illustrated by the dotted

arrow in Figure 6.1. Finally, in §6.3.4 we complete our refinement by showing that

the paired heap module H+H can be trivially implemented by the heap module H.

In our setting we shall introduce two general techniques for verifying that module

implementations are correct with respect to their abstract local specifications. These

techniques rely on providing module translations which are either locality-preserving

or locality-breaking.

Locality-preserving translations relate locality at the abstract level with locality
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at the implementation level. However, it is often the case that a command’s im-

plementation operates on more state than is included in the command’s abstract

footprint. For example, consider the deleteTree command from our fine-grained

tree module T. At the abstract level the command simply removes a subtree from

the working tree. However, at the concrete level, the implementation of this com-

mand will additionally need to perform some pointer surgery on the surrounding

state in order to maintain the tree structure. Our translation has to be able to

include this additional state, called the crust in our previous work, in a way that

still provides a fiction of disjointness at the abstract level.

Locality-breaking translations are more suited to cases where the locality at the

abstract level does not correspond with the locality at the implementation level.

For example, consider the set removal command discussed above. At the abstract

level this works on a single value in the set. At the concrete level, where the set is

represented by a singly-linked list, the implementation of this command could po-

tentially traverse the whole list. We could still use the locality preserving technique

in this case, but it will be harder to establish a correct fiction of disjointness. It

seems more appropriate, in such cases, to prove soundness by establishing that the

specifications of module commands are preserved in any wider program state. In

this case we establish a fiction of locality at the abstract level.

The correctness of both approaches relies on the data refinement technique known

as forward simulation (also called L-simulation) [24]. Simulations provide a way of

relating abstract program states and program steps with concrete program states

and program steps. In forward simulations one must show that the result of taking

an abstract state, running some abstract code on it and refining the result is the

same as taking the same initial abstract state, refining it first and running the con-

crete representation of that code on the result. We illustrate the desired behaviour

in Figure 6.2. Assume we have some refinement relation α between abstract states

A and concrete states C and a program C and its implementation JCK. The imple-

mentation JCK soundly refines C if, running C on A1 results in A2 where α(A2 ,C2 )

holds and α(A1 ,C1 ) holds and the result of running JCK on C1 is C2 . Forward

simulation provides a compositional method for building up simulation results for

whole programs from simulation results for individual commands.

6.1 Fine-grained Module Translations

In chapter 5 we saw a number of fine-grained abstract modules for common data

structures. We now show how to correctly implement one fine-grained abstract
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Figure 6.2: Forwards simulation

module in terms of another. In order to do this in a general way we introduce the

concept of a fine-grained module translation.

Definition 6.1 (Fine-grained Module Translations). A fine-grained module trans-

lation τ : A→ B from fine-grained abstract module A = (CmdA,S(MA),AxJ(·)KA)

to fine-grained abstract module B = (CmdB,S(MB),AxJ(·)KB) consists of:

� an abstraction relation ατ ⊆ SB × SA; and

� a substitutive implementation function J(·)Kτ : LA → LB which uniformly

substitutes each basic command of CmdA with a call to a procedure written

in LB.

We lift the abstraction relation ατ ⊆ SB × SA to a predicate translation J(·)Kτ :

PredA → PredB such that:

PJ JPKτ Ke
def
= {(sB, σ) | there exists sA s.t (sA, σ) ∈ PJPKe and sBατsA}

Additionally, we require that the predicate translation J(·)Kτ preserves disjunction

and entailment. When the translation τ is implicit from context, the τ -subscripts

on the abstraction relation, implementation function and predicate translation may

be dropped.

In the context of a module translation τ : A → B, A is called the abstract or

high-level module and B is called the concrete or low-level module. It is possible for

a module to be abstract with respect to one translation and concrete with respect

to another. It is also possible for a module to be both the abstract and concrete

module with respect to a single translation.

177



Definition 6.2 (Sound Module Translation). A fine-grained module translation

τ : A→ B is said to be sound if for all e ∈ Env, Γ ∈ PSEnv, P ,Q ∈ PredA and

C ∈ LA,

e,Γ `A
{

P
}

C
{

Q
}

=⇒ e, JΓ Kτ `B
{
JPKτ

}
JCKτ

{
JQKτ

}
.

where

JΓ Kτ = { f : JPKτ � JQKτ | (f : P� Q) ∈ Γ }

Intuitively, a sound module translation appears to be a reasonable correctness

condition for a module implementation: everything that can be proved about the

abstract module also holds for its implementation. There are, however, a few caveats.

Firstly, since we have elected to work with partial correctness, it is acceptable for

an implementation to simply loop forever. If termination guarantees are required,

they could either be made separately or a logic based on total correctness could be

used. We have chosen to work with partial correctness for simplicity and on the

basis that partial correctness is generally used in the separation logic and context

logic literature [47][70][14].

Secondly, it is possible for the abstraction relation to lose information. For in-

stance, if all predicates were unsatisfiable under translation then it would be possible

to soundly implement every abstract command with skip. However, such an im-

plementation is clearly useless. One way of mitigating this would be to consider a

set of initial predicates that must be satisfiable under translation. A triple whose

precondition is such an initial predicate is then meaningful under translation, since

it cannot hold vacuously. A more stringent approach would be to require that the

abstraction relation ατ be surjective, and therefore every satisfiable predicate must

be satisfiable under translation. However, we shall see that this condition is not met

by all of the natural implementations we consider (§6.2.2 and §6.3.4 in particular).

We shall now look in detail at our two techniques for constructing sound module

translations. We first discuss the locality-breaking technique as our results here

are simpler than for the locality-preserving technique. Our results for the locality-

breaking case are, in fact, very similar to those of our previous work in this area [28].

To establish our ‘fiction of locality’ we need to show that the implementation of each

basic command from the abstract level satisfies the translation of its axioms under

every possible frame. We have to make some adaptations to work with fine-grained

modules, namely that we now model the data structure with a segment algebra,

rather than a context algebra. However, our resulting translations will have much

the same structure as before.
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We will then turn our attention to the locality-preserving technique for construct-

ing sound module translations. Locality-preserving translations closely preserve the

structure of the fine-grained abstract module’s segment algebra through the transla-

tion, which leads to an elegant inductive proof transformation from the abstract level

to the concrete level. In particular, segment composition and segment compression

at the abstract level correspond to segment composition and segment compression

at the concrete level, and so the abstract frame rules (Frame and Rev Frame) are

transformed to their corresponding concrete level counterparts. However, a great

deal of care has to be taken to handle any locality mismatches between the abstract

and concrete levels, and thus create the required fiction of disjointness. In partic-

ular, we have to find a way to reason about the state that is shared between the

concrete representations of abstractly disjoint data structures.

6.1.1 Modularity

It is an important property of module translations that they be composable. Given

module translations τ1 : A1 → A2 and τ2 : A2 → A3 , we construct the module

translation τ2 • τ1 : A1 → A3 in the natural fashion. If the module translations

τ1 and τ2 are both sound, then so is their composition τ2 • τ1 . This allows us to

construct module translations in a stepwise fashion.

A module translation τ : A1 → A2 can be naturally lifted to a module translation

τ + B : A1 + B → A2 + B for any module B. If τ is a sound module translation

we might also expect τ + B to be sound, but it is not obvious that this is the case.

The techniques for constructing sound module translations that we introduce in this

chapter do, however, admit such a lifting. This is because they transform proofs

from module A1 to A2 in a fashion that preserves any additional module component.

Thus, these techniques are modular, since transformations for independent modules

can be combined in a soundness preserving fashion.

6.2 Locality-Breaking Translations

Sometimes the locality exhibited by a high-level module and the locality exhibited by

its low-level implementation have no correspondence. We introduce locality breaking

translations which have a low burden of proof for a sound module translation in

such cases. We show that locality breaking translations give rise to sound module

translations using similar theory as our previous work in this area [28]. We establish

our ‘fiction of locality’ by showing that the implementation of the high-level basic
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Figure 6.3: A representation of the list-store i Z⇒ [ v1 : v2 : v3 ] ∗ j Z⇒ [ w1 : v1 ] as
singly-linked lists in the heap.

commands satisfy the translation of their axioms under every possible frame.

We give a motivating example to illustrate this technique by providing a locality

breaking translation τ1 : L → H from our list module L into our heap module H.

Recall that the fine-grained list module L provides an addressed set of lists of unique

values. Later in this chapter we will see that this list module can be used as part

of an implementation of our fine-grained tree module T. In particular, such lists

provide a good implementation of the child list of a tree node.

In our motivating example we implement each list from our abstract list module

as a singly-linked list in the heap. An example of the list-store viewed in this way

is shown in Figure 6.3. At the abstract level we were able to think of the operation

of removing the value v3 from the list at address i as requiring just the resource

i Z⇒ v3 . However, in our linked list implementation the list at address i must be

traversed from its head, all the way to the node containing the value v3 , in this case

the whole list. We consider a direct approach to reasoning about the correctness of

this implementation.

In order to prove the soundness of a module translation, it is necessary to demon-

strate that there is a transformation from high-level proofs about programs that

use the abstract module to low-level proofs of those programs which implement the

module. Since our definition of predicate translations preserves disjunctions and en-

tailments, as well as the variable store, the majority of our proof rules can be directly

converted into their low-level counterparts. The three obvious exceptions to this are

the separating frame rule Sep Frame, the revelation frame rule Rev Frame and

the axiom rule Axiom. When we consider a module translation that breaks the

locality present at the abstract-level, we can restrict our proofs to those that only

make use of the frame rules in a limited fashion. Intuitively this makes sense, as the

purpose of the frame rules is just to factor out the parts of the program state that

do not play a role in the program under consideration.
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In segment logic we have two frame rules, whose interaction provides the ability

to extend the program state. When thinking about locality-breaking translations

it is enough to combine both of these rules into one frame rule and obtain a more

standard view of the frame. The following SR Frame rule, where Π ⊆ XA is a set

of abstract labels, captures the behaviour of both the Sep Frame and Rev Frame

rules:

SR Frame :
e,Γ `

{
P
}
C
{

Q
}

e,Γ `
{

Πr(P ∗ R)
}
C
{

Πr(Q ∗ R)
}

Note that if we let Π = ∅ then we recover the separation frame rule (Sep Frame).

Similarly, if we let Π = {α} and R = emp then we recover the revelation frame rule

(Rev Frame).

It is commonly understood in the local reasoning community that it is possible

to transform any proof into an equivalent proof in which the frame rule is only

applied to basic statements (that is, basic commands and variable assignments) by

factoring in the extra state earlier in the proof (that is, at the leaves of the proof).

This intuition can be formalised by the following lemma:

Lemma 6.3 (Restricted-Frame Derivations). Let A be a fine-grained abstract mod-

ule. If there is a proof derivation of e,Γ `A {P}C {Q} then there is also a derivation

that only uses the SR frame rule in the following ways:

e,Γ `A {P}C {Q}
(�)

e,Γ `A {Πr(P ∗ R)}C {Πr(Q ∗ R)}
SR Frame

e,Γ `A {P}C {Q}
(�)

e,Γ `A {P ∗ σ}C {Q ∗ σ}
SR Frame

where (�) is either Axiom or Assgn. We prove this Lemma in §6.2.1.

Consider a module translation τ : A → B. Lemma 6.3 implies that it is only

necessary to provide proofs of e, JγKτ `B {JPKτ} JCKτ {JQKτ} when there is a proof

of e,Γ `A {P}C {Q} having the prescribed form. So long as there are proofs that

the implementation of each command in CmdA satisfies the translation of its axioms

under every possible frame, the proof in A can be transformed into a proof in B by

straightforward induction. In fact, we only need to consider singleton frames (that

is, individual pairs x̄ ⊆ XA and s0 ∈ SA) as we can treat any arbitrary frame as the

disjunction of singleton frames and apply the Disj rule. We can further reduce our

considerations to those singleton frames with no variable store component, since
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the variable store component can be added by the Sep Frame rule at the low-

level. These considerations are formalised in the definition of a locality-breaking

translation.

Definition 6.4 (Locality-Breaking Translations). A locality-breaking translation

τ : A → B is a module translation having the property that, for all e ∈ Env,

Γ ∈ PSEnv, s ∈ SA, x̄ ⊆ XA, ϕ ∈ CmdA and (P ,Q) ∈ AxJϕKA there is a deriva-

tion of,

e, JΓ Kτ `B {JΠr(P ∗ R)Kτ} JϕKτ {JΠr(Q ∗ R)Kτ}

where e(Π ) = x̄ and PJRKe = {(s , ∅)}.

Theorem 6.5 (Locality-Breaking Translation Soundness). A locality-breaking trans-

lation is a sound module translation.

A locality-breaking translation transforms proofs that use locality, in the form of

the SR rule, at the abstract level into proofs that do not. To do so, we must directly

prove that the abstract SR Frame rule is sound with respect to the implementation

of each module operation. Hence we say that such a module translations provides a

fiction of locality.

6.2.1 Soundness of Locality-Breaking Translations

Before we embark on the proof of our soundness theorem, we first give the proof of

Lemma 6.3. The result is a special case of the more general result, that if there is a

derivation of e,Γ `A {P}C {Q} then there is a derivation of e,F (Γ ) `A {P}C {Q}
with the required property, where

F (Γ ) =

f : Πr(P ∗ R)� Πr(Q ∗ R)

∣∣∣∣∣∣∣
R ∈ (Env→ P(SA)),

Π ∈ (Env→ P(X ))

and (f : P� Q) ∈ Γ

 .

Note that Γ ⊆ F (Γ ) and F (Γ ) = F (F (Γ )). Since procedure specifications are only

relevant to the PDef and PCall rules, we omit them when considering the other

rules. We also omit the logical environment in these cases, as this is unchanged by

the proof transformation.

The proof of the generalised statement is by induction on the depth of the deriva-

tion. If the last rule applied in the derivation is anything other than the SR Frame

rule or the PDef rule then it is simple to transform the derivation: simply apply

the induction hypothesis to transform all of the premises and then apply the last
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rule using F (Γ ) in place of Γ . We now consider the two remaining cases, where the

last rule applied is (i) SR Frame and (ii) Pdef.

(i) Consider the case where the last rule of the derivation is SR:
...

{P}C {Q}
(?)

{Πr(P ∗ R)}C {Πr(Q ∗ R)}
SR Frame

Recall that the SR rule incorporates both the Frame and Rev Frame rules. By

applying the disjunction rule, this can be reduced to the case of singleton frames R′

where PJR′Ke = {(s , σ)}, transforming the derivation as follows:

for all PJR′Ke ⊆ PJRKe

...
{P}C {Q} (?)

{Πr(P ∗ R′)}C {Πr(Q ∗ R′)} SR Frame

{Πr(P ∗ R)}C {Πr(Q ∗ R)} Disj

Now consider cases for (?), the last rule applied before SR Frame.

If the rule is Cons then, since PJPKe ⊆ PJP ′Ke implies that PJΠr(P ∗R′)Ke ⊆
PJΠr(P ′ ∗ R′)Ke, the application of the SR Frame rule can be moved earlier in

the derivations, transforming it as follows:

PJΠr(P ∗ R′)Ke ⊆ PJΠr(P ′ ∗ R′)Ke

PJΠr(Q ′ ∗ R′)Ke ⊆ PJΠr(Q ∗ R′)Ke

...
{P ′}C {Q ′}

{Πr(P ′ ∗ R′)}C {Πr(Q ′ ∗ R′)} SR Frame

{Πr(P ∗ R′)}C {Πr(Q ∗ R′)} Cons

The application of the SR Frame rule can then be further pushed up the derivation

tree by the inductive hypothesis.

If the rule is Disj then, since ∗ distributes over ∨, the derivation can be trans-

formed as follows:

for all i ∈ I

...
{Pi}C {Qi}

{Πr(Pi ∗ R′)}C {Πr(Qi ∗ R′)} SR Frame

{Πr(
∨

i∈I Pi ∗ R′)}C {Πr(
∨

i∈I Qi ∗ R′)} Disj

The application of the SR Frame rule can then be further pushed up the derivation

tree by the inductive hypothesis.

If the rule is Local then it is possible that the frame R′ includes a program

variable with the same name as that being added by the local block. This means

that the frame cannot in general be pushed into the local block. However, the

frame can be split into its data structure and variable store components. That is
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R′ ⇔ R′1 ∗ R′2 where PJR′1 Ke = {(s , ∅)} and PJR′2 Ke = {(∅, σ)}. Moreover, since

the variable store cannot contain any addresses or hole labels we also know that

Πr(P ∗ R′) ⇔ Πr(P ∗ R′1 ) ∗ R′2 . The derivation can then be transformed as

follows:
...

{P ∗ x⇀⇁ −}C′ {Q ∗ x⇀⇁ −}
{Πr(P ∗ R′1 ∗ x⇀⇁ −)}C′ {Πr(Q ∗ R′1 ∗ x⇀⇁ −)} SR Frame

{Πr(P ∗ R′1 ) ∗ x⇀⇁ −}C′ {Πr(Q ∗ R′1 ) ∗ x⇀⇁ −} Cons

{Πr(P ∗ R′1 )} local x in C′ {Πr(Q ∗ R′1 )} Local

{Πr(P ∗ R′1 ) ∗ R′2} local x in C′ {Πr(Q ∗ R′1 ) ∗ R′2}
SR Frame

{Πr(P ∗ R′)} local x in C′ {Πr(Q ∗ R′)} Cons

The side condition for the Local rule, that PJΠr(P ∗R′1})Ke∩vsafe(x) ≡ ∅ follows

from the original side condition that PJPKe ∩ vsafe(x) ≡ ∅. The applications of the

frame rule are now either of the variable only form, or can be further pushed up the

derivation tree by the inductive hypothesis.

If the rule is PCall then it is again necessary to split the frame R′ into its data

structure and variable store components R′1 and R′2 as above. The PCall rule uses

some f : P � Q ∈ Γ . By definition f : Πr(P ∗ R′′) � Πr(Q ∗ R′′) ∈ F (Γ ),

for any R′′ describing only some part of the data structure, in particular R′1 . The

derivation can then be transformed as follows:

PJ−→r ⇀⇁ −→v ∗ σ′Ke ⊆ vsafe(
−→
E )

e,F (Γ ) `A

{
Πr

(
P
(
EJ−→E Kσ′[−→r 7→ −→v ]

)
∗ R′1

)
∗ (−→r ⇀⇁ −→v ∗ σ′)

}
call −→r := f (

−→
E )

{∃−→w .Πr (Q (−→w ) ∗ R′1 ) ∗ −→r ⇀⇁ −→w ∗ σ′)}

PCall

e,F (Γ ) `A

{
Πr

((
P
(
EJ−→E Kσ′[−→r 7→ −→v ]

)
∗ (−→r ⇀⇁ −→v ∗ σ′)

)
∗ R′1

)}
call −→r := f (

−→
E )

{Πr (∃−→w . (Q (−→w ) ∗ −→r ⇀⇁ −→w ∗ σ′) ∗ R′1 )}

Cons

e,F (Γ ) `A

{
Πr

((
P
(
EJ−→E Kσ′[−→r 7→ −→v ]

)
∗ (−→r ⇀⇁ −→v ∗ σ′)

)
∗ R′1

)
∗ R′2

}
call −→r := f (

−→
E )

{Πr (∃−→w . (Q (−→w ) ∗ −→r ⇀⇁ −→w ∗ σ′) ∗ R′1 ) ∗ R′2}

SR Frame

e,F (Γ ) `A

{
Πr

((
P
(
EJ−→E Kσ′[−→r 7→ −→v ]

)
∗ (−→r ⇀⇁ −→v ∗ σ′)

)
∗ R′

)}
call −→r := f (

−→
E )

{Πr (∃−→w . (Q (−→w ) ∗ −→r ⇀⇁ −→w ∗ σ′) ∗ R′)}

Cons

The application of the SR Frame rule is now in the variable only form.
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The remaining cases for the rule applied at the penultimate step (?) are straight-

forward.

(ii) Now consider the case where the last rule applied is the PDef rule:

for all (fi : Pi � Qi) ∈ Γ

...

e,Γ ′,Γ `A
{∃−→v .Pi(

−→v ) ∗ −→xi ⇀⇁
−→v ∗ −→ri ⇀⇁ −}

Ci

{∃−→w .Qi(
−→w ) ∗ −→xi ⇀⇁ − ∗ −→ri ⇀⇁

−→w }
(�)

(�)

...
e,Γ ′,Γ `A {P}C′ {Q}

e,Γ ′ `A {P} procs −→r1 := f1 (−→x1 ){C1}, ...,−→rk := fk(−→xk ){Ck} in C′ {Q} PDef

The derivations for the function bodies can be extended by applying the SR Frame

rule, for all R′′ ∈ (Env→ P(SA), Π ∈ (Env→ P(X )) and (fi : Pi � Qi) ∈ Γ , to

give:

...

e,Γ ′,Γ `A
{∃−→v .Pi(

−→v ) ∗ −→xi ⇀⇁
−→v ∗ −→ri ⇀⇁ −}

Ci

{∃−→w .Qi(
−→w ) ∗ −→xi ⇀⇁ − ∗ −→ri ⇀⇁

−→w }

e,Γ ′,Γ `A
{Πr (∃−→v . (Pi(

−→v ) ∗ −→xi ⇀⇁
−→v ∗ −→ri ⇀⇁ −) ∗ R′′)}

Ci

{Πr (∃−→w . (Qi(
−→w ) ∗ −→xi ⇀⇁ − ∗ −→ri ⇀⇁

−→w ) ∗ R′′)}

SR Frame

e,Γ ′,Γ `A
{∃−→v .Πr(Pi(

−→v ) ∗ R′′) ∗ −→xi ⇀⇁
−→v ∗ −→ri ⇀⇁ −}

Ci

{∃−→w .Πr(Qi(
−→w ) ∗ R′′) ∗ −→xi ⇀⇁ − ∗ −→ri ⇀⇁

−→w }

Cons

These derivations and the derivation of the premise e,Γ ′,Γ `A {P}C′ {Q} can be

transformed by the inductive hypothesis so that they use the frame rule in the re-

quired fashion and work with the procedure specification environment F (Γ ′,Γ ) =

F (Γ ′),F (Γ ). These derivations can then be recombined to give the required deriva-
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tion as follows:

for all (fi : Pi � Qi) ∈ F (Γ )

...

e,F (Γ ′,Γ ) `A
{∃−→v .Pi(

−→v ) ∗ −→xi ⇀⇁
−→v ∗ −→ri ⇀⇁ −}

Ci

{∃−→w .Qi(
−→w ) ∗ −→xi ⇀⇁ − ∗ −→ri ⇀⇁

−→w }
(�)

(�)

...
e,F (Γ ′,Γ ) `A {P}C′ {Q}

e,F (Γ ′) `A {P} procs −→r1 := f1 (−→x1 ){C1}, ...,−→rk := fk(−→xk ){Ck} in C {Q} PDef

The two further conditions on the PDef rule not included above, that the proce-

dure specification environment Γ only specifies the procedures that are defined in

the procs block under consideration and that these procedures must have different

names to any that occur in the existing procedure specification environment Γ ′, hold

for the transformed derivation because F preserves the names of the functions in

the procedure specifications.

This concludes the proof of Lemma 6.3.

Let τ : A → B be a locality-breaking translation. To show that τ is a sound

module translation, it is necessary to establish that whenever there is a deriva-

tion of e,Γ `A {P}C {Q} there is a derivation of e, JΓ Kτ `B {JPKτ} JCKτ {JQKτ}.
First transform the high-level derivation into a restricted-frame derivation using

Lemma 6.3. Then transform the resulting derivation into the required low-level

derivation by replacing each subderivation of the form

e,Γ `A {P}ϕ {Q}
Axiom

e,Γ `A {Πr(P ∗ R)}ϕ {Πr(Q ∗ R)} SR Frame

with the derivation

for all PJR′Ke ∈ PJRKe

(?)

e, JΓ Kτ `B {JΠr(P ∗ R′1 )Kτ} JϕKτ {JΠr(Q ∗ R′1 )Kτ}
e, JΓ Kτ `B {JΠr(P ∗ R′1 ) ∗ R′2 Kτ} JϕKτ {JΠr(Q ∗ R′1 ) ∗ R′2 Kτ}

SR Frame

e, JΓ Kτ `B {JΠr(P ∗ R′)Kτ} JϕK {JΠr(Q ∗ R′)Kτ}
Cons

e, JΓ Kτ `B {JΠr(P ∗ R)Kτ} JϕKτ {JΠr(Q ∗ R)Kτ}
Disj

where (?) stands for the framed derivation provided by the locality-breaking trans-

lation (Definition 6.4), and replacing all other rules with their low-level equivalents.

In our replacement derivation PJR′Ke = {(s , σ)}, PJR′1 Ke = {(s , ∅)} and PJR′2 K =
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{(∅, σ)}. This means that R′ ⇔ R′1 ∗ R′2 and Πr(P ∗ R′)⇔ Πr(P ∗ R′1 ) ∗ R′2 for

all Π and P .

This completes the proof of Theorem 6.5.

Including the Conjunction Rule

If we wish to add the conjunction rule to the locality-breaking theory, we can add

a case to the proof of Lemma 6.3 to deal with pushing the SR Frame rule over

the Conj rule, in a similar fashion to the Disj case. The result requires that the

segment algebra S(MA, EA) be cancellative.

Definition 6.6 (Cancellativity).

A segment algebra S(M, E) = (SC, fa, fh,#,+S, comp) is cancellative if, for all

s0 , s1 , s2 ∈ SC, s0 +S s1 = s0 +S s2 implies s1 = s2 .

Cancellativity ensures that, in the case of singleton frames {(s , σ)}, we have

(
∧

i∈I Pi) ∗ {(s , σ)} ≡
∧

i∈I (Pi ∗ {(s , σ)})1. It is also necessary for the predicate

translation J(·)Kτ to distribute over conjunction; that is, JP ∧ QKτ ≡ JPKτ ∧ JQKτ .
This is equivalent to the condition that the abstraction relation α is functional; that

is, it defines a partial function from concrete states to abstract states.

6.2.2 Module Translation τ1 : L→ H

Our first module translation example is an implementation of the fine-grained list-

store module L with singly linked lists in the heap module H.

Notation: To simplify the presentation of the model part of our translations we

define a number of structural and logic operations for sets. For an arbitrary set X

1Note that in general this property does not hold
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and p, q ∈ P(X ) we have:

true
def
= P(X )

false
def
= ∅

∃v . p def
= {s | there exists u ∈ Val. s ∈ p[u/v ]}

dpe def
= {dse | s ∈ p}

(x )(p)
def
= {(x )(s) | s ∈ p}

p +S q
def
= {s1 +S s2 | s1 ∈ p and s2 ∈ q}

p ∧ q
def
= p ∩ q

p ∨ q
def
= p ∪ q

p ∧ (x = y)
def
=

{
p if x = y

∅ otherwise

Definition 6.7 (τ1 : L → H). The module translation τ1 : L → H is constructed

as follows:

� the abstraction relation ατ1 ⊆ SH × SL is defined by,

ατ1
def
= {(sh, sls) | sh ∈ (|sls|)}

where (|(·)|) : SL → P(SH) is defined by induction on the structure of list-store

segments as:

(|∅|) def
= {∅}

(|xi�cl |) def
=

{
∃y . {di 7→ ye}+S 〈〈cl〉〉(y,null) if xi = 0i and fhL(cl) = ∅
false otherwise

(|sls1 +S sls2 |)
def
= (|sls1 |) +S (|sls2 |)

and where 〈〈(·)〉〉(·) : LVal,XAdr× (Adrnull×Adrnull)→ P(HAdr,X) is defined by

induction on the structure of complete lists as:

〈〈ε〉〉(x ,y) def
= {∅} ∧ (x = y)

〈〈zi〉〉(x ,y) def
= false

〈〈v〉〉(x ,y) def
= {dx 7→ v ,ye}

〈〈cl1 : cl2 〉〉(x ,y) def
= ∃z . 〈〈cl1 〉〉(x ,z ) +S 〈〈cl2 〉〉(z ,y)

� the substitutive implementation function is given by replacing each list mod-

ule command with a call to the correspondingly named procedure given in
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Figure 6.4 and Figure 6.5, where

E .value
def
= E

E .next
def
= E + 1

x := newNode()
def
= x := alloc(2 )

x := newRoot()
def
= x := alloc(1 )

disposeNode(E )
def
= dispose(E , 2 )

disposeRoot(E )
def
= dispose(E , 1 ).

Notice that this abstraction relation is not surjective, since incomplete and partial

lists do not have corresponding heap relations (they are mapped to false). The

intuition behind this is that incomplete and partial lists are just a useful tool to

enable reasoning about complete lists. It is common for clients of our list module

to work with just complete lists, in particular only complete lists can be created

or deleted by our module commands. Of course, it is perfectly acceptable to use

assertions and specifications that refer to incomplete or partial lists within client

proofs. In fact, doing so allows us to provide more fine-grained specifications of

list manipulating programs. The transformations of our proofs to their low-level

versions will compete any partial lists by making use of Lemma 6.3.

Our choice not to represent incomplete or partial lists at the low-level makes it

simpler to prove that τ1 is a locality-breaking translation. It is only necessary to

prove that the axioms hold under the translation for frames that complete all of the

lists given in the precondition. In all other cases, the precondition will just translate

to false, and so the low-level triple will hold trivially.

Theorem 6.8 (Soundness of τ1 ). The module translation τ1 is a locality-breaking

translation.

We do not cover every case of the proof here, but show details for two cases that

illustrate the technique of proving the correctness of the axioms under the trans-

lation. We first give a proof of a simple case, showing that the implementation of

the deleteList command satisfies its translated specification in any frame. We

then give a proof of a more complex case, showing that the implementation of the

getNext command satisfies its translated specification in any frame. The imple-

mentations of the other basic commands can be shown to satisfy their translated

specifications in a similar fashion. Our proofs are analogous to those found in our

previous work in this area [29].
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proc v := getHead(i){
local x in

x := [i] ;
if x = null then
v := x

else

v := [x.value]
}

proc v := getTail(i){
local x, y in

x := [i] ;
if x = null then
v := x

else

y := [x.next] ;
while y 6= null do
x := y ;
y := [x.next]

v := [x.value]
}

proc v := getNext(i, w){
local x in

x := [i] ;
v := [x.value] ;
while v 6= w do

x := [x.next] ;
v := [x.value]

x := [x.next] ;
if x = null then
v := x

else

v := [x.value]
}

proc v := getPrev(i, w){
local x, y in

x := [i] ;
v := [x.value] ;
if v = w then

v := null
else

while v 6= w do

y := x ;
x := [y.next] ;
v := [x.value]

v := [y.value]
}

proc v := pop(i){
local x, y in

x := [i] ;
if x = null then
v := x

else

y := [x.next] ;
[i] := y ;
v := [x.value] ;
disposeNode(x)

}

proc push(i, v){
local x, y in

x := newNode() ;
y := [i] ;
[x.value] := v ;
[x.next] := y ;
[i] := x

}

Figure 6.4: Procedures for the heap-based implementation of the list module.
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proc remove(i, v){
local u, x, y, z in

x := [i] ;
u := [x.value] ;
y := [x.next] ;
if u = v then

[i] := y ;
disposeNode(x)

else

u := [y.value] ;
while u 6= v do

x := y ;
y := [x.next] ;
u := [y.value]

z := [y.next] ;
[x.next] := z ;
disposeNode(y)

}

proc i := newList(){
i := newRoot() ;
[i] := null
}

proc insert(i, v, w){
local u, x, y, z in

x := [i] ;
u := [x.value] ;
while u 6= v do

x := [x.next] ;
u := [x.value]

y := [x.next] ;
z := newNode() ;
[z.value] := w ;
[z.next] := y ;
[x.next] := z

}

proc deleteList(i){
local x, y in

x := [i] ;
while x 6= null do
y := x ;
x := [y.next] ;
disposeNode(y)

disposeRoot(i)
}

Figure 6.5: Procedures for the heap-based implementation of the list module.
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Implementation Correctness: deleteList

Recall the specification of the deleteList command from Figure 5.8.{
i Z⇒ [ l ] ∗ σ ∧ EJE Kσ = i

}
deleteList(E ){

σ
}

Fix arbitrary e ∈ Env, i ∈ Adr, l ∈ Val∗, sls ∈ SL and x̄ ∈ P(XAdr) such that

PJRKe = {(sls , ∅)} and e(Π ) = x̄ . It is sufficient to show that the procedure body

of deleteList (from Figure 6.5) meets the following specification:{
JHΠ . (R ∗ i Z⇒ [ l ] ∗ i⇀⇁ i) Kτ1

}
deleteList(i){

JHΠ . (R ∗ i⇀⇁ i) Kτ1
}

Now, either this specification holds trivially since the precondition is equivalent to

false, or

HΠ . (R ∗ i Z⇒ [ l ] ∗ i⇀⇁ i) ⇔ R′ ∗ i Z⇒ [ l ] ∗ i⇀⇁ i

with PJR′Ke = {(sls ′, ∅)} for some sls ′ ∈ SL where all of the lists in sls ′ are complete.

The proof outline for this second case is given in Figure 6.6. In this case the list at

i is already a complete list, with no context holes in it. So as long as we do not add

any incomplete or partial lists to the list-store in the frame, the translation will be

defined.
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{
JHΠ . (R ∗ i Z⇒ [ l ] ∗ i⇀⇁ i) Kτ1

}{
JR′ ∗ i Z⇒ [ l ] ∗ i⇀⇁ i Kτ1

}{
JR′ Kτ1 ∗ ∃y . (di 7→ ye ∗ 〈〈l〉〉(y,null) ∗ i⇀⇁ i)

}
local x, y in{

JR′ Kτ1 ∗ ∃y . (di 7→ ye ∗ 〈〈l〉〉(y,null) ∗ i⇀⇁ i ∗ x⇀⇁ − ∗ y⇀⇁ −)
}

x := [i] ;{
JR′ Kτ1 ∗ ∃y . (di 7→ ye ∗ 〈〈l〉〉(y,null) ∗ i⇀⇁ i ∗ x⇀⇁ y ∗ y⇀⇁ −)

}{
JR′ Kτ1 ∗ ∃y , l , z . (di 7→ −e ∗ dy 7→ −,ze ∗ 〈〈l〉〉(z ,null) × i⇀⇁ i ∗ x⇀⇁ y ∗ y⇀⇁ −)
∨ JR′ Kτ1 ∗ ∃y . (di 7→ −e ∗ i⇀⇁ i ∗ x⇀⇁ null ∗ y⇀⇁ −)

}
while x 6= null do{

JR′ Kτ1 ∗ ∃y , l , z . (di 7→ −e ∗ dy 7→ −,ze ∗ 〈〈l〉〉(z ,null) ∗ i⇀⇁ i ∗ x⇀⇁ y ∗ y⇀⇁ −)
}

y := x ;{
JR′ Kτ1 ∗ ∃y , l , z . (di 7→ −e ∗ dy 7→ −,ze ∗ 〈〈l〉〉(z ,null) ∗ i⇀⇁ i ∗ x⇀⇁ y ∗ y⇀⇁ y)

}
x := [y.next] ;{
JR′ Kτ1 ∗ ∃y , l , z . (di 7→ −e ∗ dy 7→ −,ze ∗ 〈〈l〉〉(z ,null) ∗ i⇀⇁ i ∗ x⇀⇁ z ∗ y⇀⇁ y)

}
disposeNode(y){
JR′ Kτ1 ∗ ∃y , l , z . (di 7→ −e ∗ 〈〈l〉〉(z ,null) ∗ i⇀⇁ i ∗ x⇀⇁ z ∗ y⇀⇁ y)

}{
JR′ Kτ1 ∗ ∃y , l , z . (di 7→ −e ∗ dy 7→ −,ze ∗ 〈〈l〉〉(z ,null) ∗ i⇀⇁ i ∗ x⇀⇁ y ∗ y⇀⇁ −)
∨ JR′ Kτ1 ∗ ∃y . (di 7→ −e ∗ i⇀⇁ i ∗ x⇀⇁ null ∗ y⇀⇁ −)

}
{
JR′ Kτ1 ∗ ∃y . (di 7→ −e ∗ i⇀⇁ i ∗ x⇀⇁ null ∗ y⇀⇁ −)

}
disposeRoot(i){
JR′ Kτ1 ∗ ∃y . (i⇀⇁ i ∗ x⇀⇁ null ∗ y⇀⇁ −)

}{
JR′ Kτ1 ∗ ∃y . i⇀⇁ i

}{
JR′ ∗ i⇀⇁ i Kτ1

}{
JHΠ . (R ∗ i⇀⇁ i) K

}
Figure 6.6: Proof outline for the deleteList implementation in τ1 .
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Implementation Correctness: getNext

Recall the specifications of the getNext command from Figure 5.7.{
αi�(w + u) ∗ v⇀⇁ v ∗ σ ∧ EJE Kσ[v 7→ v ] = i ∧ EJE ′Kσ[v 7→ v ] = w

}
v := getNext(E , E ′){

αi�(w + u) ∗ v⇀⇁ u ∗ σ
}

{
i Z⇒ [ βi + w ] ∗ v⇀⇁ v ∗ σ ∧ EJE Kσ[v 7→ v ] = i ∧ EJE ′Kσ[v 7→ v ] = w

}
v := getNext(E , E ′){

i Z⇒ [ βi + w ] ∗ v⇀⇁ null ∗ σ
}

Fix arbitrary e ∈ Env, i ∈ Adr, w , u ∈ Val, sls ∈ SL and x̄ ∈ P(XAdr) such

that PJRKe = {(sls , ∅)} and e(Π ) = x̄ . It is sufficient to show that the procedure

body of getNext (from Figure 6.4) meets the following specifications:{
JHΠ . (R ∗ (αi�(w + u) ∗ i⇀⇁ i ∗ w⇀⇁ w ∗ v⇀⇁ −)) K

}
v := getNext(i, w){

JHΠ . (R ∗ (αi�(w + u) ∗ i⇀⇁ i ∗ w⇀⇁ w ∗ v⇀⇁ u)) K
}

{
JHΠ . (R ∗ (i Z⇒ [ βi + w ] ∗ i⇀⇁ i ∗ w⇀⇁ w ∗ v⇀⇁ −)) K

}
v := getNext(i, w){

JHΠ . (R ∗ (i Z⇒ [ βi + w ] ∗ i⇀⇁ i ∗ w⇀⇁ w ∗ v⇀⇁ null)) K
}

Consider the first specification for getNext. Either this holds trivially, since the

precondition is equivalent to false, or

HΠ . (R ∗ (αi�(w + u) ∗ i⇀⇁ i ∗ w⇀⇁ w ∗ v⇀⇁ −))

⇔
R′ ∗ (i Z⇒ [ l1 : w : u : l2 ] ∗ i⇀⇁ i ∗ w⇀⇁ w ∗ v⇀⇁ −)

with PJR′Ke = {(sls ′, ∅)} for some sls ′ ∈ SL where all of the lists in sls ′ are complete

and l1 , l2 ∈ Val∗ with w and u not in either l1 or l2 . The proof outline for this

second case is given in Figure 6.8. In this case the list segment at i is partial, so

we only consider the frames which at least complete the list i and do not add any

further incomplete or partial lists to the list-store.

Now consider the second specification for getNext. Again, either this holds triv-
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ially, since the precondition is equivalent to false, or

HΠ . (R ∗ (i Z⇒ [ βi + w ] ∗ i⇀⇁ i ∗ w⇀⇁ w ∗ v⇀⇁ −))

⇔
R′ ∗ (i Z⇒ [ l + w ] ∗ i⇀⇁ i ∗ w⇀⇁ w ∗ v⇀⇁ −)

with PJR′Ke = {sls ′, ∅} for some sls ′ ∈ SL where all of the lists in sls ′ are complete

and l ∈ Val∗ with w not in l . The proof outline for this second case is given in

Figure 6.9. In this case the list segment at i is incomplete: it contains a hole which

the frame must fully fill for the translation to be defined. Thus, we only consider

frames which at least complete the list i and do not add any further incomplete or

partial lists to the list-store.

In both specification cases the getNext implementation performs the same search

for the value w in the list. The proof outline for this common part is given in

Figure 6.7.

6.2.3 Locality-Breaking Limitations

The implementation correctness proofs for the locality-breaking translation consid-

ered above are not that complex and all follow a standard pattern. For this example

translation we can reason about the correctness of the implementation, with respect

to a given axiom, for all frames in just a few steps. If the frame applied to the

axiom’s precondition does not complete the list i , or adds some other incomplete

list, then the translation of the list-store results in false and our proof obligation is

vacuous. The only cases we need to consider in more detail are those cases where the

frame completes list i and possibly adds some other complete lists. In such cases, we

can always use the separating frame rule at the low-level to hide away these other

lists and focus on the implementation’s effect on list i . We have seen that a single

proof sketch can then be used to show that the translated axiom is satisfied by the

implementation.

In general, it is not always the case that we can capture all of the frames that

can be applied to our axioms in such an elegant way. As an example, consider

providing a locality-breaking translation of our fine-grained abstract tree module T.

In a similar way to the translation above we could choose only to translate complete

trees into their concrete representations. Regardless of the implementation chosen

though, the appendChild(n, m) command is going to pose us with a problem.

At the abstract-level we only need to think about the node n and the subtree at m.

However, at the concrete-level (for the non vacuous cases) we have to consider the

195



{
di 7→ xe ∗ 〈〈l : w〉〉(x ,y) ∗ i⇀⇁ i ∗ w⇀⇁ w ∗ v⇀⇁ − ∗ x⇀⇁ −

}
x := [i] ;{
di 7→ xe ∗ 〈〈l : w〉〉(x ,y) ∗ i⇀⇁ i ∗ w⇀⇁ w ∗ v⇀⇁ − ∗ x⇀⇁ x

}
(
∃v , l ′, z . l = v : l ′ ∧ di 7→ xe ∗ dx 7→ v ,ze ∗ 〈〈l ′ : w〉〉(z ,y)

∨ l = ε ∧ di 7→ xe ∗ dx 7→ w ,ye

)
∗ i⇀⇁ i ∗ w⇀⇁ w ∗ v⇀⇁ − ∗ x⇀⇁ x


v := [x.value] ;{
∃v , l1 , l2 , z , z ′. l : w = l1 : v : l2 ∧ di 7→ xe ∗ 〈〈l1 〉〉(x ,z ) ∗ dz 7→ v ,z ′e ∗ 〈〈l2 〉〉(z

′,y)

∗ i⇀⇁ i ∗ w⇀⇁ w ∗ v⇀⇁ v ∗ x⇀⇁ z

}
while v 6= w do

∃v , v ′, l1 , l2 , z , z ′, z ′′. l : w = l1 : v : v ′ : l2
∧ di 7→ xe ∗ 〈〈l1 〉〉(x ,z ) ∗ dz 7→ v ,z ′e ∗ dz ′ 7→ v ′,z ′′e ∗ 〈〈l2 〉〉(z

′′,y)

∗ i⇀⇁ i ∗ w⇀⇁ w ∗ v⇀⇁ v ∗ x⇀⇁ z


x := [x.next] ;
∃v , v ′, l1 , l2 , z , z ′, z ′′. l : w = l1 : v : v ′ : l2
∧ di 7→ xe ∗ 〈〈l1 〉〉(x ,z ) ∗ dz 7→ v ,z ′e ∗ dz ′ 7→ v ′,z ′′e ∗ 〈〈l2 〉〉(z

′′,y)

∗ i⇀⇁ i ∗ w⇀⇁ w ∗ v⇀⇁ v ∗ x⇀⇁ z ′


v := [x.value]
∃v , v ′, l1 , l2 , z , z ′, z ′′. l : w = l1 : v : v ′ : l2
∧ di 7→ xe ∗ 〈〈l1 〉〉(x ,z ) ∗ dz 7→ v ,z ′e ∗ dz ′ 7→ v ′,z ′′e ∗ 〈〈l2 〉〉(z

′′,y)

∗ i⇀⇁ i ∗ w⇀⇁ w ∗ v⇀⇁ v ′ ∗ x⇀⇁ z ′

{
∃v , l1 , l2 , z , z ′. l : w = l1 : v : l2 ∧ di 7→ xe ∗ 〈〈l1 〉〉(x ,z ) ∗ dz 7→ v ,z ′e ∗ 〈〈l2 〉〉(z

′,y)

∗ i⇀⇁ i ∗ w⇀⇁ w ∗ v⇀⇁ v ∗ x⇀⇁ z

}
{
∃z . di 7→ xe ∗ 〈〈l〉〉(x ,z ) ∗ dz 7→ w ,ye ∗ i⇀⇁ i ∗ w⇀⇁ w ∗ v⇀⇁ w ∗ x⇀⇁ z

}
x := [x.next] ;{
∃z . di 7→ xe ∗ 〈〈l〉〉(x ,z ) ∗ dz 7→ w ,ye ∗ i⇀⇁ i ∗ w⇀⇁ w ∗ v⇀⇁ w ∗ x⇀⇁ y

}{
di 7→ xe ∗ 〈〈l : w〉〉(x ,y) ∗ i⇀⇁ i ∗ w⇀⇁ w ∗ v⇀⇁ w ∗ x⇀⇁ y

}
Figure 6.7: Proof outline for the search part of the getNext implementation in τ1

(common part).
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{
JHΠ . (R ∗ (αi�(w + u) ∗ i⇀⇁ i ∗ w⇀⇁ w ∗ x⇀⇁ −)) Kτ1

}{
JR′ Kτ1 ∗ ∃x , y , z . di 7→ xe ∗ 〈〈l1 : w〉〉(x ,y) ∗ dy 7→ u,ze ∗ 〈〈l2 〉〉(z ,null)

∗ i⇀⇁ i ∗ w⇀⇁ w ∗ v⇀⇁ −

}
{
∃x , y , z . di 7→ xe ∗ 〈〈l1 : w〉〉(x ,y) ∗ dy 7→ u,ze ∗ i⇀⇁ i ∗ w⇀⇁ w ∗ v⇀⇁ −

}
local x in{
∃x , y , z . di 7→ xe ∗ 〈〈l1 : w〉〉(x ,y) ∗ dy 7→ u,ze ∗ i⇀⇁ i ∗ w⇀⇁ w ∗ v⇀⇁ − ∗ x⇀⇁ −

}
(see Figure 6.7){

∃x , y , z . di 7→ xe ∗ 〈〈l1 : w〉〉(x ,y) ∗ dy 7→ u,ze ∗ i⇀⇁ i ∗ w⇀⇁ w ∗ v⇀⇁ w ∗ x⇀⇁ y
}

if x = null then
v := x

else

v := [x.value]{
∃x , y , z . di 7→ xe ∗ 〈〈l1 : w〉〉(x ,y) ∗ dy 7→ u,ze ∗ i⇀⇁ i ∗ w⇀⇁ w ∗ v⇀⇁ u ∗ x⇀⇁ y

}{
∃x , y , z . di 7→ xe ∗ 〈〈l1 : w〉〉(x ,y) ∗ dy 7→ u,ze ∗ i⇀⇁ i ∗ w⇀⇁ w ∗ v⇀⇁ u

}{
JR′ Kτ1 ∗ ∃x , y , z . di 7→ xe ∗ 〈〈l1 : w〉〉(x ,y) ∗ dy 7→ u,ze ∗ 〈〈l2 〉〉(z ,null)

∗ i⇀⇁ i ∗ w⇀⇁ w ∗ v⇀⇁ v

}
{
JHΠ . (R ∗ (αi�(w + u) ∗ i⇀⇁ i ∗ w⇀⇁ w ∗ v⇀⇁ u)) Kτ1

}
Figure 6.8: Proof outline for the getNext implementation in τ1 (success case).

{
JHΠ . (R ∗ (i Z⇒ [ βi + w ] ∗ i⇀⇁ i ∗ w⇀⇁ w ∗ v⇀⇁ −)) Kτ1

}{
JR′ Kτ1 ∗ ∃x . di 7→ xe ∗ 〈〈l : w〉〉(x ,null) ∗ i⇀⇁ i ∗ w⇀⇁ w ∗ v⇀⇁ −

}{
di 7→ xe ∗ 〈〈l : w〉〉(x ,null) ∗ i⇀⇁ i ∗ w⇀⇁ w ∗ v⇀⇁ −

}
local x in{
di 7→ xe ∗ 〈〈l : w〉〉(x ,null) ∗ i⇀⇁ i ∗ w⇀⇁ w ∗ v⇀⇁ − ∗ x⇀⇁ −

}
(see Figure 6.7){

di 7→ xe ∗ 〈〈l : w〉〉(x ,null) ∗ i⇀⇁ i ∗ w⇀⇁ w ∗ v⇀⇁ w ∗ x⇀⇁ null
}

if x = null then
v := x

else

v := [x.value]{
di 7→ xe ∗ 〈〈l : w〉〉(x ,null) ∗ i⇀⇁ i ∗ w⇀⇁ w ∗ v⇀⇁ null ∗ x⇀⇁ null

}{
di 7→ xe ∗ 〈〈l : w〉〉(x ,null) ∗ i⇀⇁ i ∗ w⇀⇁ w ∗ v⇀⇁ null

}{
JR′ Kτ1 ∗ ∃x . di 7→ xe ∗ 〈〈l : w〉〉(x ,null) ∗ i⇀⇁ i ∗ w⇀⇁ w ∗ v⇀⇁ null

}{
JHΠ . (R ∗ (i Z⇒ [ βi + w ] ∗ i⇀⇁ i ∗ w⇀⇁ w ∗ v⇀⇁ null)) Kτ1

}
Figure 6.9: Proof outline for the getNext implementation in τ1 (failure case).
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Figure 6.10: The 3 patterns of frame for appendChild.

whole tree. There are three possible states that the tree could be extended to from

the precondition of the axiom for the appendChild command. Either the subtree

at m is somewhere to the left of n, the subtree at m is somewhere to the right of

n, or the subtree at m is somewhere beneath n. The three states are illustrated in

Figure 6.10.

The behaviour of an implementation of the appendChild command will be subtly

different on each of these states. For example, the nodes may be visited in different

orders or the pointer surgery required to maintain the tree may have to interact in

different ways. To prove that an implementation of the appendChild command is

correct with respect to some abstract specification we will have no choice but to

check the implementation in each of these cases. This means we will need to provide

three proof sketches for each axiom for the same piece of code.

Ideally, we want to be able to prove the correctness of every piece of code using

just one proof sketch per axiom. We want to be able to reason about the correctness

of such implementations without having to think about all of the possible frames

they could be operating within. In effect, we want to mirror the locality of our

high-level reasoning system in our low-level implementations. This desire leads us

on to the technique of providing locality-preserving translations.

6.3 Locality-Preserving Translations

Sometimes, there is a close correspondence between the locality exhibited by a high-

level module and the locality exhibited by its low-level implementation. In this sec-

tion, we expand on this intuition and formalise the concept of a locality-preserving

translation. We show that locality-preserving translations give rise to sound mod-

ule translations and then consider several examples. In §6.3.2 we give a locality-

preserving translation τ2 : T→ H which uses the heap module H to implement the

tree module T. Similarly, in §6.3.3 we give another locality-preserving translation

τ3 : T → H + L which uses a combination of the heap module H and list module
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(a) (b) (c)

Figure 6.11: An abstract tree from T (a), and representations of the tree in H (b),
and in H× L (c).

L to implement the tree module T. Finally, in §6.3.4 we give a locality-preserving

translation τ4 : H + H → H which implements a double heap with a single heap.

This translation completes a stepwise refinement of the tree module T into the heap

module H. It is worth mentioning that, whilst this last translation is sound, it is

not, however, surjective.

First, we explain what it means for there to be a close correspondence between

locality at the high-level and locality at the low-level. Figure 6.11 depicts a typical

tree from the module T (a), together with possible representations of that tree in

the heap module H (b), and in the combined heap-and-list module H × L (c). In

Figure 6.11(b), each tree node is represented by a memory block of four pointer

fields (depicted by a circle with outgoing arrows) which record the addresses of the

memory blocks representing the left sibling, parent, first child and right sibling of

the node. When there is no such node (for example, when a node has no children)

the pointer field holds the null value (depicted by the absence of an arrow). In

Figure 6.11(c), each tree node is represented by a memory block of two pointer

fields which record the addresses of the parent node and the child list of the node.

This child list (depicted by a box with dots for each value in the list) is a list of

pointers to the node’s children.

These examples exhibit simple inductive transformations from the abstract data

structure to its concrete representations. It should be possible to lift these inductive

transformations to the segment level, and thus give simple inductive transformations

from high-level proofs to low-level proofs. In particular, it should be possible to

transform high-level segments into a low-level segments. Such a transformation is

said to preserve locality.

We wish to transform high-level proofs about an abstract program into corre-

sponding low-level proofs about its implementation. We aim do this by simply

replacing the high-level predicates with their low-level representations. However, we
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must take care in how we represent segments at the low-level. At the abstract level

segments are agnostic to the segments that are placed beside them, around them, or

within their holes, but the concrete representations of these segments need to know

some information about these additional segments, and vice versa. In particular we

need to know if the pointers contained within each segment’s representation link

into the representation of other segments. For example, consider the structures in

Figure 6.11. Breaking apart the subtree denoted by the dashed line at the abstract-

level (a) is simple. However, the same separation at the concrete-level (b and c)

requires us to track the pointers that cross the breaking point (the arrows passing

over the dashed line). An update to one of these concrete subtrees may have an

effect on the values stored in these pointers.

We track such pointers by translating each abstract label x ∈ XA to an inter-

face I ∈ I which records this ‘knowledge’ that segments have about each other.

Specifically, the possible representations of an abstract segment s is given by the

set of concrete segments (|s|)η, where η is a function that maps each address and

hole label in s to its interface. There are two types of interface corresponding to the

two positions in which a label can occur. An abstract address maps to an address

interface that contains the information needed to compress the addressed segment

with another. An abstract hole label maps to a hole interface that contains the in-

formation needed to fill the hole with the contents of another segment. Notice that

these two concepts are closely related. In particular, the address-interface of one

segment will be the same as a hole-interface of another segment when the abstract

address and hole label are the same.

Most of the proof rules should transform simply to their low-level counterparts.

However, the separation frame rule Sep Frame, revelation frame rule Rev Frame

and axiom rule Axiom each require some care. Consider the operation of disposing

the subtree indicated by the dashed line in Figure 6.11. At the abstract level, it is

clear that the resource required to run the command is just the subtree that is to

be deleted. This is reflected in the axiom for deleteTree:{
α�w [tree(ct)] ∗ σ ∧ EJE Kσ = w

}
deleteTree(E )

{
α�∅ ∗ σ

}
However, in both implementations something more than this representation of the

subtree is required: for the heap implementation in Figure 6.11 (b), the pointers

into the deleted subtree must be updated; for the heap-and-list implementation in

Figure 6.11 (c), the pointers to the subtree’s top-level nodes must be removed from

their parent’s child list. In both cases, the low-level footprint of deleteTree is
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−→

Figure 6.12: Crust inclusive translation.

larger than its intuitive concrete representation. The axiom for deleteTree cannot,

therefore, be translated by just replacing the high-level predicates with their intuitive

concrete representations.

This mismatch between the abstract footprint and the concrete footprint corre-

sponds to a mismatch between the locality of the abstract and concrete modules. In

order to be able to provide a locality-preserving translation, we need to find some

way to repair our translation from the abstract module. We do this by modifying

the translation to include some crust which corresponds to the extra resource that is

required to reason about the command implementations. This introduces a ‘fiction

of disjointness’, as segments that were disjoint at the abstract-level may now overlap

at the concrete-level. Figure 6.12 shows how we extend the heap representation of

the subtree segment, indicated by the dashed line in Figure 6.11 (b), to include this

extra crust. The shaded nodes are the extra nodes that need to be included in the

translation. A similar extension is required in the heap-and-list representation of

the subtree indicated by the dashed line in Figure 6.11 (c). However, we have to

take care when introducing such crusts to our translations. Considering the same

example tree as before, Figure 6.13 shows us how the crusts of the heap representa-

tion of the first and last subtrees overlap at the concrete level. If we are not careful

with this overlap then our translation may result in an undefined representation. We

need to take great care to ensure that such state overlaps are correctly shared by

our concrete segments. In general, we will appeal to a permissions model to ensure

that such shared data is maintained in a consistent view. Unfortunately, we will see

that this model has to be defined on a case by case basis. For some translations a

simple permissions model will suffice, but for others developing such a model can be

rather involved.

Once we have modified our translation from the abstract data structure to the

concrete data structure, we have to check that we can still translate abstract-level
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Figure 6.13: Translation with overlapping crusts.

frames into concrete-level frames. It is essential that the concrete representation

preserves certain properties of the abstract segment structure. In particular, if

the abstract segment structure represents a disjoint splitting of the segment into

two subsegments, its concrete representation should also be able to be split into

the representations of these subsegments. This means that our translation must

preserve the separating conjunction ∗. Loosely,

JP ∗QKτ ≡ JPKτ ∗ JQKτ .

Similarly, we must also ensure that when the abstract segment structure represents

a compressed segment, its concrete representation should also be compressed. This

means that our translation must also preserve the revelation operator r. However,

recall that we translate abstract labels to concrete interfaces, so a compression of

one label at the abstract level may correspond to a compression of a set of labels

(in the concrete interface) at the concrete level. The property we wish to show is

loosely,

JαrPKτ ≡ JαKτrJPKτ .

With these two properties we can be sure that the separation frame rule and

revelation frame rule are preserved across our translation. To deal with the Axiom

rule we simply need to prove that the implementations of the basic commands

satisfy the low-level representations of their specifications. The axiom correctness

property must, therefore, ensure that the low-level specifications still hold under our

translation. Loosely, we need to check that{
JPKτ

}
JϕK

{
JQKτ

}
holds for every (P ,Q) ∈ AxJϕK. We shall see that the remaining inference rules can
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be more straightforwardly translated from the abstract-level to the concrete-level,

despite the introduction of crusts and interfaces to our translation.

Having fleshed out the intuition behind locality-preserving translations, we now in-

troduce their formal definition. We first define the concept of pre-locality-preserving

translations and then restrict locality-preserving translations to being those that

exhibit the required properties discussed above. We then prove a general result that

locality-preserving translations are sound module translations.

Definition 6.9 (Pre-Locality-Preserving Translation). A pre-locality preserving trans-

lation τ : A→ B is a module translation consisting of:

� a set of interfaces I consisting of concrete-level identifiers, addresses and labels.

� an interface function η : XA ⇀fin I which maps abstract identifiers to their

concrete interfaces.

� a segment representation function (|(·)|)(·) : SA × (XA ⇀fin I)→ P(SB);

� a substitutive implementation function J(·)Kτ : LA → LB.

We construct a module translation from a pre-locality-preserving translation by

defining the abstraction relation in terms of the segment representation function.

For any given η, the abstraction relation ατ is defined to be

ατ
def
= {(sB, sA) | sB ∈ (|sA|)η}.

There is often a natural choice of η, but in general any choice is permissible. We

lift our abstraction relation to a predicate translation as defined in § 6.1. We also

define a label translation JαKτ such that,

PJ JαKτ Ke = {y | e(α) = x and y ∈ η(x ) and x ∈ XA and y ∈ XB}.

This translation allows us to relate abstract label predicates with their corresponding

sets of concrete label predicates.

A pre-locality preserving translation does not necessarily provide a sound module

translation. However, if a pre-locality preserving translation satisfies the following

three properties then it is a locality preserving translation which is a sound module

translation. To simplify our presentation we work with the same operations on sets

as introduced in §6.2.2.
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Property 1 (Combination Preservation). Segment combination is preserved by the

segment representation function. That is, for all s1 , s2 ∈ SA and η ∈ (XA ⇀fin I),

(|s1 +S s2 |)η ≡ (|s1 |)η +S (|s2 |)η

Property 2 (Compression Preservation). Segment compression is preserved by the

segment representation function. That is, for all x ∈ XA, s ∈ SA and η ∈ (XA ⇀fin

I), there exists I ∈ I and x̄ ∈ P(XB) with ȳ = labs(I ) such that,

(|(x )(s)|)η ≡ (ȳ)((|s|)η[x 7→I ])

where labs(I ) = {y | y ∈ I and y ∈ XB} is the set of labels from XB that occur in

interface I ∈ I.

Property 3 (Axiom Correctness). For all e ∈ Env, Γ ∈ PSEnv, ϕ ∈ CmdA,

(P ,Q) ∈ AxJϕKA and η ∈ (XA ⇀fin I),

e, JΓ Kτ `B
{
JPKτ

}
JϕKτ

{
JQKτ

}
where JPKτ is the lifting of the abstraction relation ατ to predicates, as defined in

§6.1, and

JΓ Kτ = { f : JPKτ � JQKτ | (f : P� Q) ∈ Γ }

Definition 6.10 (Locality-Preserving Translation). A locality preserving translation

is a pre-locality-preserving translation that satisfies Properties 1, 2 and 3.

Theorem 6.11 (Locality-Preserving Translation Soundness). A locality preserving

translation is a sound module translation.

6.3.1 Soundness of Locality-Preserving Translations

Proposition 6.12 (Sound Transformation). For all e ∈ Env, Γ ∈ PSEnv, P ,Q ∈
PredA, C ∈ LA and η ∈ (XA ⇀fin I),

e,Γ `A
{

P
}

C
{

Q
}

=⇒ e, JΓ Kτ `B
{
JPKτ

}
JCKτ

{
JQKτ

}
Before we embark on the proof of Proposition 6.12 we first state, and prove, two

auxiliary lemmas.
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Lemma 6.13 (Separation Preservation). The separating conjunction ∗ is preserved

by the predicate representation function. That is, for all P ,Q ∈ PredA and η ∈
(XA ⇀fin I)

JP ∗QKτ ⇔ JPKτ ∗ JQKτ

Proof. It is sufficient to show for all e ∈ Env under the conditions above, that

PJ JP ∗QKτ Ke ≡ PJ JPKτ ∗ JQKτ Ke.

Fix arbitrary P ,Q ∈ PredA, e ∈ Env and η ∈ (XA ⇀fin I).

PJ JP ∗QKτ Ke ≡ {(sB, σ) | (sA, σ) ∈ PJP ∗QKe and sBατsA}
≡ {(sB, σ) | (sA, σ) ∈ PJP ∗QKe and sB ∈ (|sA|)η}

≡

{
(sB, σ1 ] σ2 )

∣∣∣∣∣ (s ′A, σ1 ) ∈ PJPKe and (s ′′A, σ2 ) ∈ PJQKe
and sB ∈ (|s ′A +S s ′′A|)

η

}

(Property 1) ≡

{
(sB, σ1 ] σ2 )

∣∣∣∣∣ (s ′A, σ1 ) ∈ PJPKe and (s ′′A, σ2 ) ∈ PJQKe
and sB ∈ (|s ′A|)

η +S (|s ′′A|)
η

}

≡

{
(s ′B +S s ′′B, σ1 ] σ2 )

∣∣∣∣∣ (s ′A, σ1 ) ∈ PJPKe and (s ′′A, σ2 ) ∈ PJQKe
and s ′B ∈ (|s ′A|)

η and s ′′B ∈ (|s ′′A|)
η

}

≡

{
(s ′B +S s ′′B, σ1 ] σ2 )

∣∣∣∣∣ (s ′A, σ1 ) ∈ PJPKe and (s ′′A, σ2 ) ∈ PJQKe
and s ′Bατs ′A and s ′′Bατs ′′A

}
≡ PJ JPKτ ∗ JQKτ Ke

Lemma 6.14 (Revelation Preservation). The revelation operator r is preserved

by the predicate representation function. That is, for all α ∈ LVarXA , P ∈ PredA

and η ∈ (XA ⇀fin I),

JαrPKτ ⇔ JαKτrJPKτ

Proof. It is sufficient to show for all e ∈ Env under the conditions above, that

PJ JαrPKτ Ke ≡ PJ JαKτrJPKτ Ke

Fix arbitrary P ∈ PredA, e ∈ Env, η ∈ (XA ⇀fin I). Assume that e(α) = x for
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some x ∈ XA and there exists I ∈ I and x̄ ∈ P(XB) with labs(I ) = x̄ .

PJ JαrPKτ Ke ≡ {(sB, σ) | (sA, σ) ∈ PJαrPKe and sBατsA}
≡ {(sB, σ) | (sA, σ) ∈ PJαrPKe and sB ∈ (|sA|)η}
≡ {(sB, σ) | e(α) = x and (s ′A, σ) ∈ PJPKe and sB ∈ (|(x )(s ′A)|)η}

(Property 2) ≡

{
(sB, σ)

∣∣∣∣∣ e(α) = x and (s ′A, σ) ∈ PJPKe
and sB ∈ (x̄ )((|s ′A|)

η[x 7→I ])

}

≡

{
((x̄ )(s ′B), σ)

∣∣∣∣∣ e(α) = x and (s ′A, σ) ∈ PJPKe
and s ′B ∈ (|s ′A|)

η[x 7→I ]

}

≡

{
((x̄ )(s ′B), σ)

∣∣∣∣∣ JαKτe = x̄ and (s ′A, σ) ∈ PJPKe
and s ′Bατs ′A

}
≡ PJ JαKτrJPKτ Ke

Locality-Preserving Translation Soundness

The proof of Proposition 6.12 inductively transforms a proof in module A into a

proof in module B.

Proof. The proof is by induction on the structure of the proof of e,Γ `A {P}C {Q},
in each case we consider the last rule applied in the proof. We assume, as the induc-

tive hypothesis, that the translated premises of each rule have proofs in B. We show

how to derive a proof of the translated conclusions from these translated premises.

We omit the logical environment and procedure specification environment from our

proofs when they plays no part in the derivation. Note that since our translations

do not affect the variable store, the vsafe(E ), bsafe(B ) and PJB K predicates are also

not affected by the translations. We make use of this in several of the proof cases.

Axiom case:

This follows immediately from the Axiom Correctness Property (Property 3).

Sep Frame case: {
JPKτ

}
JCKτ

{
JQKτ

}
{
JPKτ ∗ JRKτ

}
JCKτ

{
JQKτ ∗ JRKτ

} Sep Frame

{
JP ∗ RKτ

}
JCKτ

{
JQ ∗ RKτ

} Lemma 6.13
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Rev Frame case:{
JPKτ

}
JCKτ

{
JQKτ

}
{
JαKτrJPKτ

}
JCKτ

{
JαKτrJQKτ

} Rev Frame
∗

{
JαrPKτ

}
JCKτ

{
JαrQKτ

} Lemma 6.14

Note that the revelation frame rule (Rev Frame) may need to be used zero, one

or many times depending on the evaluation of JαKτ .

Cons case:

PJPKe ⊆ PJP ′Ke
PJJPKτKe ⊆ PJJP ′KτKe

{
JP ′Kτ

}
JCKτ

{
JQ ′Kτ

} PJQ ′Ke ⊆ PJQKe
PJJQ ′KτKe ⊆ PJJQKτKe{

JPKτ
}
JCKτ

{
JQKτ

} Cons

Disj case:
for all i ∈ I .

{
JPiKτ

}
JCKτ

{
JQiKτ

}
{ ∨

i∈I JPiKτ
}
JCKτ

{ ∨
i∈I JQiKτ

} Disj

{
J
∨

i∈I PiKτ
}
JCKτ

{
J
∨

i∈I QiKτ
}

Exsts case: {
JPKτ

}
JCKτ

{
JQKτ

}
{
∃v . JPKτ

}
JCKτ

{
∃v . JQKτ

} Exsts

{
J∃v .PKτ

}
JCKτ

{
J∃v .QKτ

}
Fresh case: {

JPKτ
}
JCKτ

{
JQKτ

}
{

NJαKτ . JPKτ
}
JCKτ

{
NJαKτ . JQKτ

} Fresh
∗

{
J Nα.PKτ

}
JCKτ

{
J Nα.QKτ

}
Note that the freshness quantification rule (Fresh) may need to be used zero, one

or many times depending on the evaluation of JαKτ .

Skip case:
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{
empB

}
skip

{
empB

} Skip

{
empB ∗ JempAKτ

}
skip

{
empB ∗ JempAKτ

} Sep Frame

{
JempAKτ

}
skip

{
JempAKτ

} Cons

{
JempAKτ

}
JskipKτ

{
JempAKτ

}

Seq case:{
JPKτ

}
JC1 Kτ

{
JQKτ

} {
JQKτ

}
JC2 Kτ

{
JRKτ

}
{
JPKτ

}
JC1 Kτ ; JC2 Kτ

{
JRKτ

} Seq

{
JPKτ

}
JC1 ; C2 Kτ

{
JRKτ

}

If case:

PJPKe ⊆ bsafe(B )

PJJPKτKe ⊆ bsafe(B )

{
JP ∧ PJB KKτ

}
JC1 Kτ

{
JQKτ

}{
JP ∧ ¬PJB KKτ

}
JC2 Kτ

{
JQKτ

}
{
JPKτ ∧ PJB K

}
JC1 Kτ

{
JQKτ

}{
JPKτ ∧ ¬PJB K

}
JC2 Kτ

{
JQKτ

}
{
JPKτ

}
if B then JC1 Kτ else JC2 Kτ

{
JQKτ

} If

{
JPKτ

}
Jif B then C1 else C2 Kτ

{
JQKτ

}

While case:

PJPKe ⊆ bsafe(B )

PJJPKτKe ⊆ bsafe(B )

{
JP ∧ PJB KKτ

}
JCKτ

{
JPKτ

}
{
JPKτ ∧ PJB K

}
JCKτ

{
JPKτ

}
{
JPKτ

}
while B do JCKτ

{
JPKτ ∧ ¬PJB K

} While

{
JPKτ

}
Jwhile B do CKτ

{
JP ∧ ¬PJB KKτ

}
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Assgn case:

PJx⇀⇁ v ∗ σKe ⊆ vsafe(E ){
x⇀⇁ v ∗ σ

}
x := E

{
x⇀⇁ EJE Kσ[x 7→ v ] ∗ σ

}
{
JempAKτ ∗ x⇀⇁ v ∗ σ

}
x := E

{
JempAKτ ∗ x⇀⇁ EJE Kσ[x 7→ v ] ∗ σ

} Sep Frame

Assgn

{
JempA ∗ x⇀⇁ v ∗ σKτ

}
Jx := E Kτ

{
JempA ∗ x⇀⇁ EJE Kσ[x 7→ v ] ∗ σKτ

}
{
Jx⇀⇁ v ∗ σKτ

}
Jx := E Kτ

{
Jx⇀⇁ EJE Kσ[x 7→ v ] ∗ σKτ

}

Local case:

PJPKe ∩ vsafe(x) ≡ ∅
PJJPKτKe ∩ vsafe(x) ≡ ∅

{
Jx⇀⇁ − ∗ PKτ

}
JCKτ

{
Jx⇀⇁ − ∗QKτ

}
{

x⇀⇁ − ∗ JPKτ
}
JCKτ

{
x⇀⇁ − ∗ JQKτ

}
{
JPKτ

}
local x in JCKτ

{
JQKτ

} Local

{
JPKτ

}
Jlocal x in CKτ

{
JQKτ

}

PDef case:

for all (fi : Pi � Qi) ∈ Γ . e, JΓ ′,Γ Kτ `B

{
J∃−→v .Pi(

−→v ) ∗ −→xi ⇀⇁
−→v ∗ −→ri ⇀⇁ −Kτ

}
JCiKτ{

J∃−→w .Qi(
−→w ) ∗ −→xi ⇀⇁ − ∗ −→ri ⇀⇁

−→w Kτ
}

for all (fi : Pi � Qi) ∈ JΓ Kτ . e, JΓ ′,Γ Kτ `B

{
∃−→v .Pi(

−→v ) ∗ −→xi ⇀⇁
−→v ∗ −→ri ⇀⇁ −

}
JCiKτ{

∃−→w .Qi(
−→w ) ∗ −→xi ⇀⇁ − ∗ −→ri ⇀⇁

−→w
}

(?)

(?) e, JΓ ′,Γ Kτ `B
{
JPKτ

}
JCKτ

{
JQKτ

}

e, JΓ ′Kτ `B

{
JPKτ

}
Jprocs −→r1 := f1 (−→x1 ){C1}, ...,−→rk := fk(−→xk ){Ck} in CKτ{

JQKτ
}

PDef

There are two more premises of the PDef rule, which we have not covered in the

above derivation. These are easily dispatched since J(·)Kτ preserves the procedure

names in a procedure specification environment.
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PCall case:

PJ−→r ⇀⇁ −→v ∗ σKe ⊆ vsafe(
−→
E )

JΓ , (f : P� Q)Kτ `B

{
JP (EJE Kσ[−→r 7→ −→v ])Kτ ∗ −→r ⇀⇁ −→v ∗ σ

}
Jcall −→r := f(

−→
E )Kτ{

∃−→w . JQ(−→w )Kτ ∗ −→r ⇀⇁ −→w ∗ σ
}

PCall

JΓ , (f : P� Q)Kτ `B

{
JP (EJE Kσ[−→r 7→ −→v ]) ∗ −→r ⇀⇁ −→v ∗ σKτ

}
Jcall −→r := f(

−→
E )Kτ{

J∃−→w .Q(−→w ) ∗ −→r ⇀⇁ −→w ∗ σKτ
}

PWeak case:

JΓ Kτ `B
{
JPKτ

}
JCKτ

{
JQKτ

}
JΓ Kτ , JΓ ′Kτ `B

{
JPKτ

}
JCKτ

{
JQKτ

} PWeak

JΓ ,Γ ′Kτ `B
{
JPKτ

}
JCKτ

{
JQKτ

}

This completes the proof of Theorem 6.11.

Including the Conjunction Rule

If we wish to add the conjunction rule to the locality-preserving theory, we can add

a case to the proof of Proposition 6.12. The conjunction rule can be dealt with

in the same fashion as the disjunction rule, provided that (|(·)|)(·) distributes over

conjunction. Together, the following two conditions are sufficient to establish this:

� for all s , s ′ ∈ SA with s 6= s ′, and all η ∈ (XA ⇀fin I), (|s|)η ∩ (|s ′|)η ≡ ∅; and

� for all η ∈ (XA ⇀fin I) and P ∈ PredA the predicate JPKτ is precise.

It is not a coincidence that these conditions are similar to those that restrict a

command to having disjoint specifications given in chapter 4. In both cases the con-

ditions are constraining the predicate transformers corresponding to the abstraction

relation or command to being conjunctive.

6.3.2 Module Translation τ2 : T→ H

We now present a locality-preserving translation τ2 from the tree module T into the

heap module H. This translation represents each tree node n as a block of four cells
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→τ2

Figure 6.14: An abstract tree from T and its representation in H.

in the heap, n 7→ l ,u,d ,r , which contain pointers to the node’s left sibling (l), parent

(u), first child (d) and right sibling (r). This representation of the tree is illustrated

in Figure 6.14.

An interface consists of the addresses of the tree’s parent node and of the nodes

immediately adjacent to the tree on the left and right, as well as the addresses of

the left- and right-most nodes at the root level of the tree. These interfaces are

represented in Figure 6.14 by the arrows into and out of the tree’s root node.

Note that for the empty tree ∅, the addresses of the left- and right-most nodes

at the root of the tree are not simply null, but rather the “address of the left-most

node” should actually be the address of the node immediately adjacent to the tree

on the right and the “address of the right-most node” should be the address of the

node adjacent on the left. If we instead used null pointers, then ∅ would break up

the continuous list of nodes. On the other hand, if the parent node, left sibling or

right sibling do not exist, their addresses will be null.

In this translation from abstract tree segments into concrete heap segments, the

abstract addresses and hole labels are mapped into some concrete state. It is possible

for the interface function η to map multiple abstract labels to the same interface.

This is particularly evident in the case of the segment, x�y , which requires that

η(x ) = η(y). In such cases we need to ensure that the concrete state corresponding

to the shared interface can be split and shared between the concrete heaps segments.

We manage such sharing by introducing the concept of partial heap cells dx̌ 7→ v̌e,
dx 7→ v̌e and dx̌ 7→ ve and using invariants to describe shared portions of state.

Partial heap cells are used to weaken our knowledge about some piece of state and

also to control a program’s behaviour on that state. When we see a partial heap

address x̌ or a partial value v̌ this is interpreted as having potentially out of date

knowledge about that cell or value. If we only have partial knowledge about a heap

cell then we do not know if that cell is currently assigned or not. If we only have

partial knowledge about a value then we do not know for sure what that value is,
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only that it was v when it was last read. Note that this is subtly different from the

assertion dx 7→ −e which says we do not know what value is stored in the cell x .

In particular, if we run the assignment y := [x] in a state where x ⇀⇁ x , y ⇀⇁ y and

dx 7→ v̌e then we will know after the assignment that y ⇀⇁ v̌ and, moreover, that

the contents of the cell x and variable y are equal at that point.

We have to be careful when reasoning about programs that are manipulating

partial heap cells or structure that contain partial values. It is possible that such

cells and values may have been modified elsewhere in the program. In particular,

partial heap cells may have been deallocated since they were last read, so if deref-

erenced incautiously could result in a fault. We will see that under certain stability

requirements such values may be safely used later in a program.

There are two ways in which we break up complete heap cells into partial pieces.

The first of these breaks off a weak (or read-only) copy of the cell and the value it

contains.

dx 7→ ve ⇔ dx 7→ ve ∗ (dx̌ 7→ v̌e ∨ x̌ = null)

The weak copy of the heap cell maintains none of the definite knowledge about the

state of the cell or its value, only some right to read the cells contents. The real cell

may be updated or even deleted elsewhere, so in the weak copy both x and v are

annotated as partial. If a program is to use the weak copy of the cell it must take

great care not to rely on the value being read and not try to dereference the cell x

if it does not exist. Note that there is no limit to the number of times we can split

off a weak copy of a heap cell.

The second way that we break up a complete heap cell is to split up the control

over the cell and its contents.

dx 7→ ve ⇔ dx 7→ v̌e ∗ (dx̌ 7→ ve ∨ x̌ = null)

Here, the first partial heap cell has enough state to allow the cell to be read, modified

or deleted, but not to know the actual value of v . Similarly, the second partial heap

cell has enough state to allow the cell to be read or its contents modified, but not

enough to delete the cell. Again, when using the second partial heap cell, a program

must take care that it does not try to dereference the cell if it has been deleted.

Moreover, we must take care that the cells contents are not modified to a state that

is incompatible with that of the other part of the partial heap cell (we expand on

this point in our examples). Note that we only ever allow one partial heap cell to
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keep the full knowledge about the state of the cell or its value. That is,

dx 7→ v̌e ∗ dx 7→ ve ⇒ false dx 7→ v̌e ∗ dx 7→ v̌e ⇒ false

dx 7→ ve ∗ dx̌ 7→ ve ⇒ false dx̌ 7→ ve ∗ dx̌ 7→ ve ⇒ false

To demonstrate the difference between normal heap cells and partial heap cells

consider the heap dereference command x := [x]. The specification of this command

on a normal heap cell is as expected:

{dx 7→ ve ∗ x⇀⇁ x}
x := [x]

{dx 7→ ve ∗ x⇀⇁ v}

However, if we change the precondition and postcondition so that we only have

partial information about the heap cell, that is (dx̌ 7→ ve ∨ x̌ = null), then the

specification no longer holds for this command. This is because the attempt to

dereference x might result in a fault, as we do not know if the cell is assigned or not.

We can fix the command, making it tolerant of this possibility, by wrapping the cell

dereference inside an if statement that checks that x 6= null. We can then specify

the command as follows:

{(dx̌ 7→ ve ∨ x̌ = null) ∗ x⇀⇁ x̌}
if x 6= null then

x := [x]

{(dx̌ 7→ ve ∗ x⇀⇁ v) ∨ (x̌ = null ∗ x⇀⇁ null}

When we only have partial information about a heap cell and its value then we

treat the cell in a traditional read-only fashion. We can freely read and copy such

values even though we do not know exactly what they are, although, as above, we

don’t know if the cell is assigned or not. That is, the following specification holds:

{(dx̌ 7→ v̌e ∨ x̌ = null) ∗ x⇀⇁ x̌}
if x 6= null then

x := [x]

{(dx̌ 7→ ve ∗ x⇀⇁ v) ∨ (x̌ = null ∗ x⇀⇁ null}

Note that we are not allowed to modify the values in a partial heap cell. That

is, there is no specification for the heap mutation command [x] := E where the

precondition is a partial heap cell of the form dx̌ 7→ v̌e.
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When we have complete ownership of the heap cell, but only partial information

about its value, that is dx 7→ v̌e, we end up with a more complicated set of behaviours

on that command. The v̌ tells us that the value was v at some point, but it may

have been changed since that observation. The partial value v̌ can be thought of as

a placeholder for this modified value. We are free to read and modify the partial

value, but in doing so we may introduce an inconsistency into the state. This will

be detected when we attempt to merge the partial heap cells back together. In

particular we have that:

dx 7→ v̌e ∗ dx̌ 7→ v ′e ⇒ false if v ′ 6= v

Thus we will not be able to prove any program that performs an update that leads

to such an inconsistent state.

We shall see that we define the concrete interface (also called the crust) of our

translation in terms of partial heap cells.

Notation: We use the standard n-ary cons cell notation, writing dx 7→ l ,u,d ,re to

mean dx 7→ le +S dx+1 7→ ue +S dx+2 7→ de +S dx+3 7→ re, and similarly with

∗ for assertions. We also write (x
.
= y) to mean {∅} ∧ (x = y) and drop module

annotations when they can be inferred from context.

Definition 6.15 (τ2 : T→ H). The pre-locality-preserving translation τ2 : T→ H
is constructed as follows:

� an interface I = (i , j )(l , u, r) ∈ I describes the address of the first node i and

the last node j at the top level of the tree segment and the left node l , parent

node u and right node r of the tree segment. Note that there are no addresses

or hole labels in these interfaces, so labs(I ) = ∅ for all I ∈ I.

� the segment representation function (|(·)|)(·) : ST × (X ⇀fin I) → P(SH) is

defined by induction on the structure of tree segments as:

(|∅|)η def
= {∅}

(|x�ct |)η def
=

{
∃i , j .e(i ,j )(null,null,null) +S 〈〈ct〉〉(i ,j )(null,null,null)

η if x = 0

e(i ,j )(̌l ,ǔ,ř) +S 〈〈ct〉〉(i ,j )(̌l ,ǔ,ř)
η ∧ η(x ) = (i , j )(l , u, r) otherwise

(|st1 +S st2 |)η
def
= (|st1 |)η +S (|st2 |)η
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where the upper crust predicate e(i ,j )(̌l ,ǔ,ř) ∈ P(HAdr,X) is defined as:

e(i ,j )(̌l ,ǔ,ř) def
= ({ďl 7→ −̌,−̌,−̌,ie} ∨ (̌l = null ∧ ({dǔ 7→ −̌,−̌,i ,−̌e} ∨ ǔ

.
= null)))

+S ({dř 7→ j ,−̌,−̌,−̌e} ∨ ř
.
= null)

the context representation function 〈〈(·)〉〉(·)(·) : CT×I×(X⇀fin I)→ P(HAdr,X)

is defined by induction on the structure of multi-holed tree contexts as:

〈〈∅〉〉(i ,j )(l ,u,r)
η

def
= {∅} ∧ (i = r) ∧ (j = l)

〈〈x 〉〉(̌i ,̌j )(l ,u,r)
η

def
= d(̌i ,̌j )(l ,u,r) ∧ η(x ) = (i , j )(l , u, r)

〈〈n[ct ]〉〉(i ,j )(l ,u,r)
η

def
= ∃d , e. {dn 7→ l ,u,d ,re}+S 〈〈ct〉〉(d ,e)(null,n,null)

η ∧ (i = n) ∧ (j = n)

〈〈ct1 ⊗ ct2 〉〉(i ,j )(l ,u,r)
η

def
= ∃p, q . 〈〈ct1 〉〉(i ,p)(l ,u,q)

η +S 〈〈ct2 〉〉(q,j )(p,u,r)
η

and the lower crust predicate d(̌i ,̌j )(l ,u,r) ∈ P(HAdr,X) is defined as:

d(̌i ,̌j )(l ,u,r) def
= ls(̌i , ǰ , l , u, r)

where the ls predicate is defined as,

ls(̌i , ǰ , l , u, r)
def
= {∅} ∧ (i = r) ∧ (j = l)

∨ ∃k . {ďi 7→ l ,u,−̌,ǩe}+S ls(ǩ , ǰ , ǐ , u, r)

� the substitutive representation function is given by replacing each tree mod-

ule command with a call to the correspondingly named procedure given in

Figure 6.15 with,

E .left
def
= E

E .up
def
= E + 1

E .down
def
= E + 2

E .right
def
= E + 3

n := newNode()
def
= n := alloc(4 )

disposeNode(E )
def
= dispose(E , 4 ).

The translation τ2 is a crust inclusive translation in the terminology of our previ-

ous work [28]. Much of the translation is similar to the corresponding context based

translation. The main difference is our treatment of the concrete interface, or crust.

The upper crust predicate e(i ,j )(̌l ,ǔ,ř) describes the concrete state that corresponds

to an abstract address x with η(x ) = (i , j )(l , u, r). We illustrate this in Figure 6.16.
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proc n := getUp(m){
n := [m.up]
}
proc n := getLeft(m){
n := [m.left]
}
proc n := getFirst(m){
n := [m.down]
}
proc n := getLast(m){

local x in

n := [m.down] ;
if n 6= null then
x := [n.right] ;
while x 6= null do
n := x ;
x := [n.right]

}
proc appendChild(n, m){

local x, y, z in

x := [m.right] ;
y := [m.left] ;
z := [m.up] ;
if x 6= null then

[x.left] := y

if y 6= null then
[y.right] := x

else

if z 6= null then
[z.down] := x

y := [n.down]
if y = null then

[n.down] := m

else

x := [y.right] ;
while x 6= null do
y := x ;
x := [y.right]

[y.right] := m

[m.left] := y ;
[m.right] := null ;
[m.up] := n

}

proc n := getRight(m){
n := [m.right]
}

proc newNodeAfter(n){
local x, y, z in

y := [n.right] ;
z := [n.up] ;
x := newNode() ;
[x.left] := n ;
[x.up] := z ;
[x.down] := null ;
[x.right] := y ;
[n.right] := x ;
if y 6= null then

[y.left] := x

}

proc deleteTree(n){
local x, y, z, w in

x := [n.right] ;
y := [n.left] ;
z := [n.up] ;
w := [n.down] ;
call disposeForest(w) ;
disposeNode(n) ;
if x 6= null then

[x.left] := y ;
if y 6= null then

[y.right] := x

else

if z 6= null then
[z.down] := x

}

proc disposeForest(n){
local r, d in

if n 6= null then
r := [n.right] ;
call disposeForest (r) ;
d := [n.down] ;
call disposeForest (d) ;
disposeNode(n)

}

Figure 6.15: Procedures for the heap-based implementation of the tree module.
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η(x) = (i,j)(l,u,r)n

x nl

u

r
j

i

i

Figure 6.16: A translation in τ2 which introduces some upper crust.

x η(x) = (i,j)(l,u,r)
... ji

u
l r

Figure 6.17: A translation in τ2 which introduces some lower crust.

The concrete address interface consists of the partial heap cells ľ , ǔ and ř which

contain the definite pointers i and j appropriately. Any or all of these partial heap

cells may in fact not exist, in which case the pointers in the tree are null. These

partial heap cells correspond to the tree nodes that surround the tree at address x .

Notice that ľ , ǔ and ř give us only partial access to the pointers l , u and r respec-

tively, but that we have full access to the pointers i and j in the concrete address

interface. This means that a program run on this state can make modifications to

the tree, but can only change the values of i and j in the concrete address interface.

Thus, a program cannot delete nodes in the concrete address interface, or otherwise

make modifications to the surrounding state.

The lower crust predicate d(̌i ,̌j )(l ,u,r) describes the concrete state that corresponds

to an abstract hole label x with η(x ) = (i , j )(l , u, r). We illustrate this in Fig-

ure 6.17. The concrete hole interface consists of a (potentially empty) list of partial

heap cells from ǐ to ǰ which contains definite pointers to l , u and r in the appropriate

places. These partial heap cells correspond to the top level of the tree that fills the

context hole x . Notice that the pointers ǐ and ǰ into the hole are only partial, whilst

the pointers l , u and r out of the list are complete. This means that a program run

on this state can make modifications to the tree, but can only change the values of

l , u and r in the list. Thus, a program cannot delete nodes in the concrete hole

interface, or otherwise make modifications to the state within the context hole.

The upper and lower crusts for some label x consist of complimentary partial heap

cells. This means that when they are combined, we recover the complete heap cells
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associated with the concrete interface. We will see how this works in detail when

we prove Lemma 6.18: crust inclusion.

Theorem 6.16 (Soundness of τ2 ). The pre-locality-preserving translation τ2 is a

locality-preserving translation.

Lemma 6.17 (Combination Preservation). Segment combination is preserved by

the segment representation function. That is, for all st1 , st2 ∈ ST and η ∈ (X ⇀fin

I),

(|st1 +S st2 |)η ≡ (|st1 |)η +S (|st2 |)η

Proof. This property follows from the definition of the segment representation func-

tion given in Definition 6.15.

In order to prove the revelation preservation property for the translation τ2 we

require the crust inclusion lemma. This lemma states that given a context compo-

sition ct •x ct ′ we can extract the crust eI , corresponding to the concrete interface

at label x , from the translation of ct •x ct ′ with its upper crust. This result relies on

the use of partial heap cells to split the concrete interface corresponding to x into

two pieces: one that is extracted as the upper crust of ct ′ and one that remains as

the lower crust in the translation of ct .

Lemma 6.18 (Crust Inclusion). For all ct , ct ′ ∈ TId,X, I ′ ∈ I and η ∈ (X ⇀fin I),

if x ∈ fhT(ct) and x 6∈ fhT(ct ′), then

eI ′ +S 〈〈ct •x ct ′〉〉I ′η ≡ ∃I .eI ′ +S 〈〈ct〉〉I ′η[x 7→I ] +S eI +S 〈〈ct ′〉〉Iη

Proof. Proceed by induction on the structure of ct :

ct = ∅ case:

x 6∈ fhT(∅) which contradicts our assumption that x ∈ fhT(ct), so this case holds

vacuously.

ct = y case:

If y 6= x then x 6∈ fhT(y) which contradicts our assumption that x ∈ fhT(ct), so

this case holds vacuously. If y = x then let I ′ = (i ′, j ′)(ľ ′, ǔ ′, ř ′) for some i ′, j ′, l ′,
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u ′ and r ′. We can then show the following:

eI ′ +S 〈〈ct •x ct ′〉〉I ′η ≡ eI ′ +S 〈〈x •x ct ′〉〉I ′η
≡ eI ′ +S 〈〈ct ′〉〉I ′η
≡ e(i ′,j ′)(ľ ′,ǔ ′,ř ′) +S 〈〈ct ′〉〉(i

′,j ′)(ľ ′,ǔ ′,ř ′)
η

≡ ({dľ ′ 7→ −̌,−̌,−̌,i ′e} ∨ (ľ ′ = null ∧ ({dǔ ′ 7→ −̌,−̌,i ′,−̌e} ∨ ǔ ′
.
= null)))

+S ({dř ′ 7→ j ′,−̌,−̌,−̌e} ∨ ř ′
.
= null) +S 〈〈ct ′〉〉(i

′,j ′)(ľ ′,ǔ ′,ř ′)
η

≡ ({dľ ′ 7→ −̌,−̌,−̌,ǐ ′e} ∨ (ľ ′ = null ∧ ({dǔ ′ 7→ −̌,−̌,ǐ ′,−̌e} ∨ ǔ ′
.
= null)))

+S ({dř ′ 7→ ǰ ′,−̌,−̌,−̌e} ∨ ř ′
.
= null)

+S ({dľ ′ 7→ −̌,−̌,−̌,i ′e} ∨ (ľ ′ = null ∧ ({dǔ ′ 7→ −̌,−̌,i ′,−̌e} ∨ ǔ ′
.
= null)))

+S ({dř ′ 7→ j ′,−̌,−̌,−̌e} ∨ ř ′
.
= null) +S 〈〈ct ′〉〉(i

′,j ′)(ľ ′,ǔ ′,ř ′)
η

≡ ∃i , j , l , u, r . (i = i ′) ∧ (j = j ′) ∧ (l = l ′) ∧ (u = u ′) ∧ (r = r ′)

∧ ({dľ ′ 7→ −̌,−̌,−̌,ǐ ′e} ∨ (ľ ′ = null ∧ ({dǔ ′ 7→ −̌,−̌,ǐ ′,−̌e} ∨ ǔ ′
.
= null)))

+S ({dř ′ 7→ ǰ ′,−̌,−̌,−̌e} ∨ ř ′
.
= null)

+S ({ďl 7→ −̌,−̌,−̌,ie} ∨ (̌l = null ∧ ({dǔ 7→ −̌,−̌,i ,−̌e} ∨ ǔ
.
= null)))

+S ({dř 7→ j ,−̌,−̌,−̌e} ∨ ř
.
= null) +S 〈〈ct ′〉〉(i ,j )(̌l ,ǔ,ř)

η

≡ ∃i , j , l , u, r . (i = i ′) ∧ (j = j ′) ∧ (l = l ′) ∧ (u = u ′) ∧ (r = r ′)

∧ ({dľ ′ 7→ −̌,−̌,−̌,ǐ ′e} ∨ (ľ ′ = null ∧ ({dǔ ′ 7→ −̌,−̌,ǐ ′,−̌e} ∨ ǔ ′
.
= null)))

+S ({dř ′ 7→ ǰ ′,−̌,−̌,−̌e} ∨ ř ′
.
= null)

+S ({ďl 7→ −̌,−̌,−̌,ie} ∨ (̌l = null ∧ ({dǔ 7→ −̌,−̌,i ,−̌e} ∨ ǔ
.
= null)))

+S ({dř 7→ j ,−̌,−̌,−̌e} ∨ ř
.
= null) +S ls(̌i , ǰ , ľ , ǔ, ř) ∗ 〈〈ct ′〉〉(i ,j )(̌l ,ǔ,ř)

η

≡ ∃i , j , l , u, r . (i = i ′) ∧ (j = j ′) ∧ (l = l ′) ∧ (u = u ′) ∧ (r = r ′)

∧ e(i ′,j ′)(ľ ′,ǔ ′,ř ′) +S 〈〈x 〉〉(i
′,j ′)(ľ ′,ǔ ′,ř ′)

η[x 7→(i ,j )(l ,u,r)] +S e(i ,j )(̌l ,ǔ,ř) +S 〈〈ct ′〉〉(i ,j )(̌l ,ǔ,ř)
η

≡ ∃I . (I = I ′) ∧ eI ′ +S 〈〈x 〉〉I
′

η[x 7→I ] +S eI +S 〈〈ct ′〉〉Iη
≡ ∃I .eI ′ +S 〈〈ct〉〉I ′η[x 7→I ] +S eI +S 〈〈ct ′〉〉Iη

ct = n[ct ′′] case:

There are two cases to consider. If x 6∈ fhT(ct ′′) then x 6∈ fhT(n[ct ′′]) which

contradicts our assumption that x ∈ fhT(ct), so this case holds vacuously. If x ∈
fhT(ct ′′) then, by the induction hypothesis,

eI ′′ +S 〈〈ct ′′ •x ct ′〉〉I ′′η ≡ ∃I .eI ′′ +S 〈〈ct ′′〉〉I ′′η[x 7→I ] +S eI +S 〈〈ct ′〉〉Iη
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Let I ′ = (i ′, j ′)(ľ ′, ǔ ′, ř ′) for some i ′, j ′, l ′, u ′ and r ′. We can then show the following:

eI ′ +S 〈〈ct •x ct ′〉〉I ′η ≡ eI ′ +S 〈〈n[ct ′′] •x ct ′〉〉I ′η
≡ eI ′ +S 〈〈n[ct ′′ •x ct ′]〉〉I ′η
≡ e(i ′,j ′)(ľ ′,ǔ ′,ř ′) +S 〈〈n[ct ′′ •x ct ′]〉〉(i

′,j ′)(ľ ′,ǔ ′,ř ′)
η

≡ e(i ′,j ′)(ľ ′,ǔ ′,ř ′) +S ∃i , j . {dn 7→ ľ ′,ǔ ′,i ,ř ′e}+S 〈〈ct ′′ •x ct ′〉〉(i ,j )(null,n,null)
η

∧ (i ′ = n) ∧ (j ′ = n)

≡ e(i ′,j ′)(ľ ′,ǔ ′,ř ′) +S ∃i , j . {dn 7→ ľ ′,ǔ ′ ,̌i ,ř ′e}+S {dň 7→ −̌,−̌,i ,−̌e}
+S 〈〈ct ′′ •x ct ′〉〉(i ,j )(null,ň,null)

η ∧ (i ′ = n) ∧ (j ′ = n)

≡ e(i ′,j ′)(ľ ′,ǔ ′,ř ′) +S ∃i , j , l , u, r . {dn 7→ ľ ′,ǔ ′ ,̌i ,ř ′e}+S {dǔ 7→ −̌,−̌,i ,−̌e}
+S 〈〈ct ′′ •x ct ′〉〉(i ,j )(̌l ,ǔ,ř)

η ∧ (i ′ = n) ∧ (j ′ = n)

∧ (̌l = null) ∧ (ǔ = ň) ∧ (ř = null)

≡ e(i ′,j ′)(ľ ′,ǔ ′,ř ′) +S ∃i , j , l , u, r . {dn 7→ ľ ′,ǔ ′ ,̌i ,ř ′e}+S e(i ,j )(̌l ,ǔ,ř)

+S 〈〈ct ′′ •x ct ′〉〉(i ,j )(̌l ,ǔ,ř)
η ∧ (i ′ = n) ∧ (j ′ = n)

∧ (̌l = null) ∧ (ǔ = ň) ∧ (ř = null)

(IH ) ≡ e(i ′,j ′)(ľ ′,ǔ ′,ř ′) +S ∃I , i , j , l , u, r . {dn 7→ ľ ′,ǔ ′ ,̌i ,ř ′e}+S e(i ,j )(̌l ,ǔ,ř)

+S 〈〈ct ′′〉〉(i ,j )(̌l ,ǔ,ř)
η[x 7→I ] +S eI ∗ 〈〈ct ′〉〉Iη ∧ (i ′ = n) ∧ (j ′ = n)

∧ (̌l = null) ∧ (ǔ = ň) ∧ (ř = null)

≡ e(i ′,j ′)(ľ ′,ǔ ′,ř ′) +S ∃I , i , j , l , u, r . {dn 7→ ľ ′,ǔ ′ ,̌i ,ř ′e}+S {dǔ 7→ −̌,−̌,i ,−̌e}
+S 〈〈ct ′′〉〉(i ,j )(̌l ,ǔ,ř)

η[x 7→I ] +S eI +S 〈〈ct ′〉〉Iη ∧ (i ′ = n) ∧ (j ′ = n)

∧ (̌l = null) ∧ (ǔ = ň) ∧ (ř = null)

≡ e(i ′,j ′)(ľ ′,ǔ ′,ř ′) +S ∃I , i , j . {dn 7→ ľ ′,ǔ ′ ,̌i ,ř ′e}+S {dň 7→ −̌,−̌,i ,−̌e}
+S 〈〈ct ′′〉〉(i ,j )(null,ň,null)

η[x 7→I ] +S eI +S 〈〈ct ′〉〉Iη ∧ (i ′ = n) ∧ (j ′ = n)

≡ e(i ′,j ′)(ľ ′,ǔ ′,ř ′) +S ∃I , i , j . {dn 7→ ľ ′,ǔ ′,i ,ř ′e}
+S 〈〈ct ′′〉〉(i ,j )(null,n,null)

η[x 7→I ] +S eI +S 〈〈ct ′〉〉Iη ∧ (i ′ = n) ∧ (j ′ = n)

≡ e(i ′,j ′)(ľ ′,ǔ ′,ř ′) +S ∃I . 〈〈n[ct ′′]〉〉(i
′,j ′)(ľ ′,ǔ ′,ř ′)

η[x 7→I ] +S eI +S 〈〈ct ′〉〉Iη
≡ ∃I .eI ′ +S 〈〈n[ct ′′]〉〉I ′η[x 7→I ] +S eI +S 〈〈ct ′〉〉Iη
≡ ∃I .eI ′ +S 〈〈ct〉〉I ′η[x 7→I ] +S eI +S 〈〈ct ′〉〉Iη

ct = ct1 ⊗ ct2 case:

There are four cases to consider. If x 6∈ fhT(ct1 ) and x 6∈ fhT(ct2 ) then x 6∈
fhT(ct1 ⊗ ct2 ) which contradicts our assumption that x ∈ fhT(ct), so this case holds

vacuously. If x ∈ fhT(ct1 ) and x ∈ fhT(ct2 ) then the tree context ct1 ⊗ ct2 is not

well formed and again this case holds vacuously. If x ∈ fhT(ct1 ) and x 6∈ fhT(ct2 )

then by the inductive hypothesis,

eI ′′ +S 〈〈(ct1 •x ct ′)〉〉I ′′η ≡ ∃I .eI ′′ +S 〈〈ct1 〉〉I
′′

η[x 7→I ] +S eI +S 〈〈ct ′〉〉Iη
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Let I ′ = (i ′, j ′)(ľ ′, ǔ ′, ř ′) for some i ′, j ′, l ′, u ′ and r ′. We can then show the following:

eI ′ +S 〈〈ct •x ct ′〉〉I ′η ≡ eI ′ +S 〈〈(ct1 ⊗ ct2 ) •x ct ′〉〉I ′η
≡ eI ′ +S 〈〈(ct1 •x ct ′)⊗ ct2 〉〉I

′
η

≡ e(i ′,j ′)(ľ ′,ǔ ′,ř ′) +S 〈〈(ct1 •x ct ′)⊗ ct2 〉〉(i
′,j ′)(ľ ′,ǔ ′,ř ′)

η

≡ e(i ′,j ′)(ľ ′,ǔ ′,ř ′) +S ∃a, b. 〈〈(ct1 •x ct ′)〉〉(i
′,a)(ľ ′,ǔ ′,b)

η +S 〈〈ct2 〉〉(b,j
′)(a,ǔ ′,ř ′)

η

≡ ({dľ ′ 7→ −̌,−̌,−̌,i ′e} ∨ (ľ ′ = null ∧ ({dǔ ′ 7→ −̌,−̌,i ′,−̌e} ∨ ǔ ′
.
= null)))

+S ({dř ′ 7→ j ′,−̌,−̌,−̌e} ∨ ř
.
= null)

+S ∃a, b. 〈〈(ct1 •x ct ′)〉〉(i
′,a)(ľ ′,ǔ ′,b)

η +S 〈〈ct2 〉〉(b,j
′)(a,ǔ ′,ř ′)

η

≡ ({dľ ′ 7→ −̌,−̌,−̌,i ′e} ∨ (ľ ′ = null ∧ ({dǔ ′ 7→ −̌,−̌,i ′,−̌e} ∨ ǔ ′
.
= null)))

+S ({dř ′ 7→ j ′,−̌,−̌,−̌e} ∨ ř
.
= null) +S ({db̌ 7→ a,−̌,−̌,−̌e} ∨ b̌

.
= null)

+S ∃a, b. 〈〈(ct1 •x ct ′)〉〉(i
′,a)(ľ ′,ǔ ′,b̌)

η +S 〈〈ct2 〉〉(b,j
′)(ǎ,ǔ ′,ř ′)

η

≡ ∃a, b. ({dř ′ 7→ j ′,−̌,−̌,−̌e} ∨ ř
.
= null) +S e(i ′,a)(ľ ′,ǔ ′,b̌)

+S 〈〈(ct1 •x ct ′)〉〉(i
′,a)(ľ ′,ǔ ′,b̌)

η +S 〈〈ct2 〉〉(b,j
′)(ǎ,ǔ ′,ř ′)

η

(IH ) ≡ ∃I . ({dř ′ 7→ j ′,−̌,−̌,−̌e} ∨ ř
.
= null) +S ∃a, b.e(i ′,a)(ľ ′,ǔ ′,b̌)

+S 〈〈ct1 〉〉(i
′,a)(ľ ′,ǔ ′,b̌)

η[x 7→I ] +S eI +S 〈〈ct ′〉〉Iη +S 〈〈ct2 〉〉(b,j
′)(ǎ,ǔ ′,ř ′)

η

≡ ∃I . ({dľ ′ 7→ −̌,−̌,−̌,i ′e} ∨ (ľ ′ = null ∧ ({dǔ ′ 7→ −̌,−̌,i ′,−̌e} ∨ ǔ ′
.
= null)))

+S ({dř ′ 7→ j ′,−̌,−̌,−̌e} ∨ ř
.
= null) +S ∃a, b. ({db̌ 7→ a,−̌,−̌,−̌e} ∨ b̌

.
= null)

+S 〈〈ct1 〉〉(i
′,a)(ľ ′,ǔ ′,b̌)

η[x 7→I ] +S eI +S 〈〈ct ′〉〉Iη +S 〈〈ct2 〉〉(b,j
′)(ǎ,ǔ ′,ř ′)

η

≡ ∃I . ({dľ ′ 7→ −̌,−̌,−̌,i ′e} ∨ (ľ ′ = null ∧ ({dǔ ′ 7→ −̌,−̌,i ′,−̌e} ∨ ǔ ′
.
= null)))

+S ({dř ′ 7→ j ′,−̌,−̌,−̌e} ∨ ř
.
= null)

+S ∃a, b. 〈〈ct1 〉〉(i
′,a)(ľ ′,ǔ ′,b)

η[x 7→I ] +S eI +S 〈〈ct ′〉〉Iη +S 〈〈ct2 〉〉(b,j
′)(a,ǔ ′,ř ′)

η

≡ ∃I . ({dľ ′ 7→ −̌,−̌,−̌,i ′e} ∨ (ľ ′ = null ∧ ({dǔ ′ 7→ −̌,−̌,i ′,−̌e} ∨ ǔ ′
.
= null)))

+S ({dř ′ 7→ j ′,−̌,−̌,−̌e} ∨ ř
.
= null)

+S 〈〈ct1 ⊗ ct2 〉〉(i
′,j ′)(ľ ′,ǔ ′,ř ′)

η[x 7→I ] +S eI +S 〈〈ct ′〉〉Iη
≡ ∃I .e(i ′,j ′)(ľ ′,ǔ ′,ř ′) +S 〈〈ct1 ⊗ ct2 〉〉(i

′,j ′)(ľ ′,ǔ ′,ř ′)
η[x 7→I ] +S eI +S 〈〈ct ′〉〉Iη

≡ ∃I .eI ′ +S 〈〈ct1 ⊗ ct2 〉〉I
′

η[x 7→I ] +S eI +S 〈〈ct ′〉〉Iη
≡ ∃I .eI ′ +S 〈〈ct〉〉I ′η[x 7→I ] +S eI +S 〈〈ct ′〉〉Iη

The final case for x 6∈ fhT(ct1 ) and x ∈ fhT(ct2 ) is analogous to the case given above.

Note that (IH ) denotes an application of the inductive hypothesis.

Lemma 6.19 (Compression Preservation). Segment compression is preserved by the

segment representation function. That is, for all x ∈ X, st ∈ ST and η ∈ (X⇀fin I),

there exists I ∈ I and x̄ ∈ P(X) with x̄ = labs(I ) such that,

(|(x )(st)|)η ≡ (x̄ )((|st |)η[x 7→I ])
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Proof. Recall that in this translation labs(I ) = ∅ for all I ∈ I. Thus, it is sufficient

to show that,

(|(x )(st)|)η ≡ ∃I . (|st |)η[x 7→I ]

Case split on the occurrences of label x in segment st . There are four cases to

consider:

(1) If x 6∈ fa(st) and x 6∈ fh(st), then (x )(st) = st . Any choice of I will suffice as

it will never be referenced by the translation. We can then show the following:

(|(x )(st)|)η ≡ (|st |)η

≡ ∃I . (|st |)η[x 7→I ]

(2) If x ∈ fa(st) and x 6∈ fh(st), then there exist some st ′, ct such that st =

st ′ +S x�ct where x 6∈ fh(st ′). Let I = (i , j )(null, null, null) for some i and j . We

can then show the following:

(|(x )(st)|)η ≡ (|(x )(st ′ +S x�ct)|)η

≡ (|st ′ +S 0�ct |)η

≡ (|st ′|)η +S (|0�ct |)η

≡ (|st ′|)η +S ∃i , j .e(i ,j )(null,null,null) +S 〈〈ct〉〉(i ,j )(null,null,null)
η

≡ (|st ′|)η +S ∃i , j . (|x�ct |)η[x 7→(i ,j )(null,null,null)]

≡ (|st ′|)η +S ∃I . (|x�ct |)η[x 7→I ]

≡ ∃I . (|st ′|)η[x 7→I ] +S (|x�ct |)η[x 7→I ]

≡ ∃I . (|st ′ +S x�ct |)η[x 7→I ]

≡ ∃I . (|st |)η[x 7→I ]

(3) If x 6∈ fa(st) and x ∈ fh(st), then (x )(st) is undefined so (|(x )(st)|)η = ∅. Let

I = (null, null)(null, null, null), then (|st |)η[x 7→I ] = ∅. If there are any nodes in the tree

segment st , then for some node n we would have n 7→ − ∧ (n = null) which cannot

be satisfied by any heap. If instead there are no nodes in the tree segment st , then

(|st |)η[x 7→I ] = ∅.

(4) If x ∈ fa(st) and x ∈ fh(st), then there exist some st ′, z , ct , ct ′ such that

st = st ′ +S z�ct +S x�ct ′ where x 6∈ fa(st ′), x 6∈ fh(st ′) and x ∈ fhT(ct). Tree

segments do not contain cycles, so we can assume that x 6∈ fhT(ct ′). Let η(z ) = I ′
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for some I ′ ∈ I. We can then show the following:

(|(x )(st)|)η ≡ (|(x )(st ′ +S z�ct +S x�ct ′)|)η

≡ (|st ′ +S z�ct •x ct ′|)η

≡ (|st ′|)η +S (|z�ct •x ct ′|)η

≡ (|st ′|)η +S eI ′ +S 〈〈ct •x ct ′〉〉I ′η
(Lemma 6.18) ≡ (|st ′|)η +S ∃I .eI ′ +S 〈〈ct〉〉I ′η[x 7→I ] +S eI +S 〈〈ct ′〉〉Iη

≡ ∃I . (|st ′|)η[x 7→I ] +S eI ′ +S 〈〈ct〉〉I ′η[x 7→I ] +S eI +S 〈〈ct ′〉〉Iη[x 7→I ]

≡ ∃I . (|st ′|)η[x 7→I ] +S eI ′ +S 〈〈ct〉〉I ′η[x 7→I ] +S eI +S 〈〈ct ′〉〉Iη[x 7→I ]

≡ ∃I . (|st ′|)η[x 7→I ] +S (|z�ct |)η[x 7→I ] +S (|x�ct ′|)η[x 7→I ]

≡ ∃I . (|st ′ +S z�ctx�ct ′|)η[x 7→I ]

≡ ∃I . (|st |)η[x 7→I ]

Lemma 6.20 (Axiom Correctness). For all e ∈ Env, Γ ∈ PSEnv, ϕ ∈ CmdT,

(P ,Q) ∈ AxJϕKT and η ∈ (X⇀fin I),

e, JΓ Kτ2 `B
{
JPKτ2

}
JϕKτ2

{
JQKτ2

}

We do not give the proofs for all of the basic commands in the tree module, but

give four examples that illustrate the techniques involved in the proofs. We first give

a proof of a simple case, showing that the implementation of the getUp command

satisfies its translated specification. We then move on to a series of increasingly more

complex examples. We show that the deleteTree command satisfies its translated

specification, which requires us to work with the upper crust of a segment. We

then show that the getLast command satisfies its translated specification, which

requires us to work with the lower crust of a segment. Finally, we show that the

appendChild command satisfies its translated specification, which requires us to

work with multiple segments and upper and lower crusts. The implementations of

the other basic commands can be shown to satisfy their translated specifications in

a similar fashion.
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Axiom Correctness: getUp

Recall the specification of the getUp command from Figure 5.1.{
α�m[β ⊗ w [δ]⊗ γ] ∗ n⇀⇁ n ∗ σ ∧ EJE Kσ[n 7→ n] = w

}
n := getUp(E ){

α�m[β ⊗ w [δ]⊗ γ] ∗ n⇀⇁ m ∗ σ
}

{
dw [β]e ∗ n⇀⇁ n ∗ σ ∧ EJE Kσ[n 7→ n] = w

}
n := getUp(E ){

dw [β]e ∗ n⇀⇁ null ∗ σ
}

To prove that the first specification holds under our translation, suppose that

e(α) = x , e(β) = y1 , e(γ) = y2 and e(δ) = z for some x , y1 , y2 , z ∈ X. We can

also assume that {x , y1 , y2 , z} ⊆ dom(η), otherwise the translated precondition is

equivalent to false, and that η(x ) = (i , j )(l , u, r), η(y1 ) = (i1 , j1 )(l1 , u1 , r1 ), η(y2 ) =

(i2 , j2 )(l2 , u2 , r2 ) and η(z ) = (i ′, j ′)(l ′, u ′, r ′) for some choice of these interfaces. In

Figure 6.18 we give a proof outline showing that the implementation of getUp (from

Figure 6.15) satisfies the translation of its first specification.

To prove that the second specification holds under our translation, suppose that

e(α) = x and e(β) = y for some x , y ∈ X. We can also assume that {x , y} ⊆ dom(η),

otherwise the precondition is equivalent to false, and that η(x ) = (i , j )(l , u, r) and

η(y) = (i ′, j ′)(l ′, u ′, r ′) form some choice of these interfaces. In Figure 6.19 we give a

proof outline showing that the implementation of getUp (from Figure 6.15) satisfies

the translation of its second specification.

The implementation considered in this example is very simple and does not need

to access any of the extra state in either crust. However, the example illustrates

how our translation converts a tree segment into a heap segment. In both proof

outlines the indentation around the n := [m.up] line is used to indicate the use of the

separation frame rule. In further proofs we will not give so many explicit steps, but

it is useful to see how our framework behaves in full on a simple example.
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{
Jα�m[β ⊗ w [δ]⊗ γ] ∗ n⇀⇁ − ∗ m⇀⇁ w Kτ2

}
proc n := getUp(m){{

e(i ,j )(̌l ,ǔ,ř) ∗ 〈〈m[y1 ⊗ w [z ]⊗ y2 ]〉〉(i ,j )(̌l ,ǔ,ř)
η ∗ n⇀⇁ − ∗ m⇀⇁ w

}

e(i ,j )(̌l ,ǔ,ř) ∗ dm 7→ ľ ,ǔ,ǐ1 ,ře ∗ dw 7→ ǰ1 ,m,ǐ ′,ǐ2e
∗ d(ǐ1 ,ǰ1 )(null,m,w) ∗ d(ǐ ′,ǰ ′)(null,w ,null) ∗ d(ǐ2 ,ǰ2 )(w ,m,null)

∗ n⇀⇁ − ∗ m⇀⇁ w


e(i ,j )(̌l ,ǔ,ř) ∗ dm 7→ ľ ,ǔ,ǐ1 ,ře ∗ d(ǐ1 ,ǰ1 )(null,m,w)

∗ d(ǐ ′,ǰ ′)(null,w ,null) ∗ d(ǐ2 ,ǰ2 )(w ,m,null)

∗ dw 7→ ǰ1 ,m,ǐ ′,ǐ2e ∗ n⇀⇁ − ∗ m⇀⇁ w

{
dw 7→ ǰ1 ,m,ǐ ′,ǐ2e ∗ n⇀⇁ − ∗ m⇀⇁ w

}
n := [m.up]{
dw 7→ ǰ1 ,m,ǐ ′,ǐ2e ∗ n⇀⇁ m ∗ m⇀⇁ w

}
e(i ,j )(̌l ,ǔ,ř) ∗ dm 7→ ľ ,ǔ,ǐ1 ,ře ∗ d(ǐ1 ,ǰ1 )(null,m,w)

∗ d(ǐ ′,ǰ ′)(null,w ,null) ∗ d(ǐ2 ,ǰ2 )(w ,m,null)

∗ dw 7→ ǰ1 ,m,ǐ ′,ǐ2e ∗ n⇀⇁ m ∗ m⇀⇁ w


e(i ,j )(̌l ,ǔ,ř) ∗ dm 7→ ľ ,ǔ,ǐ1 ,ře ∗ w 7→ ǰ1 ,m,ǐ ′,ǐ2

∗ d(ǐ1 ,ǰ1 )(null,m,w) ∗ d(ǐ ′,ǰ ′)(null,w ,null) ∗ d(ǐ2 ,ǰ2 )(w ,m,null)

∗ n⇀⇁ m ∗ m⇀⇁ w

{
e(i ,j )(̌l ,ǔ,ř) ∗ 〈〈m[y1 ⊗ w [z ]⊗ y2 ]〉〉(i ,j )(̌l ,ǔ,ř)

η ∗ n⇀⇁ m ∗ m⇀⇁ w
}

}{
Jα�m[β ⊗ w [δ]⊗ γ] ∗ n⇀⇁ m ∗ m⇀⇁ w Kτ2

}
Figure 6.18: Proof outline for getUp implementation in τ2 (success case).

225



{
J dw [β]e ∗ n⇀⇁ − ∗ m⇀⇁ w Kτ2

}
proc n := getUp(m){{

∃i , j .e(i ,j )(null,null,null) ∗ 〈〈w [y ]〉〉(i ,j )(null,null,null)
η ∗ n⇀⇁ − ∗ m⇀⇁ w

}
{
∃i , j .e(i ,j )(null,null,null) ∗ dw 7→ null,null,ǐ ′,nulle ∗ d(ǐ ′,ǰ ′)(null,w ,null)

y

∗ n⇀⇁ − ∗ m⇀⇁ w

}
{
∃i , j .e(i ,j )(null,null,null) ∗ d(ǐ ′,ǰ ′)(null,w ,null)

y

∗ dw 7→ null,null,ǐ ′,nulle ∗ n⇀⇁ − ∗ m⇀⇁ w

}
{
dw 7→ null,null,ǐ ′,nulle ∗ n⇀⇁ − ∗ m⇀⇁ w

}
n := [m.up]{
dw 7→ null,null,ǐ ′,nulle ∗ n⇀⇁ null ∗ m⇀⇁ w

}{
∃i , j .e(i ,j )(null,null,null) ∗ d(ǐ ′,ǰ ′)(null,w ,null)

y

∗ dw 7→ null,null,ǐ ′,nulle ∗ n⇀⇁ null ∗ m⇀⇁ w

}
{
∃i , j .e(i ,j )(null,null,null) ∗ dw 7→ null,null,ǐ ′,nulle ∗ d(ǐ ′,ǰ ′)(null,w ,null)

y

∗ n⇀⇁ null ∗ m⇀⇁ w

}
{
∃i , j .e(i ,j )(null,null,null) ∗ 〈〈w [y ]〉〉(i ,j )(null,null,null)

η ∗ n⇀⇁ null ∗ m⇀⇁ w
}

}{
J dw [β]e ∗ n⇀⇁ null ∗ m⇀⇁ w Kτ2

}
Figure 6.19: Proof outline for getUp implementation in τ2 (null case).
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Axiom Correctness: deleteTree

Recall the specification of the deleteTree command from Figure 5.2.{
α�w [tree(ct)] ∗ σ ∧ EJE Kσ = w

}
deleteTree(E ){

α�∅ ∗ σ
}

To prove that this specification holds under our translation, suppose that e(α) = x

for some x ∈ X. We can also assume that x ∈ dom(η), otherwise the translated

precondition is equivalent to false, and that η(x ) = (i , j )(l , u, r) for some choice of i ,

j , l , u and r . The predicate tree(ct) tells us that the tree context ct has no context

holes, so we let e(ct) = t (recall that we use t to denote a tree context with no

holes). In Figure 6.20 we give a proof outline showing that the implementation of

deleteTree (from Figure 6.15) satisfies the translation of its specification.

The proof assumes that the helper function disposeForest can be specified as

follows: {
〈〈t〉〉(n,−)(−,−,null)

η ∗ n⇀⇁ n
}

disposeForest(n){
n⇀⇁ −

}
It is relatively simple to check that this specification holds, but the real point of

interest in this example is the program’s interaction with the upper crust e(i ,j )(̌l ,ǔ,ř).

It is not enough for the deleteTree program just to delete the subtree at w . In

order to preserve the structure of the tree the program also needs to update those

pointers that were referencing this subtree. This means that the left sibling pointer

of the node to the right of w needs to be updated, if the node exists, to point the

left sibling of w . Similarly, the right sibling of the node to the left of w needs to be

updated, if the node exists, to point to the right sibling of w . If w has no left sibling

then the first child pointer of the parent of w needs to be updated, if it exists, to

point to the right sibling of w . Notice that all of these updates are occurring in

the concrete address interface corresponding to abstract address x . In particular

this means that these updates are occurring in partial heaps cells ľ , ǔ and ř . It

is important that the program check that these nodes exist before attempting to

update their contents. Implicit in our reasoning is also the requirement that these

partial heap cells do not change whilst the deleteTree program is running. That

is, the partial heap cell ľ read at the beginning of the program must be the same cell
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that is updated at the end of the program, and similarly for the other partial heap

cells. This stability requirement is trivially satisfied since we are reasoning about

sequential programs, so it is not possible for these partial heap cells to be modified

whilst the deleteTree program is running. However, ensuring that such stability

requirements hold in a concurrent setting would be significantly more taxing.

Axiom Correctness: getLast

Recall the specification of the getLast command from Figure 5.1.{
α�w [β ⊗m[γ]] ∗ n⇀⇁ n ∗ σ ∧ EJE Kσ[n 7→ n] = w

}
n := getLast(E ){

α�w [β ⊗m[γ]] ∗ n⇀⇁ m ∗ σ
}

{
α�w [∅] ∗ n⇀⇁ n ∗ σ ∧ EJE Kσ[n 7→ n] = w

}
n := getLast(E ){

α�w [∅] ∗ n⇀⇁ null ∗ σ
}

To prove that the first specification holds under our translation, suppose that

e(α) = x , e(β) = y and e(γ) = z . We can also assume that {x , y , z} ⊆ dom(η),

otherwise the precondition is equivalent to false, and that η(x ) = (i , j )(l , u, r),

η(y) = (i ′, j ′)(l ′, u ′, r ′), η(z ) = (i ′′, j ′′)(l ′′, u ′′, r ′′) for some choice of these interfaces.

In Figure 6.21 we give a proof outline showing that the implementation of getLast

(from Figure 6.15) satisfies the translation of its first specification.

To prove that the second translation holds under our translation, suppose that

e(α) = x for some x ∈ X. We can also assume that x ∈ dom(η), otherwise the

precondition is equivalent to false, and that and that η(x ) = (i , j )(l , u, r) for some

choice of this interface. In Figure 6.22 we give a proof outline showing that the

implementation of getLast (from Figure 6.15) satisfies the translation of its second

specification.

The proof of the first specification is the more complex case and requires inter-

action with the lower crust d(ǐ ′,ǰ ′)(null,w ,m). The first point of interest occurs at the

line n := [m.down] where we read the down pointer of node w . This down pointer

is equal ǐ ′ which points into the lower crust. This will either be a pointer to some

partial heap cell, or, if the lower crust is empty, it will be a pointer to m. In ei-

ther case, we know that the subsequent test n 6= null will certainly be true, so the

program definitely enters the if branch. The code inside the if branch traverses a

null terminated list to find the last node in that list. Thus, the program will step
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{
Jα�w [tree(ct)] ∗ n⇀⇁ w Kτ2

}
proc deleteTree(n){{

e(i ,j )(̌l ,ǔ,ř) ∗ 〈〈w [t ]〉〉(i ,j )(̌l ,ǔ,ř)
η ∗ n⇀⇁ w

}
local x, y, z, w in{

e(i ,j )(̌l ,ǔ,ř) ∗ 〈〈w [t ]〉〉(i ,j )(̌l ,ǔ,ř)
η ∗ n⇀⇁ w ∗ x⇀⇁ − ∗ y⇀⇁ − ∗ z⇀⇁ − ∗ w⇀⇁ −

}
{
∃d , e.e(i ,j )(̌l ,ǔ,ř) ∗ dw 7→ ľ ,ǔ,d ,ře ∗ 〈〈t〉〉(d ,e)(null,w ,null)

η

∗ n⇀⇁ w ∗ x⇀⇁ − ∗ y⇀⇁ − ∗ z⇀⇁ − ∗ w⇀⇁ −

}
x := [n.right] ; y := [n.left] ; z := [n.up] ; w := [n.down] ;{
∃d , e.e(i ,j )(̌l ,ǔ,ř) ∗ dw 7→ ľ ,ǔ,d ,ře ∗ 〈〈t〉〉(d ,e)(null,w ,null)

η

∗ n⇀⇁ w ∗ x⇀⇁ ř ∗ y⇀⇁ ľ ∗ z⇀⇁ ǔ ∗ w⇀⇁ d

}
call disposeForest(w) ;{
e(i ,j )(̌l ,ǔ,ř) ∗ dw 7→ ľ ,ǔ,−,ře ∗ n⇀⇁ w ∗ x⇀⇁ ř ∗ y⇀⇁ ľ ∗ z⇀⇁ ǔ ∗ w⇀⇁ −

}
disposeNode(n) ;{
e(i ,j )(̌l ,ǔ,ř) ∗ n⇀⇁ w ∗ x⇀⇁ ř ∗ y⇀⇁ ľ ∗ z⇀⇁ ǔ ∗ w⇀⇁ −

}
(ďl 7→ −̌,−̌,−̌,ie ∨ (̌l = null ∧ (dǔ 7→ −̌,−̌,i ,−̌e ∨ ǔ

.
= null)))

∗ (dř 7→ j ,−̌,−̌,−̌e ∨ ř
.
= null)

∗ n⇀⇁ w ∗ x⇀⇁ ř ∗ y⇀⇁ ľ ∗ z⇀⇁ ǔ ∗ w⇀⇁ −


if x 6= null then

[x.left] := y ;
(ďl 7→ −̌,−̌,−̌,ie ∨ (̌l = null ∧ (dǔ 7→ −̌,−̌,i ,−̌e ∨ ǔ

.
= null)))

∗ (dř 7→ ľ ,−̌,−̌,−̌e ∨ ř
.
= null)

∗ n⇀⇁ w ∗ x⇀⇁ ř ∗ y⇀⇁ ľ ∗ z⇀⇁ ǔ ∗ w⇀⇁ −


if y 6= null then

[y.right] := x

else

if z 6= null then
[z.down] := x

(ďl 7→ −̌,−̌,−̌,ře ∨ (̌l = null ∧ (dǔ 7→ −̌,−̌,ř ,−̌e ∨ ǔ
.
= null)))

∗ (dř 7→ ľ ,−̌,−̌,−̌e ∨ ř
.
= null)

∗ n⇀⇁ w ∗ x⇀⇁ ř ∗ y⇀⇁ ľ ∗ z⇀⇁ ǔ ∗ w⇀⇁ −

{
e(ř ,̌l)(̌l ,ǔ,ř) ∗ n⇀⇁ w ∗ x⇀⇁ ř ∗ y⇀⇁ ľ ∗ z⇀⇁ ǔ ∗ w⇀⇁ −

}{
e(i ,j )(̌l ,ǔ,ř) ∗ 〈〈∅〉〉(i ,j )(̌l ,ǔ,ř)

η ∗ n⇀⇁ w ∗ x⇀⇁ ř ∗ y⇀⇁ ľ ∗ z⇀⇁ ǔ ∗ w⇀⇁ −
}

{
e(i ,j )(̌l ,ǔ,ř) ∗ 〈〈∅〉〉(i ,j )(̌l ,ǔ,ř)

η ∗ n⇀⇁ w
}

}{
Jα�∅ ∗ n⇀⇁ w Kτ2

}
Figure 6.20: Proof outline for deleteTree implementation in τ2 .
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though the lower crust, not making any modifications to it, and end up setting n to

the node m who’s right pointer is null.

Axiom Correctness: appendChild

Recall the specification of the appendChild command from Figure 5.2.{
α�n[γ] ∗ β�m[tree(ct)] ∗ σ ∧ EJE Kσ = n ∧ EJE ′Kσ = m

}
appendChild(E , E ′){

α�n[γ ⊗m[tree(ct)]] ∗ β�∅ ∗ σ
}

To prove that this specification holds under our translation, suppose that e(α) = x ,

e(β) = y and e(γ) = z for some x , y , z ∈ X. We can also assume that {x , y , z} ⊆
dom(η), otherwise the translated precondition is equivalent to false, and that η(x ) =

(i , j )(l , u, r), η(y) = (i ′, j ′)(l ′, u ′, r ′), η(z ) = (i ′′, j ′′)(l ′′, u ′′, r ′′) for some choice of

these interfaces. The predicate tree(ct) tells us that the tree context ct has no

context holes, so we let e(ct) = t (recall that we use t to denote a tree context with

no holes). In Figures 6.23 and 6.24 we give the proof that the implementation of

appendChild (from Figure 6.15) satisfies the translation of this specification.

The implementation of appendChild is the most complex implementation of a

basic command in the translation τ2 . The proof of correctness for this implemen-

tation requires access to both the upper crust at address y and the lower crust at

hole label z . Moreover, notice that the node m, and its subtree, are initially part of

the tree segment at address β, but end up as part of the tree segment at address α.

The fact that our translation takes tree segments to complete heaps allows for this

resource transfer to occur at the concrete level. In fact, the changes to the concrete

interfaces made by the program mean that the only way for the final heap segment

to represent a tree segment is if this resource transfer has indeed taken place.

Another point to highlight is that in the proof outline we have hidden a case split-

ting that must occur as part of the formal proof. The first part of the appendChild

implementation is concerned with removing the node m from its current place in

the tree. However, if m happens to be directly beneath node n, then the pointer

swings of m’s left and right nodes temporarily break the structure of the child list

in hole z . That is, the update to the upper crust at address y has an affect on the

lower crust at hole z , which we assume to be invariant. This means that the lower

crust predicate d(ǐ ′′,ǰ ′′)(null,n,null)
z might not hold at (�) in Figure 6.23.

Our solution to this problem is to do a case split on the inclusion of node m in

the list of children beneath n. If m is not in this list, then there is nothing to do
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{
Jα�w [β ⊗m[γ]] ∗ n⇀⇁ − ∗ m⇀⇁ w Kτ2

}
proc n := getLast(m){{

e(i ,j )(̌l ,ǔ,ř) ∗ 〈〈w [y ⊗m[z ]]〉〉(i ,j )(̌l ,ǔ,ř)
η ∗ n⇀⇁ − ∗ m⇀⇁ w

}
local x in{

e(i ,j )(̌l ,ǔ,ř) ∗ 〈〈w [y ⊗m[z ]]〉〉(i ,j )(̌l ,ǔ,ř)
η ∗ n⇀⇁ − ∗ m⇀⇁ w ∗ x⇀⇁ −

}
{
e(i ,j )(̌l ,ǔ,ř) ∗ dw 7→ ľ ,ǔ,ǐ ′,ře ∗ d(ǐ ′,ǰ ′)(null,w ,m) ∗ dm 7→ ǰ ′,w ,ǐ ′′,nulle
∗ d(ǐ ′′,ǰ ′′(null,m,null) ∗ n⇀⇁ − ∗ m⇀⇁ w ∗ x⇀⇁ −

}
n := [m.down] ;{
e(i ,j )(̌l ,ǔ,ř) ∗ dw 7→ ľ ,ǔ,ǐ ′,ře ∗ d(ǐ ′,ǰ ′)(null,w ,m) ∗ dm 7→ ǰ ′,w ,ǐ ′′,nulle
∗ d(ǐ ′′,ǰ ′′(null,m,null) ∗ n⇀⇁ ǐ ′ ∗ m⇀⇁ w ∗ x⇀⇁ −

}
{
e(i ,j )(̌l ,ǔ,ř) ∗ dw 7→ ľ ,ǔ,ǐ ′,ře ∗ ls(ǐ ′, ǰ ′, null,w ,m) ∗ dm 7→ ǰ ′,w ,ǐ ′′,nulle
∗ d(ǐ ′′,ǰ ′′(null,m,null) ∗ n⇀⇁ ǐ ′ ∗ m⇀⇁ w ∗ x⇀⇁ −

}
if n 6= null then{

e(i ,j )(̌l ,ǔ,ř) ∗ dw 7→ ľ ,ǔ,ǐ ′,ře ∗ ls(ǐ ′, ǰ ′, null,w ,m) ∗ dm 7→ ǰ ′,w ,ǐ ′′,nulle
∗ d(ǐ ′′,ǰ ′′(null,m,null) ∗ n⇀⇁ ǐ ′ ∗ m⇀⇁ w ∗ x⇀⇁ −

}
x := [n.right] ;

 ∃k , k ′, k ′′.e(i ,j )(̌l ,ǔ,ř) ∗ dw 7→ ľ ,ǔ,ǐ ′,ře ∗ dm 7→ ǰ ′,w ,ǐ ′′,nulle
∗ d(ǐ ′′,ǰ ′′(null,m,null) ∗ ls(ǐ ′, ǩ , null,w , ǩ ′) ∗ dǩ ′ 7→ ǩ ,w ,−,ǩ ′′e
∗ ls(ǩ ′′, ǰ ′, ǩ ′,w ,m) ∗ n⇀⇁ ǩ ′ ∗ m⇀⇁ w ∗ x⇀⇁ k ′′


∨
(
e(i ,j )(̌l ,ǔ,ř) ∗ dw 7→ ľ ,ǔ,ǐ ′,ře ∗ ls(ǐ ′, ǰ ′, null,w ,m)
∗ dm 7→ ǰ ′,w ,ǐ ′′,nulle ∗ n⇀⇁ m ∗ m⇀⇁ w ∗ x⇀⇁ null

)


while x 6= null do
∃k , k ′, k ′′.e(i ,j )(̌l ,ǔ,ř) ∗ dw 7→ ľ ,ǔ,ǐ ′,ře ∗ dm 7→ ǰ ′,w ,ǐ ′′,nulle
∗ d(ǐ ′′,ǰ ′′(null,m,null) ∗ ls(ǐ ′, ǩ , null,w , ǩ ′) ∗ dǩ ′ 7→ ǩ ,w ,−,ǩ ′′e
∗ ls(ǩ ′′, ǰ ′, ǩ ′,w ,m) ∗ n⇀⇁ ǩ ′ ∗ m⇀⇁ w ∗ x⇀⇁ k ′′


n := x ;
x := [n.right]

 ∃k , k ′, k ′′.e(i ,j )(̌l ,ǔ,ř) ∗ dw 7→ ľ ,ǔ,ǐ ′,ře ∗ dm 7→ ǰ ′,w ,ǐ ′′,nulle
∗ d(ǐ ′′,ǰ ′′(null,m,null) ∗ ls(ǐ ′, ǩ , null,w , ǩ ′) ∗ dǩ ′ 7→ ǩ ,w ,−,ǩ ′′e
∗ ls(ǩ ′′, ǰ ′, ǩ ′,w ,m) ∗ n⇀⇁ ǩ ′ ∗ m⇀⇁ w ∗ x⇀⇁ k ′′


∨
(
e(i ,j )(̌l ,ǔ,ř) ∗ dw 7→ ľ ,ǔ,ǐ ′,ře ∗ ls(ǐ ′, ǰ ′, null,w ,m)
∗dm 7→ ǰ ′,w ,ǐ ′′,nulle ∗ n⇀⇁ m ∗ m⇀⇁ w ∗ x⇀⇁ null

)
{

e(i ,j )(̌l ,ǔ,ř) ∗ dw 7→ ľ ,ǔ,ǐ ′,ře ∗ ls(ǐ ′, ǰ ′, null,w ,m) ∗ dm 7→ ǰ ′,w ,ǐ ′′,nulle
∗ d(ǐ ′′,ǰ ′′(null,m,null) ∗ n⇀⇁ m ∗ m⇀⇁ w ∗ x⇀⇁ null

}
{
e(i ,j )(̌l ,ǔ,ř) +S 〈〈w [y ⊗m[z ]]〉〉(i ,j )(̌l ,ǔ,ř)

η ∗ n⇀⇁ m ∗ m⇀⇁ w ∗ x⇀⇁ null
}

{
e(i ,j )(̌l ,ǔ,ř) +S 〈〈w [y ⊗m[z ]]〉〉(i ,j )(̌l ,ǔ,ř)

η ∗ n⇀⇁ m ∗ m⇀⇁ w
}

}{
J α�w [β ⊗m[γ]] ∗ n⇀⇁ m ∗ m⇀⇁ w Kτ2

}
Figure 6.21: Proof outline for the getLast implementation in τ2 (success case).
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{
Jα�w [∅] ∗ n⇀⇁ − ∗ m⇀⇁ w Kτ2

}
proc n := getLast(m){{

e(i ,j )(̌l ,ǔ,ř) ∗ 〈〈w [∅]〉〉(i ,j )(̌l ,ǔ,ř)
η ∗ n⇀⇁ − ∗ m⇀⇁ w

}
local x in{

e(i ,j )(̌l ,ǔ,ř) ∗ 〈〈w [∅]〉〉(i ,j )(̌l ,ǔ,ř)
η ∗ n⇀⇁ − ∗ m⇀⇁ w ∗ x⇀⇁ −

}
{
e(i ,j )(̌l ,ǔ,ř) ∗ dw 7→ ľ ,ǔ,null,ře ∗ n⇀⇁ − ∗ m⇀⇁ w ∗ x⇀⇁ −

}
n := [m.down] ;{
e(i ,j )(̌l ,ǔ,ř) ∗ dw 7→ ľ ,ǔ,null,ře ∗ n⇀⇁ null ∗ m⇀⇁ w ∗ x⇀⇁ −

}
if n 6= null then

...{
e(i ,j )(̌l ,ǔ,ř) ∗ dw 7→ ľ ,ǔ,null,ře ∗ n⇀⇁ null ∗ m⇀⇁ w ∗ x⇀⇁ −

}{
e(i ,j )(̌l ,ǔ,ř) ∗ 〈〈w [∅]〉〉(i ,j )(̌l ,ǔ,ř)

η ∗ n⇀⇁ null ∗ m⇀⇁ w ∗ x⇀⇁ −
}

{
e(i ,j )(̌l ,ǔ,ř) ∗ 〈〈w [∅]〉〉(i ,j )(̌l ,ǔ,ř)

η ∗ n⇀⇁ null ∗ m⇀⇁ w
}

}{
Jα�w [∅] ∗ n⇀⇁ null ∗ m⇀⇁ w Kτ2

}
Figure 6.22: Proof outline for the getLast implementation in τ2 (null case).

as the upper crust at address y is definitely separate from the lower crust beneath

hole z and our assumption is correct. If m is in this list, then the lower crust

beneath z is updated to a state which does not satisfy the lower crust predicate

d(ǐ ′′,ǰ ′′)(null,n,null)
z while we are in the middle of swinging the pointers of m’s siblings.

However, once the pointer swings are completed, the lower crust is repaired so it

that once again satisfies the lower crust predicate. The program makes no attempt

to use the lower crust during this time, so the correctness of the implementation can

still be established.

Our current solution to the crust overlap problem seems unsatisfactory as it re-

turns to case splitting, our main motivation for moving away from the locality

breaking technique. However, we are currently working to improve this limitation

by using a more formal permissions system, similar to that of CAP [27], at the

concrete level.

This concludes the proof of Theorem 6.16.
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{
Jα�n[γ] ∗ β�m[tree(ct)] ∗ n⇀⇁ n ∗ m⇀⇁ m Kτ2

}
proc appendChild(n, m){{

e(i ,j )(̌l ,ǔ,ř) ∗ 〈〈n[z ]〉〉(i ,j )(̌l ,ǔ,ř)
η ∗ e(i ′,j ′)(ľ ′,ǔ ′,ř ′) ∗ 〈〈m[t ]〉〉(i

′,j ′)(ľ ′,ǔ ′,ř ′)
η

∗ n⇀⇁ n ∗ m⇀⇁ m

}
local x, y, z in{
e(i ,j )(̌l ,ǔ,ř) ∗ 〈〈n[z ]〉〉(i ,j )(̌l ,ǔ,ř)

η ∗ e(i ′,j ′)(ľ ′,ǔ ′,ř ′) ∗ 〈〈m[t ]〉〉(i
′,j ′)(ľ ′,ǔ ′,ř ′)

η

∗ n⇀⇁ n ∗ m⇀⇁ m ∗ x⇀⇁ − ∗ y⇀⇁ − ∗ z⇀⇁ −

}

∃d , e.e(i ,j )(̌l ,ǔ,ř) ∗ dn 7→ ľ ,ǔ,ǐ ′′,ře ∗ d(ǐ ′′,ǰ ′′)(null,n,null)

z

∗ e(i ′,j ′)(ľ ′,ǔ ′,ř ′) ∗ dm 7→ ľ ′,ǔ ′,d ,ř ′e ∗ 〈〈t〉〉(d ,e)(null,m,null)
η

∗ n⇀⇁ n ∗ m⇀⇁ m ∗ x⇀⇁ − ∗ y⇀⇁ − ∗ z⇀⇁ −


x := [m.right] ; y := [m.left] ; z := [m.up] ;
∃d , e.e(i ,j )(̌l ,ǔ,ř) ∗ dn 7→ ľ ,ǔ,ǐ ′′,ře ∗ d(ǐ ′′,ǰ ′′)(null,n,null)

z

∗ e(i ′,j ′)(ľ ′,ǔ ′,ř ′) ∗ dm 7→ ľ ′,ǔ ′,d ,ř ′e ∗ 〈〈t〉〉(d ,e)(null,m,null)
η

∗ n⇀⇁ n ∗ m⇀⇁ m ∗ x⇀⇁ ř ′ ∗ y⇀⇁ ľ ′ ∗ z⇀⇁ ǔ ′


∃d , e.e(i ,j )(̌l ,ǔ,ř) ∗ dn 7→ ľ ,ǔ,ǐ ′′,ře ∗ d(ǐ ′′,ǰ ′′)(null,n,null)

z

∗ (dľ ′ 7→ −̌,−̌,−̌,i ′e ∨ (ľ ′ = null ∧ (dǔ ′ 7→ −̌,−̌,i ′,−̌e ∨ ǔ ′
.
= null)))

∗ (dř ′ 7→ j ′,−̌,−̌,−̌e ∨ ř ′
.
= null) ∗ dm 7→ ľ ′,ǔ ′,d ,ř ′e ∗ 〈〈t〉〉(d ,e)(null,m,null)

η

∗ n⇀⇁ n ∗ m⇀⇁ m ∗ x⇀⇁ ř ′ ∗ y⇀⇁ ľ ′ ∗ z⇀⇁ ǔ ′


if x 6= null then

[x.left] := y
∃d , e.e(i ,j )(̌l ,ǔ,ř) ∗ dn 7→ ľ ,ǔ,ǐ ′′,ře ∗ d(ǐ ′′,ǰ ′′)(null,n,null)

z

∗ (dľ ′ 7→ −̌,−̌,−̌,i ′e ∨ (ľ ′ = null ∧ (dǔ ′ 7→ −̌,−̌,i ′,−̌e ∨ ǔ ′
.
= null)))

∗ (dř ′ 7→ ľ ′,−̌,−̌,−̌e ∨ ř ′
.
= null) ∗ dm 7→ ľ ′,ǔ ′,d ,ř ′e ∗ 〈〈t〉〉(d ,e)(null,m,null)

η

∗ n⇀⇁ n ∗ m⇀⇁ m ∗ x⇀⇁ ř ′ ∗ y⇀⇁ ľ ′ ∗ z⇀⇁ ǔ ′

 (�)

if y 6= null then
[y.right] := x

else

if z 6= null then
[z.down] := x
∃d , e.e(i ,j )(̌l ,ǔ,ř) ∗ dn 7→ ľ ,ǔ,ǐ ′′,ře ∗ d(ǐ ′′,ǰ ′′)(null,n,null)

z

∗ (dľ ′ 7→ −̌,−̌,−̌,ř ′e ∨ (ľ ′ = null ∧ (dǔ ′ 7→ −̌,−̌,ř ′,−̌e ∨ ǔ ′
.
= null)))

∗ (dř ′ 7→ ľ ′,−̌,−̌,−̌e ∨ ř ′
.
= null) ∗ dm 7→ ľ ′,ǔ ′,d ,ř ′e ∗ 〈〈t〉〉(d ,e)(null,m,null)

η

∗ n⇀⇁ n ∗ m⇀⇁ m ∗ x⇀⇁ ř ′ ∗ y⇀⇁ ľ ′ ∗ z⇀⇁ ǔ ′


∃d , e.e(i ,j )(̌l ,ǔ,ř) ∗ dn 7→ ľ ,ǔ,ǐ ′′,ře ∗ d(ǐ ′′,ǰ ′′)(null,n,null)

z

∗ e(i ′,j ′)(ľ ′,ǔ ′,ř ′) ∗ 〈〈∅〉〉(i
′,j ′)(ľ ′,ǔ ′,ř ′)

η ∗ dm 7→ ľ ′,ǔ ′,d ,ř ′e ∗ 〈〈t〉〉(d ,e)(null,m,null)
η

∗ n⇀⇁ n ∗ m⇀⇁ m ∗ x⇀⇁ ř ′ ∗ y⇀⇁ ľ ′ ∗ z⇀⇁ ǔ ′


...

Figure 6.23: Proof outline for appendChild implementation in τ2 .
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...
∃d , e.e(i ,j )(̌l ,ǔ,ř) ∗ dn 7→ ľ ,ǔ,ǐ ′′,ře ∗ d(ǐ ′′,ǰ ′′)(null,n,null)

z

∗ e(i ′,j ′)(ľ ′,ǔ ′,ř ′) ∗ 〈〈∅〉〉(i
′,j ′)(ľ ′,ǔ ′,ř ′)

η ∗ dm 7→ ľ ′,ǔ ′,d ,ř ′e ∗ 〈〈t〉〉(d ,e)(null,m,null)
η

∗ n⇀⇁ n ∗ m⇀⇁ m ∗ x⇀⇁ ř ′ ∗ y⇀⇁ ľ ′ ∗ z⇀⇁ ǔ ′


y := [n.down]
∃d , e.e(i ,j )(̌l ,ǔ,ř) ∗ dn 7→ ľ ,ǔ,ǐ ′′,ře ∗ d(ǐ ′′,ǰ ′′)(null,n,null)

z

∗ e(i ′,j ′)(ľ ′,ǔ ′,ř ′) ∗ 〈〈∅〉〉(i
′,j ′)(ľ ′,ǔ ′,ř ′)

η ∗ dm 7→ ľ ′,ǔ ′,d ,ř ′e ∗ 〈〈t〉〉(d ,e)(null,m,null)
η

∗ n⇀⇁ n ∗ m⇀⇁ m ∗ x⇀⇁ ř ′ ∗ y⇀⇁ ǐ ′′ ∗ z⇀⇁ ǔ ′


∃d , e.e(i ,j )(̌l ,ǔ,ř) ∗ dn 7→ ľ ,ǔ,ǐ ′′,ře ∗ ls(ǐ ′′, ǰ ′′, null, n, null)

∗ e(i ′,j ′)(ľ ′,ǔ ′,ř ′) ∗ 〈〈∅〉〉(i
′,j ′)(ľ ′,ǔ ′,ř ′)

η ∗ dm 7→ ľ ′,ǔ ′,d ,ř ′e ∗ 〈〈t〉〉(d ,e)(null,m,null)
η

∗ n⇀⇁ n ∗ m⇀⇁ m ∗ x⇀⇁ ř ′ ∗ y⇀⇁ ǐ ′′ ∗ z⇀⇁ ǔ ′


if y = null then

[n.down] := m
∃d , e.e(i ,j )(̌l ,ǔ,ř) ∗ dn 7→ ľ ,ǔ,ǐ ′′,ře ∗ ls(ǐ ′′, ǰ ′′, null, n,m)

∗ e(i ′,j ′)(ľ ′,ǔ ′,ř ′) ∗ 〈〈∅〉〉(i
′,j ′)(ľ ′,ǔ ′,ř ′)

η ∗ dm 7→ ľ ′,ǔ ′,d ,ř ′e ∗ 〈〈t〉〉(d ,e)(null,m,null)
η

∗ n⇀⇁ n ∗ m⇀⇁ m ∗ x⇀⇁ − ∗ y⇀⇁ ǰ ′′ ∗ z⇀⇁ ǔ ′


else

x := [y.right] ;
while x 6= null do
y := x ; x := [y.right]

[y.right] := m
∃d , e.e(i ,j )(̌l ,ǔ,ř) ∗ dn 7→ ľ ,ǔ,ǐ ′′,ře ∗ ls(ǐ ′′, ǰ ′′, null, n,m)

∗ e(i ′,j ′)(ľ ′,ǔ ′,ř ′) ∗ 〈〈∅〉〉(i
′,j ′)(ľ ′,ǔ ′,ř ′)

η ∗ dm 7→ ľ ′,ǔ ′,d ,ř ′e ∗ 〈〈t〉〉(d ,e)(null,m,null)
η

∗ n⇀⇁ n ∗ m⇀⇁ m ∗ x⇀⇁ − ∗ y⇀⇁ ǰ ′′ ∗ z⇀⇁ ǔ ′


∃d , e.e(i ,j )(̌l ,ǔ,ř) ∗ dn 7→ ľ ,ǔ,ǐ ′′,ře ∗ d(ǐ ′′,ǰ ′′)(null,n,m)

z

∗ e(i ′,j ′)(ľ ′,ǔ ′,ř ′) ∗ 〈〈∅〉〉(i
′,j ′)(ľ ′,ǔ ′,ř ′)

η ∗ dm 7→ ľ ′,ǔ ′,d ,ř ′e ∗ 〈〈t〉〉(d ,e)(null,m,null)
η

∗ n⇀⇁ n ∗ m⇀⇁ m ∗ x⇀⇁ − ∗ y⇀⇁ ǰ ′′ ∗ z⇀⇁ ǔ ′


[m.left] := y ; [m.right] := null ; [m.up] := n
∃d , e.e(i ,j )(̌l ,ǔ,ř) ∗ dn 7→ ľ ,ǔ,ǐ ′′,ře ∗ d(ǐ ′′,ǰ ′′)(null,n,m)

z

∗ e(i ′,j ′)(ľ ′,ǔ ′,ř ′) ∗ 〈〈∅〉〉(i
′,j ′)(ľ ′,ǔ ′,ř ′)

η ∗ dm 7→ ǰ ′′,n,d ,nulle ∗ 〈〈t〉〉(d ,e)(null,m,null)
η

∗ n⇀⇁ n ∗ m⇀⇁ m ∗ x⇀⇁ − ∗ y⇀⇁ ǰ ′′ ∗ z⇀⇁ ǔ ′


∃d , e.e(i ,j )(̌l ,ǔ,ř) ∗ dn 7→ ľ ,ǔ,ǐ ′′,ře ∗ d(ǐ ′′,ǰ ′′)(null,n,m)

z

∗ dm 7→ ǰ ′′,n,d ,nulle ∗ 〈〈t〉〉(d ,e)(null,m,null)
η ∗ e(i ′,j ′)(ľ ′,ǔ ′,ř ′) ∗ 〈〈∅〉〉(i

′,j ′)(ľ ′,ǔ ′,ř ′)
η

∗ n⇀⇁ n ∗ m⇀⇁ m ∗ x⇀⇁ − ∗ y⇀⇁ ǰ ′′ ∗ z⇀⇁ ǔ ′

{
e(i ,j )(̌l ,ǔ,ř) ∗ 〈〈n[z ⊗m[t ]]〉〉(i ,j )(̌l ,ǔ,ř)

η ∗ e(i ′,j ′)(ľ ′,ǔ ′,ř ′) ∗ 〈〈∅〉〉(i
′,j ′)(ľ ′,ǔ ′,ř ′)

η

∗ n⇀⇁ n ∗ m⇀⇁ m

}
}{
Jα�n[γ ⊗m[tree(ct)]] ∗ β�∅ ∗ n⇀⇁ n ∗ m⇀⇁ m Kτ2

}
Figure 6.24: Proof outline for appendChild implementation in τ2 continued.
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→τ3

Figure 6.25: An abstract tree from T and its representation in H + L.

6.3.3 Module Translation τ3 : T→ H + L

We now present a second locality-preserving translation τ3 from the tree module T
into the heap and list module H + L. This translation represents each tree node n

as a block of two cells in the heap n 7→ p,i , which contain pointers to the node’s

parent p and a list i that contains the node’s children. This representation of the

tree is illustrated in Figure 6.25.

An interface consists of the address of the tree’s parent node and the list of nodes

at the root level of the tree. These interfaces are represented in Figure 6.25 by the

arrows into and out of the trees root node.

Note that for the empty tree ∅, the list of nodes at the root of the tree must be the

empty list ε. However, the implementation we are about to give assumes that every

node in the tree, including root nodes, must have some parent (we will see that the

getLeft and getRight command implementations first go to the parent and then

use its child list to finds the appropriate sibling). We model this by introducing a

‘dummy’ node, called top, which acts as the parent node for the root nodes of our

tree. The node top has no parent, but provides a constant reference to the list of

root nodes of the tree. A program can only use the top node indirectly to access

this node list. If a program looks up the parent of a root node, it will return null

and not top (the implementation of getUp manages this behaviour).

As with our previous example we need to use the concept of partial heap cells to

describe properties of shared portions of state. We also lift the concept of partial

ownership to abstract lists, writing ǐ Z⇒ [ ľ ] to be analogous to dx̌ 7→ v̌e.

Notation: We write dx 7→ p,ie to mean dx 7→ pe +S dx+1 7→ ie and similarly

with ∗ for assertions. We also write (x
.
= y) to mean {∅} ∧ (x = y) and drop

module annotations when they can be inferred from context. Finally, to simplify

the presentation we abuse notation slightly, freely combining heaps and list-stores

with the +S operator and similarly with ∗ for assertions.
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Definition 6.21 (τ3 : T→ H+L). The pre-locality preserving translation τ3 : T→
H + L is constructed as follows:

� an interface I = (l , p) ∈ I consists of a list of addresses l that describes the

root level nodes of the tree and an address p that describes the parent node

of the tree (possibly top). Note that there are no addresses or hole labels in

these interfaces, so labs(I ) = ∅ for all I ∈ I

� the segment representation function (|(·)|)(·) : ST × (X ⇀fin I) → SH×L is

defined by induction on the structure of tree segments as:

〈〈∅〉〉η def
= {∅}

〈〈x�ct〉〉η def
=

{
∃l .e(l , ˇtop) +S 〈〈ct〉〉(l , ˇtop)

η if x = 0

e(l ,p̌) +S 〈〈ct〉〉(l ,p̌)
η ∧ η(x ) = (l , p) otherwise

〈〈st1 +S st2 〉〉η
def
= 〈〈st1 〉〉η +S 〈〈st2 〉〉η

where the upper crust formula e(l ,p̌) ∈ SH×L is defined as,

e(l ,p̌) def
= ∃i , l1 , l2 . {dp̌ 7→ −̌,̌ie}+S {̌i Z⇒ [ ľ1 : l : ľ2 ]}+S

∑
v∈l1 :l2

{dv̌ 7→ p̌,−̌e}

the context representation function 〈〈(·)〉〉(·)(·) : CT × I × (X ⇀fin I) → SH×L is

defined by induction on the structure of multi-holed tree contexts as:

〈〈∅〉〉(l ,p)
η

def
= {∅} ∧ (l = ε)

〈〈x 〉〉(̌l ,p)
η

def
= d(̌l ,p) ∧ (η(x ) = (l , p))

〈〈n[ct ]〉〉(l ,p)
η

def
= ∃i , l ′. {dn 7→ p,ie}+S i Z⇒ [ l ′ ] +S 〈〈ct〉〉(l

′,n)
η ∧ (l = n)

〈〈ct1 ⊗ ct2 〉〉(l ,p)
η

def
= ∃l1 , l2 . 〈〈ct1 〉〉(l1 ,p)

η +S 〈〈ct2 〉〉(l2 ,p)
η ∧ (l = l1 : l2 );

and the lower crust formula d(̌l ,p) ∈ SH×L is defined as,

dľ ,p def
=

∑
v∈l

{dv̌ 7→ p,−̌e}

� the substitutive representation function is given by replacing each tree mod-

ule command with a call to the correspondingly named procedure given in
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Figure 6.28, with,

E .parent
def
= E

E .children
def
= E + 1

n := newNode()
def
= n := alloc(2 )

disposeNode(E )
def
= dispose(E , 2 ).

The translation τ3 is also a crust inclusive translation in the terminology of our

previous work [28]. As before, this translation has a lot in common with our context

based translation between the same modules. Again, the main difference is our

treatment of the concrete interface, or crust.

The upper crust predicate e(l ,p̌) describes the concrete state that corresponds to

an abstract address x with η(x ) = (l , p). This is illustrated in Figure 6.26. The

concrete address interface consists of a partial heap cell corresponding to the parent

node p̌ of the root level of the tree, this may be the unique dummy node top. It

also contains the partial list corresponding to the child list of p̌ and the weak partial

heap cells for each node in this child list. Access to this list is required by several of

our implementations, but in particular it is required by newNodeAfter which needs

to insert a new node into this list. To be able to reason about inserting a value

into a list we need to know that the value in question does not already occur in the

list. The only way we can be sure this is the case in our reasoning is to know that

the value we are trying to insert is a heap address, as are the addresses already in

the list. By including the partial heap cells we can use the disjointness property of

∗ to establish the value we are inserting is not already in the list. Notice that the

only pointers that we have full access to in the crust is the list of addresses l at

the root of the tree. This means that a program run on this state can only modify

the crust by changing the values in this list. The program cannot make any other

modifications to the surrounding state.

The translation fills in each context hole with a list of node addresses and extends

the state with a lower crust. The lower crust predicate dľ ,p describes the concrete

state that corresponds to an abstract hole label x with η(x ) = (l , p). This is illus-

trated in Figure 6.27. The concrete hole interface consists of partial heap cells for

each of the nodes that is referenced in the list l . Access to this list may be required

by the implementation of appendChild which needs to insert a new node into such a

list. As above, we can only reason about list insertion if we have access to the whole

list and the heap cells stored in that list. Notice that the only pointers that we have

full access to in the crust are the parent pointers to p. This means that a program
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η(x) = (l,p)n

x
n

p

l = n

...

......

Figure 6.26: A translation in τ3 which introduces some upper crust.

x
η(x) = (l,p)

... lkl1

p

l = l1 : ... : lk

Figure 6.27: A translation in τ3 which introduces some lower crust.

run on this state can only modify the crust by changing the values of these pointers.

The program cannot make any other modifications to the surrounding state.

In this translation we can again see that the upper and lower crusts for some label

x consist of complimentary partial heap cells/lists. When combined, we recover the

complete heap cells and lists associated with the concrete interface. In order to

prove the compression preservation property for this translation, we will need to

show a crust inclusion result similar to that from our previous example.

Theorem 6.22 (Soundness of τ3 ). The pre-locality-preserving translation τ3 is a

locality-preserving translation.

Lemma 6.23 (Combination Preservation). Segment combination is preserved by

the segment representation function. That is, for all st1 , st2 ∈ ST and η ∈ (X ⇀fin

I),

(|st1 +S st2 |)η = (|st1 |)η +S (|st2 |)η

Proof. This property follows from the definition of the segment representation func-

tion given in Definition 6.21.

In order to prove the revelation preservation property for the translation τ3 we

require the crust inclusion lemma. This lemma states that given a context com-
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proc n := getUp(m){
n := [m.parent] ;
if n = top then

n := null
}

proc n := getLeft(m){
local x, y in

x := [m.parent] ;
y := [x.children] ;
n := getPrev(y, m)

}

proc n := getRight(m){
local x, y in

x := [m.parent] ;
y := [x.children] ;
n := getNext(y, m)

}

proc deleteTree(n){
local x, y, z in

x := [n.parent] ;
y := [x.children] ;
remove(y, n) ;
y := [n.children] ;
z := getHead(y) ;
while z 6= null do
call deleteTree(z) ;
z := getHead(y)

deleteList(y) ;
disposeNode(n)

}

proc n := getFirst(m){
local x in

x := [m.children] ;
n := getHead(x)

}

proc n := getLast(m){
local x in

x := [m.children] ;
n := getTail(x)

}

proc newNodeAfter(n){
local x, y, z, w in

x := [n.parent] ;
z := [x.children] ;
y := newNode() ;
w := newList() ;
[y.parent] := x ;
[y.children] := w ;
insert(z, n, y)

}

proc appendChild(n, m){
local x, y in

x := [m.parent] ;
y := [x.children] ;
remove(y, m) ;
x := [n.children] ;
y := getTail(x) ;
insert(x, y, m)

}

Figure 6.28: Procedures for the heap and list-based implementation of the tree
module.
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position ct •x ct ′ we can extract the concrete interface eI corresponding to label x

from the translation of ct •x ct ′ plus its upper crust. This result relies on the use

of partial heap cells and lists to split the concrete interface corresponding to x into

two pieces: one that is extracted as the upper crust of ct ′ and one that remains as

the lower crust in the translation of ct .

Lemma 6.24 (Crust Inclusion). For all ct , ct ′ ∈ TId,X, I ′ ∈ I and η ∈ (X ⇀fin I),

if x ∈ fhT(ct) and x 6∈ fhT(ct ′), then

eI ′ +S 〈〈ct •x ct ′〉〉I ′η = ∃I .eI ′ +S 〈〈ct〉〉I ′η[x 7→I ] +S eI +S 〈〈ct ′〉〉Iη

Proof. Proceed by induction on the structure of ct .

ct = ∅ case:

x 6∈ fhT(∅) which contradicts our assumption that x ∈ fhT(ct), so this case holds

vacuously.

ct = y case:

If y 6= x then x 6∈ fhT(y) which contradicts our assumption that x ∈ fhT(ct), so

this case holds vacuously. If y = x then let I ′ = (l ′, p̌ ′) for some l ′ and p ′. We can

show the following:

eI ′ +S 〈〈ct •x ct ′〉〉I ′η = eI ′
z +S 〈〈x •x ct ′〉〉I ′η

= eI ′ +S 〈〈ct ′〉〉I ′η
= e(l ′,p̌′) +S 〈〈ct ′〉〉(l

′,p̌′)
η

= ∃i , l1 , l2 . {dp̌ ′ 7→ −̌,̌ie}+S {̌i Z⇒ [ ľ1 : l ′ : ľ2 ]}+S 〈〈ct ′〉〉(l
′,p̌′)

η

+S

( ∑
v∈l1 :l2

{dv̌ 7→ p̌ ′,−̌e}

)
= ∃i , l1 , l2 . {dp̌ ′ 7→ −̌,̌ie}+S {̌i Z⇒ [ ľ1 : ľ ′ : ľ2 ]}

+S {dp̌ ′ 7→ −̌,̌ie}+S {̌i Z⇒ [ ľ1 : l ′ : ľ2 ]}+S 〈〈ct ′〉〉(l
′,p̌′)

η

+S

( ∑
v∈l1 :l2

{dv̌ 7→ p̌ ′,−̌e}

)
+S

( ∑
v∈l1 :l2

{dv̌ 7→ p̌ ′,−̌e}

)
= ∃i , l1 , l2 , l , p. (l = l ′) ∧ (p = p ′)

∧ {dp̌ ′ 7→ −̌,̌ie}+S {̌i Z⇒ [ ľ1 : ľ ′ : ľ2 ]}
+S {dp̌ 7→ −̌,̌ie}+S {̌i Z⇒ [ ľ1 : l : ľ2 ]}+S 〈〈ct ′〉〉(l ,p̌)

η

+S

( ∑
v∈l1 :l2

{dv̌ 7→ p̌ ′,−̌e}

)
+S

( ∑
v∈l1 :l2

{dv̌ 7→ p̌,−̌e}

)
= ∃l , p.e(l ′,p̌′) +S 〈〈x 〉〉(l

′,p̌′)
η[x 7→(l ,p)] +S e(l ,p̌) +S 〈〈ct ′〉〉(l ,p̌)

η

= ∃I .eI ′ +S 〈〈ct〉〉I ′η[x 7→I ] +S eI +S 〈〈ct ′〉〉Iη
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ct = n[ct ′′] case:

There are two cases to consider. If x 6∈ fhT(ct ′′) then x 6∈ fhT(n[ct ′′]) which

contradicts our assumption that x ∈ fhT(ct), so this case holds vacuously. If x ∈
fhT(ct ′′) then by the induction hypothesis,

e(l ,ň) +S 〈〈ct ′′ •x ct ′〉〉(l ,ň)
η = ∃I .e(l ,ň) +S 〈〈ct ′′〉〉(l ,ň)

η[x 7→I ] +S eI +S 〈〈ct ′〉〉Iη

Let I ′ = (l ′, p̌ ′) for some l ′ and p ′. We can then show the following:

eI ′ +S 〈〈ct •x ct ′〉〉I ′η = eI ′ +S 〈〈n[ct ′′] •x ct ′〉〉I ′η
= eI ′ +S 〈〈n[ct ′′ •x ct ′]〉〉I ′η
= e(l ′,p̌′) +S 〈〈n[ct ′′ •x ct ′]〉〉(l

′,p̌′)
η

= e(l ′,p̌′) +S ∃i , l . {dn 7→ p̌ ′,ie}+S {i Z⇒ [ l ]}
+S 〈〈ct ′′ •x ct ′〉〉(l ,n)

η ∧ (l ′ = n)

= e(l ′,p̌′) +S ∃i , l . {dn 7→ p̌ ′,ie}+S {i Z⇒ [ ľ ]}
+S {dň 7→ −̌,̌ie}+S {̌i Z⇒ [ l ]}
+S 〈〈ct ′′ •x ct ′〉〉(l ,ň)

η ∧ (l ′ = n)

= e(l ′,p̌′) +S ∃i , l , l1 , l2 . {dn 7→ p̌ ′,ie}+S {i Z⇒ [ ľ ]}
+ e(l ,ň) + 〈〈ct ′′ •x ct ′〉〉(l ,ň)

η

∧ (l ′ = n) ∧ (l1 = ε) ∧ (l2 = ε)

(IH ) = e(l ′,p̌′) +S ∃i , l , l1 , l2 . {dn 7→ p̌ ′,ie}+S {i Z⇒ [ ľ ]}
+ ∃I .e(l ,ň) + 〈〈ct ′′〉〉(l ,ň)

η[x 7→I ] + eI + 〈〈ct ′〉〉Iη
∧ (l ′ = n) ∧ (l1 = ε) ∧ (l2 = ε)

= e(l ′,p̌′) +S ∃i , l . {dn 7→ p̌ ′,ie}+S {i Z⇒ [ ľ ]}
+S {dň 7→ −̌,̌ie}+S {̌i Z⇒ [ l ]}
+S 〈〈ct ′′〉〉(l ,ň)

η[x 7→I ] +S eI +S 〈〈ct ′〉〉Iη ∧ (l ′ = n)

= e(l ′,p̌′) +S ∃I . 〈〈n[ct ′′]〉〉(l
′,p̌′)

η[x 7→I ] +S eI +S 〈〈ct ′〉〉Iη
= ∃I .eI ′ +S 〈〈ct〉〉I ′η[x 7→I ] +S eI +S 〈〈ct ′〉〉Iη

ct = ct1 ⊗ ct2 case:

There are four cases to consider. If x 6∈ fhT(ct1 ) and x 6∈ fhT(ct2 ) then x 6∈
fhT(ct1 ⊗ ct2 ) which contradicts our assumption that x ∈ fhT(ct), so this case holds

vacuously. If x ∈ fhT(ct1 ) and x ∈ fhT(ct2 ) then the tree context ct1 ⊗ ct2 is not

well formed and again this case holds vacuously. If x ∈ fhT(ct1 ) and x 6∈ fhT(ct2 )

then by the inductive hypothesis,

e(l ′1 ,p̌
′) +S 〈〈ct1 •x ct ′〉〉(l

′
1 ,p̌
′)

η = ∃I .e(l ′1 ,p̌
′) +S 〈〈ct1 〉〉

(l ′1 ,p̌
′)

η[x 7→I ] +S eI +S 〈〈ct ′〉〉Iη
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Let I ′ = (l ′, p̌ ′) for some l ′ and p ′. We can then show the following:

eI ′ +S 〈〈ct •x ct ′〉〉I ′η = eI ′ +S 〈〈(ct1 ⊗ ct2 ) •x ct ′〉〉I ′η
= eI ′ +S 〈〈(ct1 •x ct ′)⊗ ct2 〉〉I

′
η

= e(l ′,p̌′) +S 〈〈(ct1 •x ct ′)⊗ ct2 〉〉(l
′,p̌′)

η

= e(l ′,p̌′) +S ∃l ′1 , l ′2 . 〈〈(ct1 •x ct ′)〉〉(l
′
1 ,p̌
′)

η

+S 〈〈ct2 〉〉
(l ′2 ,p̌

′)
η ∧ (l ′ = l ′1 : l ′2 )

= ∃i , l1 , l2 . {dp̌ 7→ −̌,̌ie}+S {̌i Z⇒ [ ľ1 : l ′ : ľ2 ]}

+S

( ∑
v∈l1 :l2

{dv̌ 7→ p̌,−̌e}

)
+S ∃l ′1 , l ′2 . 〈〈(ct1 •x ct ′)〉〉(l

′
1 ,p̌
′)

η

+S 〈〈ct2 〉〉
(l ′2 ,p̌

′)
η ∧ (l ′ = l ′1 : l ′2 )

= ∃i , l1 , l2 , l ′1 , l ′2 . {dp̌ 7→ −̌,̌ie}+S {̌i Z⇒ [ ľ1 : l ′1 : l ′2 : ľ2 ]}

+S

( ∑
v∈l1 :l2

{dv̌ 7→ p̌,−̌e}

)
+S 〈〈(ct1 •x ct ′)〉〉(l

′
1 ,p̌
′)

η

+S 〈〈ct2 〉〉
(l ′2 ,p̌

′)
η ∧ (l ′ = l ′1 : l ′2 )

= ∃i , l1 , l2 , l ′1 , l ′2 . {dp̌ 7→ −̌,̌ie}+S {̌i Z⇒ [ ľ1 : ľ ′1 : l ′2 : ľ2 ]}
+S {dp̌ 7→ −̌,̌ie}+S {̌i Z⇒ [ ľ1 : l ′1 : ľ ′2 : ľ2 ]}

+S

( ∑
v∈l1 :l2

{dv̌ 7→ p̌,−̌e}

)
+S

∑
v∈l ′2

{dv̌ 7→ p̌,−̌e}


+S 〈〈(ct1 •x ct ′)〉〉(l

′
1 ,p̌
′)

η +S 〈〈ct2 〉〉
(l ′2 ,p̌

′)
η ∧ (l ′ = l ′1 : l ′2 )

= ∃i , l1 , l2 , l ′1 , l ′2 . {dp̌ 7→ −̌,̌ie}+S {̌i Z⇒ [ ľ1 : ľ ′1 : l ′2 : ľ2 ]}
+S {dp̌ 7→ −̌,̌ie}+S {̌i Z⇒ [ ľ1 : l ′1 : ľ ′2 : ľ2 ]}

+S

 ∑
v∈l1 :l ′2 :l2

{dv̌ 7→ p̌,−̌e}

+S 〈〈(ct1 •x ct ′)〉〉(l
′
1 ,p̌
′)

η

+S 〈〈ct2 〉〉
(l ′2 ,p̌

′)
η ∧ (l ′ = l ′1 : l ′2 )

= ∃i , l1 , l2 , l ′1 , l ′2 . {dp̌ 7→ −̌,̌ie}+S {̌i Z⇒ [ ľ1 : ľ ′1 : l ′2 : ľ2 ]}
+ el ′1 ,p

′
+S 〈〈(ct1 •x ct ′)〉〉(l

′
1 ,p̌
′)

η +S 〈〈ct2 〉〉
(l ′2 ,p̌

′)
η ∧ (l ′ = l ′1 : l ′2 )

(IH ) = ∃i , l1 , l2 , l ′1 , l ′2 . {dp̌ 7→ −̌,̌ie}+S {̌i Z⇒ [ ľ1 : ľ ′1 : l ′2 : ľ2 ]} ∧ (l ′ = l ′1 : l ′2 )

+S ∃I .e(l ′1 ,p̌
′) +S 〈〈ct1 〉〉

(l ′1 ,p̌
′)

η[x 7→I ] +S eI +S 〈〈ct ′〉〉Iη +S 〈〈ct2 〉〉
(l ′2 ,p̌

′)
η

= ∃i , l1 , l2 , l ′1 , l ′2 . {dp̌ 7→ −̌,̌ie}+S {̌i Z⇒ [ ľ1 : ľ ′1 : l ′2 : ľ2 ]}
+S {dp̌ 7→ −̌,̌ie}+S {̌i Z⇒ [ ľ1 : l ′1 : ľ ′2 : ľ2 ]} ∧ (l ′ = l ′1 : l ′2 )

+S

 ∑
v∈l1 :l ′2 :l2

{dv̌ 7→ p̌,−̌e}


+S ∃I .e(l ′1 ,p̌

′) +S 〈〈ct1 〉〉
(l ′1 ,p̌

′)

η[x 7→I ] +S eI +S 〈〈ct ′〉〉Iη +S 〈〈ct2 〉〉
(l ′2 ,p̌

′)
η

= ∃l ′1 , l ′2 .+S∃I .e(l ′,p̌′) +S 〈〈ct1 〉〉
(l ′1 ,p̌

′)

η[x 7→I ] +S eI +S 〈〈ct ′〉〉Iη
+ 〈〈ct2 〉〉

(l ′2 ,p̌
′)

η ∧ (l ′ = l ′1 : l ′2 )

= ∃I .e(l ′,p̌′) +S 〈〈ct1 ⊗ ct2 〉〉(l
′,p̌′)

η[x 7→I ] +S eI +S 〈〈ct ′〉〉Iη
= ∃I .eI ′ +S 〈〈ct〉〉I ′η[x 7→I ] +S eI +S 〈〈ct ′〉〉Iη[x 7→I ]242



The final case for x 6∈ fhT(ct1 ) and x ∈ fhT(ct2 ) is analogous to the case given above.

Note that (IH ) denotes an application of the inductive hypothesis.

Lemma 6.25 (Compression Preservation). Segment compression is preserved by the

segment representation function. That is, for all x ∈ X, st ∈ ST and η ∈ (X⇀fin I),

there exists I ∈ I and x̄ ∈ P(X) with x̄ = labs(I ) such that,

(|(x )(st)|)η ≡ (x̄ )((|st |)η[x 7→I ])

Proof. Recall that in this translation labs(I ) = ∅ for all I ∈ I. Thus, it is sufficient

to show that,

(|(x )(st)|)η ≡ ∃I . (|st |)η[x 7→I ]

Case split on the occurrences of label x in segment st . There are four cases to

consider:

(1) If x 6∈ fa(st) and x 6∈ fh(st), then (x )(st) = st . Any choice of I will suffice as

it will never be referenced by the translation. We can then show the following:

(|(x )(st)|)η = (|st |)η

= ∃I . (|st |)η[x 7→I ]

(2) If x ∈ fa(st) and x 6∈ fh(st), then there exist some st ′, ct such that st =

st ′ +S x�ct where x 6∈ fh(st ′). Let I = (l , ˇtop) for some l . We can then show the

following:

(|(x )(st)|)η = (|(x )(st ′ +S x�ct)|)η

= (|st ′ +S 0�ct |)η

= (|st ′|)η +S (|0�ct |)η

= (|st ′|)η +S ∃l .e(l , ˇtop) +S 〈〈ct〉〉(l , ˇtop)
η

= (|st ′|)η +S ∃l . (|x�ct |)η[x 7→(l , ˇtop)]

= (|st ′|)η +S ∃I . (|x�ct |)η[x 7→I ]

= ∃I . (|st ′|)η[x 7→I ] +S (|x�ct |)η[x 7→I ]

= ∃I . (|st ′ +S x�ct |)η[x 7→I ]

= ∃I . (|st |)η[x 7→I ]

(3) If x 6∈ fa(st) and x ∈ fh(st), then (x )(st) is undefined, so (|(x )(st)|)η = ∅. Let

I = (ε, null), then (|st |)η[x 7→I ] = ∅ since every abstract tree node is required to have a

parent in our translation.
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(4) If x ∈ fa(st) and x ∈ fh(st), then there exist some st ′, z , ct , ct ′ such that

st = st ′ +S z�ct +S x�ct ′ where x 6∈ fa(st ′), x 6∈ fh(st ′) and x ∈ fhT(ct). Tree

segments do no contain cycles, so we can assume that x 6∈ fhT(ct ′). Let η(z ) = I ′

for some I ′ ∈ I. We can then show the following:

(|(x )(st)|)η = (|(x )(st ′ +S z�ct +S x�ct ′)|)η

= (|st ′ +S z�ct •x ct ′|)η

= (|st ′|)η +S (|z�ct •x ct ′|)η

= (|st ′|)η +S eI ′ +S 〈〈ct •x ct ′〉〉I ′η
(Lemma 6.24) = (|st ′|)η +S ∃I .eI ′ +S 〈〈ct〉〉I ′η[x 7→I ] +S eI +S 〈〈ct ′〉〉Iη

= ∃I . (|st ′|)η[x 7→I ] +S eI ′ +S 〈〈ct〉〉I ′η[x 7→I ] +S eI +S 〈〈ct ′〉〉Iη[x 7→I ]

= ∃I . (|st ′|)η[x 7→I ] +S (|z�ct |)η[x 7→I ] +S (|x�ct ′|)η[x 7→I ]

= ∃I . (|st ′ +S z�ct +S x�ct ′|)η[x 7→I ]

= ∃I . (|st |)η[x 7→I ]

Lemma 6.26 (Axiom Correctness). For all e ∈ Env, Γ ∈ PSEnv, ϕ ∈ CmdT,

(P ,Q) ∈ AxJϕKT and η ∈ (X⇀fin I),

e, JΓ Kτ3 `B
{
JPKτ3

}
JϕKτ3

{
JQKτ3

}
As with the previous translation, we will not give proofs for all of the basic

commands in the tree module, but instead give an example (deleteTree) that

illustrates the techniques involved in the proofs.

Axiom Correctness: deleteTree

Recall the specification of the deleteTree command from Figure 5.2.{
α�w [tree(ct)] ∗ σ ∧ EJE Kσ = w

}
deleteTree(E ){

α�∅ ∗ σ
}

To prove that this specification holds under our translation, suppose that e(α) = x

for some x ∈ X. We can also assume that x ∈ dom(η), otherwise the translated

precondition is equivalent to false, and that η(x ) = (l , p) for some choice of l and

p. The predicate tree(ct) tells us that the tree context ct has no context holes, so
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we let e(ct) = t (recall that we use t to denote a tree context with no holes). In

Figure 6.29 and Figure 6.30 we give a proof outline showing that the implementation

of deleteTree (from Figure 6.28) satisfies the translation of its specification.

The proof assumes that the translated specification holds for the recursive calls

to the deleteTree procedure. Note that this requires us to have an upper crust for

the subtree n[t ′] that is being deleted in each iteration of the while loop. We can

extract this upper crust from the predicate dw 7→ p̌,j e ∗ j Z⇒ [ n : l ′′ ] ∗ 〈〈t ′′〉〉(l
′′,w)

η in

a similar fashion to that seen in our proof of the crust inclusion lemma.

This concludes the proof of Theorem 6.22.

6.3.4 Module Translation τ4 : H + H→ H

The last example of a locality-preserving translation that we consider is the natural

implementation of a pair of heap modules H + H with a single heap H that treats

the two heaps as disjoint portions of the same heap. Not only does this example

complete our stepwise refinement of the tree module T, but it also demonstrates an

example that does not result in a surjective abstraction relation and yet is still a

sound locality preserving translation. The abstraction relation is not surjective as

different abstract heaps may map into the same concrete heap.

The axioms of the combined heap module H+H are given in terms of the segment

algebra S(MH ×MH, EN × EN), the composition of two copies of the heap segment

algebra S(MH, EN). The elements of this combined segment algebra are of the form

(x , y)�(ch, ch ′) where (x , y) ∈ X×X and (ch, ch ′) ∈ HAdr,X ×HAdr,X.

Recall that the label set X is countably infinite. This means that we can split the

label set such that X = X1 ] X2 with X1 and X2 both being countably infinite.

Similarly, the set of empty labels EN is also countably infinite and can be split into

two countably infinite subsets EN1 and EN2 .

To convert elements of the double heap model to elements of the single heap model

we simply tag the abstract addresses and combine the two heaps into a single heap.

That is, (x , y)�(ch, ch ′) becomes x1�tag(ch, 1 ) +S y2�tag(ch ′, 2 ) where x1 ∈ XE1 ,

y2 ∈ XE2 and the tag(ch, i) function tags all of the hole labels in the heap context

ch with the subscript i .

In practice, when using the heap module H, we work with just rooted heap cells,

negating our need to track the abstract addresses used in the heap. However, we

give our translation here for the more general heap segment model to illustrate the

technique of collapsing multiple modules into one.
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{
Jα�w [tree(ct)] ∗ n⇀⇁ w Kτ3

}
proc deleteTree(n){{

e(l ,p̌) ∗ 〈〈w [t ]〉〉(l ,p̌)
η ∗ n⇀⇁ w

}
local x, y, z in{

e(l ,p̌) ∗ 〈〈w [t ]〉〉(l ,p̌)
η ∗ n⇀⇁ w ∗ x⇀⇁ − ∗ y⇀⇁ − ∗ z⇀⇁ −

}
{
∃i , j , l1 , l2 , l ′. dp̌ 7→ −̌,̌ie ∗ ǐ Z⇒ [ ľ1 : w : ľ2 ] ∗�v∈l1 :l2 dv̌ 7→ −̌,−̌e
∗ dw 7→ p̌,j e ∗ j Z⇒ [ l ′ ] ∗ 〈〈t〉〉(l

′,w)
η ∗ n⇀⇁ w ∗ x⇀⇁ − ∗ y⇀⇁ − ∗ z⇀⇁ −

}
x := [n.parent] ;
y := [x.children] ;{
∃i , j , l1 , l2 , l ′. dp̌ 7→ −̌,̌ie ∗ ǐ Z⇒ [ ľ1 : w : ľ2 ] ∗�v∈l1 :l2 dv̌ 7→ −̌,−̌e
∗ dw 7→ p̌,j e ∗ j Z⇒ [ l ′ ] ∗ 〈〈t〉〉(l

′,w)
η ∗ n⇀⇁ w ∗ x⇀⇁ p̌ ∗ y⇀⇁ ǐ ∗ z⇀⇁ −

}
remove(y, n) ;{
∃i , j , l1 , l2 , l ′. dp̌ 7→ −̌,̌ie ∗ ǐ Z⇒ [ ľ1 : ľ2 ] ∗�v∈l1 :l2 dv̌ 7→ −̌,−̌e
∗ dw 7→ p̌,j e ∗ j Z⇒ [ l ′ ] ∗ 〈〈t〉〉(l

′,w)
η ∗ n⇀⇁ w ∗ x⇀⇁ p̌ ∗ y⇀⇁ ǐ ∗ z⇀⇁ −

}
y := [n.children] ;{
∃i , j , l1 , l2 , l ′. dp̌ 7→ −̌,̌ie ∗ ǐ Z⇒ [ ľ1 : ľ2 ] ∗�v∈l1 :l2 dv̌ 7→ −̌,−̌e
∗ dw 7→ p̌,j e ∗ j Z⇒ [ l ′ ] ∗ 〈〈t〉〉(l

′,w)
η ∗ n⇀⇁ w ∗ x⇀⇁ p̌ ∗ y⇀⇁ j ∗ z⇀⇁ −

}
z := getHead(y) ;

 ∃i , j , l1 , l2 . dp̌ 7→ −̌,̌ie ∗ ǐ Z⇒ [ ľ1 : ľ2 ] ∗�v∈l1 :l2 dv̌ 7→ −̌,−̌e
∗ ∃l ′, l ′′, k , n, t ′, t ′′. dw 7→ p̌,j e ∗ j Z⇒ [ n : l ′′ ] ∗ dn 7→ w ,ke ∗ k Z⇒ [ l ′ ]

∗ 〈〈t ′〉〉(l
′,n)

η ∗ 〈〈t ′′〉〉(l
′′,w)

η ∗ n⇀⇁ w ∗ x⇀⇁ p̌ ∗ y⇀⇁ j ∗ z⇀⇁ n


∨
(
∃i , j , l1 , l2 . dp̌ 7→ −̌,̌ie ∗ ǐ Z⇒ [ ľ1 : ľ2 ] ∗�v∈l1 :l2 dv̌ 7→ −̌,−̌e
∗ dw 7→ p̌,j e ∗ j Z⇒ [ ε ] ∗ 〈〈∅〉〉(ε,w)

η ∗ n⇀⇁ w ∗ x⇀⇁ p̌ ∗ y⇀⇁ j ∗ z⇀⇁ null

)


while z 6= null do
∃i , j , l1 , l2 . dp̌ 7→ −̌,̌ie ∗ ǐ Z⇒ [ ľ1 : ľ2 ] ∗�v∈l1 :l2 dv̌ 7→ −̌,−̌e
∗ ∃l ′, l ′′, k , n, t ′, t ′′. dw 7→ p̌,j e ∗ j Z⇒ [ n : l ′′ ] ∗ dn 7→ w ,ke ∗ k Z⇒ [ l ′ ]

∗ 〈〈t ′〉〉(l
′,n)

η ∗ 〈〈t ′′〉〉(l
′′,w)

η ∗ n⇀⇁ w ∗ x⇀⇁ p̌ ∗ y⇀⇁ j ∗ z⇀⇁ n


call deleteTree(z) ;

z := getHead(y)

 ∃i , j , l1 , l2 . dp̌ 7→ −̌,̌ie ∗ ǐ Z⇒ [ ľ1 : ľ2 ] ∗�v∈l1 :l2 dv̌ 7→ −̌,−̌e
∗ ∃l ′, l ′′, k , n, t ′, t ′′. dw 7→ p̌,j e ∗ j Z⇒ [ n : l ′′ ] ∗ dn 7→ w ,ke ∗ k Z⇒ [ l ′ ]

∗ 〈〈t ′〉〉(l
′,n)

η ∗ 〈〈t ′′〉〉(l
′′,w)

η ∗ n⇀⇁ w ∗ x⇀⇁ p̌ ∗ y⇀⇁ j ∗ z⇀⇁ n


∨
(
∃i , j , l1 , l2 . dp̌ 7→ −̌,̌ie ∗ ǐ Z⇒ [ ľ1 : ľ2 ] ∗�v∈l1 :l2 dv̌ 7→ −̌,−̌e
∗ dw 7→ p̌,j e ∗ j Z⇒ [ ε ] ∗ 〈〈∅〉〉(ε,w)

η ∗ n⇀⇁ w ∗ x⇀⇁ p̌ ∗ y⇀⇁ j ∗ z⇀⇁ null

)
{

∃i , j , l1 , l2 . dp̌ 7→ −̌,̌ie ∗ ǐ Z⇒ [ ľ1 : ľ2 ] ∗�v∈l1 :l2 dv̌ 7→ −̌,−̌e
∗ dw 7→ p̌,j e ∗ j Z⇒ [ ε ] ∗ n⇀⇁ w ∗ x⇀⇁ p̌ ∗ y⇀⇁ j ∗ z⇀⇁ −

}
...

Figure 6.29: Proof outline for deleteTree implementation in τ3 .
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...{
∃i , j , l1 , l2 . dp̌ 7→ −̌,̌ie ∗ ǐ Z⇒ [ ľ1 : ľ2 ] ∗�v∈l1 :l2 dv̌ 7→ −̌,−̌e
∗ dw 7→ p̌,j e ∗ j Z⇒ [ ε ] ∗ n⇀⇁ w ∗ x⇀⇁ p̌ ∗ y⇀⇁ j ∗ z⇀⇁ −

}
deleteList(y) ;{
∃i , l1 , l2 . dp̌ 7→ −̌,̌ie ∗ ǐ Z⇒ [ ľ1 : ľ2 ] ∗�v∈l1 :l2 dv̌ 7→ −̌,−̌e
∗ dw 7→ p̌,j e ∗ n⇀⇁ w ∗ x⇀⇁ p̌ ∗ y⇀⇁ j ∗ z⇀⇁ −

}
disposeNode(n){
∃i , l1 , l2 . dp̌ 7→ −̌,̌ie ∗ ǐ Z⇒ [ ľ1 : ľ2 ] ∗�v∈l1 :l2 (dv̌ 7→ −̌,−̌e
∗ n⇀⇁ w ∗ x⇀⇁ p̌ ∗ y⇀⇁ j ∗ z⇀⇁ −

}
{
∃i , l1 , l2 . dp̌ 7→ −̌,̌ie ∗ ǐ Z⇒ [ ľ1 : l : ľ2 ] ∗�v∈l1 :l2 dv̌ 7→ −̌,−̌e
∗ ∧(l = ε) ∗ n⇀⇁ w

}
{
e(l ,p̌) ∗ 〈〈∅〉〉(l ,p̌)

η ∗ n⇀⇁ w
}

}{
Jα�∅ ∗ n⇀⇁ w Kτ3

}
Figure 6.30: Proof outline for deleteTree implementation in τ3 continued.

Notation: Let shh, shh1 , shh2 , ... range over the set of double heap segments SH×H.

Definition 6.27 (τ4 : H + H → H). The pre-locality preserving translation τ4 :

H + H→ H is constructed as follows:

� an interface I = (x1 , x2 ) ∈ I describes a pair of labels x1 ∈ XE1 and x2 ∈ XE2 .

Note that labs(I ) = {x1 , x2}.

� the segment representation function (|(·)|)(·) : SH×H× (XH×H ⇀fin I)→ P(SH)

is defined by induction on the structure of double heap segments as:

(|∅|)η def
= ∅

(|(x , y)�(ch, ch ′)|)η def
= x1�tag(ch, 1 ) +S y2�tag(ch ′, 2 ) ∧ η(x , y) = (x1 , y2 )

(|shh1 +S shh2 |)η
def
= (|shh1 |)η +S (|shh2 |)η

(|(x , y)(shh)|)η def
= (x1 )(y2 )((|shh|)η) ∧ η(x , y) = (x1 , y2 )

where the context tagging function tag : HAdr,X × {1 , 2} → HAdr,X is defined

by induction on the structure of multi-holed heap contexts as:

tag(emp, i)
def
= emp

tag(x , i)
def
= xi

tag(a 7→ v , i)
def
= a 7→ v

tag(ch ? ch ′, i)
def
= tag(ch, i) ? tag(ch ′, i)
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� the substitutive representation function is given by replacing the commands

for both heaps with their detagged versions, for example,

Jdispose1 (E , E ′)Kτ4
def
= Jdispose2 (E , E ′)Kτ4

def
= dispose(E , E ′)

The translation τ4 tags the labels in each heap so that they do not clash in the

resulting heap. This simple translation does not need to include any extra crust as

the abstract and concrete levels have the same notion of locality.

Theorem 6.28 (Soundness of τ4 ). The pre-locality-preserving translation τ4 is a

locality-preserving translation.

The proof of this theorem is significantly simpler than in our previous examples

as it includes no crust. Both the combination preservation property and the com-

pression preservation property hold directly from the definition of (|s|)η. The axiom

correctness property holds because the axioms of H + H are directly translated to

those of H with some extra frame.

Notice, however, that this translation does not satisfy the first of our properties

for including the conjunction rule in our theory, since

(|(d1 7→ 0 e, dempe)|)η = {d1 7→ 0 e+S dempe} = (|(dempe, d1 7→ 0 e)|)η .

6.4 Remarks

We have shown how to refine abstract modules in our fine-grained local reasoning

framework. This provides an alternative justification for the soundness of fine-

grained abstract local reasoning with segment algebras. As with previous work,

we have identified two general approaches for proving the correctness of an imple-

mentation with respect to an abstract specification: locality-breaking and locality-

preserving translations. Locality-breaking translations establish a ‘fiction of locality’

by justifying abstract locality, even though this locality is not matched by the imple-

mentation. Locality-preserving translations instead relate the abstract locality of a

module with the low-level locality of its implementation. This is complicated by the

fact that disjoint structures at the high-level are not necessarily still disjoint at the

low-level. Locality-preserving translations thus establish a ‘fiction of disjointness’ at

the abstract level.
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Locality-Breaking vs. Locality-Preserving

Our choice of names may seem to imply that our reasoning techniques are applicable

in distinct cases, but both techniques can in fact be used in all cases.

As an example, consider our implementation of the list module from §6.2.2. We

proved that this implementation was correct by providing a locality-breaking trans-

lation, since some of the basic commands had large low-level footprints that could

act over the whole linked-list. We could equally have chosen to identify elements of

the abstract list with nodes in the concrete linked-list and treated the part of the

list leading up to the node of interest as the concrete interface, or crust.

As another example, consider our implementation of the tree module from §6.3.2.

We proved that this implementation was correct by providing a locality-preserving

translation, since all of the basic commands had low-level footprints that were similar

in size to their abstract footprints. We could instead have chosen to only translate

complete rooted trees and proved each of the basic command’s axioms under all

possible frames.

The main difference between our two approaches is the burden of the proof of a

sound translation. If the concrete data structure is relatively simple and the frames

can all be considered in one form, then the locality-breaking technique tends to offer

an easier correctness proof. If instead the concrete data structure is very complex,

it may introduce a significant increase in the number of cases that would need to

be proven with the locality-breaking approach. In such cases it may be desirable

to use the locality-preserving technique. However, the locality-preserving technique

is definitely the more complex of the two, and it is often non-trivial to work what

model of permissions is needed to establish the ‘fiction of disjointness’. At present

the generation of such permissions models is somewhat ad-hoc. In future it would

be interesting to see if a general permissions model could be found to ease this part

of the proof burden.

Abstract Predicates

Our module translation functions could be viewed as abstract predicates of the

concrete module. That is JPKτ could be viewed as an abstract predicate parametrised

by P . However, viewing the translation function as a completely abstract entity does

not translate abstract local reasoning between modules. We could add axioms to

our translations, such as JPKτ ∨ JQKτ ⇔ JP ∨ QKτ , which would allow the low-

level inference rules to implement their high-level counterparts. However, abstract

predicates do not currently provide a mechanism for exporting meta-theorems, such
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as the soundness of our frame rules. This means there is no way to expose the fact

that if {P}C {Q} then so does {P ∗ R}C {Q ∗ R}. It would be interesting to see

the results of including such a mechanism in the abstract predicate methodology.

Abstraction and Refinement for Concurrency

Extending our results to the concurrent setting is not a trivial matter. In particular,

our locality-preserving technique relies on the stability of assertions made about the

crust. In the sequential case, where there can be no interference from the envi-

ronment, such stability is automatically assured. However, in the concurrent case,

checking that these assertions are indeed stable will require significantly more work.

We will need to introduce some control mechanisms, such as locking or transactions,

that will be able to ensure that threads only interact in desirable ways. By con-

trolling access to the crusts of our translation, we should be able to establish the

stability of assertions about them.
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7 Towards Concurrency

So far we have concentrated on reasoning about sequential programs. In this chapter

we turn our attention to reasoning about concurrent programs.

In a concurrent program there can be a number of threads running at the same

time. Early concurrency was mostly limited to using separate machines to tackle

problems that required an intensive amount of computational power. Nowadays,

even the humble family desktop computer has multiple processors for running day

to day tasks. Concurrent programs mainly operate independently of one another,

however they will occasionally need to interact. When this interaction is useful it

is termed communication, but when the interaction leads to undesirable results it

is instead termed interference. The challenge of concurrent programing is to write

programs that make use of communication without causing interference. However,

concurrent programming is hard and error prone. The main issue lies with the

possible thread interactions being non-deterministic. Standard testing methods will

be able to spot errors in individual threads, but some errors may only show up if,

say, three threads are trying to perform a certain combination of actions. It is easy

to miss cases, even when only working with a small number of threads [52], and

end up with buggy code. For this reason, in practice, a lot of the available parallel

technologies are used to run multiple non-interacting sequential programs. One

of the main aims of the formal verification community is to provide programmers

with the tools they need to be able to correctly create highly interactive concurrent

programs that are bug free.

There are two main methods for communicating between concurrent threads:

channels and shared memory. Channel-based systems interact by sending messages

across channels and reading messages from these channels. Shared memory systems

instead interact by reading from and writing to shared locations in memory. In

terms of formal verification, channel based systems are often reasoned about using

process calculi such as the Pi Calculus [53]. A lot of progress has been made in

reasoning about channel-based concurrency and this system is now reasonably well

understood.

By contrast, shared memory concurrency is much harder to reason about and
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shared memory programming tends to be very error prone. For these reasons the

local reasoning community has chosen to focus a lot of its recent efforts in the di-

rection of shared memory concurrency. Our hope is that providing formal reasoning

for such uses of concurrency will aid in the development of correct programs that

make use of shared memory concurrency.

In chapter 2 we saw some existing work for reasoning about shared memory con-

currency at low-levels of abstraction. We now investigate how to bring these ideas

into our fine-grained abstract reasoning framework from chapter 4.

7.1 Concurrency Terminology

Before we start to extended our fine-grained abstract reasoning framework, we shall

first explain the concurrency terminology we will be using.

A thread is a process in a shared memory system. Some systems have a fixed

number of threads, while other systems are more dynamic and allow threads to be

created at run time. Some languages manage threads in a nested way, allowing

a thread to be split into sub-threads which are joined together once they have all

terminated. Other languages allow a thread to be spawned at any time, executing

them in parallel, possibly collecting their results at some later point. It is common

for each thread to be given a unique identifier to distinguish it from other threads.

Threads are said to be synchronised if they agree on the order in which some events

will happen. This agreement is reached by the threads communicating via primitive

operations provided by the hardware (for example mutual exclusion locks, atomic

reads/writes or CAS). Blocking synchronisation refers to a programming style that

uses mutual exclusion locks to arrange inter-thread synchronisation. When a thread

want to access a shared resource it atomically checks that the resource is not in use

and updates the resource to say it is in use. If the resource is already in use, then the

thread waits (blocks) until the resource becomes available. When a thread finishes

with a resource it updates the resource to say it is no longer in use. This style

of synchronisation actually reduces the parallelism (or potential concurrency) of a

system, so a great deal of care has to be taken to ensure that only relevant parts of

the shared structure are locked in this way. Additionally the use of locking can lead

to a number of other issues, such as deadlock (where threads hold the locks that each

other need access to and so neither can progress) or livelock (where a thread enters

an infinite loop whilst holding the lock on some resource). However, despite all of

this, the use of locking is still very common indeed. Non-blocking synchronisation

refers to a programming style that always achieves progress, even if some threads
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of the system are descheduled or fail. Usually this is achieved through the use of

atomic reads/writes or CAS.

CAS (compare and swap) is a very common non-blocking synchronisation oper-

ation. It takes three arguments: a memory address, an expected value, and a new

value. The operation atomically reads the memory address and checks to see if it

contains the expected value. If it does it updates the memory address with the new

value, otherwise it does nothing.

A race condition occurs when two threads try to access the same shared memory

location at the same time. If reads/writes are not atomic then it is possible that

reading this memory location may result in an inconsistent value and writing to this

memory location my result in a corrupted value. Even if reads/writes are atomic,

we still do not know the order in which the operations are performed, so we cannot

necessarily know the result of running such operations concurrently. In practice, the

main difficulty with concurrent programming is trying to avoid such race conditions.

Note that we choose to regard both concurrent read accesses and concurrent write

accesses as a race condition. This is restrictive and it is common to require at least

one of the accesses to be a write. Boyland introduced fractional permissions [9]

which allow for this refinement. We will discuss this in relation to our work in §7.4.

7.2 Concurrent Segment Logic

The development of segment logic has allowed us to enrich our abstract reasoning

framework with the separating conjunction ∗ which elegantly captures the property

of abstract disjointness. It should now be possible to reason about concurrent update

programs in our reasoning framework. We shall enrich the programming language of

our framework to include several concurrency constructs and extend our reasoning

system to handle these extra constructs.

For this initial work on concurrent segment logic reasoning we concentrate on dis-

joint concurrency and simple sharing via regions. This follows the style of concurrent

separation logic [59], as introduced in chapter 2.

7.2.1 Disjoint Concurrency

Our first step is to look at simple concurrent programs that operate on entirely

disjoint parts of the data structure. The design of these programs is intended to

rule out the possibility of any race conditions occurring.
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Definition 7.1 (Programming Language with Parallel Threads). The programming

language LCmd, from definition 4.1, is extended to the language L′Cmd by adding a

parallel thread construct.

C ::= ... | C || C

At the abstract level the finest grain of operation available to us is that of the basic

commands ϕ ∈ Cmd. We therefore choose to treat each of these basic commands

as an atomic operation. With this in mind, we then treat the semantics of parallel

threads in terms of the possible interleavings of the basic commands in each thread.

We can represent the behaviour of parallel threads in the structural operational

semantics style, where the  relation describes a single program step:

C1 , γ, d , σ  C′1 , γ, d ′, σ′

C1 || C2 , γ, d , σ  C′1 || C2 , γ, d ′, σ′
C2 , γ, d , σ  C′2 , γ, d ′, σ′

C1 || C2 , γ, d , σ  C1 || C′2 , γ, d ′, σ′

C1 , γ, d , σ  skip, γ, d ′, σ′

C1 || C2 , γ, d , σ  C2γ, d ′, σ′
C2 , γ, d , σ  skip, γ, d ′, σ′

C1 || C2 , γ, d , σ  C1γ, d ′, σ′

C1 , γ, d , σ   
C1 || C2 , γ, d , σ   

C2 , γ, d , σ   
C1 || C2 , γ, d , σ   

In §7.3 we will give a treatment of the semantics of parallel composition in terms

of traces. However, this description should be sufficient to gain an intuitive under-

standing of our concurrency model.

Even such a simple addition to our basic programming language allows us to

express a range of concurrent programs. Here we consider a couple of illustrative

examples: in our tree module we look at a program that accesses disjoint resources

and in our heap module we look at a program that uses the divide and conquer style

of programming. Both of these programs link back to our motivating examples for

the development of segment logic at the end of chapter 2.

Example 7.2 (Simple Disjoint Concurrency). In chapter 2 we discussed the pro-

gram delete2Trees, which deleted two disjoint trees, and in chapter 5 we showed

how to reason about this program with segment logic. With our parallel thread con-

struct we can now write a program deletePair that executes the two tree deletions

in parallel, so long as n 6= m:

deletePair(n, m) ::= deleteTree(n) deleteTree(m)

Example 7.3 (Divide and Conquer Concurrency). Disjoint concurrency is by far

the easiest form of concurrency to reason about, and it is not without its uses. Many
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algorithms are designed with the ‘divide and conquer’ style in mind. You start with

a single thread, and this thread divides up the data structure into disjoint parts

and creates sub-threads which run in parallel in these disjoint structures. Such a

programming style ensures race freedom, and can also provide a significant speed-up

for some some operations. One good example of this is the parDeleteTree program,

discussed at the end of chapter 2, which makes use of parallel threads to speed up

the deletion of a binary tree stored at n.

parTreeDelete(n) ::= local l, r in

if n 6= null then

l := n.left ;

r := n.right ;

parTreeDelete(l) parTreeDelete(r)

dispose(n)

The initial part of the program sets up pointers to the left and right child of the

parent node. Two threads are then spawned to handle the deletions of these two

subtrees. Once both threads have completed the main program then deleted the

parent node.

7.2.2 Reasoning About Disjoint Concurrency

We can reason about programs that make use of disjoint concurrency using much the

same techniques as concurrent separation logic [59]. The most important addition

of segment logic to the abstract reasoning setting is the addition of the separating

conjunction ∗. With this operator we can easily divide up the program state into

disjoint portions and express properties about them. Just as in concurrent separa-

tion logic, we extend our notion of a local Hoare triple so that e,Γ � {P}C {Q} also

ensures race freedom of the program C. We then add to our reasoning framework

an inference rule for reasoning about the execution of parallel threads.

Definition 7.4 (Disjoint Concurrency Inference Rules). The Hoare logic rules of

our reasoning system, from definition 4.13, are extended to include the following

inference rule for parallel composition:

Par :
e,Γ ` {P1} C1 {Q1} e,Γ ` {P2} C2 {Q2}

e,Γ ` {P1 ∗ P2} C1 || C2 {Q1 ∗Q2}

Notice that due to our treatment of variables as resource, we do not need to

provide a side-condition for the Par rule. Each resource can only be sent to one side
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of the parallel call, so a variable cannot be used by both threads C1 and C2 . For

example, consider the following program:

x := x + 1 y := x

We can easily provide specifications for each of the threads,{
x⇀⇁ v

} {
y⇀⇁ − ∗ x⇀⇁ v

}
x := x + 1 y := x{
x⇀⇁ v + 1

} {
y⇀⇁ v ∗ x⇀⇁ v

}
However, the preconditions of the two threads are not compatible when joined with

separating conjunction (x ⇀⇁ − ∗ x ⇀⇁ − =⇒ false). We cannot provide a spec-

ification for the overall program because of the race that occurs for access to the

variable x.

If the threads access completely separate sets of program variables, then the spec-

ification for the overall program can be derived as expected. For example, consider

the following small example with its sketch proof:{
x⇀⇁ − ∗ y⇀⇁ −

}
{

x⇀⇁ −
} {

y⇀⇁ −
}

x := 5 y := 7{
x⇀⇁ 5

} {
y⇀⇁ 7

}
{

x⇀⇁ 5 ∗ y⇀⇁ 7
}

The overall precondition requires that x and y denote separate program variables.

The rest of the reasoning then proceeds in a straightforward fashion. Disjoint access

to other shared resources, such as heap cells or tree nodes, can be reasoned about

in a similar fashion.

Recall our simple disjoint concurrency program from example 7.2 which takes the

delete2Trees program from chapter 2 and runs the two tree deletions in parallel.

In chapter 5 we were able to provide the following specification of the delete2Trees

program: {
α�n[tree(ct1 )] ∗ β�m[tree(ct2 )] ∗ n⇀⇁ n ∗ m⇀⇁ m

}
delete2Trees(n, m){

α�∅ ∗ β�∅ ∗ n⇀⇁ n ∗ m⇀⇁ m
}
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The precondition expresses the property that we have pointers n and m to two

subtrees n and m which are completely disjoint. In the postcondition both of the

trees have been disposed. This disjointness property is all that is required to be able

to run the two tree deletions in parallel. So, the deletePair program has the same

specification as the delete2Trees program. We can construct the proof outline

that demonstrates this as follows:{
α�n[tree(ct1 )] ∗ β�m[tree(ct2 )] ∗ n⇀⇁ n ∗ m⇀⇁ m

}
{
α�n[tree(ct1 )] ∗ n⇀⇁ n

} {
β�m[tree(ct2 )] ∗ m⇀⇁ m

}
deleteTree(n) deleteTree(m){
α�∅ ∗ n⇀⇁ n

} {
β�∅ ∗ m⇀⇁ m

}
{
α�∅ ∗ β�∅ ∗ n⇀⇁ n ∗ m⇀⇁ m

}

The Par rule also provides enough extra technology for us to reason about our

’divide and conquer’ program from example 7.3 in a very similar style to that of

concurrent separation logic. In order to specify the program we need to provide an

abstract predicate that describes a binary tree in the heap. We define the binTree

predicate as follows:

binTree(n)
def
= emp ∧ (n = null)

∨ ∃x , y . dn 7→ x ,ye ∗ binTree(x ) ∗ binTree(y)

This predicate only describes the branch structure of a binary tree, but it would be

quite simple to extend the tree with some data stored at each node. However, if

we wanted to generalise our program and its specification to handle arbitrary n-ary

trees, we would be better off using our tree module. Whilst we could provide an

abstract predicate that takes a tree formula, or context formula, as a parameter,

this would effectively just be encoding our tree module into the heap module. As

we have already seen in chapter 6 such an encoding is not straight-forward and is

also implementation dependent.

The binTree predicate is sufficient to describe the behaviour of our parTreeDelete

program with the following specification:{
binTree(n) ∗ n⇀⇁ n

}
parDeleteTree(n){

n⇀⇁ n
}
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We can show that this specification holds with a simple inductive proof. In the case

where the input parameter n = null the binTree(n) predicate is equal to emp, so the

if test fails and the program does nothing more. This establishes that the base case

of the induction holds. To prove the inductive step, we assume that the recursive

calls to parDeleteTree satisfy the specification we are trying to prove. We can then

complete the proof with the following derivation:{
binTree(n) ∗ n⇀⇁ n

}
local l, r in{

binTree(n) ∗ n⇀⇁ n ∗ l⇀⇁ − ∗ r⇀⇁ −
}

{
emp ∧ (n = null) ∨ ∃x , y . dn 7→ x ,ye ∗ binTree(x ) ∗ binTree(y)

∗ n⇀⇁ n ∗ l⇀⇁ − ∗ r⇀⇁ −

}
if n 6= null then{

∃x , y . dn 7→ x ,ye ∗ binTree(x ) ∗ binTree(y) ∗ n⇀⇁ n ∗ l⇀⇁ − ∗ r⇀⇁ −
}

l := n.left ;{
∃x , y . dn 7→ x ,ye ∗ binTree(x ) ∗ binTree(y) ∗ n⇀⇁ n ∗ l⇀⇁ x ∗ r⇀⇁ −

}
r := n.right ;{
∃x , y . dn 7→ x ,ye ∗ binTree(x ) ∗ binTree(y) ∗ n⇀⇁ n ∗ l⇀⇁ x ∗ r⇀⇁ y

}{
binTree(x ) ∗ l⇀⇁ x

} {
binTree(y) ∗ r⇀⇁ y

}
parTreeDelete(l) parTreeDelete(r){

l⇀⇁ x
} {

r⇀⇁ y
}{

∃x , y . dn 7→ x ,ye ∗ n⇀⇁ n ∗ l⇀⇁ x ∗ r⇀⇁ y
}

dispose(n){
∃x , y . n⇀⇁ n ∗ l⇀⇁ x ∗ r⇀⇁ y

}
{

n⇀⇁ n ∗ l⇀⇁ − ∗ r⇀⇁ −
}

{
n⇀⇁ n

}
Note when we pass resource to the parallel threads we are also choosing to frame

off dn 7→ x ,ye and n ⇀⇁ n since neither of the threads requires these resources. We

frame these resources back on when the parallel threads pass their resources back

to the main thread. Many other divide and conquer style concurrent programs can

be proven in a similar way with our reasoning system.
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7.2.3 Shared Resource Concurrency

Disjoint concurrency, by design, assures that there will be no race conditions in a

program. However, in practice many programs will want to share access to some

data structure during their execution. In such cases we have to take more care to

ensure that there are no race conditions. One common approach is to define shared

resources and restrict access to these resources to be with mutual exclusion. That

is, each resource may only be used by at most one thread at a time. We follow the

style of O’Hearn [59] and use conditional critical regions.

Definition 7.5 (Programming Language with Resources). The programming lan-

guage L′Cmd from definition 7.5 is further extended to the language L′′Cmd by adding

resource declarations and conditional critical region statements.

C ::= ... | res r in C | with r when B do C

Resource declarations create a new region of mutual exclusion, called a critical

region, and the with statements control access to these critical regions. Only one

thread at a time may be inside a critical region for each resource r. In addition, we

also require that a boolean expression B evaluates to true before a thread is allowed

to access a critical region. If the expression does not evaluate to true then that thread

must wait until such a time as the expression does evaluate to true. Threads which

cannot enter a critical region, either due to mutual exclusion or a failed test, must

busy-wait and try to access the region again later. We do not always need to provide

a boolean condition to control entrance a critical region, that we are accessing the

region with mutual exclusion can sometimes be enough to guarantee race freedom.

In such cases we write with r do C to mean with r when true do C.

We can give the operational semantics of these new program statements in the

small-step style as above. First, we need to extend the program state γ, d , σ to

include a lock environment ρ : Locks→ {free, busy} that tracks when a resource is

259



free or in use. The small-step style semantics can then be given as:

r 6∈ dom(ρ)

res r in C, ρ, γ, d , σ  C, ρ[r→ free], γ, d , σ

r ∈ dom(ρ)

res r in C, ρ, γ, d , σ   

ρ(r) = free and BJB Kσ = true

with r when B do C, ρ, γ, d , σ  C ; unlock r, ρ[r→ busy], γ, d , σ

ρ(r) = busy or BJB Kσ = false

with r when B do C, ρ, γ, d , σ  with r when B do C, ρ, γ, d , σ

r 6∈ ρ
with r when B do C, ρ, γ, d , σ   

unlock r, ρ, γ, d , σ  skip, ρ[r→ free], γ, d , σ

The res block creates a new lock for controlling access to the resource. Each with

block then acquires the lock, runs some commands and releases the lock. If the lock

is already owned by another thread then the thread blocks until the lock is released

by that thread.

In §7.3 we will give a treatment of the semantics of resource declaration and

conditional critical regions in terms of traces. However, this description should be

sufficient to understand our upcoming examples.

Extending our programming language with this more powerful form of concur-

rency lets us express several more common programming patterns. We consider two

more example programs: one that controls read access to some shared tree node and

one that uses the producer/consumer style of programming.

Example 7.6 (Shared Node Reading). As a simple example of how we can share

resources between threads consider the siblicide program given below:

siblicide(n) ::= local l, r in

res c in

with c do

l := getLeft(n)

deleteTree(l)

with c do

r := getRight(n)

deleteTree(r)

This program runs two threads which read a value from a shared node n under
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mutual exclusion and then delete the corresponding subtree. Recall that in our

setting read sharing is disallowed, so it is necessary for the threads to syncronise on

the resource c. As we have seen before, the disjointness of the two subtrees to be

deleted is guaranteed by the data structure. Notice that the program does not need

conditions on the critical regions in the two threads. This is because neither thread

modifies the shared state and so the order in which the threads access the shared

state is not important.

Example 7.7 (Producer/Consumer Pattern). One common example of shared re-

source concurrency is that of the producer/consumer pattern. In this pattern some

number of threads operate on some shared structure, such as a buffer, with some

threads producing data and putting it into the shared structure and some threads

taking data out of the shared structure and consuming it. We consider a program

prodCons here, with just two threads, where one thread creates nodes and inserts

them as children under some shared nodes and the other thread takes children out of

the shared node and then deletes them. In practice it is likely that the second thread

will actually make some use of the data it is extracting, but deletion is sufficient to

establish the pattern we are interested in.

prodCons(p, n, m) ::=

local c, x, y in

c := 0 ;

res r in

while true do

//makedata

newNodeAfter(p) ;

x := getRight(p) ;

with r do

appendChild(n, x) ;

c := c + 1

while true do

with r when (c > 0 ) do

y := getFirst(n) ;

appendChild(m, y) ;

c := c− 1

//usedata

deleteTree(y)

The left-hand thread repeatedly creates a new node to the right of node p, which

is representative of producing some data. It then tries to access the shared region

and when it gets access it appends the new node to the children under the shared

store node n and increments the counter c. The right-hand thread repeatedly tries

to access the shared node when it has at least one child (c > 0 ). When it get access

it removes the first node under n, placing it under its local node m, and decrements

the counter c. It then locally (outside of the critical region) deletes this node, which
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is representative of consuming the data. Notice that whilst the right-hand thread

may only access the critical region when there is at least one node beneath n, the

left-hand thread is unrestricted as to when it may try and access the critical region.

However, because the created data is always put onto the end of the list of children

under n and the removed data is always taken off of the front of the list of children

under n, the order of data is preserved when passed through the shared state. Also

notice that there is some intuitive resource transfer taking place in this program.

The new nodes that are created are initially owned by the left-hand thread, but once

they have been read out of the shared store they are then owned by the right-hand

thread. We will see that this resource transfer is key in establishing the correctness

of the program.

7.2.4 Reasoning About Shared Resource Concurrency

Just as with disjoint concurrency, we can use similar techniques to concurrent sepa-

ration logic to reason about shared resource concurrency in segment logic. In order

to work with shared resources we need to be able to provide resource invariants

for these resources. In concurrent separation logic resource invariants describe the

potential structure of some part of the heap. However, for concurrent segment logic

we need more than this, we also need to know how the shared state links up with

the rest of our data structure. For this reason our resource invariants must also

contain a set of labels that link the resource with the rest of the data structure. We

will bind these labels with the hidden label quantification H when a thread enters a

critical region and acquires access to a resource.

Definition 7.8 (Resource Environment). A resource environment ∆ ∈ REnv is a

finite partial function ∆ : Locks⇀fin P(X )×Pred mapping resource/lock names

r to pairs consisting of a set of labels Π ∈ P(X ) and a precise predicate RI ∈ Pred.

Recall that a segment logic predicate P is precise if, for every e ∈ Env, (s , σ) ∈
State, there is at most one (s ′, σ′) ∈ State such that (s ′, σ′) ∈ PJPKe with

s = (x̄ )(s0 +S s ′) and σ = σ0 ] σ′ for some x̄ ∈ Pfin(X ), s0 ∈ S and σ0 ∈ Σ . We

require that our resource invariants RI are precise. This ensures that the state that

is passed into a resource is the same as the state that is later extracted from that

resource. Without this constraint, we would not be able to prove the soundness of

our Res or CCR rules.

We can now define our inference rules that deal with our new programing con-

structs for shared resource reasoning.
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Definition 7.9 (Shared Resource Concurrency Inference Rules). The Hoare logic

rules of our reasoning system, from definitions 4.13 and 7.4, are extended to include

the following inference rules for resource declarations and conditional critical regions:

Res :
e,Γ ,∆ : (r→ Π ,RI ) ` {P}C {Q}

e,Γ ,∆ ` {HΠ . (P ∗ RI )} res r in C {HΠ . (Q ∗ RI )}

CCR :
e,Γ ,∆ ` {HΠ ′. (P ∗ RI ) ∧ B } C {HΠ ′. (Q ∗ RI )} Π ′ = Π ∩ free(P)

e,Γ ,∆ : (r→ Π ,RI ) ` {P} with r when B do C {Q}

The existing inference rules do not interact with the resource environment ∆. We

therefore treat rules that do not mention the resource environment as preserving it.

The resource declaration rule Res identifies some portion of the program state,

described by RI and linked to the rest of the state by labels Π . It then passes own-

ership of the resource and the revelation of the labels to the shared resource r. The

conditional critical regions rule CCR passes this ownership back to a thread when

it successfully enters a critical region for r. Notice, however, that the thread only

uses the labels that it shares with the resource (Π ′). This ensures that the compres-

sion of the shared resource with the current thread’s resource is well defined. The

CCR rules also requires that the thread is able to reestablish the resource invariant

and pass ownership of it back to the resource. If the thread cannot reestablish the

resource invariant, then other threads might be able to access the resource in an

unexpected state and the safety of their operation could not be guaranteed. Main-

taining the resource invariant ensures that each thread accesses the shared resource

in a consistent way.

Resource invariants can take many different forms, depending on the behaviour of

the programs that share access to the resource. The simplest example of a resource

invariant is a formula that describes a constant piece of state. This means that

while many threads may access the shared state, none of them actually make any

lasting modifications to it. To see an example of this in action, we return to our

shared node reading program siblicide from Example 7.6. We wish to show that

the siblicide program satisfies the following specification:{
α�p[tree(ct)]⊗ n[β]⊗ q [tree(ct ′)] ∗ n⇀⇁ n

}
siblicide(n){
α�n[β] ∗ n⇀⇁ n

}
Since the program makes use of a resource declaration and shared access via critical
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regions to this resource, we require a resource invariant for r. We choose to use the

following label set and formula:

Π
def
= {γ, δ}

RI
def
= α�γ ⊗ n[β]⊗ δ ∗ n⇀⇁ n

Notice that the invariant RI describes a fixed piece of state containing just a single

node n, with its surrounding labels, and the variable n which maps to node identifier

n. With this invariant we can then prove the specification of the program as shown

by the proof sketch given in Figure 7.1.

This example illustrates the need for the resource invariant to contain a set of

labels Π as well as a formula RI . One might think that it is enough to simply join

the resource’s state with the threads state when it enters a CCR. However, this does

not correctly account for the necessary compression of the segments that is often

required to be able to reason about the code within the CCR. Consider the left hand

thread in Figure 7.1. If we did not have the labels included in the resource invariant,

then on entry to the CCR we would have the following formula:

α�γ ⊗ n[β]⊗ δ ∗ γ�p[tree(ct)] ∗ n⇀⇁ n ∗ l⇀⇁ −

Notice that this is not enough to satisfy the precondition of the l := getLeft(n)

command which requires more information about the relation between nodes p and

q (namely that p is the left sibling of n):

α�p[tree(ct)]⊗ n[β]⊗ δ ∗ n⇀⇁ n ∗ l⇀⇁ −

We need to be able to compress the segments in order for our precondition to

be in the correct form to use the axiom for getLeft. We use the hidden label

quantification, which includes the use of revelation, to ensure the correct compression

of the segments. It is important that we use hidden label quantification, and not

just revelation, so that we can re-establish our resource invariant.

Also notice that the compression within each thread’s use of the CCR rule is only

performed over those labels that are shared between the thread’s resource and the

shared resource. This ensures that the result of the compression is a well defined

segment. In order to establish the choice of Π ′ for each thread in our proof, notice
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{
α�p[tree(ct)]⊗ n[β]⊗ q [tree(ct ′)] ∗ n⇀⇁ n

}
local l, r in{

α�p[tree(ct)]⊗ n[β]⊗ q [tree(ct ′)] ∗ n⇀⇁ n ∗ l⇀⇁ − ∗ r⇀⇁ −
}{

Hγ, δ. (α�γ ⊗ n[β]⊗ δ ∗ γ�p[tree(ct)] ∗ δ�q [tree(ct ′)])
∗ n⇀⇁ n ∗ l⇀⇁ − ∗ r⇀⇁ −

}
res c in{

γ�p[tree(ct)] ∗ δ�q [tree(ct ′)] ∗ l⇀⇁ − ∗ r⇀⇁ −
}{

γ�p[tree(ct)] ∗ l⇀⇁ −
}

with c do Hγ.

(
α�γ ⊗ n[β]⊗ δ
∗ γ�p[tree(ct)]

)
∗ n⇀⇁ n ∗ l⇀⇁ −

{
α�p[tree(ct)]⊗ n[β]⊗ δ
∗ n⇀⇁ n ∗ l⇀⇁ −

}
l := getLeft(n){
α�p[tree(ct)]⊗ n[β]⊗ δ
∗ n⇀⇁ n ∗ l⇀⇁ p

}
 Hγ.

(
α�γ ⊗ n[β]⊗ δ
∗ γ�p[tree(ct)]

)
∗ n⇀⇁ n ∗ l⇀⇁ p

{
γ�p[tree(ct)] ∗ l⇀⇁ p

}
deleteTree(l){
γ�∅ ∗ l⇀⇁ p

}

{
δ�q [tree(ct ′)] ∗ r⇀⇁ −

}
with c do Hδ.

(
α�γ ⊗ n[β]⊗ δ
∗ δ�q [tree(ct ′)]

)
∗ n⇀⇁ n ∗ r⇀⇁ −

{
α�γ ⊗ n[β]⊗ q [tree(ct ′)]
∗ n⇀⇁ n ∗ r⇀⇁ −

}
r := getRight(n){
α�γ ⊗ n[β]⊗ q [tree(ct ′)]
∗ n⇀⇁ n ∗ r⇀⇁ q

}
 Hδ.

(
α�γ ⊗ n[β]⊗ δ
∗ δ�q [tree(ct ′)]

)
∗ n⇀⇁ n ∗ r⇀⇁ q

{
δ�q [tree(ct ′)] ∗ r⇀⇁ q

}
deleteTree(r){
δ�∅ ∗ r⇀⇁ q

}{
γ�∅ ∗ δ�∅ ∗ l⇀⇁ p ∗ r⇀⇁ q

}{
Hγ, δ. (α�γ ⊗ n[β]⊗ δ ∗ γ�∅ ∗ δ�∅) ∗ n⇀⇁ n ∗ l⇀⇁ p ∗ r⇀⇁ q

}{
α�∅⊗ n[β]⊗∅ ∗ n⇀⇁ n ∗ l⇀⇁ p ∗ r⇀⇁ q

}{
α�n[β] ∗ n⇀⇁ n

}
Figure 7.1: Proof sketch for the siblicide program.
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that the free variables of the relevant predicates are:

free(γ�p[tree(ct)] ∗ l⇀⇁ −) = {γ, p, ct}
free(δ�q [tree(ct ′)] ∗ r⇀⇁ −) = {δ, q , ct ′}

In the last example the shared state was not modified by the threads that access

it. However, our reasoning can also handle programs that do make modifications

to the shared state. As an example of this we return to our producer/consumer

program prodCond from Example 7.7. Notice that due to the use of the while

true loops this program will never terminate, so its post-condition will be false.

Whilst we cannot give the overall program a meaningful specification, we can still

prove that the loops themselves are fault free. As with the previous example, we

need to choose a resource invariant for resource r so we choose to use the following

label set and formula:

Π
def
= ∅

RI
def
= ∃t , c. β�n[tree(t)] ∗ n⇀⇁ n ∗ c⇀⇁ c ∧ len(t) = c

where the function len : TId,X → N ∪ {undefined} is defined by induction on the

structure of multi-holed tree contexts as:

len(∅)
def
= 0

len(x )
def
= undefined

len(n[ct ])
def
= 1

len(ct1 ⊗ ct2 )
def
= len(ct1 ) + len(ct2 )

In this example the label set Π is empty and the invariant RI describes a complete

tree with root n, pointed to by variable n, and a variable c, where c contains the

number of children beneath n.

With this invariant we can then give the proof sketch shown in Figure 7.2. Notice

that because the tree t beneath node n is always complete we know that len(t) will

always be well-defined.

7.3 Soundness of Concurrent Segment Logic

We wish to show that the inference rules that we have added to our framework

to deal with concurrency are sound. In chapter 4 we proved soundness for our

sequential reasoning framework with respect to a big-step operational semantics.
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{
α�p[δ] ∗ β�n[∅] ∗ γ�m[ε] ∗ p⇀⇁ p ∗ n⇀⇁ n ∗ m⇀⇁ m

}
local c, x, y in{
α�p[δ] ∗ β�n[∅] ∗ γ�m[ε] ∗ p⇀⇁ p ∗ n⇀⇁ n ∗ m⇀⇁ m ∗ c⇀⇁ null ∗ x⇀⇁ null ∗ y⇀⇁ null

}
c := 0 ;{
α�p[δ] ∗ β�n[∅] ∗ γ�m[ε] ∗ p⇀⇁ p ∗ n⇀⇁ n ∗ m⇀⇁ m ∗ c⇀⇁ 0 ∗ x⇀⇁ null ∗ y⇀⇁ null

}
res r in{

α�p[δ] ∗ γ�m[ε] ∗ p⇀⇁ p ∗ m⇀⇁ m ∗ x⇀⇁ null ∗ y⇀⇁ null
}{

α�p[δ] ∗ p⇀⇁ p ∗ x⇀⇁ −
}

while true do{
α�p[δ] ∗ p⇀⇁ p ∗ x⇀⇁ −

}
//makedata
newNodeAfter(p) ;{
∃x . α�p[δ]⊗ x [∅] ∗ p⇀⇁ p ∗ x⇀⇁ −

}
x := getRight(p) ;{
∃x . α�p[δ]⊗ x [∅] ∗ p⇀⇁ p ∗ x⇀⇁ x

}
with r do

∃t , c, x . α�p[δ]⊗ x [∅]
∗ β�n[tree(t)]
∗ p⇀⇁ p ∗ x⇀⇁ x
∗ n⇀⇁ n ∗ c⇀⇁ c
∧ len(t) = c


appendChild(n, x) ;
∃t , c, x . α�p[δ]
∗ β�n[tree(t)⊗ x [∅]]
∗ p⇀⇁ p ∗ x⇀⇁ x
∗ n⇀⇁ n ∗ c⇀⇁ c
∧ len(t) = c


c := c + 1
∃t , c, x . α�p[δ]
∗ β�n[tree(t)⊗ x [∅]]
∗ p⇀⇁ p ∗ x⇀⇁ x
∗ n⇀⇁ n ∗ c⇀⇁ c + 1
∧ len(t) = c


∃t , c, x . α�p[δ]
∗ β�n[tree(t)]
∗ p⇀⇁ p ∗ x⇀⇁ x
∗ n⇀⇁ n ∗ c⇀⇁ c
∧ len(t) = c

{
∃x . α�p[δ] ∗ p⇀⇁ p ∗ x⇀⇁ x

}{
α�p[δ] ∗ p⇀⇁ p ∗ x⇀⇁ −

}{
false

}

{
γ�m[ε] ∗ m⇀⇁ m ∗ y⇀⇁ −

}
while true do{

γ�m[ε] ∗ m⇀⇁ m ∗ y⇀⇁ −
}

with r when (c > 0 ) do
∃t , c. γ�m[ε]
∗ β�n[tree(t)]
∗ m⇀⇁ m ∗ y⇀⇁ −
∗ n⇀⇁ n ∗ c⇀⇁ c
∧ len(t) = c ∧ c > 0


y := getFirst(n) ;
∃a, t ′, t ′′, c. γ�m[ε]
∗ β�n[tree(a[t ′])⊗ tree(t ′′)]
∗ m⇀⇁ m ∗ y⇀⇁ a
∗ n⇀⇁ n ∗ c⇀⇁ c
∧ len(t ′′) = c − 1


appendChild(m, y) ;
∃a, t ′, t ′′, c. γ�m[ε⊗ tree(a[t ′])]
∗ β�n[tree(t ′′)]
∗ m⇀⇁ m ∗ y⇀⇁ a
∗ n⇀⇁ n ∗ c⇀⇁ c
∧ len(t ′′) = c − 1


c := c− 1
∃a, t ′, t ′′, c. γ�m[ε⊗ tree(a[t ′])]
∗ β�n[tree(t ′′)]
∗ m⇀⇁ m ∗ y⇀⇁ a
∗ n⇀⇁ n ∗ c⇀⇁ c − 1
∧ len(t ′′) = c − 1

{
∃a, t ′. γ�m[ε⊗ tree(a[t ′])]
∗ m⇀⇁ m ∗ y⇀⇁ a

}
//usedata
deleteTree(y){
∃a. γ�m[ε] ∗ m⇀⇁ m ∗ y⇀⇁ a

}{
γ�m[ε] ∗ m⇀⇁ m ∗ y⇀⇁ −

}{
false

}
{

false
}

Figure 7.2: Proof sketch for the prodCons program.
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However, there is no elegant way of representing concurrency, in particular parallel

threads, in the big-step semantics style.

We have given semantics, in the small-step style, as we introduced each of our

concurrency constructs. We could prove a soundness result in terms of these seman-

tics. However, the soundness result for concurrent separation logic in this style by

Brookes [10] is very complex. A much simpler proof of the same result was presented

in work on abstract separation logic [17][18]. Here the semantics of the concurrency

constructs were given in terms of traces.

We choose to follow the same technique, and work with a simplified programming

language that concentrates on the concurrency constructs we have added. Since our

sequential rules remain unaffected by our concurrency additions, their soundness

still holds from our result in chapter 4.

Much of our setup in this section is very similar to the original abstract separation

logic work it is based on. The main difference is the need to handle a logical

environment and compression as we are now working with segments.

The programs of our simplified programming language are constructed as follows:

C ::= ϕ | skip | C ; C | C + C | C∗ | C||C | res r in C | with r do C

where ϕ ∈ Cmd, ; is sequential composition, + is non-deterministic choice and (·)∗

is Kleene-star (iterated ;). We use + and (·)∗ instead of conditionals and while

loops and omit the test on a with region to avoid explicitly considering boolean

conditions. We also drop our program constructs for procedures and local variables.

These choices all simplify our proof and allow us to concentrate on the soundness

of the rules for our new concurrency constructs. It is not too difficult to extend the

results presented here to our full programming language.

We take the state of a program to be given by a pair (s , σ) consisting of a segment

s ∈ SC from the segment algebra S(M, E) = (SC, fa, fh,#,+S, comp), as defined in

Definition 3.57, and a variable store σ ∈ Σ as defined in Definition 4.2. That

is, State = S(M, E) × Σ as in our axiomatic semantics given in chapter 4. As

before, we also evaluate predicates to elements of the powerset P(State). For ease

of notation, we lift operations on programs states to powersets of program states.

That is, for p, q ∈ P(State),

p +S q
def
= {(s1 +S s2 , σ1 ] σ2 ) | (s1 , σ1 ) ∈ p and (s2 , σ2 ) ∈ q}

(x )(p)
def
= {((x )(s), σ) | (s , σ) ∈ p}

Following the style of the abstract separation logic work, we extend the pow-
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erset P(State) with a new fault element > to enable us to model the semantics

of programs as functions. Conceptually, we treat faulting as an inconsistent, or

overdetermined value.

Definition 7.10 (States with Faults). The powerset of program states including

fault, P(State)>, is obtained by adding a new greatest element > to P(State)

such that for all p ∈ P(State), p +> = > = >+ p and for all x ∈ X , (x )(>) = >

In our trace semantics we treat programs as functions f : State→ P(State)>.

Definition 7.11 (Semantic Hoare Triple). If p, q ∈ P(State) and f : State →
P(State)> then

{p} f {q} holds ⇔ for all (s , σ) ∈ p. f (s , σ) ⊆ q .

Note that this is a fault-avoiding interpretation as the postcondition q does not

include the > element. We can then describe what it means for a function f to be

a local action.

Definition 7.12 (Local Action). A local action f : State → P(State)> is a

function satisfying the following locality condition: For any two disjoint program

states (s1 , σ1 ), (s2 , σ2 ) ∈ State and x̄ ⊆ X ,

f ((x̄ )(s1 +S s2 ), σ1 ] σ2 ) ⊆ (x̄ )(f (s1 , σ1 ) +S {(s2 , σ2 )}).

The set of local actions is denoted Lact.

Notice that if (s1 , σ1 ) has insufficient resource to run the function f then f (s1 , σ1 ) =

>.

Given any precondition p and postcondition q , we can define the best, or largest,

local action satisfying the triple {p} − {q}.

Definition 7.13 (Best Local Action). The best local action bla[p, q ] is the function

of type State→ P(State) defined by,

bla[p, q ](s , σ) =

{
(x̄ )(q +S {(s2 , σ2 )})

∣∣∣∣∣ s = (x̄ )(s1 +S s2 ) and σ = σ1 ] σ2

and (s1 , σ1 ) ∈ p

}

This definition of a best local action is analogous to that of abstract separation

logic [17], except that our notion of frame also includes compression.
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7.3.1 Syntactic Trace Model

We define an interleaving semantics based on action traces. This is a completely

syntactic model that resolves all of the occurrences of concurrency. To provide a

semantics for the behaviour of our programs, we give an execution model the runs

a trace on a given state. Each trace will be made up from the basic commands of

our module, along with two additional lock and unlock operations, used to model

entry to and exit from critical regions, and a race check operation check that will

be used to convert potential races into faults when a trace is executed. In order to

define our trace semantics we require the notion of an atomic action.

Definition 7.14 (Atomic Action). An atomic action a ∈ A is either a basic com-

mand ϕ, skip, a race check, a lock command, or an unlock command:

a ::= ϕ | skip | check(ϕ, ϕ) | lock(r) | unlock(r)

Notation: we refer to the lock(r) and unlock(r) commands (for a particular r)

as r-actions.

Definition 7.15 (Trace). A trace τ is a sequence of atomic actions:

τ ::= ε | a | τ ; τ

where ε is the empty trace, a is an atomic action and ; is sequential composition.

Notation: we write τ − r for the trace obtained by removing all r-actions from τ

and τ|r for the trace obtained by removing all non r-actions from τ .

Definition 7.16 (Synchronised Trace). A trace is r-synchronised if τ|r is an element

of the regular language (lock(r) ; unlock(r))∗.

We now define how to generate a set of traces for a program written in our

language.

Definition 7.17 (Trace Semantics). The set of traces of a program C, denoted
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T (C), is defined as follows:

T (ϕ)
def
= {ϕ}

T (skip)
def
= {skip}

T (C1 ; C2 )
def
= {τ1 ; τ2 | τ1 ∈ T (C1 ) and τ2 ∈ T (C2 )}

T (C1 + C2 )
def
= T (C1 ) ∪ T (C2 )

T (C∗) def
= (T (C))∗

T (C1 ||C2 )
def
= {zip(τ1 , τ2 ) | τ1 ∈ T (C1 ) and τ2 ∈ T (C2 )}

T (res r in C)
def
= {(unlock(r) ; τ ; lock(r))− r | τ ∈ T (C) is r-synchronised}

T (with r do C)
def
= {lock(r) ; τ ; unlock(r) | τ ∈ T (C)}

where zip(τ1 , τ2 ) and its auxiliary zip′(τ1 , τ2 ) are defined as:

zip(ε, τ)
def
= τ

zip(τ, ε)
def
= τ

zip(ϕ1 ; τ1 , ϕ2 ; τ2 )
def
= check(ϕ1 , ϕ2 ) ; zip′(ϕ1 ; τ1 , ϕ2 ; τ2 )

zip(com ; τ1 , τ2 )
def
= zip′(com ; τ1 , τ2 )

zip(τ1 , com ; τ2 )
def
= zip′(τ1 , com ; τ2 )

zip′(ε, τ)
def
= τ

zip′(τ, ε)
def
= τ

zip′(a1 ; τ1 , a2 ; τ2 )
def
= (a1 ; zip(τ1 , a2 ; τ2 )) ∪ (a2 ; zip(a1 ; τ1 , τ2 ))

and where com ::= skip | lock(r) | unlock(r).

Most of the trace semantics should be unsurprising. The semantics of res r in C
starts with an unlock(r) and ends with a lock(r) to model the idea that when

we declare a lock we pass some state into the resource that r holds, and when we

destroy the lock we release this resource. The semantics of with r do C just inserts

lock (r) and unlock (r) commands before and after C. The traces of C1 ||C2 are

interleavings of each thread, except that whenever any two primitive actions may try

to execute at the same time we insert a race check. Note that races are not detected

at this stage, but they will be detected by the evaluation of check statements when

we execute the traces.

From this point we choose to concentrate on r-synchronised traces as these capture

all of the possible traces generated by well behaved programs. Any lock will have

a matching unlock in the trace due to the way these actions are generated from the

with regions from our programming language. r-synchronised traces do not capture
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nested regions for the same resource r, however, in such a case the inner region could

never be executed, so the corresponding program would be non-terminating.

7.3.2 Executing Traces

An individual trace is just a sequence of simple commands. We describe the be-

haviour of a trace in terms of a denotational semantics.

Assume we have a valuation v : Cmd→ Lact that maps the basic commands to

local actions which express their behaviour. Also assume that for all basic commands

ϕ ∈ Cmd, v(ϕ) satisfies all of the axioms in the set AxJϕK. That is, for all e ∈ Env

and (P ,Q) ∈ AxJϕK, we have {PJPKe} v(ϕ) {PJQKe}.

Definition 7.18 (Trace Execution). The denotational semantics of trace execution

is given as follows:

JϕKv , e,∆ def
= v(ϕ)

JskipKv , e,∆, (s , σ)
def
= {(s , σ)}

Jcheck(ϕ1 , ϕ2 )Kv , e,∆ def
= raceChk(v(ϕ1 ), v(ϕ2 ))

Jlock(r)Kv , e,∆ def
=

∨
P bla[PJPKe,PJ∆(r) ◦ PKe]

Junlock(r)Kv , e,∆ def
=

∨
P bla[PJ∆(r) ◦ PKe,PJPKe]

Jτ1 ; τ2 Kv , e,∆
def
= (Jτ1 Kv , e,∆) • (Jτ2 Kv , e,∆)

where the composition operation f • g functionally composes f with the obvious

lifting g↑: P(State)> → P(State)>, the resource composition ∆(r) ◦ P is defined

as:

∆(r) ◦ P
def
=

{
HΠ ′. (P ∗ RI ) if ∆(r) = (Π ,RI ) and Π ′ = Π ∩ free(P)

undefined otherwise

and the race check function raceChk(f , g) is defined as:

raceChk(f , g)(s , σ)
def
=


{(s , σ)} if ∃x̄ , s1 , s2 , σ1 , σ2 .

s = (x̄ )(s1 +S s2 ) and σ = σ1 ] σ2

and f (s1 , σ1 ) 6= > and g(s2 , σ2 ) 6= >
> otherwise

The local action raceChk(f , g) faults if there is no partition of the program state

into disjoint components which are sufficient to run f and g without faulting. If

there is sufficient state for both actions to run disjointly then raceChk(f , g) simply

returns the input state. The race check function is used to convert races into faults.
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7.3.3 Soundness

Having set up our trace semantics we can now turn to proving the soundness of our

concurrency reasoning rules. First we need to define what it means to relate our

axiomatic reasoning system to our trace model.

Definition 7.19 (Semantic Consequence Relation). Given a set of traces S , we

define the semantics JSKv , e,∆ def
=
∨
τ∈SJτKv , e,∆. We then write

e,∆ � {P}C {Q}

to mean that for all valuations v that satisfy the axioms of our basic commands,

{PJPKe} JT (C)Kv , e,∆ {PJQKe} holds.

In order to prove the soundness of our rules for concurrency, we require the fol-

lowing lemmas.

Lemma 7.20 (Zip). If s = s1 +S s2 and σ = σ1 ] σ2 with Jτ1 Kv , e,∆, (s1 , σ1 ) ⊆
PJQ1 Ke and Jτ2 Kv , e,∆, (s2 , σ2 ) ⊆ PJQ2 Ke and if τ = zip(τ1 , τ2 ) or τ = zip′(τ1 , τ2 ),

then JτKv , e,∆, (s , σ) ⊆ PJQ1 ∗Q2 Ke.

Proof. The proof is by induction on the definition of zip and zip′. Most of the cases

are trivial, but there are two interesting cases.

The first interesting case is the race checking case of zip. Consider τ1 = ϕ1 ; τ ′1

and τ2 = ϕ2 ; τ ′2 . Then τ = check(ϕ1 , ϕ2 ) ; τ ′ for some τ ′ ∈ zip′(τ1 , τ2 ). By

assumption Jϕ1 ; τ ′1 Kv , e,∆, (s1 , σ1 ) ⊆ PJQ1 Ke and Jτ2 Kv , e,∆, (s2 , σ2 ) ⊆ PJQ2 Ke,

so we have Jϕ1 Kv , e,∆, (s1 , σ1 ) 6= > and Jϕ2 Kv , e,∆, (s2 , σ2 ) 6= >. Hence,

raceChk((Jϕ1 K, v , e,∆), (Jϕ2 Kv , e,∆))(s1 +S s2 , σ1 ] σ2 ) = (s1 +S s2 , σ1 ] σ2 ) 6= >

That is, Jcheck(ϕ1 , ϕ2 )Kv , e,∆, (s , σ) = (s , σ).

By the induction hypothesis we have that Jτ ′Kv , e,∆, (s , σ) ⊆ PJQ1 ∗ Q2 Ke and

the conclusion Jcheck(ϕ1 , ϕ2 ) ; τ ′Kv , e,∆, (s , σ) ⊆ PJQ1 ∗Q2 Ke follows directly from

this.

The other interesting case is the interleaving case of zip’. Consider τ1 = a1 ; τ ′1

and τ2 = a1 ; τ ′2 , and suppose that τ ∈ (a1 ; zip(τ ′1 , a2 ; τ ′2 )) (the other case is

symmetrical). Then there is some τ ′ ∈ zip(τ ′1 , a2 ; τ ′2 ) with τ = a1 ; τ ′.

By assumption Ja1 ; τ ′1 Kv , e,∆, (s1 , σ1 ) ⊆ PJQ1 Ke, so Jτ ′1 Kv , e,∆, (s ′1 , σ
′
1 ) ⊆

PJQ1 Ke for each (s ′1 , σ
′
1 ) ∈ v(a1 )(s1 , σ1 ), where v(a1 )(s1 , σ1 ) 6= >, by the deno-

tational semantics of sequential composition and the fact that PJQ1 Ke 6= >.
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By the induction hypothesis, for any such (s ′1 , σ
′
1 ) we have that Jτ ′Kv , e,∆, (s ′1 +S

s2 , σ
′
1 ] σ2 ) ⊆ PJQ1 ∗ Q2 Ke. Since a1 must satisfy the locality condition we have

v(a1 )(s1 +S s2 , σ1 ] σ2 ) ⊆ v(a1 )(s1 , σ1 ) +S {(s1 , σ2 )} and so by the denotational

semantics for sequential composition we can obtain JτKv , e,∆(s , σ) ⊆ PJQ1 ∗Q2 Ke
as required.

Lemma 7.21 (r-Sync). If τ is an r-synchronised trace,

Jτ − rKv , e,∆ ⊆ Junlock(r) ; τ ; lock(r)Kv , e,∆

Proof. Before we prove the lemma we first choose to prove an additional property.

For any local action f ,

f ⊆ (Junlock(r)Kv , e,∆) • f • (Jlock(r)Kv , e,∆)

We prove the inclusion for all (s , σ). If Junlock(r)Kv , e,∆, (s , σ) = > the conclusion

is immediate. Otherwise, let s = (x̄ )(s1 +S s2 ), σ = σ1 ] σ2 and ∆(r) = (Π ,RI )

with e(Π ) = x̄ and (s2 , σ2 ) ∈ PJRI Ke. We can then show the following:

f (s , σ) = f ((x̄ )(s1 +S s2 ), σ1 ] σ2 )

⊆ (x̄ )(f (s1 , σ1 ) +S {(s2 , σ2 )})
= (f • (Jlock(r)Kv , e,∆))(s1 , σ1 )

⊆ ((Junlock(r)Kv , e,∆) • f • (Jlock(r)Kv , e∆))((x̄ )(s1 +S s2 ), σ1 ] σ2 )

= ((Junlock(r)Kv , e,∆) • f • (Jlock(r)Kv , e,∆))(s , σ)

The proof of the lemma is by induction on the length of τ .

If τ does not contain any r-actions, then τ − r = τ . Now JτKv , e,∆ is a local

action, so we can show:

Jτ − rKv , e,∆ = JτKv , e,∆
⊆ (Junlock(r)Kv , e,∆) • JτKv , e,∆ • (Jlock(r)Kv , e,∆)

= Junlock(r) ; τ ; lock(r)Kv , e,∆

The inclusion step follows from the property given above.

If τ does contain some r-actions then, because τ is r-synchronised by our assump-

tion, τ must be of the form τ1 ; lock(r) ; τ2 ; unlock(r) ; τ ′ where τ1 and τ2 do not

contain any r-actions and τ ′ is r-synchronised. Following the same argument as the

base case we have

Jτ1 Kv , e,∆ ⊆ Junlock(r) ; τ1 ; lock(r)Kv , e,∆
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and by the induction hypothesis, we also have

Jτ ′ − rKv , e,∆ ⊆ Junlock(r) ; τ ′ ; lock(r)Kv , e,∆

We can then show the following:

Jτ − rKv , e,∆
= Jτ1 ; τ2 ; (τ ′ − r)Kv , e,∆
= Jτ1 Kv , e,∆ • Jτ2 Kv , e,∆ • Jτ ′ − rKv , e,∆
⊆ Junlock(r) ; τ1 ; lock(r)Kv , e,∆ • Jτ2 Kv , e,∆ • Jτ ′ − rKv , e,∆
⊆ Junlock(r) ; τ1 ; lock(r)Kv , e,∆ • Jτ2 Kv , e,∆ • Junlock(r) ; τ ′ ; lock(r)Kv , e,∆
= Junlock(r) ; τ1 ; lock(r) ; τ2 ; unlock(r) ; τ ′ ; lock(r)Kv , e,∆
= Junlock(r) ; τ ; lock(r)Kv , e,∆

We are now able to establish that our reasoning rules for concurrency preserve

validity.

Theorem 7.22 (Soundness). For all e ∈ Env, ∆ ∈ REnv, P ,Q ∈ Pred and

C ∈ LCmd,

e,∆ ` {P}C {Q} =⇒ e,∆ � {P}C {Q}

Proof. The proof is by induction on the derivation of e,∆ ` {P}C {Q}. For the

sequential rules of our framework the proof is straightforward. We concentrate on

our rules for concurrency.

Par case:

Assume e,∆ � {P1}C1 {Q1} and e,∆ � {P2}C2 {Q2}. We need to show that

e,∆ � {P1 ∗P2}C1 ||C2 {Q1 ∗Q2}. Consider a valuation v that satisfies the axioms

of our basic commands and a trace τ ∈ T (C1 ||C2 ). We need to show that {PJP1 ∗
P2 Ke} JτKv , e,∆ {PJQ1 ∗ Q2 Ke} holds. Take (s , σ) with s = s1 +S s2 and σ =

σ1 ] σ2 such that (s1 , σ1 ) ∈ PJP1 Ke and (s2 , σ2 ) ∈ PJP2 Ke. We need to show that

JτKv , e,∆, (s , σ) ⊆ PJQ1 ∗Q2 Ke.

Since τ ∈ T (C1 ||C2 ) we have τ = zip(τ1 , τ2 ) for some τ1 ∈ T (C1 ) and τ2 ∈
T (C2 ). By our assumption Jτ1 Kv , e,∆, (s1 , σ1 ) ⊆ PJQ1 Ke and Jτ2 Kv , e,∆, (s2 , σ2 ) ⊆
PJQ2 Ke, so Lemma 7.20 gives us JτKv , e,∆, (s , σ) ⊆ PJQ1 ∗Q2 Ke as required.

Res case:
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Assume e,∆:(r 7→ Π ,RI ) � {P}C {Q}. We need to show that e,∆ � {HΠ . (P ∗
RI )} res r in C {HΠ . (Q ∗RI )}. Consider a valuation v that satisfies the axioms

of our basic commands and a trace τ ∈ T (res r in C). We need to show that

{PJHΠ . (P ∗RI )Ke} JτKv , e,∆ {PJHΠ . (Q ∗RI )Ke} holds. Take (s , σ) ∈ PJHΠ . (P ∗
RI )Ke then s = (x̄ )(s0 +S s ′) and σ = σ0 ] σ′ for e(Π ) = x̄ , s0 and σ0 with

(s ′, σ′) ∈ PJPKe. We need to show that JτKv , e,∆, (s , σ) ∈ PJHΠ . (Q ∗ RI )Ke.

Since τ ∈ T (res r in C) we have τ = (unlock(r) ; τ ′ ; lock(r)) − r for

some r-synchronised trace τ ′ ∈ T (C). Now we know by our initial assumption

that for (s ′, σ′) ∈ PJPKe we have Jτ ′Kv , e,∆:(r 7→ Π ,RI ), (s ′, σ′) ∈ PJQKe. By

the semantics of lock(r) and unlock(r) we can deduce that Junlock(r) ; τ ′ ;

lock(r)Kv , e,∆:(r 7→ Π ,RI ), (s , σ) ⊆ PJHΠ . (Q ∗ RI )Ke. Now Lemma 7.21 gives

Jτ ′ − rKv , e,∆ : (r 7→ Π ,RI ) ⊆ Junlock(r) ; τ ′ ; lock(r)Kv , e,∆ : (r 7→ Π ,RI )

and since τ ′ − r contains no r-actions we know that Jτ ′ − rKv , e,∆:(r 7→ Π ,RI ) =

Jτ ′−rKv , e,∆. Finally, we observe that τ = (unlock(r) ; τ ′ ; lock(r))−r = (τ ′−r),

so it follows that JτKv , e,∆, (s , σ) ∈ PJHΠ . (Q ∗ RI )Ke as required.

CCR case:

Assume e,∆ � {HΠ ′. (P ∗RI )}C {HΠ ′. (Q ∗RI )} and Π ′ = Π ∩free(P). We need

to show that e,∆:(r 7→ Π ,RI ) � {P} with r do C {Q}. Consider a valuation v

that satisfies the axioms of our basic commands and a trace τ ∈ T (with r do C).

We need to show that {PJPKe} JτKv , e,∆:(r 7→ Π ,RI ) {PJQKe} holds.

Since τ ∈ T (with r do C) we know τ = (lock(r) ; τ ′ ; unlock(r)) for some

τ ′ ∈ T (C). By our assumption {PJHΠ ′. (P∗RI )Ke} Jτ ′Kv , e,∆ {PJHΠ ′. (Q∗RI )Ke}.
Let ∆′ = ∆:(r 7→ Π ,RI ), then by the semantics of lock(r) and unlock(r) we can

give the following proof outline:

{PJPKe}
lock(r)

{PJHΠ ′. (P ∗ RI )Ke}
Jτ ′K, v , e,∆
{PJHΠ ′. (Q ∗ RI )Ke}
unlock(r)

{PJQKe}
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By the rule of sequential composition (Seq) it follows that

{PJPKe} JτKv , e,∆:(r 7→ Π ,RI ) {PJQKe}

as required.

The proof of the disjoint concurrency rule Par is almost exactly the same as the

proof for the equivalent rule from the abstract separation logic work. This should

not be surprising as the two rules are almost identical. The addition of compression

to our model (and revelation to the logic) does not have any affect on the use of

disjoint concurrency, which is only concerned with the separating conjunction ∗.
The proof of the resource rule Res and the conditional critical region rule CCR

hinge on how we split up the state in a segment algebra. Rather than simply using

disjointness, in the style of a separation algebra, we also make use of compression.

We choose to split up the state (s , σ) such that s = (x̄ )(s1 +S s2 ) and σ = σ1 ] σ2

for some x̄ , s1 , s2 , σ1 and σ2 . We still have a notion of what it means for an action

to behave locally on such a splitting, and it is this modified notion of locality that

allows our reasoning rules to work.

7.4 Remarks

We have shown how to apply the techniques of concurrent separation logic to seg-

ment logic to develop a system for reasoning about abstract level concurrency. Seg-

ment logic’s separating conjunction ∗ allows us to reason naturally about disjoint

concurrency and, with some modifications,0 we are also able to reason about critical

regions and resource transfer.

Invariant Generation

Picking a resource invariant for a certain region r to obey is a lot like picking a loop

invariant for a while loop. That is, it requires some intuition on the part of the

prover. Just as choosing loop invariants is one of the significant hurdles to automat-

ing proof generation for sequential programs, choosing resource invariants is one of

the significant hurdles to automating proof generation for concurrent programs.

In his thesis [66] Raza introduces a promising new technique for automatically

generating resource invariants in concurrent separation logic proofs. Using labelled

separation logic, Raza is able to analyse a concurrent program and construct owner-

ship constraints for each resource r in a proof of the program. These constraints can
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then be solved, using the specifications of separation logic’s primitive commands, to

determine what part of the program state state must be owned by each resource in

order for the program not to fault.

It would be interesting to see if a similar approach can be applied to the concurrent

segment logic framework presented above.

Permissions

In our work on concurrency so far we have only considered access to resources in

an all or nothing style. At any one time, each piece of program state is owned by

exactly one thread or resource. However, in practice it is possible to share state in

a more fine-grained fashion. As a particular example, it should be possible for any

number of threads to have a read-only view of some piece of program state.

Boyland introduced fractional permissions in separation logic [9] to record split-

tings of heap cells. A permission π ∈ (0 , 1 ) records that a cell is shared with other

threads, while π = 1 records that it is held exclusively by one thread. Any frac-

tional permission x
π7→ v is enough to allow a thread to read from a heap cell, but

to be able to modify the cell a thread must hold exclusive permission x
17→ v for

that cell. This ensures that one thread’s modifications to the heap do not invalidate

other thread’s views of the heap. Permissions are then split and combined via the

separating conjunction ∗. For example,

x
i7→ v ∗ x

j7→ v ⇔ x
i+j7→ v if i + j ≤ 1

The parallel rule then allows heap cells to be shared in a read-only sense between
multiple threads.

It would seem that the analogous extension to segment logic would be to add

permissions to address labels, that is α
π← c. Indeed, this does exhibit the desired

behaviour with segment logic’s separating conjunction. That is,

α
i← c ∗ α j← c ⇔ α

i+j← c if i + j ≤ 1

However, some care has to be taken with compression, in particular the use of the
collapse/expand equivalence, in such a model. We cannot allow for segments to be

compressed if their permission values are not the same. For example,

Hβ. (α
1← n[β] ∗ β ½← m[∅T]) 6⇒ α

1← n[m[∅]]

If we could derive such an implication then we would gain extra permission over the
β segment that we should not have. In particular we would be able to modify the
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subtree m[∅T] which some other thread may be assuming is read-only. We should

not be able to throw away or introduce permissions other than by the permissions

splitting rule, otherwise our reasoning will be unsound.

An obvious solution to this problem would be to only allow collapse/expansion of

a segment when a thread has exclusive permission on the segment. However, such

a restriction would severely limit the utility of adding permissions to our logic. We

have already seen how the CCR rule needs to make use of compression in order

to arrange segments in the correct form to apply the small axioms of our basic

commands. A similar requirement will occur if we work with permissions in our

logic.

Allowing partial segments to be compressed introduces a need to track the labels

that were used in the compression, so that the correct label may be used if the

segment if broken apart again. That is,

Hβ. (α
i← n[β] ∗ β i← m[∅T]) 6⇒ Hγ. (α

i← n[γ] ∗ γ i← m[∅T]) if i < 1

This is because the rest of the state will contain β
j← m[∅T], with i + j = 1 , and

we must be able to recombine these segments later.

Adding permissions to the segment model would be interesting, but is clearly not

a straightforward matter. One possible solution to the compression issue would be

to add a frame-like rule to our reasoning system to enable us to locally compress a

segment for reasoning purposes. 1

e,Γ ` {Hβ. (P ∗ α i← R1 •β R2 )}C {Hβ. (Q ∗ α i← R1 •β R2 )}
0 < i < 1 β ∈ free(R1 )

e,Γ ` {Hβ. (P ∗ α i← R1 ∗ β
i← R2 )}C {Hβ. (Q ∗ α i← R1 ∗ β

i← R2 )}

The idea behind this rule is that we should be able to treat partial segments as if

they were compressed when we are reasoning about a program. However, we must

be sure to restore the original labels and permissions at the end of the proof. This

rule seems to capture our intuition of how permissions should work, but ensuring

that it is sound may be quite tricky.

Refinement for Concurrent Programs

In chapter 6 we saw how to implement one fine-grained abstract module in terms of

another in the sequential setting. An obvious question is does our theory cover the

1Thanks to Adam Wright for discussions on this idea.
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concurrent setting too? Unfortunately the answer is no.

In the sequential setting we do not have to consider the interference caused by

the environment. In particular, this means that all of our assertions are implicitly

stable: an assertion is stable if it is not modified by the actions of the environment.

However, when we move into the concurrent setting, the interference of the envi-

ronment becomes a very important factor. At the abstract level we do not have a

problem, as we treat our basic commands as if they were atomic, which means the

environment cannot interfere with them. At the concrete level, though, we can im-

plement the basic commands with non-atomic actions. These actions may interfere

with one another, in particular when the access state that may be shared between

two threads.

As an example, consider running two tree deletion operations in parallel on disjoint

subtrees. At the abstract level these operations do not seem to interfere with one

another. However, at the concrete level this is no longer the case as the operations

have to perform pointer update in the surrounding state. Consider the case where

the two trees are actually side by side in the tree and we are performing this pointer

update. The first thread may get to run, it reads its right pointer, but then gets

descheduled. The other thread is then scheduled and runs to completion removing

the right tree, including the node read by the first thread. Now when the first

thread gets scheduled again later it has a pointer to its old right node. If it tries to

dereference this pointer it will fault, as this node no longer exists.

Our current technique for reasoning about module refinement only works because

in the sequential setting we know that a command cannot be interrupted part-way

through its execution. In order to reason about concurrent module refinement we

are going to have to introduce some sort of locking or atomic blocks to be able to

rule out the bad interleavings, such as the case described above.

Relation to Concurrent Abstract Predicates

Based on existing work on abstract predicates [61], Dinsdale-Young, Dodds, Gardner

and Parkinson have recently introduced the concept of concurrent abstract predi-

cates [27]. The main focus of their work has be to allow the abstraction of concurrent

program details in the same way as we abstract data structures.

Using abstract predicates, they have been able to provide abstract specifications

for modules that allow concurrent manipulation of shared data structures. They

have also provided refinements of these modules, in terms of permissions and actions,

that enable them to show if a particular implementation satisfies their high-level
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specifications. This work is aiming at showing similar results as our abstraction and

refinement work from chapter 6.

As an example, consider a concurrent access set s which stores unique values.

There are three common operations that are called on such a set:

search(s , v) Check if v is in the set s.
If it is return true, otherwise return false.

insert(s , v) Add v to the set s if it is not already in the set.

remove(s , v) Remove v from the set s if it was initially in the set.

To represent the state of the set, we can provide a pair of abstract predicates

in(h, v) and out(h, v) that describe if a particular value v is in the set s or not. We

also need an axiom that states that only one in or out predicate can exist for each

value v .

(in(s , v) ∨ out(s , v)) ∗ (in(s , v) ∨ out(s , v)) ⇒ false

This captures the idea that a value can’t both be in the set and not in the set. This

also forces the knowledge of a values status to be in one place, so multiple threads

cannot observe the same value’s status.

We can then provide specifications for our set commands in terms of these abstract

predicates. For example:

{in(s , v)} r := search(s , v) {in(s , v) ∧ (r = true)}
{out(s , v)} insert(s , v) {in(s , v)}
{in(s , v)} remove(s , v) {out(s , v)}

The remaining cases are analogous. These specifications allow us to reason about

operations on a concurrent set at the abstract level. For example consider the

following program and its proof sketch:

{in(s , 5 ) ∗ out(s , 7 )}
{in(s , 5 )}

remove(s , 5 ) ;

{out(s , 5 )}
r := search(s , 5 )

{out(s , 5 ) ∧ (r = false)}

{out(s , 7 )}
insert(s , 7 )

{in(s , 7 )}

{out(s , 5 ) ∗ in(s , 7 ) ∧ (r = false)}

This style of abstract reasoning is very similar to that presented by our segment
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find(h, v) {
local p, c in

p := h ;
lock p ;
c := p.next ;
while c.value < v do

lock c ;
unlock p ;
p := c ;
c := p.next ;

return (p, c) ;
}

search(h, v) {
local p, c, u in

(p, c) := find(h, v) ;
u := c.value ;
unlock p ;
return (u == v) ;

}

Figure 7.3: Linked list search implementation.

logic framework. We could easily provide a segment algebra that is capable of

reasoning about this concurrent set module in much the same style as presented

above.

When it comes to reasoning about implementations of an abstract module, the

CAP approach is reminiscent of our locality-breaking translations as introduced in

chapter 6. To see this let us consider an implementation of the set module in terms of

a linked list, using hand over hand lock to traverse the list to ensure that threads do

not interfere with one another. An example implementation of the search command

given in Figure 7.3. We wish to show that such an implementation satisfies the

abstract specification of the search command, justifying that the abstraction is

suitable for this implementation.

Assuming the existence of a list predicate list(s ,X ) which describes a linked list

at s with contents X , we can provide concrete interpretations for the predicates of

our abstract model.

in(s , v) ::= ∃X , π > 0 . isLock(s , π) ∗ [change(s , v)]r1 ∗ list(s ,X ) ∧ v ∈ X
r

A

out(s , v) ::= ∃X , π > 0 . isLock(s , π) ∗ [change(s , v)]r1 ∗ list(s ,X ) ∧ v 6∈ X
r

A

The concrete interpretations of the predicates make use of a permissions model with

0 < π ≤ 1 . The isLock(s , π) predicate gives partial permission on the knowledge

that there is a lock for the head of the linked list s . This allows a thread to lock

s which in turn allows the thread to lock the next node in the list, and so on.

Owning the full permission (i = 1 ) on the token [change(s , v)]ri gives the thread the

exclusive right to modify if v is, or is not, in the set. The boxed assertion describes
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the state of the heap that is shared between the threads. In this case the shared

state contains a list in the heap and whether the value v is in that list or not. Boxed

assertions describe all of the shared state and behave additively under ∗, that is,

P ∗ Q = P ∧Q . Additionally, the boxed assertion is parametrised a region

name r and an interference environment A which captures the possible interference

of the environment on the shared state. The region name is used to identify the

region for tokens and actions. This is particularly important when there are multiple

shared regions in use. The interference environment is defined as a set of actions on

the shared state. Formally the actions would be defined as a set of state updates,

but we shall just give the intuition behind the action set.

The environment A allows for the following actions in shared region r :

� Nodes in the list may be locked and unlocked, locking a node requires that

the thread currently holds the lock on the nodes predecessor, unless it its the

head node s ;

� Nodes may be added to the list so long as the thread has the lock on the

predecessor and the thread has the [change(s , v)]r1 token for the value v being

added;

� Nodes may be removed from the list so long as the thread has the lock on the

predecessor and the thread has the [change(s , v)]r1 token for the value v being

removed.

With this action model and the concrete interpretations of the abstract index

predicates it is possible to prove that the implementations in Figure 7.3 satisfy their

respective abstract specifications and also that the abstract predicate axiom holds

for the concrete implementations. The full details can be found in the Concurrent

Abstract Predicates Technical Report [26].

Notice how the concrete reasoning breaks the locality of the abstract module.

At the abstract level we are able to reason about individual elements of the set,

but at the concrete level each of these predicates is interpreted over the whole

program state (the boxed assertion). Thus, the CAP technique establishes a fiction

of locality in much the same way as our locality-breaking translations do. One

important difference here is that the CAP technique is able to handle reasoning

about concurrency. This is managed by translating the abstract predicates to stable

low level assertions. An assertion is said to be stable, with respect to an environment

A, if the truth of the assertion is unchanged by any of the actions that can be carried

out by the environment.
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Our module translating theory, which is currently only defined for sequential

reasoning, in effect gets stability for free. In the sequential setting there is no

possibility of interference, so the environment cannot modify the program state. If

we want to extend our theory to handle reasoning about concurrency then we are

going to have to deal more directly with the idea of stable assertions. One interesting

approach to reasoning about concurrency refinement might be to translate from an

abstract segment algebra into a concrete CAP model. However, this is only really

applicable in the locality-breaking sense. To reason in a locality-preserving style we

will have to deal with interference and assertion stability more directly. This will

likely require us to include the idea of action capabilities in our reasoning framework.

CAP introduces regions names to identify portions of shared state, but these

region names are not visible to the programmer. There are also rules for creating,

destroying, splitting and joining regions. Our segment model of the heap, introduced

in Example 3.60, also allows for regions of the heap to be labelled with abstract

addresses that are not visible to the programmer. It would be interesting to further

investigate the links between these two styles of logically identifying portions of

heap.
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8 Conclusions

We conclude this thesis by giving a summery of our main achievements. We also

look at the applications of this work and discuss some avenues of future research

that follow on from our work.

8.1 Summary of Thesis Achievements

The main achievement of this thesis has been to introduce segment logic for reasoning

about structured data. We provided the model of this logic in terms of segment

algebras which provide a general way of representing structured data. We have seen

that segment algebras can be used to represent a wide range of data structures, such

as trees, lists, heaps and DOM. Thus, our logic can similarly be tailored to reason

about these various data structures.

Using segment logic we have been able to provide a framework for fine-grained

abstract reasoning about programs. In particular, we have been able to develop a

system of local Hoare reasoning which is able to work with smaller specifications

than previous techniques allowed. We have seen that this reasoning system can be

applied to a range of different program modules ranging in complexity from simple

modules, such as heaps, to complex modules, such as featherweight DOM. One

significant advantage of our framework is that we have a general soundness result

for arbitrary choices of the underlying segment algebra.

An important part of any abstraction technique is to be able to link an abstraction

with its concrete implementations. Building on existing work on abstraction and

refinement, we have shown how to soundly implement one abstract module in terms

of another. We have provided two general techniques for reasoning about such

implementations: locality-breaking translations and locality-preserving translations.

Each technique allows us to prove if a given implementation correctly satisfies some

abstract specification.

Our final achievement has been to extend our reasoning framework to handle some

simple forms of concurrency. In particular we are able to reason about programs that

utilise disjoint concurrency or simple resource management. As with our sequential
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reasoning framework, we have been able to provide a general soundness result that

does not depend on the exact segment algebra underlying our reasoning.

8.2 Applications

We have seen that segment logic can be used to reason about a number of differ-

ent data structures, even complex structures such as that of featherweight DOM.

Segment logic is already being used to help reason about other complex structures.

In his master’s thesis [56] Ntzik has investigated using the segment model to

represent graph structures. In particular he has considered representing a graph

as a combination of disjoint spanning trees. Whilst this view of a graph may not

always be the most useful, especially for graphs that have high numbers of cycles, it

greatly simplifies the reasoning for graphs that are commonly accessed in a tree-like

way, or where the majority of the graph is actually tree-like.

In upcoming work [65] Ntzik and Wright have been using segment logic to reason

about file-system commands in the style of the Posix specification [46]. They have

made some interesting modifications to the segment model, including annotating

segment addresses with path information. Such annotations encapsulate some global

information about how to reach a subtree from the root of the tree, but still allow

the reasoning to be local. These annotations restrict the possible frames that can be

added to a segment to those that agree with the path annotation. Such annotations

offer an interesting way of reasoning locally with certain global knowledge.

Wright has been generalising this idea of locally expressing global properties in

his work on strong local reasoning [39]. He uses formulae as annotations, rather

than just simple paths, and allows annotations on both addresses and hole labels.

The formula annotation on a segment address restricts the frame that may be added

around the segment to those frames that satisfy the address annotation. Similarly,

the formula annotation on a segment hole label restricts the frame that may fill that

hole to those that satisfy the hole label annotation. Wright’s techniques allow him

to express a wide range of global properties in a local fashion, such as paths, number

of siblings and uniqueness of names/elements.

Segment logic reasoning helps to simplify the axioms of the basic commands for

many program module. This makes these modules more amenable to automated

reasoning. In particular, Wright has been developing a proof assistant, based on

segment logic, for reasoning about programs written in featherweight DOM. In dis-

cussions with Jacobs, he has also been investigating the possibility of linking this

tool with the existing VeriFast tool [48].
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8.3 Future Work

As discussed above we have begun to investigate using segment logic to reason about

graph structures. However, our current best approach has been to treat graphs as

trees wherever possible. Whilst this has proven to be quite successful for models

that are largely tree-like, such as filesystems, it is less suitable for graph models that

are highly connected or have large numbers of cycles. It would be interesting to see

if we can find a more general model for reasoning about graphs.

We have developed a general theory for reasoning about implementations of a pro-

gram module that preserve the module’s locality. However, our locality-preserving

translations have to make use of complex and quite ad-hoc permissions models to be

able to establish the required ‘fiction of disjointness’. We would really like to look

at these permissions models in more detail and see if we can construct a general

permissions model that will simplify our reasoning.

One of the most important next steps for the work in this thesis is to extend our

abstraction and refinement theory to the concurrent setting. As a first step we want

to extend our techniques so that we might implement sequential abstract programs

with concurrent concrete programs. However, our real goal is to be able prove that a

concrete concurrent implementation is correct with respect to a concurrent abstract

specification. This is significantly more complex, as it involves having to translate

abstract concurrency constructs into concrete concurrency constructs. It is not clear

that abstract locks will translate directly to concrete locks, in fact the abstract locks

may sometimes be unnecessary for highly concurrent implementations. Moreover,

we will have to be very careful to ensure that our translations do not introduce

live-lock or dead-lock issues. Our use of segments in the existing theory has given

us a good starting point as we have already developed a framework for reasoning

about abstract concurrency. Our existing translations also have a strong notion of

what state is being shared between segments and this should help us to reason about

sharing between threads.

With Raad we have already begun to look into abstraction and refinement for

concurrency and in doing so have noticed some similarities between our techniques

and those of the concurrent abstract predicates (CAP) work [27]. In particular, our

locality-breaking translations seem to share a lot in common with the way that the

CAP work takes abstract predicates and interprets them over the complete shared

state. We believe it would be very interesting to look more closely at the links

between our work and that of the CAP style of reasoning.

Our initial aim when setting out to reason about concurrency was to see if we could
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design and formally specify a concurrent XML update language. Such a language

would enable web applications to make the most of the dynamic nature of XML. For

example, with Wikipedia, users currently copy articles on to their browsers, before

updating and returning them to Wikipedia to be integrated with the main site.

Ideally we would like to be able to view Wikipedia (or some scientific data base or any

information on the Cloud) as a shared XML memory store that can be concurrently

updated by many clients. Currently, methods for safely performing such operations

are poorly understood. Our work on concurrency lets us get some way to specifying

such a language, but we are missing a key component: distributivity. In practice

we do not know exactly what code might be being run on a shared web resource,

which makes it very hard to reason about concurrent web languages. In order to

achieve our goal we need to understand what it means to perform local reasoning

for distributed systems.
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