
Systematic Approaches for
Increasing Soundness and Precision

of Static Analyzers

Anders Møller
Aarhus University

Joint work with Esben Sparre Andreasen and Benjamin Barslev Nielsen

Π CENTER FOR ADVANCED SOFTWARE ANALYSIS

http://casa.au.dk/

http://casa.au.dk/

Some lessons learned from developing a
static analyzer for JavaScript

• How to detect soundness bugs
that matter?

• How to isolate precision
bottlenecks?

… in a large static analyzer
for a complex language
and a massive platform API

Soundness and precision in static analysis

3

the set of

reachable states
of a given program

the set of
reachable states

as approximated by
a static analysis

precision loss
unsoundnessWhen analyzing JavaScript programs:

imprecise ⇒ slow

Outline

• Soundness testing

•Blended analysis1

•Delta debugging2 (or, cause reduction)

•Combining the techniques

1) Dufour, Ryder, and Sevitsky, Blended Analysis for Performance Understanding of Framework-Based Applications, ISSTA’07
2) Zeller and Hildebrandt, Simplifying and Isolating Failure-Inducing Input, STE 2002

4

Soundness testing

Provably sound
• sound with respect to all concrete executions

• infeasible for an analyzer as complex as TAJS

vs.

Probably sound
• sound with respect to a finite set of concrete executions

• very easy to test

• over 1 million soundness checks in TAJS’s test suite

5

Soundness testing – example

A JavaScript program:

A value log from an execution:

6

Artificially increasing precision with
blended analysis

Filter abstract values based on concrete values:

Dufour, Ryder, and Sevitsky, Blended Analysis for Performance Understanding of Framework-Based Applications, ISSTA’07

Delta debugging

Systematically minimizes input while preserving a target behavior

Typical inputs: Programs to analyze

Minimized input

satisfying the predicate

(hopefully with the same cause

as the original program)

JavaScript program

Some predicate

1

1) https://github.com/wala/jsdelta 8

Delta debugging – precision example

9

1

underscore.js

1548 lines

Analysis times out

after 3 minutes

(“unanalyzable”)

8 lines!

1) https://github.com/wala/jsdelta

Limitations:
• Generally only finds one problem at a time
• May introduce spurious behaviors

Combining the techniques

① Soundness testing + delta debugging

② Blended analysis + delta debugging

③ Soundness testing + blended analysis

④ Soundness testing + blended analysis + delta debugging

10

① Soundness testing + delta debugging

Goal: Isolate a soundness bug

11

Minimized unsound program

Program to analyze

Analysis result

is unsound

Debugging is easier when there
is only one soundness test failing

② Blended analysis + delta debugging

Goal: find precision bottlenecks

Idea: bottlenecks are program locations that benefit from blended analysis

– what is the minimal set of such locations?

12

Minimized set of locations

satisfying predicate

All locations in

program to analyze

Program analyzable

in 3 minutes? Why better than reducing the program?
• Finds all the critical locations

in the program
• Avoids spurious behaviors

introduced by delta debugger

Example: finding precision bottlenecks

13

critical that name is not “any string”

critical that func is not any function from obj

Useful information for analysis designers!
Tells us where we need to improve the analysis abstractions

③ Soundness testing + blended analysis

Soundness testing is possible even with unanalyzable programs!
(where “unanalyzable” means “cannot be analyzed within 3 minutes”)

Blended analysis does not affect the soundness tests
when using the same concrete executions

14

Our model of
Symbol was
inadequate

④ Soundness testing + blended analysis
+ delta debugging

Automatically find a minimal unsound program from an unanalyzable program:

15

Recommendations to static analysis developers

1. Implement a dynamic analysis to record value logs from concrete executions

2. Use soundness testing systematically
– When soundness bugs are detected, use delta debugging

3. When critical precision problems appear, use blended analysis
– Use delta debugging to find the critical program locations

4. Soundness bugs can be found, even with programs that are unanalyzable
due to insufficient precision

16

A workflow for static analysis developers

17

Can be automated!

