Systematic Approaches for
Increasing Soundness and Precision
of Static Analyzers

Anders Moller

Aarhus University

Joint work with Esben Sparre Andreasen and Benjamin Barslev Nielsen

Il CENTER FOR ADVANCED SOFTWARE ANALYSIS

@

R .

http ://Ca sa.au.d k/ European R-es.e;rch Council

Established by the European Commission

http://casa.au.dk/

Some lessons learned from developing a
static analyzer for JavaScript

* How to detect soundness bugs
that matter?

* How to isolate precision
bottlenecks?

... in a large static analyzer
for a complex language
and a massive platform API

TAJS: Type Analyzer for JavaScript

Home I JavaDoc Eclipse plug-in

=

© 9 [E

fea

TAJS is a program analysis tool that can infer detailed and sound type information for JavaScript programs
using abstract interpretation.

Read the papers:
e Type Analysis for JavaScript [abstract | PDF | BibTeX] (presented at A] S
SAS'09) I

o Interprocedural Analysis with Lazy Propagation [abstract | PDF | BibTeX]
(presented at SAS'10)
e Modeling the HTML DOM and Browser API in Static Analysis of JavaScript Web Applications
[abstract | PDF | BibTeX] (presented at ESEC/FSE'11)
e Improving Tools for JavaScript Programmers (Position Paper) [abstract | PDF | BibTeX]
(presented at STOP'12)
e Remedying the Eval that Men Do [abstract | PDFE | BibTeX] (presented at ISSTA'12)
e Determinacy in Static Analysis of jQuery [abstract | PDF | BibTeX] (presented at OOPSLA'14)
s Systematic Approaches for Increasing Soundness and Precision of Static Analyzers
[abstract | PDF | BibTeX] (presented at SOAP'17)

See also this presentation (slides) or this one (video, from WSCR 2014) of the approach.

View the javadoc API
Try the TAJS Eclipse plug-in (for experimental use only)

The source code for TAJS is available!

Soundness and precision in static analysis

P

reachable states
as approximated by
a static analysis

the set of

the set of
reachable states

of a given program

4

/

ecision Iq

When analyzing JavaScript programs:
imprecise = slow

nsoundne

SS

Outline

* Soundness testing

* Blended analysis*

* Delta debugging? (or, cause reduction)
* Combining the techniques

1) Dufour, Ryder, and Sevitsky, Blended Analysis for Performance Understanding of Framework-Based Applications, ISSTA’'07
2) Zeller and Hildebrandt, Simplifying and Isolating Failure-Inducing Input, STE 2002

Soundness testing

Provably sound

e sound with respect to all concrete executions
* infeasible for an analyzer as complex as TAJS

VS.

Probably sound

» sound with respect to a finite set of concrete executions
* very easy to test
e over 1 million soundness checks in TAJS’s test suite

Soundness testing — example

A JavaScript program:

1 |var o = { p: ’foo,bar’ };

2 |var s = 0.D:
3 |var a 5 s.split(’,?);

Soundness testing failed for *

ed foT 5/
——.oLype.split)

A value log fr

Artificially increasing precision with
blended analysis

Filter abstract values based on concrete values:

876
877 | eval(code); // code is unknown
878

f.js:877:1 ARGO STRING("print(’Same?’)")

Dufour, Ryder, and Sevitsky, Blended Analysis for Performance Understanding of Framework-Based Applications, ISSTA’07

Delta debugging

Systematically minimizes input while preserving a target behavior

Typical inputs: Programs to analyze

JavaScript program

Some predicate ——p»|

JSDeItal

Pred

Reduced input

1) https://github.com/wala/jsdelta

v

Minimized input
satisfying the predicate

(hopefully with the same cause
as the original program)

Delta debugging — precision example

Limitations:

* May introduce spurious behaviors

* Generally only finds one problem at a time

underscore.js

1548 lines ,

Input

JSDeIta1
Analysis times out
after 3 minutes m"‘

(“unanalyzable”) k ’

Reduced input

O~ N D B~ W N

1) https://github.com/wala/jsdelta

a = {p: 0, q: 0};
b =1[1;

for (var p in a)
b.push(p);

x = b[0]

alx] = blx];
a.pQ);

8 lines!

Combining the techniques

@ Soundness testing + delta debugging
@ Blended analysis + delta debugging
(3) Soundness testing + blended analysis

@ Soundness testing + blended analysis + delta debugging

@ Soundness testing + delta debugging

Goal: Isolate a soundness bug Debugging is easier when there

is only one soundness test failing
Program to analyze ——» _.

Input
JSDelta > \inimized unsound program

Analysis result

IS unsound WWT

Reduced input

Soundness testing failed:
- VAR ’s’ on program line 3:
- concrete: NUMBER(0)
- abstract: {STRING("O")}

@ Blended analysis + delta debugging

Goal: find precision bottlenecks

|dea: bottlenecks are program locations that benefit from blended analysis
— what is the minimal set of such locations?

All locations In
—

program to analyze | L _
JSDelta b Minimized set of locations

satisfying predicate

Program analyzable
in 3 minutes? Pred Why better than reducing the program?
* Finds all the critical locations

Reduced inpy in the program
* Avoids spurious behaviors

introduced by delta debugger

Example: finding precision bottlenecks

underscore-1.8.3.js needs more precision at:

PROPERTY WRITE at line 1492
CALL at line 1494

1490
1491
1492
1493
1494
1495
1496

_.mixin = function(obj) {
.each(.funciiecnetelrs=

“——— critical that namelis not “any string”

critical that func is not any function from|obj

Useful information for analysis designers!
Tells us where we need to improve the analysis abstractions

13

(3) Soundness testing + blended analysis

Soundness testing is possible even with unanalyzable programs!

(where “unanalyzable” means “cannot be analyzed within 3 minutes”)

Blended analysis does not affect the soundness tests
when using the same concrete executions

Our model of

Soundness testing failed for 43/3932 chec Symb01mms
- PROP on program line 542: inadequate
- concrete: BUILTIN(Symbol.unscopables)
- abstract: {undefined}

(4) Soundness testing + blended analysis
+ delta debugging

Automatically find a minimal unsound program from an unanalyzable program:

1 | function £(){ Soundness testing failed:
2 | return arguments; - PROP on program line 4:
3 |} - concrete: UNDEFINED
4 f(- abstract: {}

15

Recommendations to static analysis developers

Implement a dynamic analysis to record value logs from concrete executions

Use soundness testing systematically
— When soundness bugs are detected, use delta debugging

When critical precision problems appear, use blended analysis
— Use delta debugging to find the critical program locations

Soundness bugs can be found, even with programs that are unanalyzable
due to insufficient precision

16

A workflow for static analysis developers

Can be automated!

Run
— blended
analysis

Slow or imprecise

Delta debugm program

Smaller

Improve

program /

A

Unsound

Fast and precise

Run \
soundness

analysis
A

Nonempty set of locations

Probably
Sound

)

Delta debug
locations for
blended analysis

|
Empty set of locations

v

Done!

17

