
Testing and Evolving
TypeScript Declaration Files

with Program Analysis

Erik Krogh Kristensen
joint work with Anders Møller

Π CENTER FOR ADVANCED SOFTWARE ANALYSIS

http://casa.au.dk/

http://casa.au.dk/

•Microsoft’s extension of JavaScript
•Adds optional types

• optional type declarations
• classes, modules, ...

•Static type checking
•Compiled to JavaScript

2

Using JavaScript libraries in TypeScript applications

• Contains declarations for >4000 libraries
• Hand-written, lots of bugs
⇒ mislead type checking

and code completion!

3

4

An example: p2.js

JavaScript library implementation TypeScript type declaration

4

function Constraint(...) {
/**
* Equations to be solved in
* this constraint
*
* @property equations
* @type {Array}
*/

this.equations = [];
...

}
...

class Constraint {
constructor(...);
equeations: Equation[];
...

}

Presenter
Presentation Notes
The real declaration file is about 1000 lines, and the real implementation is over 13000 lines.

Another example: d3.js
JavaScript library implementation TypeScript type declaration

5

Presenter
Presentation Notes
d3.layout.bundle is a function that returns a function with return type GraphNode[]
Should be GraphNode[][]

Three research challenges

1. How to detect mismatches between
library implementations and type declarations?

2. How to infer type declarations for libraries?
3. How to evolve type declarations,

as the library code evolves?

6

Presenter
Presentation Notes
This is needed because:
1: Existing declaration files has lots of errors.
2: New libraries are created all the time
3: Libraries are updated a lot, declaration files need to follow.

Three research challenges

1. How to detect mismatches between
library implementations and type declarations?

2. How to infer type declarations for libraries?
3. How to evolve type declarations,

as the library code evolves?

7

1. How to detect mismatches between
library implementations and type declarations?

Existing approaches are limited

• TSCheck (Feldthaus and Møller 2014): Based on static analysis, imprecise

• TPD (Williams et al. 2017): Require existing unit tests

Presenter
Presentation Notes
This is needed because:
1: Existing declaration files has lots of errors.
2: New libraries are created all the time
3: Libraries are updated a lot, declaration files need to follow.

TSTest – feedback-directed random testing

Based on automated testing
(Randoop: Feedback-directed random test generation, Pacheco, Lahiri, Ernst, and Ball, ICSE'07)

How to adapt Randoop-style testing from Java to TypeScript?
(structural typing, higher-order functions, generics, …) 8

[Type Test Scripts for TypeScript Testing, Kristensen & Møller, OOPSLA 2017]

JavaScript library implementation TypeScript type declaration
var Store = {

makeItem: function(n) {
return {

print: function() {
return n;

}
}

}
}

declare var Store: {
makeItem(n: number): Item

}

interface Item {
print(): string

}

Presenter
Presentation Notes
To test the print function, we need an instance of Item, which makeItem can produce

JavaScript
implementation

TypeScript
declaration

Type Test ScriptJavaScript
interpreter

Mismatches

TSTest – how it works

Presenter
Presentation Notes
Mention: It is the Type Test Script that does the Automated Random feedback-directed testing.
Mention: The Type Test Script is an application that uses the library implementation.

TSTest – experimental results

• 54 benchmarks

• Running each type test script for 10 seconds results in
2804 found mismatches (many with same root cause)

• Mismatches found in 49/54 benchmarks
• Finds many mismatches that are missed by

previous work (TSCheck)

10

Presenter
Presentation Notes
0 false positives (in sample of 124 warnings)

Are the mismatches benign or serious?

error
63strict nulls

47

benign
14

• Sampled 124 random mismatches

• No false positives

Presenter
Presentation Notes
TODO: Out of how many errors. Randomly sampled. �TODO: Mention no false-positie.

Benign?

export function bindActionCreators
<A extends ActionCreator<any>>
(actionCreator: A): A;

function bindActionCreators(creators) {
var result = {};
for (var key in creators) {

var creator = creators[key];
if (typeof creator === 'function') {

result[key] = bindActionCreator(creator, dispatch);
}

}
return result;

}

redux.d.ts

redux.js

Presenter
Presentation Notes
This is an instance of “Limitations of the TypeScript type system”. �There are also “TStest constructing objects with private behavior” and “Intentional mismatches”

Three research challenges

1. How to detect mismatches between
library implementations and type declarations?

2. How to infer type declarations for libraries?
3. How to evolve type declarations,

as the library code evolves?

13

The Holy Grail
Infer the same declaration that an expert human would write

?

function get(obj, k) {
return obj[k];

}

function get<T>(obj: T[], k: number): T

function get<T>(obj: {[i: string]: T}, k: string): T

function get<T, K extends keyof T>(obj: T, k: K): T[K];

function get(obj: number[], k: number): number

14

Presenter
Presentation Notes
Focus on: The goal is to infer the same thing that a human would write. ��The principle type would be either the 4th example or ”declare function foo(...args: any[]): any;”

TSInfer – a declaration file inference tool [FASE 2017]

• Dynamically analyze library initialization
Snapshot of heap after loading

• Extract modules, classes, fields
• Static analysis to infer function signatures

15

Presenter
Presentation Notes
We do the dynamic analysis to get around the complex bootstraping libraries usually does.

Static analysis in TSInfer

• TSInfer must infer parameter types and return types!
Also for methods that are never called within the library

• Unification-based too imprecise
• Instead: upper-bound and lower-bound à la Pottier

A framework for type inference with subtyping, François Pottier, ICFP’98

• Unsound, flow-insensitive, context-insensitive
• Analyze entire library once

To get information about how the library uses itself

16

Presenter
Presentation Notes
TODO: explain why “analyze once”

Upper-bound and lower-bound dataflow analysis à la Pottier

• Forward dataflow analysis (lower-bound)
“what values may flow in?”

• Backward dataflow analysis (upper-bound)
“how may the values be used?”

17

x = new C();
...
foo(x);

function foo(a) {
...
b = a.next;
...

}Both kinds of information give useful hints to types,
when analyzing libraries without the applications!

Presenter
Presentation Notes
Recall that we analyze incomplete programs, so we don’t know all forward nor all backward flow

Both give hints to types

export class Sprite extends PIXI.Container {
constructor (texture: PIXI.Texture);
static fromFrame: (frameId: string | number) => PIXI.Sprite;
static fromImage: (imageId: string, crossorigin: any,

scaleMode: any) => PIXI.Sprite;
_height: number;
_width: number;
anchor: PIXI.Point;
blendMode: number;
onTextureUpdate: () => void;
setTexture: (texture: PIXI.Texture) => void;
shader: any;
texture: PIXI.Texture;
tint: number;

}

Example output from running TSInfer on PixiJS 2.2

Our goal is to get close to what a human would write

?: boolean
?: number

private
private

PIXI.Shader

private

18

Presenter
Presentation Notes
Other potential changes: �- Reordering.
- Moving methods from the super class to Sprite.

Three research challenges

1. How to detect mismatches between
library implementations and type declarations?

2. How to infer type declarations for libraries?
3. How to evolve type declarations,

as the library code evolves?

19

TSEvolve – a tool for fixing out-of-date declaration files

old.d.ts old.js new.js

TSInfer

new.gen.d.ts

Compare

List of changes

TSInfer

old.gen.d.ts

Filter

Filtered list of changes

First naive approachOur approach

20

Too many false positives, due to
• imprecise static analysis
• intentional mismatches

Presenter
Presentation Notes
First naive approach: too many false positives due to imprecise static analysis and intentional mismatches

TSEvolve: pull requests
• Updated type declaration files for 6 different libraries
• From 30 to 516 lines patched
• No prior experience with the libraries
• Done in about 1 day of work

21

Presenter
Presentation Notes
Describe: We made pull requests, and got very positive feedback on them: �Emphasis: No export knowlegde, and took a short time to actually make.
The alternative would be to look through 100.000+ lines of code, and see what changed between versions.

Conclusion

•Optional types have become popular
•Need to interact with untyped libraries
•Static/dynamic program analysis to the rescue!

• TSTest [OOPSLA 2017]
• TSInfer & TSEvolve [FASE 2017]

Π CENTER FOR ADVANCED SOFTWARE ANALYSIS

http://casa.au.dk/
22

http://cs.au.dk/CASA

	Testing and Evolving �TypeScript Declaration Files�with Program Analysis
	Slide Number 2
	Using JavaScript libraries in TypeScript applications
	An example: p2.js
	Another example: d3.js
	Three research challenges
	Three research challenges
	TSTest – feedback-directed random testing
	Slide Number 9
	TSTest – experimental results
	Are the mismatches benign or serious?
	Benign?
	Three research challenges
	The Holy Grail
	TSInfer – a declaration file inference tool [FASE 2017]
	Static analysis in TSInfer
	Upper-bound and lower-bound dataflow analysis à la Pottier
	Example output from running TSInfer on PixiJS 2.2
	Three research challenges
	TSEvolve – a tool for fixing out-of-date declaration files
	Slide Number 21
	Conclusion

