
From Action Calculi to Linear Logic

Andrew Barber

1

, Philippa Gardner

2

, Masahito Hasegawa

3

and

Gordon Plotkin

1

1

Dept. Computer Science, University of Edinburgh, Edinburgh EH9 3JZ, Scotland

2

Computing Laboratory, University of Cambridge, Cambridge CB2 3QG, England

3

RIMS, Kyoto University, Kyoto 606-8502, Japan

Abstract. Milner introduced action calculi as a framework for inves-

tigating models of interactive behaviour. We present a type-theoretic

account of action calculi using the propositions-as-types paradigm; the

type theory has a sound and complete interpretation in Power's cate-

gorical models. We go on to give a sound translation of our type the-

ory in the (type theory of) intuitionistic linear logic, corresponding to

the relation between Benton's models of linear logic and models of ac-

tion calculi. The conservativity of the syntactic translation is proved by

a model-embedding construction using the Yoneda lemma. Finally, we

briey discuss how these techniques can also be used to give conservative

translations between various extensions of action calculi.

1 Introduction

Action calculi arose directly from the �-calculus [MPW92]. They were intro-

duced by Milner [Mil96], to provide a uniform notation for capturing many cal-

culi of interaction such as the �-calculus, the �-calculus, models of distributed

migratory systems [CG97,Sew97], the spi-calculus used for describing security

protocols [AG97] and the object calculus [AC96]. In this paper, we present a

type-theoretic account of action calculi using the well-known propositions-as-

types paradigm. In particular, the constants of action calculi are analogues of

Aczel's general binding operators [Acz80]. We give a sound and conservative

translation of the calculus into a type theory for intuitionistic linear logic. Sim-

ilar results hold for some extensions of action calculi.

Semantic methods play an essential rôle in our work. Our type theory has a

natural interpretation in Power's categorical models [Pow96]. Further, Power's

models are (essentially) reducts of Benton's models of linear logic [Ben95]. We

are thereby presented with a situation similar to that well-known in other areas,

where sound translations between theories are in correspondence with functors

between the categories of their models. A leading example is provided by es-

sentially algebraic theories and their models [AR94]. The conservativity of such

sound translations can be shown using a model-embedding construction; in our

case, using the Yoneda lemma and work of Day [Day73], we show that the sound

syntactic embedding of our type theory for action calculi into the type theory of

linear logic is conservative. We emphasise that, while the general model-theoretic

ideas underlying this development are well-known, there seems to be no general

theory available which, as a particular case, applies to action calculi.

We show that our techniques also apply to three extensions of action cal-

culi: action calculi with code (which, together with a reexion operator, provide

just enough extra structure to support recursion), Milner's higher-order action

calculi [Mil94a], which turn out to be equivalent to an extension of Moggi's com-

mutative computational �-calculus [Mog88] with commutativity (incorporating

results of [GH97]), and linear action calculi. We consider the (necessarily sound)

translations between these calculi corresponding to the natural embeddings of

models; all these translations are conservative.

It remains on-going research to fully understand the dynamics of action cal-

culi and obtain, for example, a general theory of bisimulation. We do not study

dynamics in this paper except to observe that reduction dynamics as presented

in [Mil96] corresponds to a standard rewriting in the type-theoretic presentation.

We hope that the relation described between action calculi and linear logic

will prove fruitful, especially for the further understanding of concurrency. We

also hope that the treatment of translations of type theories via reducts of models

will help expose a useful paradigm.

Summary: We introduce action calculi in section 2, and give the corresponding

type-theoretic account in section 3. Section 4 presents the categorical semantics,

showing soundness and completeness. In section 5, we describe Benton's type

theory for linear logic and its categorical semantics. Section 6 gives the trans-

lation from action calculus to linear logic, which is shown to be conservative in

section 7. In section 8, we consider the three extensions of action calculi, and we

conclude in section 9.

2 Action Calculi

This section gives a brief presentation of action calculi. Our presentation di�ers

from Milner's original one [Mil96] in its choice of primitives, but is easily shown

to be equivalent. We believe this alternative presentation is slightly more natural.

The static part of an action calculus is de�ned by a set of terms and an

equational theory on the terms. It is generated from a signature K = (P;K),

which consists of a set P of primes denoted by p; q; : : : and a set K of con-

stants called control operators. Each control operator is equipped with an arity

((m

1

; n

1

); : : : ; (m

r

; n

r

))! (m;n), where the m's and n's are �nite sequences of

primes, called tensor arities; we write " for the empty sequence,
 for concate-

nation using in�x notation, and M for the set of tensor arities. We usually refer

to the tensor arities as just arities, where the meaning is clear. We assume a

�xed countably in�nite set X of names, each of which has a prime arity. We let

x; y; : : : range over names, and write x

p

to indicate that x has prime arity p.

Definition 1 (Terms)

The terms a; b; c : : : of the action calculus AC(K) are constructed from the basic

operators: identity id

m

, permutation p

m;n

, composition �, tensor
, abstraction

(x

p

) , datum hx

p

i and also from control operators K. Every term a has an arity

a : m! n, for tensor arities m and n, and the terms and their arities are given

using the following rules:

id

m

: m! m p

m;n

: m
 n! n
m

a : k ! l b : l! m

a � b : k ! m

a : k ! m b : l ! n

a
 b : k
 l ! m
 n

a : m! n

(x

p

)a : p
m! n

hx

p

i : "! p

a

1

: m

1

! n

1

: : : a

r

: m

r

! n

r

K(a

1

; : : : ; a

r

) : m! n

(K 2 K)

where, in the control term K(a

1

; : : : ; a

r

), the arity of the control operator K is

((m

1

; n

1

); : : : ; (m

r

; n

r

))! (m;n).

We omit the arity subscripts on the basic operators when apparent. The

notions of free and bound name are standard: (x) binds x and hxi represents a

free occurrence of x. We write afb=hxig to denote the usual capture-avoiding

substitution. The set of names free in a; b; : : : is denoted by fn(a; b; : : :). Given a

possibly empty sequence of names ~x = x

p

1

1

; : : : ; x

p

r

r

, we write j~xj for p

1

 : : :
p

r

.

All terms and expressions used are well formed, and all equations are between

terms of the same arity.

Definition 2 (The Equational Theory AC)

The equational theory AC on terms is that generated by the axioms of a strict

symmetric monoidal category with symmetry p:

a � (b � c) = (a � b) � c a � id

n

= a = id

m

� a

(a � b)
 (c � d) = (a
 c) � (b
 d) id

m

 id

n

= id

m
n

a
 (b
 c) = (a
 b)
 c a
 id

"

= a = id

"

 a

p

m;n

� (b
 a) = (a
 b) � p

m

0

;n

0

p

m
n;m

0

= (id

m

 p

n;m

0

) � (p

m;m

0

 id

n

)

p

m;n

� p

n;m

= id

m
n

augmented by two naming axioms:

(hyi
 id

m

) � (x)a = afhyi=hxig (�)

(x)((hxi
 id) � a) = a; where x 62 fn(a) (�)

We write a = b : m ! n in AC(K) if a and b are terms of AC(K) with arity

m ! n, and a = b in AC. We use the abbreviations (~x)a

def

= (x

1

) � � � (x

r

)a for

distinct x

i

and h~xi

def

= hx

1

i
 � � �
 hx

r

i, where ()a is a and h i is id

"

. It is an

immediate consequence of these axioms that id

m

= (~x)h~xi and p

m;n

= (~x~y)h~y~xi,

where j~xj = m and j~yj = n. The static part of an action calculus AC(K) consists

of the equivalence classes obtained by quotienting the terms in de�nition 1 by

the equational theory. In [Mil96], the equivalence classes are called actions. We

overload notation and use actions to also denote the terms, to distinguish them

from the type-theoretic terms given in section 3.

Remark 3

The dynamic part of an action calculus AC(K) is a transitive relation& between

the equivalence classes of terms with the same arity which is preserved under

tensor, composition, abstraction, and such that there is no a with id & a.

Although the dynamics are a key part of action calculi, the results in this paper

concentrate on the static part.

3 Type-Theoretic Interpretation

We present a type-theoretic interpretation of action calculi, which gives a gen-

eral way of describing natural-deduction proofs in a certain logic, using the

propositions-as-types paradigm. The underlying logical structure is built using

propositions given by the prime arities. The assumptions are split into intuition-

istic and linear assumptions; the idea of this division of assumptions is famil-

iar from linear logic [Gir93,BP98,Bar97,Ben95]. For a given action a : m ! n

with fn(a) � f~xg, the intuitionistic assumptions account for the free names ~x

and the linear assumptions for the domain arity m. The conclusions are lists of

propositions (regarded as a strict tensor of prime arities), and correspond to the

codomain arity n. The connectives of the logic are determined by the arities as-

sociated with the control operators. In particular, the control operators of action

calculi correspond to analogues of the binding operators of Aczel [Acz80,Plo90],

described in the appendix.

Rather than �rst describing the logic, we proceed directly to the type-theoretic

description. The type theory has sequents of the form � ;� ` t :m, where

� = x

p

1

1

; : : : ; x

p

r

r

is a sequence of distinct names from the name-set X with

their associated prime arities, � = w

1

:q

1

; : : : w

s

:q

s

is a sequence of distinct lin-

ear variables typed with prime arities, and m is a list of prime arities. We view

� as an intuitionistic context and � as a linear context, and call the names x

p

in

X intuitionistic variables. We use w; v : : : for linear variables, and abbreviate the

linear context w

1

:q

1

; : : : ; w

s

:q

s

to ~w :n, where n = q

1

; : : : ; q

s

. As with action

calculi, the type theory is speci�ed by a signature K = (P;K). The types are

given by the set of primes P, and the terms are generated from the set of control

operators K, the set of names X and a countably in�nite set of linear variables

W .

Definition 4 (Terms)

The terms of the type theory T (K), denoted t; s : : : , are de�ned by:

t ::= w j hx

p

i j let
~w:m be t in t j let hx

p

i be t in t j

(t; : : : ; t) j K((~w

1

:m

1

)t

;

: : : ; (~w

r

:m

r

)t; t)

The terms of the form K((~w

1

:m

1

)t

1

; : : : ; (~w

r

:m

r

)t

r

; s) correspond to the

terms arising from Aczel's binding operators. The �rst r arguments correspond

to the arguments described in the appendix, where the notation (~w

i

: m

i

)t

i

denotes that the linear variables ~w

i

are bound in the t

i

. From the typing rules,

we shall see that the ~w

i

contain all the linear variables in t

i

. The last argument

s is necessary to record the possibility that the operator requires some linear

input to be well-formed. We sometimes omit the arity information in the K

constructs, the let constructs and the intuitionistic variables when apparent.

The two let constructs correspond to linear and intuitionistic cut. The term

let
~w be t in s binds the sequence of distinct linear variables ~w in s and the

term let hxi be t in s binds x in s; we sometimes write these terms as [~w := t]t

0

and [x

p

:= t]t

0

respectively. The term
(t

1

; : : : ; t

r

) denotes a tensor of length

r; we abbreviate
[] to � and
(t

1

; t

2

) to t

1

 t

2

as usual. We write h~xi for

(hx

1

i; : : : ; hx

n

i) and use (let h~xi be

~

t in s) to denote [x

1

:= t

1

] : : : [x

n

:= t

r

]s.

We identify terms up to �-conversion (that is on linear bound variables and

intuitionistic bound variables of the same arity). We use a standard notion of

substitution, and write tfs=hxig for intuitionistic substitution and tfs=wg for

linear substitution.

Definition 5

We say that a term can be typed in the type theory T (K) if it can be shown to

annotate a sequent using the following rules:

� ; v :p ` v :p

� ;�

1

; v :p;w :q;�

2

` t:m

� ;�

1

; w :q; v :p;�

2

` t:m

�

1

; x

p

; �

2

; ` hx

p

i : p

� ;�

1

` t:p �; x

p

;�

2

` s:m

� ;�

1

; �

2

` let hx

p

i be t in s:m

� ;�

i

` t

i

:m

i

i = 1; : : : ; r

� ;�

1

; : : : ; �

r

`
(t

1

; : : : ; t

r

) : m

1

; : : : ;m

r

� ;�

1

` t:m � ; ~w:m;�

2

` s:n

� ;�

1

; �

2

` let
~w:m be t in s:n

� ; ~w

i

:m

i

` t

i

:n

i

� ;� ` s:m i = 1; : : : ; r

� ;� ` K((~w

1

:m

1

)t

1

; : : : ; (~w

r

:m

r

)t

r

; s) : n

(K 2 K)

where, in the last rule, K has arity ((m

1

; n

1

); : : : ; (m

r

; n

r

))! (m;n).

The exchange rule (on the �rst line) is needed to handle the commutativity

of the tensor in the type theory { in the action calculus an explicit permuta-

tion operator appears instead. Because of this rule, terms do not have unique

derivations (in given contexts), though they do have unique typings. As a re-

sult various coherence issues arise { see below. An alternative approach, see, for

example [BP98], is to \build-in" the exchange rule by allowing permutations of

contexts in the other rules.

We give the equalities of the type theory in de�nition 6. Most of these are

familiar from linear logic. However, it is worth noting that the �rst two ax-

ioms enforce the strictness of the tensor. Also note that we can derive terms

; ~w :m;~v :n ` s :n;m corresponding to the permutation operator using the ad-

missible exchange on the intuitionistic context � .

Definition 6 (Equality)

We de�ne an equality judgement � ;� ` t = s : m, where � ;� ` t :m and

� ;� ` s :m, with appropriate reexivity, transitivity and congruence rules,

based on the following axioms:

 (

~

t

1

; : : : ;

~

t

r

) =
(

~

t

1

;

~

t

2

; : : : ;

~

t

r

)
(t) = t

let hxi be hyi in t = tfhyi=hxig [~v ~w := t
 s]t

0

= [~v := t][~w := s]t

0

let hxi be t in hxi = t let
~w be t in
~w = t

augmented with the commuting conversions:

[x := s][~w := t

0

]t = [~w := ([x := s]t

0

)]t [~w := t][x := s]t

0

= [x := s][~w := t]t

0

[~w := t][x := t

0

]s = [x := ([~w := t]t

0

)]s [~w := t](s
 t

0

) = s
 ([~w := t]t

0

)

[~w := t](t

0

 s) = ([~w := t]t

0

)
 s [~w := t][~v := s]t

0

= [~v := s][~w := t]t

0

[~w := t][~v := t

0

]s = [~v := ([~w := t]t

0

)]s

[~w := t]K((~v

1

)t

1

; : : : ; (~v

r

)t

r

; s) = K((~v

1

)t

1

; : : : ; (~v

r

)t

r

; [~w := t]s)

where in the �rst two commuting conversions x may not be a free intuitionistic

variable of t. Since these terms are well-typed by assumption, these conditions

on free variables are the only ones necessary.

3.1 Connection with Action Calculi

We give the formal justi�cation of our assertion that the type theory T(K)

corresponds to the action calculus AC(K), by de�ning translations which are

sound and inverse to each other up to provable equality (modulo a certain,

essentially arbitrary, choice of linear context). First, we give the translation

from AC(K) to T(K); given an action a : m! n, we de�ne a term �

�

(a), which

depends on an arbitrary linear context � where j�j is the domain arity m.

Definition 7 (The Translation �)

For every action a : m ! n with free names in the list � and for every linear

context � with j�j = m, we de�ne a term �

�

(a) such that � ;� ` �

�

(a) :n.

The de�nition is by induction on the structure of a:

�

�

(id

m

) =
(w

1

; : : : ; w

r

); where m = p

1

: : : p

r

and � = w

1

: p

1

; : : : ; w

r

: p

r

�

w

1

:p

1

;w

2

:p

2

(p

p

1

;p

2

) = w

2

 w

1

�

�

(a

1

� a

2

) = let
~v be �

�

(a

1

) in �

�

1

(a

2

);where �

1

= ~v:l and a

1

: m! l

�

�

1

;�

2

(a

1

 a

2

) = �

�

1

(a

1

)
 �

�

2

(a

2

);where a

1

: j�

1

j ! k and a

2

: j�

2

j ! l

�

w:p;�

1

((x

p

)a

1

) = let hxi be w in �

�

1

(a

1

)

�

"

(hx

p

i) = hx

p

i

�

�

(K(a

1

; : : : ; a

r

)) = K((~v

1

)�

�

1

(a

1

); : : : ; (~v

r

)�

�

r

(a

r

);
~w);

where � = ~w : m, �

i

= ~v

i

:m

i

with the m and m

i

's given by the arity of K

In the third and last cases we assume a �xed choice of new variables (in fact all

choices result in �-equivalent terms).

The translation from T(K) to AC(K) is simpler: given a sequent � ;� ` t:n,

we de�ne an action 	(� ;� ` t :n) : j�j ! n, with free names in the list � as

follows (we confuse derivations with sequents).

Definition 8 (The Translation)

The translation 	 is de�ned inductively on derivation of sequents:

	(� ;w :p ` w :p) = id

p

	(� ;�

1

; w:q; v :p;�

2

` t:m) = (id
 p

q;p

 id) � 	(� ;�

1

; v :p;w :q;�

2

` t:m)

	(�

1

; x

p

; �

2

; ` hx

p

i:p) = hx

p

i

	(� ;�

1

; �

2

` let hx

p

i be t in s:m) =

((� ;�

1

` t:p)
 id

j�

2

j

) � (x)	(�; x

p

;�

2

` s:m)

	(� ;�

1

; : : : ; �

r

`
(t

1

; : : : ; t

r

) : m

1

; : : : ;m

r

) =

i=1;::: ;r

((� ;�

i

` t

i

:m

i

))

	(� ;�

1

; �

2

` let
~w:m be t in s:n) =

((� ;�

1

` t:m)
 id

j�

2

j

) � 	(� ; ~w:m;�

2

` s:n)

	(� ;� ` K((~w

1

:m

1

)t

1

; : : : ; (~w

r

:m

r

)t

r

; s) : n) =

	(� ;� ` s:m) � K((� ; ~w

1

:m

1

` t

1

:n

1

); : : : ; 	(� ; ~w

r

:m

r

` t

r

:n

r

))

A suitable coherence result can be proved, that, up to provable equality, the

translation is independent of the derivation chosen.

The following proposition states that the translations are sound and inverse

to each other up to provable equality (and modulo the choice of contexts). The

action calculus AC(K) and its corresponding type theory T(K) are therefore

equivalent.

Proposition 9

1. If a = b : m ! n in AC(K) such that fn(a; b) is contained in � , then

� ; ~w :m ` �

~w:m

(a) = �

~w:m

(b) : n in T(K) for an arbitrary linear context

~w:m.

2. If � ;� ` t = s : n in T(K) then 	(� ;� ` t :n) = 	(� ;� ` s :n) : j�j ! n

in AC(K).

3. 	(� ;� ` �

�

(a):n) = a : j�j ! n in AC(K), if fn(a) is contained in � .

4. If � ; ~w :m ` t :n in T(K) then � ; ~w :m ` �

~w:m

((� ; ~w :m ` t :n)) = t :n in

T(K).

4 Categorical Models

The type theory given in section 3 has categorical models given by Power's

elementary control structures [Pow96]. In this section, we de�ne the models,

and give an interpretation of the type theory in the models. This interpretation

is sound and complete, by standard term-model arguments providing an initial

model. It can be shown that the translations between the type theory and the

corresponding action calculi respect their semantics. With this and proposition

9 one sees that our results are the type-theoretic analogue of Power's.

4.1 Action Models

The action models are constructed from a carrier (C;S; F), where C is a strict

cartesian category which models the free names, S is a strict symmetric monoidal

category which models arbitrary terms of AC(K), and F : C ! S is a strict sym-

metric monoidal functor which embeds the cartesian structure in the symmetric

monoidal structure. An action model (over K) further provides an interpretation

function of the prime arities as objects of C, and of control operators as natural

transformations.

Definition 10 (Action Models)

An action model over signature K, denoted by A, consists of a carrier (C;S; F)

together with an interpretation function [[]]

P

: P! obj(C), and for each operator

K with arity ((m

1

; n

1

); : : : ; (m

r

; n

r

))! (m;n), a natural transformation

[[K]]

K

:

Y

i=1;::: ;r

S(F ()
 [[m

i

]]

0

; [[n

i

]]

0

)! S(F ()
 [[m]]

0

; [[n]]

0

)

where [[]] : M ! obj(C) is de�ned by [[p

1

; : : : ; p

r

]] = [[p

1

]]

P

� : : : [[p

r

]]

P

and ()

0

=

F (). Where convenient, we omit the subscripts from [[]]

P

and [[]]

K

.

Remark 11

In [Pow96], the category C is the free cartesian category generated from the set

of primes P and F is the identity-on-objects functor. We prefer a simpler, more

general condition, and note that the term model satis�es the stronger conditions.

Power also includes a preorder on the morphisms of S to model the the action

calculi dynamics, which we omit.

Definition 12 (Action morphisms)

An action morphism f : A

1

! A

2

between two action models over signa-

ture K is a pair (f

c

; f

s

) where f

c

: C

1

! C

2

is a strict cartesian functor and

f

s

: S

1

! S

2

is a strict symmetric monoidal functor such that: F

2

� f

c

=

f

s

� F

1

; for each p 2 P we have [[p]]

A

1

P

; f

c

= [[p]]

A

2

P

; and, for each operator

K with arity ((m

1

; n

1

); : : : ; (m

r

; n

r

)) ! (m;n), we have f

s

(([[K]]

A

1

K

)

()

(::)) =

([[K]]

A

2

K

)

f

c

()

(f

s

(::)) in

Nat

C

1

(

Y

i=1;::: ;r

S

1

(F

1

()
 ([[m

i

]]

A

1

)

0

; ([[n

i

]]

A

1

)

0

);S

2

(F

2

f

c

()
 ([[m]]

A

2

)

0

; ([[n]]

A

2

)

0

)):

An action model is small when its component categories are small. The category

of small action models, Mod(T(K)), is the category whose objects are the small

action models and whose morphisms are the action morphisms, with the obvious

identities and composition.

Remark 13

There are at least two other possible approaches to modelling action calculi cat-

egorically. The �rst of these is to use �brations, as in the �brational control

structures of [HP95]; the second is to use indeterminates, freely adding mor-

phisms x : 1 ! [[p]] to C in such a way that the relevant structure is preserved.

One advantage of this latter approach is its clear modelling of free names, and

in fact it adapts the results of Gardner [Gar98] who adds indeterminates to her

closed action calculi setting to recapture the expressiveness of free names. In in-

dependent but related work, Pavlovi�c [Pav97] adds indeterminates to his models

for the closed action calculi and points out the connection with the standard

categorical notion of functional completeness.

4.2 Interpretation

In this section, we give the interpretation of the type theory T(K) in an arbi-

trary action model A, and state the soundness and completeness results. First,

we require some notation. Given the interpretation function [[]] : M ! obj(C),

we extend the function to intuitionistic contexts de�ning [[�]] = [[j� j]], to linear

contexts de�ning [[�]] = F [[j�j]], and �nally to contexts � ;� de�ning [[� ;�]] =

F ([[�]])
 [[�]]. We sometimes omit the semantic brackets for clarity of presenta-

tion.

Definition 14 (Interpretation of T (K))

Given a type theory T(K) and action model A, the interpretation [[]] of sequents

� ;� ` t :m in the type theory as morphisms [[� ;�]] ! [[m]]

0

in S is de�ned by

induction on the derivation of sequents, where we (again) elide the distinction

between derivations and typed terms:

{ Axiom: [[� ;w :p ` w :p]] = F (disc

[[�]]

)
 id

p

0

, where disc

[[�]]

: [[�]]! 1 denotes

the morphism to the terminal object 1 in C.

{ Exchange:

[[� ;�

1

; v :p; w :q;�

2

` t:m]] = f

[[� ;�

1

; w:q; v :p;�

2

` t:m]] = (id

�

0

 id

�

1

 �

q

0

;p

0

 id

�

2

); f

where �

p

0

;q

0

: p

0

 q

0

! q

0

 p

0

denotes the permutation natural isomorphism

in S.

{ Name introduction: [[�

1

; x

p

; �

2

; ` x:p]] = F (disc

[[�

1

]]

)
 id

p

0

 F (disc

[[�

2

]]

)

{ Name elimination:

[[� ;�

1

` t:p]] = f [[�; x

p

;�

2

` s:m]] = g

[[� ;�

1

;�

2

` let hx

p

i be t in s:m]] =

(F (copy

[[�]]

)
 id

�

1

 id

�

2

); (id

�

0

f
 id

�

2

); g

where copy

[[�]]

: [[�]]! [[�]]� [[�]] is the diagonal morphism in C.

{ Tensor introduction:

[[� ;�

i

` t

i

:m

i

]] = f

i

[[� ;�

1

; : : : ; �

n

`
(t

1

; : : : ; t

r

):m

1

; : : : ;m

r

]] = perm; (f

1

 : : :
 f

r

)

where perm is the evident permutation and copy morphism [[� ;�

1

; : : : �

r

]]!

[[� ;�

1

]]
 [[� ;�

2

]]:::
 [[� ;�

r

]].

{ Tensor elimination:

[[� ;�

1

` t:m]] = f [[� ;�

2

; ~w:m ` s:n]] = g

[[� ;�

1

;�

2

` let
~w be t in s:m]] =

(F (copy

[[�]]

)
 id

�

1

�

2

); (id

�

0

f
 id

�

2

); (id

�

0

�

m

0

;�

2

); g

{ Control rule: Given the natural transformation [[K]]

K

:

Q

i=1;::: ;r

S(F ()

m

0

i

; n

0

i

)! S(F ()
m

0

; n

0

); we have

[[� ; ~w

i

:m

i

` t

i

:n

i

]] = f

i

[[� ;� ` s:m]] = g i = 1 : : : r

[[� ;� ` K((~w

1

:m

1

)t

1

; : : : ; (~w

r

:m

r

)t

r

; s)]] =

(F (copy

[[�]]

)
 id

�

); (id

�

0

 g); [[K]]

�

0

(f

1

; : : : ; f

r

)

The proof of the soundness of the interpretation is straightforward. Complete-

ness is proved by de�ning a term model. The basic idea is that the morphisms in

the cartesian category are constructed from lists of sequents � ; ` t :m, where

t does not contain a control operator, and the symmetric monoidal category S

is constructed from arbitrary sequents ;� ` t:m. Due to space restrictions, we

do not give the construction; the details can be found in [BGHP96].

Proposition 15

1. (Soundness) � ;� ` t = s : m implies [[� ;� ` t :m]] = [[� ;� ` s :m]] in any

action model.

2. (Completeness) Given derivations � ;� ` t :m and � ;� ` s :m in type

theory T(K), if in every action model [[� ;� ` t :m]] = [[� ;� ` s :m]] then

� ;� ` t = s : m.

3. (Initiality) There is an initial term model A

T

.

5 Linear Logic

The type theory presented in this section is essentially the LNL (Linear and

Non-Linear logic) of Benton [Ben95]. It consists of intuitionistic entailments

� `

C

M :X and linear entailments � ;� `

L

L :A, with operators F and G to

pass between the entailment relations.

We assume a set of primitive intuitionistic types P. The sets of intuitionistic

types, denoted by X;Y; : : : , and linear types, denoted by A;B; : : : , are given by

the grammars

X := p 2 P j 1 j X �X j G(A) A := I j A
 A j A(A j F (X)

LNL also includes an intuitionistic arrow type, although this is actually not

necessary to capture linear logic. We also assume a set C of constants, ranged

over by c; each c has a linear type A

c

. With P this determines the LNL-signature

C = (P;C). We also assume a set X of intuitionistic variables ranged over by

x; y : : : and a set of linear variables W ranged over by w; v : : : . Now the sets of

intuitionistic terms, denoted byM;N; : : : , and linear terms, denoted byK;L; : : : ,

are de�ned by:

M ::= x j i j hM;Mi j �

1

j �

2

j G(L)

L ::= c j w j � j let �:I be L in L j L
 L j let w
 w :A
 A be L in L

j �w :A:L j LL j F (M) j let F (x):F (X) be L in L j derelict(M)

Definition 16 (The Typing Rules)

The type theory for LNL over LNL-signature C = (P;C), denoted by LNL(C), is

described by the following rules:

� ;w :A `

L

w :A �; x:X `

C

x:X

� `

C

i:1

� `

C

M :X � Y

� `

C

�

1

M :X

� `

C

M :X � ` N :Y

� `

C

hM;Ni:X � Y

� `

C

M :X � Y

� `

C

�

2

M :Y

� ; `

L

�:I

� ;�

1

`

L

K :I � ;�

2

`

L

L:A

� ;�

1

; �

2

`

L

let � be K in L:A

� ;�

1

`

L

K :A � ;�

2

`

L

L:B

� ;�

1

; �

2

`

L

K
 L:A
 B

� ;�

1

`

L

K :A
B � ;�

2

; v :A;w :B `

L

L:C

� ;�

1

; �

2

`

L

let v
 w be K in L:C

� ;�; v :A `

L

K :B

� ;� `

L

�v :A:K :A(B

� ;�

1

`

L

K :A(B � ;�

2

`

L

L:A

� ;�

1

; �

2

`

L

KL:B

� `

C

M :X

� ; `

L

F (M):FX

� ;�

1

`

L

K :FX �; x:X;�

2

`

L

L:C

� ;�

1

; �

2

`

L

let F (x) be K in L:C

� ; `

L

K :A

� `

C

G(K):GA

� `

C

M :GA

� ; `

L

derelict(M):A

� ; `

L

c:A

c

(for c:A

c

2 C)

With action calculi and their corresponding type theories, the tensor is strict.

The tensor in LNL is not strict. We interpret the list structure using the non-

strict tensor by de�ning
() = � and
(A

1

; : : : A

r

) = (::(A

1

A

2

) : : :
A

r

) for

r > 0. We adapt this de�nition for lists of terms in the obvious way, and de�ne

a term construct let
~w be t in u along the same lines.

We include constants for LNL which correspond to the controls operators

arising from a signature K. In T(K), we have control terms that have the form

K((~w

1

:m

1

)t

1

; : : : ; (~w

r

:m

r

)t

r

; s). In LNL, we are able to make use of the linear

�-abstraction to mimic the abstractions in the control term.

Definition 17

LNL over signatureK = (P;K), denoted by LNL(K), is the type theory LNL(P;C

K

)

where C

K

is the set

fc

K

:

i=1;::: ;r

(m

�

i

(n

�

i

)((m

�

(n

�

) j

K 2 K and has arity ((m

1

; n

1

); : : : ; (m

r

; n

r

))! (m;n)g

in which we write (p

1

; : : : ; p

s

)

�

for

i=1;::: ;s

F (p

i

).

5.1 Linear Models

Our models of the linear type theory given in de�nition 16, called LNL models,

are adaptations of the models given in [BBdPH93]. It is convenient to work with

strict versions of the models; the non-strict case is described in [BGHP96]. The

carrier of an LNL model is a quadruple (C;S; F;G) where C is a strict cartesian

category, S is a strict symmetric monoidal closed category and F : C ! S

is a strict symmetric monoidal functor with right adjoint G. Each model has

appropriate interpretation functions for the primitive types and constants.

Definition 18 (The Models of LNL(C))

A strict LNL model over a LNL-signature C = (P;C), denoted by L, is a carrier

(C;S; F;G), with interpretation functions [[]]

P

: P ! obj(C) and [[]]

C

, where

[[c]]

C

2 S(I; [[A

c

]]) for c : A

c

and [[A

c

]] is de�ned in the obvious way.

Definition 19 (LNL(C) Morphism)

A strict LNL(C) morphism f : L

1

! L

2

between two strict LNL models over

signature C (with carriers (C

1

;S

1

; F

1

; G

1

) and (C

2

;S

2

; F

2

; G

2

) respectively) is a

pair (f

c

; f

s

) where f

c

: C

1

! C

2

is a strict cartesian functor and f

s

: S

1

! S

2

is a

strict symmetric monoidal closed functor, such that (f

c

; f

s

) is a map of adjoints

from F

1

aG

1

to F

2

aG

2

(see [Mac71]), for all p 2 P we have [[p]]

L

1

P

; f

c

= [[p]]

L

2

P

and for all c 2 C, we have [[c]]

L

1

C

; f

s

= [[c]]

L

2

C

.

Given an action calculus signature K = (P;K), the category of strict small

LNL(K) models, denoted by Mod(LNL(K)), is the category whose objects are

strict small LNL(C) models and whose morphisms are strict LNL(C) morphisms

where C = (P;C

K

).

The interpretation of the type theory LNL(C) in a (strict) LNL(C) model L

sends derivations of sequents � ;� `

L

L : A to arrows [[� ;�]]

[[� ;� `

L

L:A]]

-

[[A]]

in S, and derivations of sequents � `

C

M :X to arrows [[�]]

[[� `

C

M :X]]

-

[[X]]

in C. The type constructors F and G are interpreted using the functors F and G

in the model. We omit the interpretation; it is similar in spirit to the one given

in de�nition 14. Benton has shown that the interpretation is sound. We have

shown completeness, by constructing a (strict) initial term model, denoted by

L

T

.

6 Translation

In this section, we give the translation from T(K) to LNL(K) and show how it

corresponds to a functor � between the categories of their models, following the

general ideas of functorial semantics mentioned in the introduction.

Definition 20 (Translation from T(K) to LNL(K))

The translation ()

�

from T(K) to LNL(K) is de�ned inductively on the structure

of the types and terms, where we use the same linear variable sets in T (K) and

LNL(K), and assume that the intuitionistic variable set of LNL(K) includes that

of T (K):

types terms

p

�

= Fp w

�

= w

(p

1

: : : p

r

)

�

=
(p

�

1

; : : : ; p

�

r

) hx

p

i

�

= F (x)

(let hx

p

i be t in s)

�

= let F (x):p

�

be t

�

in s

�

(t

1

; : : : ; t

r

)

�

=
(t

�

1

; : : : ; t

�

r

)

(let
~w:m be t in s)

�

= let
~w:m

�

be t

�

in s

�

K((~w

1

:m

i

)t

1

; : : : ; (~w

r

:m

r

)t

r

; s)

�

=

c

K

(

i=1;::: ;r

FG(�~w

i

:m

�

i

:t

�

i

)) s

�

Now setting (x

p

1

1

: : : x

p

r

r

)

�

= x

1

:p

1

: : : x

r

:p

r

for intuitionistic contexts and �

�

=

� for linear contexts, we have that if � ;� ` t:m then �

�

;�

�

`

L

t

�

:m

�

.

Lemma 21

There is a functor � :Mod(LNL(K))!Mod(T(K)).

Proof Given LNL(K) model L with carrier (C;S; F;G), we de�ne �(L) to be

the action model having carrier (C;S; F) with the same interpretation function

on primes and the natural transformation [[K]]

K

for each K 2 K constructed using

[[c

K

]]

C

and the isomorphism

Nat

C

(

Y

i=1;::: ;n

S(F ()
 �

i

; �

i

);S(F ()
 �; �)) ' S(

O

i=1;::: ;n

FG(�

i

(�

i

); �(�):

Given the strict LNL-morphism (f

c

; f

s

) : L

1

! L

2

, it is not di�cult to show that

(f

c

; f

s

) : �(L

1

)! �(L

2

) is an action morphism. ut

Thus the functor � is a forgetful functor which discards the extra structure of

the LNL-models.

Proposition 22

Let L be a model of LNL(K), and suppose that � ;� ` t:m. Then

[[�

�

;�

�

` t

�

:m

�

]]

L

= [[� ;� ` t:m]]

�(L)

:

Corollary 23 (Soundness)

If � ;� ` t = s:m in T(K) then �

�

;�

�

`

L

t

�

= s

�

:m

�

in LNL(K).

Proof By proposition 22 if � ;� ` t = s:m holds in every model of T(K) then

�

�

;�

�

`

L

t

�

= s

�

:m

�

holds in every model of LNL(K). The result then follows

by the soundness of T(K) and the completeness of LNL(K). ut

7 Conservativity Result

The conservativity of the syntactic translation ()

�

from T(K) to LNL(K) is

proved by constructing a model of linear logic from an action model in such

a way that the structure of the action model is faithfully preserved (Corollary

25). Our construction is based on the fact that the presheaf category of a small

(symmetric) monoidal category is its free (symmetric) monoidal cocompletion

[Day70,IK86]. Related results are described systematically in [PR97] and used

in [GH97] in essentially the same manner.

Lemma 24

Let C and D be small strict symmetric monoidal categories, with a strict sym-

metric monoidal functor F : C ! D. Then there exist small strict symmetric

monoidal closed categories

b

C and

b

D, fully faithful strict symmetric monoidal

functors i

C

: C !

b

C and i

D

: D !

b

D together with a strict symmetric monoidal

functor

b

F :

b

C !

b

D such that the induced square commutes and

b

F has a right

adjoint.

Proof Following [Day70,IK86], we know that the presheaf category [C

op

;Set]

is a free symmetric monoidal cocompletion of C and the Yoneda embedding is

strong symmetric monoidal; the monoidal product in the presheaf category is

given by the coend G

0

H =

R

X;Y

GX �HY �C(; X
 Y) and I

0

= C(; I).

Note that this de�nition makes sense in the enriched setting [Kel82], though here

we do not need this generality (but see section 9). For our purpose, we need to

take the strict equivalent of the presheaf category and the Yoneda embedding,

which we shall denote by

b

C and i

C

respectively (and similarly for D). Then F

extends to a strict symmetric monoidal functor

b

F :

b

C !

b

D with a right adjoint,

where the latter is induced by [F

op

;Set] and the former is given as a left Kan

extension. We can choose

b

F so that the induced square strictly commutes. While

b

C and

b

D obtained as above are not small, we can cut down them to be small

and retain the required structure { note that we only need full subcategories

with small sets of objects and arrows; it is routine but lengthy to write down

the explicit description of them as small sets. ut

Corollary 25

For an action model A, there exists an LNL(K) model L such that there is a

faithful action morphism from A to �(L).

Proof Assume that A has the carrier (C;S; F). We take the carrier of L

to be (

b

C;

b

S;

b

F ;G) described as above, where G is a right adjoint of

b

F . The

interpretation function for primes is given by [[p]]

L

P

= i

C

([[p]]

A

P

). Given arity

((m

1

; n

1

); : : : ; (m

r

; n

r

))! (m;n), we note an isomorphism

Nat

C

(

Y

i=1;::: ;r

S(F ()
 [[m

i

]]

A

0

; [[n

i

]]

A

0

);S(F ()
 [[m]]

A

0

; [[n]]

A

0

)) '

b

S(

O

i=1;::: ;r

b

FG([[m

i

]]

L

0

([[n

i

]]

L

0

); [[m]]

L

0

([[n]]

L

0

)

obtained by applying the Yoneda lemma repeatedly, which gives [[]]

L

C

K

from [[]]

A

K

.

ut

Theorem 26 (Conservativity)

The translation ()

�

is conservative.

Proof Suppose that the sequent �

�

;�

�

`

L

t

�

= s

�

: m

�

is provable in LNL(K).

Let A

T

be the initial action model, and construct L as above. Then the equality

holds in L, and hence � ;� ` t = s : m holds in �(L). However, i

S

is faithful,

and so � ;� ` t = s : m holds in A

T

, and is therefore provable in T(K). ut

8 Extensions of Action Calculi

We have emphasised the fact that the functor � :Mod(LNL(K))!Mod(T(K))

corresponds to the syntactic translation ()

�

: T(K) ! LNL(K). We have also

shown that this translation is conservative, by constructing a LNL model from

an action model which faithfully preserves the structure of the action model.

Our techniques can also be used to provide conservative translations for various

extensions of action calculi. We consider three extensions: higher-order action

calculi introduced by Milner in [Mil94a], action calculi with code, and linear

action calculi, which we introduce. We give a brief summary of our results: the

full details are given in [BGHP96].

Higher-order action calculi extend action calculi, allowing closures of actions

to be created and substituted for free names in other actions.

Definition 27 (Higher-order action calculi)

The higher-order action calculus HAC(K) is given by extending the de�nition of

action calculi as follows:

1. the set of primes and the set of arities are constructed from the following

abstract grammars:

set of primes p ::= p

0

2 P j m) m

set of arities m ::= p j m
m j "

where P denotes the set of basic primes speci�ed by the signature, and the

tensor is strict;

2. the set of terms is generated by the rules in de�nition 1, plus the rules

a : m! n

�

�

�(a) : "! (m) n)

ap

m;n

: (m) n)
m! n

3. the equational theory is generated from the axioms in de�nition 2, plus the

axioms

(�

�

�(a)
 id) � ap = a (�) �

�

�((hxi
 id) � ap) = hxi (�)

(�

�

�(a)
 id) � (x)b = bf�

�

�(a)=hxig (�)

In [Mil94a], Milner uses the notation paq instead of �

�

�(a). Hasegawa and Gardner

give a type-theoretic formulation of higher-order action calculi [GH97], which is

shown to be an extension of Moggi's computational �-calculus [Mog88] with

commutativity. They show that a higher-order model is an action model with

carrier (C;S; F) such that, for every B 2 S, the functor F ()
B : C ! S has a

right adjoint.

An alternative way of expressing the higher-order features is to use two ex-

tensions to the basic action calculus structure: the action calculus with code,

whose structure is a fragment of higher-order action calculi, and the linear ac-

tion calculus, which conservatively extends the higher-order action calculus.

Definition 28 (Action Calculi with Code)

An action calculus with code ACC(K) is the fragment of the higher-order action

calculus HAC(K) given by restricting actions of the form �

�

�(a) to the case when

a has arity " ! m. More speci�cally, we write !m for (") m), and extend the

terms of action calculi with two extra constructs given by the rules:

a : "! m

code(a) : "!!m

decode

m

:!m! m

The equalities are generated by the axioms in de�nition 2, plus three extra

axioms corresponding to the �, � and � axioms given in de�nition 27.

Action calculi with code provide just enough structure to give recursion in the

presence of a reexion operator [Mif96,Has97a]. They are modelled by action

models with carrier (C;S; F) in which the functor F has a right adjoint.

Linear action calculi extend action calculi with code, by incorporating linear

arities, a linear �-abstraction and application.

Definition 29 (Linear Action Calculi)

The linear action calculus LAC(K) is given by extending the de�nition of the

action calculus with code ACC(K) as follows:

1. the set of primes is the union of the sets of intuitionistic and linear primes

given, together with the set of arities, by the following grammars:

intuitionistic primes p ::= p

0

2 P j !m

linear primes l ::= p(m

arities m ::= p j l j m
m j "

where P denotes the set of basic primes from the signature, the arities ac-

companying the names are restricted to the intuitionistic primes, and the

tensor is strict;

2. the set of terms is generated by the rules in de�nitions 1 and 28, plus the

rules

a : m
 p! n

�

�

�

L

(a) : m! (p(n)

ap

L

p;n

: (p(n)
 p! n

for any linear or intuitionistic prime p.

3. the equational theory is generated from the axioms in de�nition 1 and 28,

plus the axioms

(�

�

�

L

(a)
 id) � ap

L

= a �

�

�

L

((a
 id) � ap

L

) = a

�

�

�

L

((a
 id) � b) = a � �

�

�

L

(b) (x)�

�

�

L

(a) = �

�

�

L

((x)a)

again for any linear or intuitionistic prime p.

In [BGHP96], we give the type-theoretic formulation of LAC(K), which is an ex-

tension of the type theory in section 3 and corresponds to a strict version of LNL.

In the type theory, the last two axioms correspond to moving the intuitionistic

and linear let constructs inside the �-terms. The models for LAC(K) are given by

action models with carrier (C;S; F), where S is closed and F has a right adjoint.

Remark 30

Another linear extension of action calculi with code is possible, more along the

lines of Milner's original higher-order action calculi. Instead of the partial closure

operation �

�

�

L

of de�nition 29, de�ne the closure �

�

�

0

L

(a) : � ! (m (n) for any

action m ! n. Given an application operator and axioms corresponding to the

� and � axioms of de�nition 29, this extension gives the minimal extra structure

required to obtain a conservativity result over the higher-order action calculi.

The translations, which connect the basic de�nition of action calculi and its

various extensions, can be described by: the evident embeddings �

1

from AC(K)

to ACC(K) and �

2

from ACC(K) to LAC(K); the translation �

3

from ACC(K) to

HAC(K), which sends !m to ") �

3

(m); and the translation �

4

from HAC(K) to

LAC(K), which sends m) n to !(p

1

((p

2

(: : : (p

r

(�

4

(n)) : : :)) where m is

p

1

: : :
p

r

for r � 0. All these translations are sound, and correspond to functors

between the categories of models. Using similar techniques to section 7, we have

shown that these translations are sound and conservative, and correspond to

functors between the categories of models. The details are given in [BGHP96].

9 Concluding Remarks

We have given a type-theoretic presentation of the static part of action calculi,

and shown that it conservatively embeds in a type theory for intuitionistic linear

logic by appealing to the corresponding categorical models. Milner de�nes the

dynamics of action calculi using order-enriched categories. It should be possible

to extend our results to take account of this notion of dynamics, by using an

ordered type theory with suitable order-enriched models; one question that arises

is to what extent the controls should be order-enriched.

We have also indicated that our techniques are easily adapted to three ex-

tensions of action calculi: the higher-order action calculi introduced by Milner,

the action calculi with code and the linear action calculi presented here. Milner

has also introduced the reexive action calculi [Mil94b], by adding a reex-

ion operator to mimic the notion of feedback. Mifsud [Mif96] and Hasegawa

[Has97b,Has97a] have given the corresponding categorical models, where the

reexion operator corresponds to the trace operator of Joyal, Street and Ver-

ity [JSV96]. It is straightforward to extend the type-theoretic presentation to

account for reexion [Has97a]. We trivially have sound embeddings of each ac-

tion calculus into its reexive counterpart, and have sound translations analogous

to the �

1

; : : : ; �

4

given at the end of section 8. Milner has a syntactic proof that

the reexive action calculi conservatively extend action calculi using molecular

forms, but it remains an open problem whether any of the other embeddings

or translations are conservative. In particular, our semantic techniques do not

apply as the presheaf construction does not yield trace operators at higher types.

We have related action calculi with the much-studied world of linear logic.

We hope our work will lead to a cross-fertilisation of ideas between these two

areas of research, and a further understanding of interactive behaviour.

Acknowledgments We thank John Power for many helpful discussions, and

Martin Hyland for pointing out the relevance of the connection between syntactic

translations and functors between categories of models.

References

[AC96] M. Abadi and L. Cardelli: A Theory of Objects. Monographs in Computer

Science, Springer (1996)

[AG97] M. Abadi and A. Gordon: A calculus for cryptgraphic protocols. In Proc.

4th ACM Conf. Computer and Communications Security, ACM Press

(1997) 36{47

[Acz80] P. Aczel: Frege structures and the notions of proposition, truth and set.

In The Kleene Symposium, North-Holland (1980) 31{59

[AR94] J. Ad�amek and J. Rosick�y: Locally Presentable and Accessible Categories.

London Mathematical Society Lecture Note Series 189, Cambridge Uni-

versity Press (1994)

[Bar97] A. Barber: Linear Type Theories, Semantics and Action calculi. PhD the-

sis ECS-LFCS-97-371, University of Edinburgh (1997)

[BGHP96] A. Barber, P. Gardner, M. Hasegawa and G. Plotkin: Action calculi, the

computational �-calculus and linear logic. Draft (1996)

[BP98] A. Barber and G. Plotkin: Dual intuitionistic linear logic. Submitted

(1998)

[Ben95] N. Benton: A mixed linear non-linear logic: proofs, terms and models.

In Proc. Computer Science Logic (CSL'94), Springer Lecture Notes in

Computer Science 933 (1995) 121{135

[BBdPH93] N. Benton, G. Bierman, V. de Paiva and J.M.E. Hyland: Linear lambda-

calculus and categorical models revisited. In Proc. Computer Science

Logic (CSL'92), Springer Lecture Notes in Computer Science 702 (1993)

61{84

[CG97] L. Cardelli and A. Gordon: Mobile ambients. Draft (1997)

[Day70] B.J. Day: On closed categories of functors. In Midwest Category Seminar

Reports IV, Springer Lecture Notes in Mathematics 137 (1970) 1{38

[Day73] B.J. Day: An embedding theorem for closed categories. In Category Sem-

inar Sydney. Springer Lecture Notes in Mathematics 420 (1973) 55{64

[Gar98] P. Gardner: Closed action calculi. To appear in Theoretical Computer

Science (1998)

[GH97] P. Gardner and M. Hasegawa: Types and models for higher-order action

calculi. In Proc. Theoretical Aspects of Computer Software (TACS'97),

Springer Lecture Notes in Computer Science 1281 (1997) 583{603

[Gir93] J.-Y. Girard: On the unity of logic. Annals of Pure and Applied Logic 59

(1993) 201{217

[Has97a] M. Hasegawa: Recursion from cyclic sharing: traced monoidal categories

and models of cyclic lambda calculi. In Proc. Typed Lambda Calculi and

Applications (TLCA'97), Springer Lecture Notes in Computer Science

1210 (1997) 196{213

[Has97b] M. Hasegawa: Models of Sharing Graphs (A Categorical Semantics of

Let and Letrec). PhD thesis ECS-LFCS-97-360, University of Edinburgh

(1997)

[HP95] C. Hermida and A.J. Power: Fibrational control structures. In Proc. Con-

currency Theory (CONCUR'95), Springer Lecture Notes in Computer

Science 962 (1995) 117{129

[IK86] G.B. Im and G.M. Kelly: A universal property of the convolution monoidal

structure. Journal of Pure and Applied Algebra 43 (1986) 75{88

[JSV96] A. Joyal, R. Street and D. Verity: Traced monoidal categories. Mathe-

matical Proceedings of the Cambridge Philosophical Society 119(3) (1996)

447{468

[Kel82] G.M. Kelly: Basic Concepts of Enriched Category Theory. London Math-

ematical Society Lecture Note Series 64, Cambridge University Press

(1982)

[Mac71] S. Mac Lane: Categories for the Working Mathematician. Springer Grad-

uate Texts in Mathematics 5 (1971)

[Mif96] A. Mifsud: Control Structures. PhD thesis, University of Edinburgh (1996)

[Mil94a] R. Milner: Higher-order action calculi. In Proc. Computer Science Logic

(CSL'93), Springer Lecture Notes in Computer Science 832 (1994) 238{

260

[Mil94b] R. Milner: Action calculi V: reexive molecular forms (with Appendix by

O. Jensen). Unpublished manuscript (1994)

[Mil96] R. Milner: Calculi for interaction. Acta Informatica 33(8) (1996) 707{737

[MPW92] R. Milner, J. Parrow and D. Walker: A calculus of mobile processes, part

I + II. Information and Computation 100(1) (1992) 1{77

[Mog88] E. Moggi: Computational lambda-calculus and monads. Technical report

ECS-LFCS-88-66, University of Edinburgh (1988)

[Pav97] D. Pavlovi�c: Categorical logic of names and abstraction in action calculi.

Mathematical Structures in Computer Science 7(6) (1997) 619{637

[Plo90] G. Plotkin: An illative theory of relations. In Situation Theory and Its

Applications, Volume I, CSLI Lecture Notes Series, Centre for the Study

of Language and Information (1990) 133{146

[Pow96] A.J. Power: Elementary control structures. In Proc. Concurrency Theory

(CONCUR'96), Springer Lecture Notes in Computer Science 1119 (1996)

115{130

[PR97] A.J. Power and E.P. Robinson: Premonoidal categories and notions of

computation. Mathematical Structures in Computer Science 7(5) (1997)

453{468

[Sew97] P. Sewell: Global/local subtyping for a distributed �-calculus. Submitted

(1997)

Appendix

We explain Aczel's binding operators [Acz80,Plo90] using the example of the

standard natural deduction rule for _-elimination:

(A)

.

.

.

.

C

(B)

.

.

.

.

C A _B

C

where formulae A and B are discharged from the assumptions. The correspond-

ing type-theoretic formulation involves a \cases construction":

�; x:A ` u:C �; y :B ` v :C � ` t:A _ B

� ` cases

A;B;C

((x:A)u; (y :B)v; t):C

where, the variables x and y are bound in u and v respectively. Note the occur-

rence of the cases

A;B;C

operator. The general rule for such an operator is:

�; ~x

1

:

~

A

1

` t

1

:B

1

: : : �; ~x

r

:

~

A

r

` t

r

:B

r

� ` K((~x

1

:

~

A

1

)t

1

; : : : ; (~x

r

:

~

A

r

)t

r

):B

where each ~x

i

:

~

A

i

denotes the sequence of distinct variables which are bound

in the ith component. These binding operators can be used to give a general

account of natural-deduction rules.

