
Adjunct Elimination in Context Logic for Trees

Cristiano Calcagno, Thomas Dinsdale-Young, and Philippa Gardner

Department of Computing
Imperial College London

London, UK
{ccris,td202,pg}@doc.ic.ac.uk

Abstract. We study adjunct-elimination results for Context Logic ap-
plied to trees, following previous results by Lozes for Separation Logic
and Ambient Logic. In fact, it is not possible to prove such elimination re-
sults for the original single-holed formulation of Context Logic. Instead,
we prove our results for multi-holed Context Logic.

1 Introduction

Separation Logic [1–3] and Ambient Logic [4] are related theories for reasoning,
respectively, about local heap update and static trees. Inspired by this work,
Calcagno, Gardner and Zarfaty invented Context Logic [5] for reasoning about
structured resource, extending the general theory of Bunched Logic [6] for rea-
soning about unstructured resource. In particular, we use Context Logic applied
to trees to reason about tree update, following the local reasoning style of Sep-
aration Logic; such reasoning is not possible using Ambient Logic [7].

These logics extend the standard propositional connectives with a struc-
tural (separating) composition for reasoning about disjoint subdata and the
corresponding structural adjoint(s) for expressing properties such as weakest
pre-conditions and safety conditions. For Separation Logic and Ambient Logic,
Lozes [8] and then Dawar, Gardner and Ghelli [9] showed that the structural ad-
joints provide no additional expressive power on closed formulae. This result is
interesting, as the adjunct connectives introduce quantification over potentially
infinite sets whereas the structural composition only requires quantification over
finite substructures. Following this work, Calcagno, Gardner and Zarfaty proved
adjunct elimination for Context Logic applied to sequences, and showed the cor-
respondence with the ∗-free regular languages [10, 7]. We expected an analogous
result for Context Logic applied to trees, but instead found a counter-example
(first reported in Dinsdale-Young’s Masters thesis [11]). Instead, we prove an
adjunct-elimination result for multi-holed Context Logic applied to trees.

The original Context Logic was introduced to establish local Hoare reasoning
about tree update. For this application, it was enough to work with single-holed
contexts, although we always understood that there were other forms of contexts
requiring study. Our counter-example to the adjunct-elimination result for single-
holed Context Logic motivates our exploration of these other context structures.
In our original presentation, the data formula K(P) expresses that the given

tree is the result of applying a single-holed context satisfying context formula
K to a tree satisfying data formula P . The adjunct context formula P ! Q
expresses that, whenever a tree satisfying property P is put in the context hole,
then the resulting tree satisfies Q. Consider the single-holed context formula
0!(True(u[0])) expressing that, when the empty tree 0 is put in the context hole,
then somewhere there is a subtree of the form u[0] with top node labelled u and
empty subtree. This formula cannot be expressed without the separating adjoint
connective ‘!’. For example, consider contexts of the form vn[u[]], denoting a
vertical line of n nodes labelled v, followed by one node labelled u and then the
context hole. These contexts all satisfy the formula 0 ! (True(u[0])), whereas
the contexts vn[] do not. There is no adjoint-free context formula that can
distinguish between these sets of contexts because, in our original presentation of
Context Logic, trees can be split arbitrarily into contexts and trees, but contexts
cannot be split. Our counter-example shows that such splitting is necessary for
adjunct elimination to hold.

Context Logic can be extended with context composition, for analysing the
splitting of contexts, and its adjoints. However, we currently do not know if
adjunct elimination holds for this extension. We do know that current tech-
niques for proving such results cannot be immediately adapted. Instead, we
prove adjunct elimination for multi-holed Context Logic with context composi-
tion. Our proof, adapting the technique for proving adjunct elimination using
model-checking games [9], naturally requires the extension to multi-holed con-
texts. To illustrate this, consider the tree t = c1(t1) which denotes the application
of context c1 to tree t1. An application move in a game will split t into c2(t2),
leading to a case analysis relating c1 and t1 with c2 and t2 involving multi-holed
contexts. For example, when t2 is a subtree of c1, this case is simply expressed
using a two-holed context d(,) with d(t2,) = c1 and d(, t1) = c2. Using
multi-holed Context Logic, we are thus able to provide an adjunct-elimination
result which conforms with the analogous results for Separation Logic and Am-
bient Logic. In addition, we believe multi-holed Context Logic presented here
will play an important role in our future development of Context Logic since,
although analysing multi-holed contexts was not necessary for our preliminary
work on tree update, they do seem to be fundamental for other applications such
as reasoning about concurrent tree update.

2 Multi-holed Context Logic for Trees

We work with finite, ordered, unranked trees (strictly speaking, forests) and
contexts, with nodes labelled from a node alphabet Σ ranged over by u, v, w.
Our contexts are simply trees with some of the leaves — the context holes —
uniquely labelled from a hole alphabet X, ranged over by x, y, z. We view trees
as contexts without context holes.

Definition 1 (Multi-holed Tree Contexts). We define the set of multi-holed
tree contexts, CΣ,X , ranged over by c, d, by the grammar

c ::= ε
∣∣ u[c]

∣∣ c1 | c2

∣∣ x

with the restriction that each hole label, x ∈ X, occurs at most once in the
context c, and subject to the | operator being associative and having identity
ε. We denote the set of hole labels that occur in c by fn(c). We use u as an
abbreviation of u[ε].

Definition 2 (Context Application). We define context application (or con-
text composition) as a set of partial functions identified with the hole labels,
apx : CΣ,X × CΣ,X ⇀ CΣ,X .

apx(c1, c2) =
{

c1[c2/x] if x ∈ fn(c1) and fn(c1) ∩ fn(c2) ⊆ {x}
undefined otherwise

We abbreviate apx(c1, c2) by c1 ©x c2.

This definition of multi-holed context, also studied in [12], seems to be the
most appropriate for our reasoning style, since it allows contexts to be separated
easily. An alternative formulation is to order the holes, rather than uniquely
name them, but this approach does not sit so naturally with separating contexts.

Example 1. The context c1 = u[u[v] | u[u | v]] | v is a tree with no hole labels. It
may be expressed as the application of a single-holed context to another tree,
e.g. c1 = u[x | u[u | v]] | v ©x u[v]. It may also be expressed as a two-holed
context applied to two trees, e.g. c1 = (u[x | u[u | y]] | v ©y v) ©x u[v]. Recall that
the context holes are labelled uniquely by x and y, with the first application
u[x | u[u | y]] | v ©y v declaring that the argument v should be placed in the hole
labelled y. Note that u[x |u[u |x]] | v does not fit our definition of a context since
the hole label x occurs more than once.

Lemma 1. If y = x or y /∈ fn(c1), then c1 ©x (c2 ©y c3) = (c1 ©x c2) ©y c3,
where defined.

Lemma 2. If y '= x, x, y ∈ fn(c1), y /∈ fn(c2), x /∈ fn(c3), then

(c1 ©x c2) ©y c3 = (c1 ©y c3) ©x c2.

We define multi-holed Context Logic for trees, denoted CLm
Tree . For those who

are familiar with Separation Logic and Ambient Logic, this follows the familiar
pattern of extending the propositional connectives of classical logic with struc-
tural connectives for analysing the structure of multi-holed contexts, and specific
connectives for analysing the particular data structure under consideration (in
this case, trees).

Definition 3 (Formulae of CLm
Tree). Let Θ be an alphabet of hole variables

ranged over by α, β, γ. Multi-holed Context Logic formulae, K1,K2, . . . , are de-
fined by the grammar:

K ::= 0
∣∣ u[K]

∣∣ K1 | K2

α
∣∣ K1 ◦α K2

∣∣ K1 ◦−α K2

∣∣ K1 −◦α K2

∣∣ ∃α. K

False
∣∣ K1 ⇒ K2.

We use the Boolean connectives ‘False’ and ‘⇒’. The specific connectives ‘0’,
‘u[]’ and ‘|’ express basic structural properties of our tree contexts: a tree con-
text is empty, has top node labelled u, or is the concatenation of two contexts
respectively. The structural connectives ‘α’, ‘◦α’, ‘◦−α’ and ‘−◦α’ describe fun-
damental properties of multi-holed contexts. The connective ‘α’ expresses that
a context is a hole whose label is the value of the variable α. The ‘◦α’ specifies
that a context is a composition of two contexts where the hole being filled is
the value of α. The ‘◦−α’ and ‘−◦α’ are the adjoints of composition: K1 ◦−α K2

expresses that, whenever a context satisfying K1 is α-composed on the left with
the given context, the result satisfies K2; while K1−◦α K2 expresses that, when-
ever a context satisfying K1 is α-composed on the right with the given context,
the result satisfies K2. In addition, we have existential quantification over hole
labels, which allows us to specify context composition without specific reference
to the hole name.

Definition 4 (Satisfaction relation of CLm
Tree). An environment is a finite

partial function σ : Θ ⇀ X which assigns hole labels to variables. We denote
the empty environment by ∅, and the extension of σ with a new domain element
α with value y by σ[α -→ y]. The satisfaction relation for CLm

Tree is given with
respect to an environment as follows, where x = σα:

c,σ |= 0 ⇐⇒ c = ε

c,σ |= u[K] ⇐⇒ ∃c′. c = u[c′] ∧ c′,σ |= K

c,σ |= K1 | K2 ⇐⇒ ∃c1, c2. c = c1 | c2 ∧ c1,σ |= K1 ∧ c2,σ |= K2

c,σ |= α ⇐⇒ c = x

c,σ |= K1 ◦α K2 ⇐⇒ ∃c1, c2. c = c1 ©x c2 ∧ c1,σ |= K1 ∧ c2,σ |= K2

c,σ |= K1 ◦−α K2 ⇐⇒ ∀c1, c2. c2 = c1 ©x c ∧ c1,σ |= K1 =⇒ c2,σ |= K2

c,σ |= K1 −◦α K2 ⇐⇒ ∀c1, c2. c2 = c ©x c1 ∧ c1,σ |= K1 =⇒ c2,σ |= K2

c,σ |= ∃α. K ⇐⇒ ∃y. c, σ[α -→ y] |= K

c,σ /|= False
c,σ |= K1 ⇒ K2 ⇐⇒ c,σ |= K1 =⇒ c,σ |= K2.

We use two conventions for convenience. Firstly, we adopt Barendregt’s con-
vention and assume that bound variable names differ from free variable names,
and furthermore differ from elements of the domain of any environment under
consideration; if that is not the case, the bound variables may and are assumed
to be renamed. Secondly, we only ever consider satisfaction of a formula when all
of its free variables are assigned values by the environment. We also make use of
standard derived connectives, where appropriate: True,¬,∧,∨,∀. We assume the
following binding order among the connectives: ¬, |, ◦α,∧,∨, {◦−α,−◦α},⇒,∃,∀,
with no precedence between ◦−α and −◦α.

Example 2. We present a few example formulae:

1. The formula u[0] expresses that a tree consists of a single node labelled u.

Formula Rank
u[0] | (u[0] | u[0]) ∨ ¬0 (4, 0, {u})

∃α. (¬u[v[0] | True]) ◦α β (6, 0, {u, v})
u[v[α]−◦α (w[0] ◦−β v[u[w[0]]])] (5, 2, {u, v, w})

Table 1. Ranks of Selected Formulae

2. The formula ∃α. (True ◦α u[0]) expresses that a context contains tree u[0].
3. The formula (True◦αα) expresses that the value of α must be in the context.
4. The formula ∃α. (True ◦α α) ∧ (0 −◦α (∃β.True ◦β u[0])) expresses that the

empty tree may be placed into some context hole such that the resulting tree
has some leaf node labelled u.

As in the original Context Logic, we can derive the adjoints of the specific
formulae: the adjoint of u[−] is ∀α. (u[α]◦−α−); that of −|K is ∀α. ((α|K)◦−α−);
and that of K |− is ∀α. ((K | α) ◦−α −).

3 Games

We define Ehrenfeucht-Fräıssé style games for CLm
Tree . The games are useful

for our results because they are sound and complete with respect to the logic:
two contexts can be distinguished by a logical formula if and only if Spoiler
has a winning strategy for a corresponding game. Our presentation is similar
to that of [9]. However, we use a more relaxed definition of rank, which simply
distinguishes between the adjunct and non-adjunct moves. The proofs of the
lemmata in this section will appear in the full version of this paper.

We first define the rank of a logical formula, a concept which is also used to
parametrise games. Some examples are given in Table 1.

Definition 5 (Rank). The rank of a formula is a tuple r = (n, s,L) where:

– n is the greatest nesting depth of the non-adjunct, non-Boolean connectives,
i.e. 0, u[K],K1 | K2,α,K1 ◦α K2,∃α.K;

– s is the greatest nesting depth of the adjunct, non-Boolean connectives, i.e.
K1 ◦−α K2,K1 −◦α K2; and

– L is the subset of Σ consisting of the node labels that occur in the formula.

Lemma 3. For each rank r and finite set of variables V ⊂ Θ, there are finitely
many non-equivalent formulae of rank r whose free variables are in V.

Lemma 4. Let T be a set of context-environment pairs such that, for any T -
discriminated pair1 ((c,σ), (c′,σ′)) there exists a formula K(c,σ),(c′,σ′) of rank
r and free variables in finite set V such that c,σ |= K(c,σ),(c′,σ′) and c′,σ′ /|=
K(c,σ),(c′,σ′). Then T can be defined by a rank-r formula K with free variables
in V.
1 A T -discriminated pair is a pair (a, b) with a ∈ T and b /∈ T , or a /∈ T and b ∈ T .

We now define the Ehrenfeucht-Fräıssé-style games that we shall use in our
main result. A game state is a tuple, ((c,σ), (c′,σ′), r), where c and c′ are con-
texts, σ and σ′ are environments with coincident domains, and r = (n, s,L) is a
rank. The game is played between two players, Spoiler and Duplicator. At each
step, Spoiler selects a move to play, and the two players make choices according
to the rules for that move. After a move is played out, either Spoiler will have
won the game or the game will continue with a new state that has a reduced
rank (either n or s will be reduced by one, depending on the move). If the rank
reaches (0, 0,L), Duplicator wins.

Each move in the game ((c,σ), (c′,σ′), (n, s,L)) begins by Spoiler selecting
one of the pairs (c,σ) or (c′,σ′). We shall call Spoiler’s selection (d, ρ) and the
other (d′, ρ′). Spoiler may only play a particular move when the rank allows it.
A move is also prohibited when Spoiler cannot make the choice stipulated by the
move. The moves are defined as follows:

Moves playable when n > 0 (the non-adjunct moves):
EMP move. Spoiler’s choice is such that d = ε and d′ '= ε. Spoiler wins.
VAR move. Spoiler chooses α ∈ Θ with d = ρα and d′ '= ρ′α. Spoiler wins.
LAB move. Spoiler chooses some u ∈ L and d1 ∈ C such that d = u[d1]. If

d′ = u[d′
1] for some d′

1 ∈ C, the game continues with ((d1, ρ), (d′
1, ρ

′), (n−1, s,L)).
Otherwise, Spoiler wins.

PAR move. Spoiler chooses some d1, d2 ∈ C such that d = d1 | d2. Duplicator
chooses some d′

1, d
′
2 ∈ C such that d′ = d′

1 | d′
2. Spoiler decides whether the game

continues with ((d1, ρ), (d′
1, ρ

′), (n− 1, s,L)) or ((d2, ρ), (d′
2, ρ

′), (n− 1, s,L)).
CMP move. Spoiler chooses x = ρα for some α, and d1, d2 ∈ C such that d =

d1 ©x d2. Duplicator then chooses d′
1, d

′
2 ∈ C such that d′ = d′

1 ©́x d′
2 for x́ = ρ′α.

Spoiler decides whether the game will continue with ((d1, ρ), (d′
1, ρ

′), (n−1, s,L))
or ((d2, ρ), (d′

2, ρ
′), (n− 1, s,L)).

EXS move. Let α ∈ Θ be some new hole variable (i.e. σα, and equivalently
σ′α, are undefined). Spoiler chooses some x ∈ X. Duplicator chooses an answering
x́ ∈ X. The game then continues with ((d, ρ[α -→ x]), (d′, ρ′[α -→ x́]), (n−1, s,L)).

Moves playable when s > 0 (the adjunct moves):
LEF move. Spoiler chooses x = ρα for some α, and d1, d2 ∈ C such that d2 =

d1 ©x d. Duplicator then chooses d′
1, d

′
2 ∈ C such that d′

2 = d′
1 ©́x d′ for x́ = ρ′α.

Spoiler decides whether the game will continue with ((d1, ρ), (d′
1, ρ

′), (n, s−1,L))
or ((d2, ρ), (d′

2, ρ
′), (n, s− 1,L)).

RIG move. Spoiler chooses x = ρα for some α, and d1, d2 ∈ C such that
d2 = d ©x d1. Duplicator then chooses d′

1, d
′
2 ∈ C such that d′

2 = d′ ©́x d′
1

for x́ = ρ′α. If Duplicator cannot make such a choice, Spoiler wins. Otherwise,
Spoiler decides whether the game will continue with ((d1, ρ), (d′

1, ρ
′), (n, s−1,L))

or ((d2, ρ), (d′
2, ρ

′), (n, s− 1,L)).
Of more interest than the outcome of an individual run of a game is the

question of which player has a winning strategy for that game: Spoiler or Dupli-
cator is capable of ensuring his or her victory regardless of how the other plays. If
Spoiler has a winning strategy, we say ((c,σ), (c′,σ′), r) ∈ SW . Otherwise, we say

((c,σ), (c′,σ′), r) ∈ DW . The following useful properties are direct consequences
of the definitions.

Proposition 1 (Downward Closure). If ((c,σ), (c′,σ′), (n, s,L)) ∈ DW then
((c,σ), (c′,σ′), (n′, s′,L′)) ∈ DW for any n′ ≤ n, s′ ≤ s and L′ ⊆ L.

Proposition 2 (Downward Closure for Environments). If ((c,σ[α -→ x]),
(c′,σ′[α -→ x́]), r) ∈ DW then ((c,σ), (c′,σ′), r) ∈ DW .

At each stage, Spoiler is trying to show that the two contexts are different,
while Duplicator is trying to show that they are similar enough that Spoiler
cannot identify a difference. The game moves correspond closely with the (non-
Boolean) connectives of the logic. For instance, the RIG move corresponds to
−◦α connective: it speaks of applying the given context to a new one and then
reasoning about the result or the new context. If Spoiler wins on playing that
move, it means that the two (current) trees are differentiated by the formula
True −◦α False — one tree has a α-labelled hole (so the formula is not satisfied)
while the other does not (so the formula is satisfied trivially).

The reason for this correspondence is that formulae, of rank r, which distin-
guish between two contexts, will correspond to winning strategies for Spoiler for
the game of rank r on those two contexts. This is formalised in the soundness
and completeness results which we state.

Lemma 5 (Game Soundness). For c, c′ ∈ C and domain-coincident environ-
ments σ,σ′, if there is a formula K of rank r such that c,σ |= K and c′,σ′ /|= K,
then Spoiler has a winning strategy for the game ((c,σ), (c′,σ′), r).

Lemma 6 (Game Completeness). If Spoiler has a winning strategy for the
game ((c,σ), (c′,σ′), r) then there exists a formula, K, of rank at most r such
that c,σ |= K and c′,σ′ /|= K.

The following two lemmata are useful for checking structural properties. The
first establishes a relationship between the hole labels in two contexts, which
provides a convenient way of checking that composition is well defined. The
second establishes a structural similarity through games. Both are proven by
showing how Spoiler would have a winning strategy for the game in a certain
number of moves (hence the bounds on n) if the desired property did not hold.

Lemma 7. If ((c,σ), (c′,σ′), (n, s,L)) ∈ DW with n ≥ 2, then, for x = σα,
x́ = σ′α,

x ∈ fn(c) ⇐⇒ x́ ∈ fn(c′)

Lemma 8. Suppose that ((c,σ), (c′,σ′), (n, s,L)) ∈ DW with n ≥ 2. Then if
c = c̄ | x for x = σα, c̄ ∈ C then c′ = c̄′ | x́ for x́ = σ′α and some c̄′ ∈ C.
Similarly, if c = x | c̄ then c′ = x́ | c̄′.

The next lemma essentially gives two sufficient conditions on Duplicator’s
response to the EXS move in order for it to give a winning strategy for her. The
key part is that if Spoiler introduces a fresh hole label, Duplicator may respond
by introducing any fresh hole label. The restriction on n is used to establish
freshness for the second of the cases.

Lemma 9 (Interchangablity of Fresh Labels). If ((c,σ), (c′,σ′), (n, s,L)) ∈
DW with n ≥ 3, then ((c,σ[α -→ x]), (c′,σ′[α -→ x́]), (n−1, s,L)) ∈ DW if either
x = σβ and x́ = σ′β, or x /∈ fn(c) ∪ range(σ) and x́ /∈ fn(c′) ∪ range(σ′).

4 Adjunct Elimination

We now have the background required to prove adjunct elimination for CLm
Tree .

Proposition 3 is the key, most complicated result. It states that, with no adjunct
moves, a winning strategy for the composition of contexts follows from winning
strategies for its components. A consequence is that if Duplicator has a winning
strategy with adjunct moves, then she has a winning strategy without adjunct
moves, since adjunct moves simply perform context composition. The final the-
orem then translates this move elimination result into an adjunct elimination
result for the formulae of the logic.

Proposition 3 (One-step move elimination). For all ranks of the form r =
(n, 0,L), for all c1, c′

1, c2, c′
2 ∈ C, for all domain-coincident environments σ,σ′,

if

((c1,σ), (c′
1,σ

′), (3n, 0,L)) ∈ DW (1)
((c2,σ), (c′

2,σ
′), (3n, 0,L)) ∈ DW (2)

then for all α ∈ dom(σ) with x = σα, x́ = σ′α: if c = c1 ©x c2 and c′ = c′
1 ©́x c′

2

are defined then
((c,σ), (c′,σ′), r) ∈ DW . (3)

Proof. The proof is by induction on n and by cases on Spoiler’s choice of move
in the game of (3). The base case, n = 0, is trivial, since Spoiler can never win a
game of such a rank. We assume as the inductive hypothesis that the proposition
holds for lesser values of n. Assume without loss of generality that Spoiler selects
(c,σ) for his move.

Throughout the proof, we consider strategies that Spoiler might adopt in the
games of (1) and (2). Knowing that Duplicator has a winning strategy in these
games, we are able to establish properties, usually concerning the structure of
c′
1 and c′

2, based on her strategy, and, often using the inductive hypothesis, use
these to construct a winning response for Duplicator to Spoiler’s move on (3).

EMP move. In order for Spoiler to be able to play this move, it must be the
case that c = ε and c′ '= ε. Thus c1 = x and c2 = ε. Hence c′

1 = x́ and c′
2 = ε,

so c′ = ε. Therefore, Spoiler cannot play this move after all.
LAB move. Suppose that Spoiler plays this move picking u ∈ L and d ∈ C

with c = u[d]. Then there are three cases of the possible structure of c1 and c2:
1. c1 = u[d1] and d = d1 ©x c2; 2. c1 = u[d] | x and c2 = ε; 3. c1 = x | u[d] and
c2 = ε.

In the first of these cases, Spoiler could play the LAB move on the game of
(1), with label u and context d1. Hence, by (1), c′

1 = u[d′
1] with

((d1,σ), (d′
1,σ

′), (3n− 1, 0,L)) ∈ DW . (4)

By downward closure and the inductive hypothesis, noting that d′
1 ©́x c′

2 is
defined, since fn(d′

1) = fn(c′
1) and c′

1 ©́x c′
2 is defined, it follows that

((d1 ©x c2,σ), (d′
1 ©́x c′

2,σ
′), (n− 1, 0,L)) ∈ DW . (5)

By structural considerations, c′ = u[d′] where d′ = d′
1 ©́x c′

2. Thus Duplicator has
a winning strategy when Spoiler plays this way.

In the second of the cases, c′
2 = ε by (2). Further, Spoiler could play the PAR

move on (1) so we have c′
1 = d′

1 | d′
2 with

((u[d],σ), (d′
1,σ

′), (3n− 1, 0,L)) ∈ DW (6)
((x, σ), (d′

2,σ
′), (3n− 1, 0,L)) ∈ DW . (7)

Since 3n − 1 ≥ 1, by (7) we know d′
2 = x́. Spoiler could play the LAB move on

the former, using u as the label, so that we must have d′
1 = u[d′] with

((d, σ), (d′,σ′), (3n− 2, 0,L)) ∈ DW . (8)

We now have c′ = (u[d′] | x́) ©́x ε = u[d′]. Hence, Duplicator can respond and the
game continues as ((d,σ), (d′,σ′), (n−1, 0,L)) and, by downward closure on (8),
Duplicator has a winning strategy. The third case is essentially the same as this.

In each of the three cases, Duplicator has a winning strategy, so she has a
winning strategy if Spoiler plays the LAB move.

PAR move. In this move, Spoiler splits c = d1 | d2 in one of three ways:

1. Spoiler splits in c1 to the left of the x. That is, c1 = d1 | d3, d2 = d3 ©x c2.
2. Spoiler splits in c1 to the right of the x. This case is essentially the same as

the first, so we shall not consider it.
3. Spoiler splits in c2. In order for this case to be applicable, the x must occur

at the top level of c1, so c1 = d̄3 | x | d̄4, d1 = d̄3 | d5 and d2 = d6 | d̄4 with

c1 ©x c2 = d1 | d2 = (d3 ©x d5) | (d4 ©x d6)
d3 = d̄3 | x d4 = x | d̄4

c1 = d3 ©x d4 = (d̄3 | x) ©x (x | d̄4) c2 = d5 | d6.

In the first case, c1 ©x c2 = (d1 | d3) ©x c2 = d1 | (d3 ©x c2). As Spoiler could
play the PAR move in the game in (1), we know that c′

1 = d′
1 | d′

3 such that

((d1,σ), (d′
1,σ

′), (3n− 1, 0,L)) ∈ DW (9)
((d3,σ), (d′

3,σ
′), (3n− 1, 0,L)) ∈ DW . (10)

Note that fn(d′
3) ⊆ fn(c′

1) and x́ ∈ fn(d′
3) by Lemma 7 (since x ∈ fn(d3)),

so d′
2 = d′

3 ©́x c′
2 is defined. By downward closure on (10) and (2) and by the

inductive hypothesis,

((d3 ©x c2,σ), (d′
3 ©́x c′

2,σ
′), (n− 1, 0,L)) ∈ DW . (11)

Observe that c′ = c′
1 ©́x c′

2 = (d′
1 | d′

3) ©́x c′
2 = d′

1 | (d′
3 ©́x c′

2) = d′
1 | d′

2. Thus
responding with d′

1 and d′
2 gives Duplicator a winning strategy in this case, by

downward closure on (9) and by (11).
In the third case, Spoiler could play the CMP move on the game in (1), so

c′
1 = d′

3 ©́x d′
4 with

((d3,σ), (d′
3,σ

′), (3n− 1, 0,L)) ∈ DW (12)
((d4,σ), (d′

4,σ
′), (3n− 1, 0,L)) ∈ DW . (13)

Also, Spoiler could play the PAR move on the game in (2), so c′
2 = d′

5 | d′
6 with

((d5,σ), (d′
5,σ

′), (3n− 1, 0,L)) ∈ DW (14)
((d6,σ), (d′

6,σ
′), (3n− 1, 0,L)) ∈ DW . (15)

Since c′
1 = d′

3 ©́x d′
4 and c′

2 = d′
5 | d′

6, it follows that that x́ ∈ fn(d′
3) ⊆ fn(c′

1),
x́ ∈ fn(d′

4) ⊆ fn(c′
1), fn(d′

5) ⊆ fn(c′
2) and fn(d′

6) ⊆ fn(c′
2). Hence d′

1 = d′
3 ©́x

d′
5 and d′

2 = d′
4 ©́x d′

6 are well defined. By downward closure and the inductive
hypothesis on (12) and (14), and on (13) and (15), we get

((d3 ©x d5,σ), (d′
3 ©́x d′

5,σ
′), (n− 1, 0,L)) ∈ DW (16)

((d4 ©x d6,σ), (d′
4 ©́x d′

6,σ
′), (n− 1, 0,L)) ∈ DW . (17)

It remains to show that c′ = d′
1 | d′

2. For this to be the case, it is sufficient that
d′
3 = d̄′

3 | x́ and d′
4 = x́ | d̄′

4, which both hold by applying Lemma 8 to (12) and
(13). Thus, by structural considerations, c′ = c′

1 ©́x c′
2 = (d′

3 ©́x d′
4) ©́x (d′

5 |d′
6) =

((d̄′
3 | x́) ©́x (x́ | d̄′

4)) ©́x (d′
5 | d′

6) = d̄′
3 | d′

5 | d′
6 | d̄′

4 = (d′
3 ©́x d′

5) | (d′
4 ©́x d′

6) = d′
1 | d′

2.
Hence, by (16) and (17), Duplicator has a winning strategy if she responds by
splitting c′ as d′

1 | d′
2.

Thus, Duplicator has a winning strategy whenever Spoiler plays the PAR move.
CMP move. In this move, Spoiler chooses y = σβ (let ý = σ′β), and splits

c1 ©x c2 as d1 ©y d2. Note that Spoiler cannot play the CMP move as the final
move of a winning strategy, so we may therefore assume that n ≥ 2. (If n = 1,
Duplicator would have a winning strategy by splitting c′ = ý ©́y c′, for instance.)

There are four cases for how Spoiler can make the splitting c = d1 ©y d2. We
shall consider each in turn.

Case 1: Spoiler splits inside c2, as

c1 ©x c2 = c1 ©x (d3 ©y d2) = (c1 ©x d3) ©y d2 = d1 ©y d2

c2 = d3 ©y d2 d1 = c1 ©x d3.

Spoiler would be able to play the CMP move on the game in (2), so Duplicator
must be able to split c′

2 as d′
3 ©́y d′

2 such that

((d3,σ), (d′
3,σ

′), (3n− 1, 0,L)) ∈ DW (18)
((d2,σ), (d′

2,σ
′), (3n− 1, 0,L)) ∈ DW . (19)

Note that fn(d′
3) ⊆ fn(c′

2)∪{ý}. Also, by Lemma 7, ý /∈ fn(c′
1) since y /∈ fn(c1).

Hence d′
1 = c′

1 ©́x d′
3 is well defined. By downward closure on (1) and (18) and

by the inductive hypothesis,

((c1 ©x d3,σ), (c′
2 ©́x d′

3,σ
′), (n− 1, 0,L)) ∈ DW . (20)

By Lemma 1, since ý /∈ fn(c′
1), c′

1 ©́x c′
2 = c′

1 ©́x (d′
3 ©́y d′

2) = (c′
1 ©́x d′

3) ©́y
d′
2 = d′

1 ©́y d′
2. Hence, by (20) and by downward closure on (19), Duplicator has

a winning strategy if she splits c′ as d′
1 ©́y d′

2.
Case 2: Spoiler splits outside c2, including all of c2 itself:

c1 ©x c2 = (d1 ©y d3) ©x c2 = d1 ©y (d3 ©x c2) = d1 ©y d2

c1 = d1 ©y d3 d2 = d3 ©x c2.

Spoiler would be able to play the CMP move on the game in (1), so Duplicator
must be able to split c′

1 as d′
1 ©́y d′

3 such that

((d1,σ), (d′
1,σ

′), (3n− 1, 0,L)) ∈ DW (21)
((d3,σ), (d′

3,σ
′), (3n− 1, 0,L)) ∈ DW . (22)

Note that fn(d′
3) ⊆ fn(c′

1) and that, by Lemma 7, x́ ∈ fn(d′
3) since x ∈ fn(d3).

Thus d′
2 = d′

3 ©́x c′
2 is well defined. By downward closure on (22) and (1) and by

the inductive hypothesis,

((d3 ©x c2,σ), (d′
3 ©́x c′

2,σ
′), (n− 1, 0,L)) ∈ DW . (23)

By Lemma 1, since x́ /∈ fn(d′
1) (since x́ ∈ fn(d′

3) and c′
1 = d′

1 ©́y d′
3), c′

1 ©́x c′
2 =

(d′
1 ©́y d′

3) ©́x c′
2 = d′

1 ©́y (d′
3 ©́x c′

2) = d′
1 ©́y d′

2. Hence, by downward closure on
(21) and by (23), Duplicator has a winning strategy if she splits c′ as d′

1 ©́y d′
2.

Case 3: Spoiler splits part of c1 and part of c2:

c1 = d3 ©x d4 c2 = d5 ©y d6 d1 = d3 ©x d5 d2 = d4 ©x d6

with either: d4 = d̄4 | x and d5 = y | d̄5; or d4 = x | d̄4 and d5 = d̄5 | y. In the
former, for instance, we have

c1 ©x c2 = (d3 ©x d4) ©x (d5 ©y d6) = (d3 ©x (d̄4 | x)) ©x ((y | d̄5) ©y d6)
= d3 ©x (d̄4 | d6 | d̄5) = (d3 ©x (y | d̄5)) ©y ((d̄4 | x) ©x d6)
= (d3 ©x d5) ©y (d4 ©x d6) = d1 ©y d2.

Spoiler could play the CMP move on (1), so c′
1 = d′

3 ©́x d′
4 such that

((d3,σ), (d′
3,σ

′), (3n− 1, 0,L)) ∈ DW (24)
((d4,σ), (d′

4,σ
′), (3n− 1, 0,L)) ∈ DW . (25)

Similarly, from (2), we have that c′
2 = d′

5 ©́y d′
6 such that

((d5,σ), (d′
5,σ

′), (3n− 1, 0,L)) ∈ DW (26)
((d6,σ), (d′

6,σ
′), (3n− 1, 0,L)) ∈ DW . (27)

Note that x́ ∈ fn(d′
3) ⊆ fn(c′

1) and fn(d′
5) ⊆ fn(c′

2) ∪ {ý}. Furthermore,
by Lemma 7, ý /∈ fn(d′

3), since y /∈ fn(d3). Thus d′
1 = d′

3 ©́x d′
5 is well defined.

Similarly, x́ ∈ fn(d′
4) ⊆ fn(c′

1) and fn(d′
6) ⊆ fn(c′

2), so d′
2 = d′

4 ©́x d′
6 is well

defined. Hence, by downward closure on (24), (26), (25) and (27), and by the
inductive hypothesis, we have

((d3 ©x d5,σ), (d′
3 ©́x d′

5,σ
′), (n− 1, 0,L)) ∈ DW (28)

((d4 ©x d6,σ), (d′
4 ©́x d′

6,σ
′), (n− 1, 0,L)) ∈ DW . (29)

It remains to show that c′
1 ©́x c′

2 = d′
1 ©́y d′

2. By Lemma 1, c′
1 ©́x c′

2 = (d′
3 ©́x

d′
4) ©́x (d′

5 ©́y d′
6) = d′

3 ©́x (d′
4 ©́x (d′

5 ©́y d′
6)). Now suppose that d4 = d̄4 | x and

d5 = y | d̄5. By Lemma 8, we must have that d′
4 = d̄′

4 | x́ and d′
5 = ý | d̄′

5. Thus,
d′
4 ©́x (d′

5 ©́y d′
6) = d̄′

4 | d′
6 | d̄′

5 = d′
5 ©́y (d′

4 ©́x d′
6). In the alternative case (where

d4 = x | d̄4 and d5 = d̄5 | y) the analogous result can be deduced. Hence, and
by Lemma 1 (recalling that ý /∈ fn(d′

3)), c′
1 ©́x c′

2 = d′
3 ©́x (d′

5 ©́y (d′
4 ©́x d′

6)) =
(d′

3 ©́x d′
5) ©́y (d′

4 ©́x d′
6) = d′

1 ©́y d′
2, as required. We can see that Duplicator

could respond to Spoiler’s move by splitting c′ as d′
1 ©́y d′

2 and that, by (28) and
(29), this gives her a winning strategy.

Case 4 : Spoiler splits part of c1 disjoint from c2. There are two subcases on
Spoiler’s choice of y that we shall consider separately: (a) y '= x and (b) y = x.

(a) y '= x:

c1 ©x c2 = (d3 ©y d2) ©x c2 = (d3 ©x c2) ©y d2 = d1 ©y d2

c1 = d3 ©y d2 d1 = d3 ©x c2

Spoiler would be able to play the CMP move on the game in (1), so we know
that c′

1 = d′
3 ©́y d′

2 for some d′
3, d

′
2 such that

((d3,σ), (d′
3,σ

′), (3n− 1, 0,L)) ∈ DW (30)
((d2,σ), (d′

2,σ
′), (3n− 1, 0,L)) ∈ DW . (31)

Note that fn(d′
3) ⊆ fn(c′

1)∪{ý}. Also, by Lemma 7, x́ ∈ fn(d′
3) and ý /∈ fn(c′

2).
Thus d′

1 = d′
3 ©́x c′

2 is well defined. By downward closure on (30) and (2), and
by the inductive hypothesis,

((d3 ©x c2,σ), (d′
3 ©́x c′

2,σ
′), (n− 1, 0,L)) ∈ DW . (32)

By Lemma 2, since x́ ∈ fn(d′
3) and ý /∈ fn(c′

2), (d′
3 ©́y d′

2) ©́x c′
2 = (d′

3 ©́x c′
2) ©́y

d′
2. Hence, by (32) and downward closure on (31), we know that Duplicator has

a winning strategy by splitting c′ as d′
1 ©́y d′

2.
(b) y = x: For some z /∈ fn(c1) ∪ fn(c2) ∪ range(σ),

c = ((d3 ©x d2) ©z x) ©x c2 = (d3 ©x d2) ©z c2 = (d3 ©z c2) ©x d2 = d1 ©x d2

c1 = c̄1 ©z x c̄1 = d3 ©x d2 d1 = d3 ©z c2.

By Lemma 9, for some ź /∈ fn(c′
1) ∪ fn(c′

2) ∪ range(σ′),

((c1,σ[γ -→ z]), (c′
1,σ

′[γ -→ ź]), (3n− 1, 0,L)) ∈ DW (33)
((c2,σ[γ -→ z]), (c′

2,σ
′[γ -→ ź]), (3n− 1, 0,L)) ∈ DW . (34)

Spoiler could play the CMP move on the game in (33), splitting c1 as c̄1 ©z x, so
c′
1 = c̄′

1 ©́z ĉ′
1 such that

((c̄1,σ[γ -→ z]), (c̄′
1,σ

′[γ -→ ź]), (3n− 2, 0,L)) ∈ DW (35)
((x,σ[γ -→ z]), (ĉ′

1,σ
′[γ -→ ź]), (3n− 2, 0,L)) ∈ DW . (36)

Since 3n − 2 ≥ 1, (36) implies that ĉ′
1 = x́. Spoiler could then play the CMP

move on the game in (35), splitting c̄1 as d3 ©x d2, so c̄′
1 = d′

3 ©́x d′
2 such that

((d3,σ[γ -→ z]), (d′
3,σ

′[γ -→ ź]), (3n− 3, 0,L)) ∈ DW (37)
((d2,σ[γ -→ z]), (d′

2,σ
′[γ -→ ź]), (3n− 3, 0,L)) ∈ DW . (38)

By construction and by Lemma 7 (recalling that n ≥ 2), {x́, ź} ⊆ fn(d′
3) ⊆

(fn(c′) \ fn(c′
2))∪ {x́, ź}. Further, by Lemma 7 and by definition, neither x́ nor

ź occurs in c′
2. Hence d′

1 = d′
3 ©́z c′

2 is well defined. Now we may apply the
inductive hypothesis, using (37) and downward closure on (34), to obtain

((d3 ©z c2,σ[γ -→ z]), (d′
3 ©́z c′

2,σ[γ -→ ź]), (n− 1, 0,L)) ∈ DW . (39)

By (environment) downward closure on (39) and (38), we have

((d1,σ), (d′
1,σ

′), (n− 1, 0,L)) ∈ DW (40)
((d2,σ), (d′

2,σ
′), (n− 1, 0,L)) ∈ DW . (41)

Note that, by construction and by Lemma 7, x́, ź /∈ fn(d′
2) and x́ /∈ fn(c′

2).
Thus, by structural considerations and Lemma 2, c′ = ((d′

3 ©́x d′
2) ©́z x́) ©́x c′

2 =
(d′

3 ©́x d′
2) ©́z c′

2 = (d′
3 ©́z c′

2) ©́x d′
2 = d′

1 ©́x d′
2. Hence Duplicator could respond

by splitting c′ as d′
1 ©́x d′

2 and by (40) and (41) that gives her a winning strategy.
We have considered all of the possible cases for how Spoiler could play CMP

move, and shown that Duplicator has a winning response in each. Therefore,
Duplicator has a winning strategy if Spoiler plays the CMP move.

EXS move. In playing this move, Spoiler chooses to instantiate β as y, say.
If n = 1, any choice gives Duplicator a winning strategy, so assume n ≥ 2.
We consider four mutually exclusive cases for Spoiler’s choice: 1. y ∈ range(σ);
2. y ∈ fn(c1) but y /∈ range(σ); 3. y ∈ fn(c2) but y /∈ range(σ); and 4. y is
fresh (y /∈ fn(c1) ∪ fn(c2) ∪ range(σ)).

In case 1, y = σα for some α, and Duplicator can respond with ý = σ′α. By
the first case of Lemma 9, we know

((c1,σ[β -→ y]), (c′
1,σ

′[β -→ ý]), (3n− 1, 0,L)) ∈ DW (42)
((c2,σ[β -→ y]), (c′

2,σ
′[β -→ ý]), (3n− 1, 0,L)) ∈ DW (43)

and so, by downward closure and the inductive hypothesis,

((c,σ[β -→ y]), (c′,σ′[β -→ ý]), (n− 1, 0,L)) ∈ DW . (44)

Hence choosing ý gives Duplicator a winning strategy in this case.

In case 2, note that Spoiler could play the EXS move on the game in (1). Let
ý be Duplicator’s response for her winning strategy:

((c1,σ[β -→ y]), (c′
1,σ

′[β -→ ý]), (3n− 1, 0,L)) ∈ DW . (45)

Since y /∈ range(σ) and 3n − 2 ≥ 2, ý /∈ range(σ′).2 Also, since y ∈ fn(c1)
and 3n − 2 ≥ 2, ý ∈ fn(c′

1) by Lemma 7. Thus, y /∈ fn(c2) ∪ range(σ) and
ý /∈ fn(c′

2) ∪ range(σ′), and hence, by the second case of Lemma 9,

((c2,σ[β -→ y]), (c′
2,σ

′[β -→ ý]), (3n− 1, 0,L)) ∈ DW . (46)

So by downward closure and the inductive hypothesis we have

((c,σ[β -→ y]), (c,σ′[β -→ ý]), (n− 1, 0,L)) ∈ DW . (47)

Hence choosing ý gives Duplicator a winning strategy in this case.
Case 3 is essentially the same as case 2, except that Duplicator’s choice, ý

is derived from her winning response for the game in (2). Case 4 admits the
same proof as case 2 (or indeed case 3). Having examined each case, we see that
Duplicator has a winning response to Spoiler playing the EXS move.

Since we have now examined each possible move Spoiler could make in the
game of (3) and concluded that Duplicator has a winning strategy in each case,
we have shown that (3) holds. 78

Corollary 1 (Multi-step Move Elimination). For all ranks r = (n, s,L),
for all c, c′ ∈ C and for all domain-coincident environments σ,σ′, if

((c,σ), (c′,σ′), (3s(n + 1), 0,L)) ∈ DW (48)

then

((c,σ), (c′,σ′), (n, s,L)) ∈ DW . (49)

Proof (Sketch3). The proof is by induction on the number of adjunct moves, s.
We suppose that Spoiler is trying to find a winning strategy for the game in (49)
and see that the moves he makes in that game can be replicated on the game
in (48) until he first plays one of the adjunct moves. When he plays his first
adjunct move, he introduces a new context to either apply around one of the
contexts in the current state, or to apply the current context to.

We find a response for Duplicator by renaming the holes of Spoiler’s choice
so that the application is defined for her side of the game and so that she has
a winning strategy if Spoiler chooses to continue with these newly introduced
contexts. Proposition 3 shows that Duplicator has a winning strategy for the com-
posed pair with an adjunct-free rank. Now, we can use the inductive hypothesis
to deduce that Duplicator has a winning strategy for the game with s−1 adjunct
moves, as required. 78
2 To see this, suppose that Spoiler plays the CMP move and splits c1 = y ©y c1 (having

played the EXS move as described). Duplicator could not have a winning strategy
since there is some γ with ý = σ′γ but y '= σγ.

3 The full proof will appear in the full version of this paper.

These game results are now translated to results in the logic in the following
theorem. The proof is not difficult (it depends on Lemma 4), and will appear in
the full version of this paper.

Theorem 1 (Adjunct Elimination). If r = (n, s,L) and r′ = (3s(n + 1), 0,
L) then, for any formula of rank r, there exists an equivalent formula of rank r′.

5 Conclusions

We have introduced multi-holed Context Logic for trees (CLm
Tree) and proved

adjunct elimination. Our initial motivation was simply to understand if Lozes’
results for Separation Logic and Ambient Logic extended to the original formu-
lation of Context Logic. When we observed that this was not the case, this work
turned from being a routine adaptation of previous results into a fundamental
investigation of a natural version of Context Logic in which the adjoints could
be eliminated.

Many open problems remain. We studied multi-holed Context Logic initially
because we were unable to prove adjunct elimination for single-holed Context
Logic with composition. We believe the result also holds for the single-holed
case, but have not been able to prove it with current techniques. A further
question, which would imply this result, is whether, in the absence of adjoints,
multi-holed and and single-holed Context Logic with composition have equally
expressive satisfaction relations on closed formulae for analysing trees (contexts
without holes). This result appears to be difficult to prove.

Such results about expressivity on closed formulae form an important part
of our investigation into the true nature of Context Logic for trees, not only
because they provide a test on what is a natural formulation of Context Logic
but also because they allow us to link our analysis of structured data (in this case
trees) with traditional results about regular languages. For example, Heuter [12]
has shown that a regular expression language, similar to multi-holed Context
logic applied to ranked trees and without structural adjoints, is as expressive as
First-order Logic (FOL) on ranked trees. Recently, Bojańczyk [13] has proved
that a language equivalent to single-holed Context Logic for unranked trees, with
composition but no adjoints, corresponds to FOL on forests. These results make
use of the rich theory of formal languages, such as automata theory, which we
hope to apply to CLm

Tree to obtain a complete understanding of its place in the
study of forest-regular languages.

An intriguing question (for which we thank one of the anonymous referees) is
to what extent the adjoints permit properties of trees to be expressed succinctly.
The results in this paper give an upper bound: given a formula with adjoints, a
corresponding adjunct-free formula has maximum nesting depth of non-Boolean
connectives that is exponential in the number of adjoint connectives of the orig-
inal formula. The total number of connectives might still be large, although by
Lemma 3 we know it is bounded. By refining our methods and studying exam-
ples, we expect to find closer bounds. It is not clear whether this will lead to
tight bounds on how much more succinct formulae with adjoints can be.

Finally, we should mention Calcagno, Gardner and Zarfaty’s recent work on
parametric expressivity [7], which compares logics on open formulae containing
propositional variables. Despite our expressivity results on closed formulae in
this paper, stating that the adjoints can be eliminated, we intuitively know that
adjunct connectives are important for expressing weakest preconditions for local
Hoare reasoning using Separation Logic and Context Logic, and for expressing
security properties in Ambient Logic. This intuition is formally captured in [7]
where it is shown that the adjoints cannot be eliminated on open formulae.
For our style of logical reasoning, both types of expressivity result seem to be
important: the expressivity on open formulae captures our intuition that the
structural connectives are important for modular reasoning; and the expressivity
on closed formulae allows us to compare our reasoning about structured data
with the literature on regular languages.

References

1. Ishtiaq, S.S., O’Hearn, P.W.: BI as an assertion language for mutable data struc-
tures. In: POPL 2001, New York, ACM Press (2001)

2. Reynolds, J.C.: Separation Logic: a logic for shared mutable data structures. In:
LICS 2002, Los Alamitos, IEEE Computer Society (2002)

3. Yang, H., O’Hearn, P.W.: A semantic basis for local reasoning. In Nielsen, M.,
Engberg, U., eds.: ETAPS 2002 and FOSSACS 2002. Volume 2303 of LNCS., Hei-
delberg, Springer (2002)

4. Cardelli, L., Gordon, A.D.: Anytime, anywhere: modal logics for mobile ambients.
In: POPL 2000, New York, ACM Press (2000)

5. Calcagno, C., Gardner, P., Zarfaty, U.: Context Logic and tree update. In: POPL
2005, New York, ACM Press (2005)

6. O’Hearn, P., Pym, D.: Logic of bunched implications. Bulletin of Symbolic Logic
5(2) (1999) 215–244

7. Calcagno, C., Gardner, P., Zarfaty, U.: Context logic as modal logic: completeness
and parametric inexpressivity. In: POPL 2007, New York, ACM Press (2007)

8. Lozes, E.: Adjuncts elimination in the static Ambient Logic. In Corradini, F.,
Nestmann, U., eds.: EXPRESS 2003. Volume 96 of ENTCS., Amsterdam, Elsevier
(2003)

9. Dawar, A., Gardner, P., Ghelli, G.: Adjunct elimination through games in static
Ambient Logic. In Lodaya, K., Mahajan, M., eds.: FSTTCS 2004. Volume 3328 of
LNCS., Heidelberg, Springer (2004)

10. Calcagno, C., Gardner, P., Zarfaty, U.: Separation Logic, Ambient Logic and
Context Logic: parametric inexpressivity results. Unpublished (2006)

11. Dinsdale-Young, T.: Adjunct elimination in Context Logic. Master’s thesis, Impe-
rial College London (2006)

12. Heuter, U.: First-order properties of trees, star-free expressions, and aperiodicity.
Informatique théorique et applications 25(2) (1991) 125–145

13. Bojańczyk, M.: Forest expressions. In Duparc, J., Henzinger, T.A., eds.: CSL 2007.
Volume 4646 of LNCS., Heidelberg, Springer (2007)

