
GDP Festschrift ENTCS, to appear

Local Reasoning about Data Update

Cristiano Calcagno, Philippa Gardner and Uri Zarfaty

Department of Computing
Imperial College London

London, UK
{ccris,pg,udz}@doc.ic.ac.uk

Abstract

We present local Hoare reasoning about data update, using Context Logic for analysing structured data.
We apply our reasoning to tree update, heap update which is analogous to local Hoare reasoning using
Separation Logic, and term rewriting.

Keywords: context logic, local reasoning, tree update, heap update



GDP Festschrift ENTCS, to appear

1 Introduction

Structured data update is pervasive in computer systems: examples include heap

update on local machines, information storage on hard disks, the update of dis-

tributed XML databases, and general term rewriting. Programs for manipulating

such dynamically-changing data are notoriously difficult to write correctly. Hoare

Logics provide a standard technique for reasoning about update. Such reasoning

has been widely studied for heap update. Hoare reasoning has hardly been studied

for other examples of update, such as tree update, and there has been little attempt

at a unified theory.

We present local Hoare reasoning about data update, using Context Logic (CL)

for reasoning directly about structured data. CL arose from two independent bodies

of work: Separation Logic (SL) [13,15,7] for reasoning locally about heap update,

based on the general theory of Bunched Logic (BL) [9]; and Ambient Logic (AL) [3,4]

for reasoning locally about static trees. A natural question is whether AL can be

used to reason about tree update. We demonstrate that this is not possible. Instead,

we fundamentally change the way we reason about structured data, by introducing

CL. Data update typically identifies the portion of data to be replaced, removes it,

and inserts the new data in the same place. With CL, we reason about both data

and this place of insertion (contexts).

Our local Hoare reasoning follows the style of local reasoning first introduced

in [10] using SL. The motivating idea is that the atomic commands tend to operate in

a local way, by only accessing a small part of the current data, called the footprint of

the command. Local Hoare reasoning reflects this local operation of the commands,

in both the specifications and the proofs of the commands’ behaviour. It uses small

axioms to specify the behaviour of atomic commands on their footprints, and the

frame rule to specify that the rest of the data (the context) remains unchanged. Our

local Hoare reasoning relies crucially on CL-reasoning, whose structural connectives

specifically mirror this separation of the footprint from the surrounding context.

This paper is the full version of our conference paper [1]. The work presented

in [1] focussed on reasoning about tree update. Here, we present a more general

account of CL, and a local Hoare reasoning framework for reasoning about data up-

date which then uniformly applies to tree update, heap update and term rewriting.

Context Logic

CL extends the standard propositional connectives with additional structural con-

nectives for reasoning directly about subdata. The structural application K(P )

specifies that data can be split into subdata satisfying formula P and a context

satisfying formula K. There are two corresponding structural adjoints: the data

formula K � P denoting that, whenever the given data is placed in a context sat-

isfying K, then the result must satisfy P ; and the context formula P � Q denoting

that, whenever data satisfying P is applied to the given context, then the result

satisfies formula Q. The structural application and the � adjoint have analogues

in AL; the � adjoint does not. This additional adjoint is essential for describing

2



GDP Festschrift ENTCS, to appear

weakest preconditions of our Hoare reasoning.

In this paper, we give the basic definition of CL, its proof theory and models.

We prove completeness in [2]. We also give an extension of CL, called CL0, which

consists of an additional zero formula 0 and accompanying axioms for specifying

empty data. CL0 has interesting additional logical structure, including a derived

composition formula and accompanying right adjoints which generalise the struc-

tural connectives of BL and SL. We demonstrate that CL0-reasoning collapses to

a variant of BL-reasoning for certain models. Our variant of BL permits a non-

commutative structural composition on data, so that we can analyse sequences.

We show that CL0-reasoning is identical to BL-reasoning for multisets and heaps,

whose contexts have the same structure as the data, but is more powerful for se-

quences and trees, whose contexts are more complex than the data. We also study

CL-reasoning for terms. Although terms can be seen as special cases of trees, there

is a crucial difference: terms over a signature do not have a natural empty term,

and do not decompose as a composition of subterms due to the fixed arity of the

function symbols. They do however decompose nicely as context/subtree pairs. We

can therefore apply CL-reasoning, but not BL-reasoning, to terms. These examples

demonstrate the generality of our CL-reasoning.

Local Hoare Reasoning

We present a framework for local Hoare reasoning about commands acting locally on

data, by describing a general interpretation of the Hoare triples, a general definition

of local command, and general inference rules for Hoare triples based on such local

commands. We then apply our general Hoare reasoning to three examples of data

update: tree update, heap update which is exactly analogous to the reasoning based

on SL, and term rewriting which had previously escaped reasoning using SL. We

illustrate our Hoare reasoning using the tree dispose command [n]t := 0, which

disposes a subtree with top node identified by node variable n. The small axiom

for this command is

{n[true]} [n]t := 0 {0}

The precondition n[true] is a data formula defined specifically for trees. It specifies

a tree with top node given by n, whose subforest is unspecified. This precondition

describes properties about the footprint of the command, in this case the subtree

identified by n, and is the minimal safety condition necessary for the command to

execute. The postcondition only describes the result of the action of the command

on the footprint, in this case the empty tree specified by formula 0. To extend the

small-axiom reasoning to properties about larger trees, we use a generalised frame

rule to derive

{K(n[true])} [n]t := 0 {K(0)}

The precondition states that the tree can be split disjointedly into a subtree with

top node n, and a context satisfying context formula K. The definition of local com-

mands and the rules ensure that this context is unaffected by the update command.

The postcondition thus has the same structure, with K now applied to 0.

The general rules and the small axioms for our examples are complete for

3



GDP Festschrift ENTCS, to appear

straight-line code, which we demonstrate by showing that the weakest precondi-

tion axioms are derivable. As well as providing an important sanity check, such

axioms play a fundamental role in the design of verification tools. In our example

of tree dispose, the derivable weakest precondition axiom is:

{(0 � P )(n[true])}[n]t := 0{P}

This weakest precondition simply specifies that the tree can be split into a subtree

with top node n, and a context which satisfies P when the empty tree is put in

the hole. Although it is possible to define small axioms and frame rules using AL

instead of CL, it is not possible to define the weakest preconditions.

Our local Hoare reasoning about heap update is identical to that given [10]

using SL. In fact, our Hoare reasoning about tree update and heap update is re-

markably similar. This similarity does not just occur with the small axioms and

weakest precondition axioms, but also at the level of the proofs that the weakest

precondition axioms are derivable. The comparison with our Hoare reasoning for

term rewriting is less immediate, since the nature of term rewriting is different from

our languages for tree and heap update. However, it is clear that the same general

principles apply, both at the level of specification and at the level of proof. Our

Hoare reasoning seems to be robust with respect to the style of update language

chosen. Indeed, our examples suggest that it might be possible to develop a general

theory of local Hoare reasoning about data update.

Acknowledgments We would like to thank Peter O’Hearn, Pino Rosolini and

Hongseok Yang for their insightful comments. This work was supported by EPSRC.

4



GDP Festschrift ENTCS, to appear

2 Context Logic

We give the basic definition of CL, its proof theory and models (section 2.1). We

extend this basic CL to include an additional zero formula for specifying empty data

(section 2.2), which provides interesting additional logical structure and a compar-

ison with BL (section 2.2.2). Finally, we study the application of CL reasoning

to four example models of structured data: sequences, multisets, trees and terms

(section 2.3).

2.1 Basic Context Logic

CL consists of data formula denoted by P and context formulae denoted by K.

These formulae are constructed from standard propositional connectives, and less

familiar structural connectives for directly analysing the data and context structure.

Definition 2.1 [CL-Formulae] The set of CL formulae consists of disjoint sets of

data formulae P and context formulae K, constructed from the grammars:

data formulae

P ::= K(P ) | K � P structural formulae

P ∨ P | ¬P | false boolean additive formulae

context formulae

K ::= I | P � P structural formulae

K ∨K | ¬K | False boolean additive formulae

We use boolean additive formulae, since this is the standard choice when using a

logic to analyse specific models. It would also be interesting to study intuitionistic

CL. The key formulae are the structural formulae K(P ), K �P , P1 �P2 and I. The

application formula K(P ) specifies that the given data element can be split into a

context satisfying K applied to data satisfying P . For example, if we define the

context formula True , ¬False, then the formula True(P ) states that some subdata

satisfies property P . The next two formulae are both (right) adjoints of application.

The formula K / P is satisfied by the given data if, whenever we insert the data

into a context satisfying K, then the result satisfies P . For example, the formula

(True / P ) states that, when the data is put in any context, the result satisfies

property P . Meanwhile, P1 � P2 is a statement on contexts. It is satisfied by a

given context if, whenever we insert in the context some data satisfying P1, then

the result satisfies P2. Given the derived data formula true , ¬false, the context

formula (true.P2) states that, regardless of what data is put in the context hole, the

resulting data satisfies property P2. This adjoint is essential for expressing weakest

preconditions for update commands (section 3). The context formula I specifies

that a context equals the empty context.

5



GDP Festschrift ENTCS, to appear

We give a simple Hilbert-style proof theory, following the style for BL in [12].

The axioms and rules for the structural operators state that K / P2 and P1 . P2 are

right adjoints of K(P1), and that I is the identity of application.

Definition 2.2 [CL-Proof Theory] The Hilbert-style CL-proof theory consists of

the standard axioms and rules for the boolean additive connectives (including cut),

and the following axioms and rules for the structural connectives:

P a`P I(P )

K1 `K K2 P1 `P P2

K1(P1) `P K2(P2)

K(P1) `P P2

K `K P1 � P2

K `K P1 � P2 P `P P1

K(P ) `P P2

K(P1) `P P2

P1 `P K � P2

P1 `P K � P2 K1 `K K

K1(P1) `P P2

We sometimes omit the subscripts in `P and `K, and sometimes write `CL to

refer explicitly to this CL-proof theory.

We use the standard derived classical formulae for both data and context formulae:

true, P ∧P and P ⇒ P ; similarly for contexts, writing True for the context formula

that is always true. We also use the following derived structural formulae.

Definition 2.3 (CL-Derived Formulae)

• �P , True(P ) specifies that somewhere property P holds and 2P , ¬(�¬P )

specifies that everywhere property P holds.

• P1 I P2 , ¬(P1 � ¬P2) specifies that there exists some data element satisfying

property P1 such that, when it is put in the hole of the given context, the resulting

data satisfies P2.

• K J P2 , ¬(K � ¬P2) specifies that there exists a context satisfying property

K such that, when the given data element is put in the hole, the resulting data

satisfies P2.

The order of binding precedence is: ¬, ∧, ∨, {/, .,J,I} and⇒, with no precedence

between the elements in {/, .,J,I}.

The simple presentation given here emphasises the right adjoint properties of �

and �. In [2], we show that this proof theory is equivalent to the standard classical

ML-proof theory plus an additional set of axioms specific to CL. This alternative

ML-formulation emphasises the derived connectives I and J instead of the adjoints

� and �. We have hardly studied the CL-proof theory. It should be possible to

prove a cut-elimination result, following the analogous result for BL [12]. Also,

Simpson’s proof theory for intuitionistic modal logic [14] must surely yield a proof

theory for intuitionistic CL.

We give some basic properties of validity: the ∨–connective distributes over

application and the ∧–connective partially distributes, these results are typical for

this style of logical reasoning; the interplay between the structural adjoints �, � and

6



GDP Festschrift ENTCS, to appear

application is rather like standard modus ponens for the additive connectives; and

our derived somewhere and everywhere modalities for data also satisfy the T -axiom

of modal logic.

Lemma 2.4 (Basic properties of validity)

∨-distributivity (K1 ∨K2)(P ) a`P K1(P ) ∨K2(P )

K(P1 ∨ P2) a`P K(P1) ∨K(P2)

∧-semi-distributivity (K1 ∧K2)(P ) `P K1(P ) ∧K2(P )

K(P1 ∧ P2) `P K(P1) ∧K(P2)

modus-ponens results (P � P ′)(P ) `P P ′ ∧True(P )

K(K � P ) `P P ∧K(true)

P ′ ∧ True(P ) `P (P I P ′)(P )

P ∧K(true) `P K(K J P )

T-axiom `P P ⇒ 3P

`P 2P ⇒ P

∧ only partially distributes, since the left-hand sides specify the splitting of the

data into a context and subdata, whereas the right-hand sides specify two splittings

that need not coincide. Although the T-axiom of ML is derivable, the 4-axiom

stating that 33P ⇒ 3P is not; see the Step model in Example 2.6 for a counter-

model. In Zarafty’s thesis [16], he studies CL extended with a context connective

corresponding to context composition and the two right adjoints. The 4-axiom does

hold in this extension, and the somewhere modality corresponds more closely to our

structured-data intuition.

We now define the CL-models and satisfaction relation, which are sound and

complete with respect to the CL-proof theory.

Definition 2.5 [CL-Model] A CL-model Mod is a tuple (D, C, ap, I) such that

(i) D and C are sets;

(ii) ap ⊆ (C×D)×D is relation, called application: we use the notation ap(c, d1) =

d2 for ((c, d1), d2) ∈ ap;

(iii) I ⊆ C acts as a left identity to ap: that is,
• ∀d ∈ D,∃i ∈ I, d′ ∈ D. ap(i, d) = d′;
• ∀d, d′ ∈ D,∀i ∈ I. ap(i, d) = d′ implies d = d′.

We often call D the data set and C the context set, because of the form of our

motivating examples. Of course, there are models which do not fit this structured

data intuition.

Example 2.6 [Example CL-Models]

7



GDP Festschrift ENTCS, to appear

• MonD = (D,D, ·, {e}) where D is a set with monoidal operator · : (D ×D)→ D
and unit e ∈ D; also, Part MonD = (D,D, ·, {e}) which is like MonD except that

· is a partial monoid. These models correspond to the BL-models (definition 2.26),

and CL-reasoning collapses to BL-reasoning for these models (theorem 2.29).

• Heap is an example of Part MonD where H = N
+ ⇀fin N is the set of finite

partial functions denoting the heaps. The domain N
+ = N−{0} does not include

0 as it is reserved for the nil value. Heap composition h · h′, for heaps h, h′ ∈ H,

is function union and is only defined when dom(h) ∩ dom(h′) = ∅.

• TermΣ = (TΣ, CΣ, ap, { }) where TΣ is the data set of terms constructed from

the r-ary function symbols f : r in signature Σ, CΣ is the corresponding set of

contexts, ap denotes the standard application of contexts to terms, and denotes

the empty context.

• SeqA = (SA, CA, ap, { }) where SA is the set of sequences constructed from the

elements in alphabet A, CA is the corresponding set of contexts, ap and are as for

TermΣ; let MultA denote the analogous CL-model constructed from multisets;

• TreeA = (TA, CA, ap, { }) is an example of TermΣA
with an additional equality

relation on terms and contexts. The set of terms TA is generated by the signature

ΣA constructed from the sets Σ0 = {0}, Σ1 = A where A is the set of node labels

and Σ2 = {|}, where Σi denotes the function symbols of arity i. We use the

notation t | t′ for |(t, t′) and a[t] for a(t), a ∈ A. Terms are considered modulo an

equality relation generated by the axioms 0 | t ≡ t, t | t′ ≡ t′ | t, (t | t′) | t′′ ≡ t |
(t′ | t′′), and closed by the obvious structural rules for the function symbols. The

set of contexts CA is constructed similarly with an analogous equality relation on

contexts.

• Loc TreeN is similar to TreeN with Σ0 = {0}, Σ1 = N and Σ2 = {|} as before.

This time however the set N denotes a set of unique node identifiers, and | is

therefore partial like the partial heap composition. We shall use this model for

illustrating our ideas about tree update.

• RelD = (D,P(D × D), ap, {i}) where D is an arbitrary set, P(D × D) denotes

the set of binary relations on D, ap is relational application, and i is the identity

relation; also FunD = (D,D → D, ap, {i}) where D → D is the set of total

functions from D to D, ap is function application and i is the identity function.

• Step = (N, {0, 1},+, {0}) where the data set is the natural numbers, the context

set is {0, 1}, application is normal addition, and the unit is zero. This model

demonstrates that the 4-axiom of ML is not derivable, since the number 2 satisfies

330 but not 30.

• M1 +M2 = (D1∪D2, C1∪C2, ap, I1∪I2) whereM1 = (D1, C1, ap1, I1) andM2 =

(D2, C2, ap2, I2) are CL-models and, for arbitrary di ∈ Di, ci ∈ Ci, ap(ci, dj) =

api(ci, dj) if i = j and is undefined otherwise.

Definition 2.7 [CL-Satisfaction Relation] Given a CL-model Mod = (D, C, ap, I),

the CL-satisfaction relation �CL consists of two relations Mod, d �P P and Mod, c �K

K where d ∈ D and c ∈ C. The two relations are defined by induction on the struc-

8



GDP Festschrift ENTCS, to appear

ture of the formulae. The cases for the boolean additive connectives are standard;

the cases for the structural connectives are:

Mod, d �P K(P ) iff ∃c ∈ C, d′ ∈ D. ap(c, d′) = d ∧Mod, c �K K ∧Mod, d′ �P P

Mod, d �P K � P iff ∀c ∈ C, d′ ∈ D. Mod, c �K K ∧ ap(c, d) = d′ ⇒Mod, d′ �P P

Mod, c �K I iff c ∈ I

Mod, c �K P1 � P2 iff ∀ d, d′ ∈ D. Mod, d �P P1 ∧ ap(c, d) = d′ ⇒Mod, d′ �P P2

We sometimes omit the subscripts P and K. In section 2.3, we explore the satis-

faction relations for SeqA, MultA and TreeA in depth, giving many examples to

illustrate the expressivity of CL-reasoning on these models.

Definition 2.8 A formula P or K is valid for a given model M = (D, C, ap, I),

written M �P P or M �C K, if it is satisfied by all data or contexts in the model:

M �P P , ∀d ∈ D.M, d �P P

M �C K , ∀c ∈ C.M, c �C K

Theorem 2.9 (CL-soundness and completeness) The CL-proof theory is sound

and complete with respect to the CL-satisfaction relation:

true `P P ⇔ ∀M.(M �P P )

True `C K ⇔ ∀M.(M �C K)

We prove completeness in [2] via an interpretation of the structural connectives

of CL as modalities in modal logic (ML). This interpretation is not straight-forward,

as it uses the negation duals of the structural adjoints as the fundamental connec-

tives. We present additional axioms for these CL-modalities to give a precise corre-

spondence between the original CL-presentation and its ML-interpretation. These

axioms are well-behaved, in that they satisfy the conditions necessary for us to apply

a general completeness result about ML (Sahlqvist’s theorem). We thus prove that

the CL-proof theory is sound and complete with respect to the set of CL-models.

We have analogous results for BL. This work follows previous work by Calcagno and

Yang, who proved completeness for BL and CL from first principles in unpublished

work. They also extend their result to show completeness for CL-models where

application is a function; their technique breaks for BL due to associativity. The

extension to the functional case is given by Zarfaty in [16]. We use the relational

definition here, to relate certain CL-models with the BL-models (theorem 2.29).

2.2 Context Logic with Zero

Notice that many of the CL-models given in Example 2.6 describe structured data

with a natural element corresponding to empty data. We extend CL with a zero

9



GDP Festschrift ENTCS, to appear

formula 0 and additional axioms, to capture natural properties of empty data. The

resulting logic, denoted CL0, has interesting logical structure and allows for a precise

correspondence with BL (section 2.2.2).

Definition 2.10 (CL0-Formulae) The set of CL0-formulae consists of data and

context formulae as in Definition 2.1 plus an additional data formula 0, called the

zero formula.

Definition 2.11 (CL0-Proof theory) The CL0-proof theory extends Definition 2.2

with the zero axioms:

True `C 0 I true true `P True(0) 0 I P `C 0 � P 0 � 0 `C I

These zero axioms state intuitive properties about data elements regarded as empty

data. Their converses are all derivable. The first axiom specifies a totality condition

that every context can be applied to empty data. Recall that we have example

models where the application is not total, so this property is not derivable. The

second axiom is a surjectivity condition specifying that all data can be split into a

context and empty data. The third axiom states that all the zero elements behave in

a similar fashion when applied to a context. The fourth axiom identifies the context

0 � 0, returning empty data when applied to empty data, with the empty context

I. Whilst we believe these zero axioms describe important properties of empty

data, we do not know whether we have captured the full essence of empty data.

For example, another sensible property would be 0 `D ¬(True(¬0)) specifying that

empty data cannot be split into a context and non-empty data. We know that this

property is not derivable, since its converse holds in the CL0-model MonDa given

just after Example 2.13. We have chosen to work with the zero axioms given, as

they are already enough to prove some interesting properties.

Definition 2.12 [CL0-Model] A CL0-model is a tuple (C,D, ap, I,0) where

(i) (C,D, ap, I) is a CL-model;

(ii) 0 ⊆ D;

(iii) the projection p : C → D defined by

p(c) = d⇔ ∃ o ∈ 0. ap(c, o) = d

is a total surjective function;

(iv) ∀c ∈ C,∀o ∈ 0. p(c) = o⇒ c ∈ I.

The projection function p maps every element in C to a unique element in D,

by applying it to a zero element. The projection function is surjective, meaning

that every data element has a zero element as a sub-element. Condition iv places

a strong connection between I and 0: from Definition 2.5, we have p(i) ∈ 0 for all

i ∈ I; from condition iv, we also have p−1(0) ⊆ I for all o ∈ 0.

Example 2.13 [Example CL0-models] The following extensions to the CL-models

given in Example 2.6 are all CL0-models.

10



GDP Festschrift ENTCS, to appear

• MonD = (D,D, ·, {e}, {e}); similarly for Part MonD.

• Heap with the empty function as the zero element.

• SeqA, MultA, TreeA and Loc TreeN with the empty sequence, empty multiset

and the empty tree as the appropriate zero elements.

• Mod1+Mod2 = (C1∪C2,D1∪D2, ap, I1∪I2, 01∪02) whereM1 = (C1,D1, ap1, I1, 01)

andM2 = (C2,D2, ap2, I2, 02) are CL0-models and ap is defined in Example 2.6.

The CL0-model MonDa
with monoid Da = {a, e}, and a · a = e illustrates that

we have not captured all our intuition regarding the behaviour of empty data. For

example, it shows that the entailment 0 `P ¬(True(¬0)) is not derivable using

the CL0-proof theory. Now consider the derived formulae 0+ , true, (n + 1)+ ,

(¬I)(n+) and n , n+ ∧ ¬(n + 1)+ for all n ∈ N. In some CL0-models, such as the

sequence model, these formulae capture the size of data: for example, formula n+

specifies sequences with at least n elements, and formula n specifies sequences with

precisely n elements. However, the MonDa
-model shows that this sort of analysis

is not always possible.

The CL-model Step does not have a zero set, since there is no surjective function

from contexts (0 and 1) to data (N). Also, the CL-model TermΣ with signature

set Σ = {f : 1, g1 : 0, g2 : 0} does not have a zero set. Assume for contradiction

that it has zero set 0: if 0 does not contain g2 (or g1), then g2 cannot be in the

image of p contradicting surjectivity; however g1 and g2 cannot both be in 0 since

then p( ) = g1 and p( ) = g2, contradicting well-formedness of function p. Notice

that TermΣ′ where Σ′ = {f : 1, g : 0} is a CL0-model with zero set {g : 0}. The

CL-model RelD has no zero set since the everywhere undefined relation contradicts

totality of the projection function. Also FunD has no zero set: the only possible

choice would be a singleton {d} for the projection to be a function, but it contradicts

condition iv since the identity is not the only function mapping d to itself.

Definition 2.14 (CL0-Satisfaction Relation) Let Mod0 = (D, C, ap, I,0) be an

arbitrary CL0-model. The CL0-satisfaction relation extends the relations Mod0, d �P

P and Mod0, c �K P given in Definition 2.7 with

Mod0, d �P 0 iff d ∈ 0

Theorem 2.15 (CL0-Soundness and Completeness) The CL0-proof theory is

sound and complete with respect to the CL0-satisfaction relation.

As for Thm. 2.9, completeness can either by proved from first principles, or by using

the ML-interpretation of CL0 and appealing to Salqvist’s theorem.

2.2.1 Derived formulae

We explore some derived CL0-formulae. First, we derive a binary ∗-connective on

data and its accompanying right adjoints, which are generalised version of ∗ and −∗
of BL and SL. We also show that a natural embedding relation to the projection

function of CL0-models suggests embedding/projection formulae with interesting

11



GDP Festschrift ENTCS, to appear

logical structure.

∗-formulae

Definition 2.16 (Derived ∗-formulae) We derive the following CL0-formulae:

P1 ∗ P2 , (0 � P1)(P2)

P1 ∗− P3 , (0 � P1) � P3

P2 −∗ P3 ,¬(¬(P2 � P3)(0))

We assume the binding precedence ¬, ∗, ∧, ∨, {/, .,J,I, ∗− ,−∗ }. The derived

formula P1 ∗ P2 specifies that the given data can be split into subdata satisfying

property P2 and a context with the property that, when a zero element is put in the

hole, satisfies property P1. For example, the formula ¬0∗¬0 specifies that the given

data can be split into two disjoint, non-empty parts. The ∗-connective is neither

commutative nor associative in general. It is not associative or commutative in the

sequence or tree model for example, but is in the heap model. We therefore have

two right adjoints. The first adjoint P1 ∗− P3 is straightforward. It states that,

whenever a context applied to a zero element satisfies P1, then the context applied

to the given data element satisfies P3. The second adjoint is more complicated. It

states that, whenever data satisfying P2 replaces empty subdata of the given data,

then the resulting data satisfies P3: for trees, this data satisfying P2 can be inserted

at the leaves or by any node; for sequences, this data can be inserted at any point

in the sequence; for heaps, the data just extends the heap provided there is no clash

of heap addresses.

Lemma 2.17 (Properties of ∗-formulae)

(i) P ∗− and P −∗ are the right adjoints of P ∗ and ∗ P respectively: that is,

P1 ∗ P2 `P P3

P1 `P P2 −∗ P3

P1 ∗ P2 `P P3

P2 `P P1 ∗− P3

(ii) The zero formula 0 is the right and left unit of ∗: that is, P ∗ 0⇔ P ⇔ 0 ∗ P .

These ∗-formulae relate closely to a derivable ∗-relation in the CL0-model.

Definition 2.18 (Derived ∗-relation) The relation ∗ ⊆ (D ×D) × D is defined

by

∗ = {((d1, d2), d3) | ∃c ∈ C, o ∈ 0. d1 = ap(c, o) ∧ d3 = ap(c, d2)}

We let d1 ∗ d2 denote the set {d3 | ((d1, d2), d3) ∈ ∗}.

With CL0-models MonD and Part MonD, the relation ∗ is a (partial) function and

corresponds to ·. With the model TreeA, the relation ∗ is more complicated with

t1 ∗ t2 describing the set of trees obtained by inserting t2 into an arbitrary location

inside t1: for example, (a1[0] | a2[0]) ∗ b[0] = {a1[b[0]] | a2[0], a1[0] | a2[b[0]], a1[0] |
a2[0] | b[0]}.

12



GDP Festschrift ENTCS, to appear

Lemma 2.19 (CL0-satisfaction for ∗-formulae) Given CL0-model Mod, there

is a direct connection between the ∗-formulae and the ∗-connective on data given by:

M, d �P P1 ∗ P2 ⇔ ∃d1, d2 ∈ D. (d ∈ d1 ∗ d2 ∧M, d1 �P P1 ∧M, d2 �P P2)

M, d �P P1 ∗− P3 ⇔ ∀d1, d3 ∈ D. (d3 ∈ d ∗ d1 ∧M, d1 �P P1 ⇒M, d3 �P P3)

M, d �P P2 −∗ P3 ⇔ ∀d2, d3 ∈ D. (d3 ∈ d2 ∗ d ∧M, d2 �P P2 ⇒M, d3 �P P3)

e, p-formulae

We motivate our study of derived projection and embedding formulae by first show-

ing that there is a natural embedding relation in the CL0-models.

Definition 2.20 [CL0-embedding relation] Given CL0-model Mod0 = (C,D, ap, I,0),

the embedding relation e : D × C is defined by

e(d, c) if and only if p(c) = d.

We write e(d) for {c ∈ K : e(d, c)}, denoting the set of contexts which give d when

applied to a zero element.

The relation e is not necessarily a function: for example, in the tree model

e(b[0]) = {b[ ], b[0] | }. The pair (e, p) is an embedding-projection pair: that is

∀d ∈ D. {p(c) | c ∈ e(d)} = {d}. They also give an elegant connection between I

and 0: p(i) ⊆ 0 for all i ∈ I and e(o) ⊆ I for all o ∈ 0. Since this (e,p)-pair is such

a natural structure in the models, we explore the corresponding CL0-formulae.

Definition 2.21 (Derived e, p-formulae) We define the following derived CL0-

formulae:

projection formula Kp , K(0)

embedding formula P e , 0 . P

The data formula Kp specifies that the given data is a natural projection of a context

satisfying property K with a zero element put in the hole. The context formula P e

specifies that a given context satisfies property P whenever a zero element is put in

the hole.

Lemma 2.22 (CL0-satisfaction for e, p-formulae) Given CL0-model Mod, the

connection between the e, p-formulae and the embedding-projection pair (e, p) on

data is given by

M, d �P Kp ⇔ ∃c ∈ C. p(c) = d ∧M, c �C K

M, c �C P e ⇔ ∀d ∈ D. c ∈ e(d)⇒M, d �P P

Lemma 2.23 (Properties of e, p-formulae) The following entailments are deriv-

able:

13



GDP Festschrift ENTCS, to appear

P `D P ep

¬(P e) a`D (¬P )e

0e `D I

The first entailment follows from the second and third axioms given in Defini-

tion 2.11, and corresponds to (e, p) being an embedding-projection pair. The second

entailments specify that negation distributes over ( )e, or equivalently that ( )e has

a right adjoint given by ¬((¬ )p). The third entailment specifies that ( )e lifts 0 to

I, and coincides with the fourth axiom in Definition 2.11.

Lemma 2.24 If we replace the zero axioms given in Definition 2.11 by the entail-

ments in lemma 2.23, then the zero axioms are derivable.

These results suggest that our initial choice of zero axioms was a natural choice.

They also indicate that we do not yet understand the full significance of the embedding-

projection formulae. In [16], Zarfaty explores this further, by suggesting an alter-

native presentation of CL0 consisting of context composition, the accompanying

adjoints and these embedding/projection formulae.

2.2.2 Comparison with Bunched Logic

We also present (a variant of) BL [11], its models and satisfaction relation, and

compare it to CL. We use the notation ◦ and −◦, instead of the standard ∗ and −∗
for the multiplicative conjunction and its adjoint. We reserve the notation ∗ and

−∗ for our generalised versions given in Definition 2.16. Our variation of standard

BL does not require ◦ to be commutative, since one of our key example models is

sequences where ◦ denotes concatenation.

Definition 2.25 [BL-Formulae] The set of BL-formulae PBL is defined by:

P ::= 0 | P ◦ P | P ◦− P | P −◦ P structural formulae

P ∨ P | ¬P | false boolean additive formulae

The key formulae are the structural formulae 0, P1 ◦ P2, P1 ◦− P2 and P1 −◦ P2.

The zero formula 0 specifies empty data. The composition formula splits the given

data into two parts: the first satisfying P1 and the second P2. Unlike the original

BL, we have two right adjoints, due to ◦ being non-commutative: P1 ◦−P2 specifies

that, whenever some data satisfying P1 is placed to the left of the given data, then

the result satisfies P2; the other adjoint P1 −◦ P2 places data to the right. This

distinction has no effect in the heap model, but is important in the sequence model.

As in CL, we define the negation duals of the adjoints as P1 −• P2 , ¬(P1 −◦ ¬P2)

and P1 •− P2 , ¬(P1 ◦− ¬P2).

Definition 2.26 [BL-Model] A BL-model Mod is a tuple (D, ·, e) such that

(i) D is a set;

(ii) · ⊆ (D × D)×D is an associative relation: we use the notation ·(d1, d2) = d3

for ((d1, d2), d3) ∈ ·;

14



GDP Festschrift ENTCS, to appear

(iii) e ⊆ D acts as a left and right identity to · : that is,
• ∀d ∈ D,∃e ∈ e, d′ ∈ D. · (e, d) = d′

• ∀d ∈ D,∃e ∈ e, d′ ∈ D. · (d, e) = d′

• ∀d, d′ ∈ D,∀e ∈ e. · (e, d) = d′ or · (d, e) = d′ implies d = d′.

Notice that any BL-model M = (D, ·, e) can be lifted to a CL0-model MBL =

(D,D, ·, e, e) with the derived ∗-relation 2.18 coinciding with ·. In fact,we shall

see that the CL0-satisfaction relation collapses to the BL-satisfaction relation for

such models (theorem 2.29). We highlight specific BL-models for heaps, sequences

and trees, since we will use them in this paper. Contrast these BL-models with

the analogous CL-models given in Example 2.6, which also emphasise the context

structure.

Example 2.27 [Some BL-models]

• SeqA = (SA, ·, {0}) whereDA is the set of sequences constructed from the elements

in set A, · is sequence concatenation, and 0 is the empty sequence; let MultA

denote the analogous CL0-model constructed from multisets.

• TreeA = (TA, |, {0}) where TA is the set of trees in Example 2.6, | is horizontal

tree composition, and 0 is the empty tree.

• Heap = (D, ·, {e}) where D, · and e are as in Example 2.6.

Notice the difference between the CL0-model of sequences SeqA and the CL-lifting of

the BL-model SeqA: in the CL0-model, the contexts can be regarded as having the

form s1 · · s2 and application replaces the hole by a sequence; in the CL0-lifting

of BL-model SeqA, the contexts are an isomorphic copy of the sequence set and

application corresponds to concatenation of sequences. A similar difference occurs

with trees. By contrast, the CL0-model MultA corresponds to the CL0-lifting of the

BL-model MultA due to the commutativity of the multiset union. This similarity

also occurs with heaps.

Definition 2.28 [BL-Satisfaction Relation] Given a BL-model Mod = (D, ·, e),

the BL-satisfaction relation is of the form Mod, d � P where d ∈ D and P ∈ PBL.

As before, it is defined by induction on the structure of formulae. The structural

connectives are given by:

Mod, d �BL 0 iff d ∈ e

Mod, d �BL P1 ◦ P2 iff ∃d1, d2 ∈ D. · (d1, d2) = d ∧Mod, d1 �BL P1 ∧Mod, d2 �BL P2

Mod, d �BL P1 ◦− P3 iff ∀ d1, d3 ∈ D. · (d, d1) = d3 ∧Mod, d1 �BL P1 ⇒Mod, d3 �BL P3

Mod, d �BL P2 −◦ P3 iff ∀ d2, d3 ∈ D. · (d2, d) = d3 ∧Mod, d2 �BL P2 ⇒Mod, d3 �BL P3

We assume that ◦, ◦− and −◦ have the same binding precedence as ∗, ∗− and −∗ .

The Hilbert-style BL-proof theory consists of analogous rules to those given for

the CL-proof theory (Definition 2.2), with an additional axiom for the associativity

of ◦. As for CL, we can prove a completeness result for BL, either from first princi-

15



GDP Festschrift ENTCS, to appear

ples, or by interpreting the structural connectives as ML-modalities and appealing

to Sahlqvist’s theorem [2]. We do not know how to extend this result to BL-models

restricted to those where · is a function. This is due to the associativity of ·, which

breaks our construction of a functional model from a relational one.

Theorem 2.29 (Collapse to BL) Given BL-model Mod = (D, ·, e) and corre-

sponding CL0-model ModBL = (D,D, ·, e, e), we may define translations | |P : P →
PBL and | |K : K → PBL from CL0-formulae to BL-formulae, and a translation

| |BL : PBL → P from BL-formulae to CL-data formulae, such that

• for d ∈ D, P ∈ P and K ∈ K,

ModCL, d �P P ⇔Mod, d �BL |P |P

ModCL, d �K K⇔Mod, d �BL |K|K

• for d ∈ D and P ∈ PBL,

Mod, d �BL P ⇔ModCL, d �P |P |BL

Proof. The translations are defined by induction on the structure of the formulae.

The cases for the additive connectives follow the structure of the connectives; the

cases for the structural connectives are:

the translations from CL0-formulae to BL-formulae:

|0|P = 0 |I|K = 0

|K(P )| = |K|K ◦ |P |P |P � Q|K = |P |P −◦ |Q|P

|K � P |P = |K|K ◦− |P |P

the translation from BL-formulae to CL-data formulae:

|0|BL = 0

|P ◦Q|BL = |P |BL ∗ |Q|BL

|P ◦−Q|BL = |P |BL ∗− |Q|BL

|P −◦Q|BL = |P |BL −∗ |Q|BL

The proof follows by a simple induction on the structure of formulae. 2

Recall that the CL0-models for multisets and heaps are the same as the CL0-liftings

of their analogous BL-models. This theorem shows that the CL0-reasoning and the

BL-reasoning coincide for these models.

2.3 Applications of CL

We study four applications of CL-reasoning to sequences, multisets, trees and

terms: sequences provide a simple example to illustrate that CL0-reasoning and BL-

16



GDP Festschrift ENTCS, to appear

reasoning is different; multisets provide an example where CL0- and BL-reasoning is

the same; trees provide a more substantial example where the reasoning is different;

and terms provide an example where BL-reasoning is not possible. In each case, the

application involves extending the CL-formulae with formulae for analysing the spe-

cific structure of the data and contexts arising from the model. Here, we work with

specific constants associated with the model; in section 3, we work with variables

and quantification.

2.3.1 Sequences

CL for sequences generated by alphabet A is CL0 extended by specific connectives

for specifically analysing the CL0–model SeqA presented in Example 2.6. The addi-

tional connectives specify the one-element sequence a ∈ A, and analyse additional

structure of the sequence contexts. We write s1 · s2 to denote the concatenation of

two sequences s1 and s2, and s1 · · s2 to denote a context with the context hole

between the sequences s1 and s2.

Definition 2.30 [CL for SeqA] CL applied to the sequence model SeqA, denoted

CLSeqA
, consists of CLSeqA

-formulae constructed by extending the CL0-formulae

defined inductively by the grammars in definition 2.14 with the following additional

cases:

context formulae

K ::= P ./ P specific context formulae

data formulae

P ::= a specific data formulae a ∈ A

The CLSeqA
-satisfaction relation extends the CL0-satisfaction relation (definition 2.14)

with the additional cases:

SeqA, c �K P1 ./ P2 iff ∃s1, s2 ∈ S. c = s1 · · s2 ∧ SeqA, s1 �P P1 ∧ SeqA, s2 �P P2

SeqA, s �P a iff s = a

It is easy to show that logical equivalence for CLSeqA
corresponds to sequence

equality. The strength of this analysis is typical for this style of logical reasoning.

We can derive a formula for sequence composition P1 ◦ P2 , (P1 ./ 0)(P2) which

specifies that a sequence can be split into two sequences, the left one satisfying

P1 and the right one P2. This is logically equivalent to (0 ./ P2)(P1). Contrast

this with the derived ∗-formula P1 ∗ P2 which holds for a given sequence if it is

possible to remove a subsequence satisfying P2 to leave the remaining sequence

satisfying P1. We also derive the two corresponding right adjoints: the formula

P1 ◦− P2 , (P1 ./ 0) / P2 specifies that, whenever a sequence satisfying property

P1 is joined to the left of the given sequence, then the result satisfies P2; similarly

for P1 −◦ P2 , (0 ./ P1) / P2. We give some additional derived formulæ which are

specific to this CLSeqA
-model.

17



GDP Festschrift ENTCS, to appear

Example 2.31 [CLSeqA
- derived formulæ]

(i) a ◦ b ◦ a , a ◦ (b ◦ a), the formula specifying the sequence a · b · a.

(ii) a ◦ true, the formula specifying any sequence beginning with an a.

(iii) a ∗ true, a sequence that either begins or ends with an a.

(iv) 3a and true ∗ a and true ◦ a ◦ true, any sequence that contains an a.

(v) (a−◦ P ) ◦ b, a sequence ending in b that satisfies P if this b is replaced by a.

(vi) (a−∗P ) ∗ b, a sequence containing a b that satisfies P if this b removed and an

a added anywhere in the sequence.

(vii) (a � P )(b), a sequence containing a b that satisfies P if this b is replaced by a

added in the same place.

(viii) 2(1⇒ a), any sequence containing just as.

(ix) (a ◦ b)∗ , 0 ∨ (a ◦ true ∧ true ◦ b ∧ 2(2 ⇒ a ◦ b ∨ b ◦ a)), the formula specifies

the Kleene star (a · b)∗ denoting either the empty sequence or sequences with

alternating as and bs, starting from a and ending in b.

By contrast with this last example (example 2.34ix), the Kleene star (a · a)∗ is not

expressible in CLSeqA
. These two examples are key examples for illustrating the

difference between regular languages and ∗-free regular languages. In unpublished

work, we have recently shown that CLSeqA
does indeed specify the ∗-free regular

languages.

We now contrast CLSeqA
-reasoning with BL-reasoning about the BL-model SeqA

(definition 2.27).

Definition 2.32 [BL for SeqA] BL applied to the BL-model SeqA, denoted BLSeqA
,

consists of BLSeqA
-formulae constructed by extending the BL-formulae defined in-

ductively in definition 2.25 with the following additional case:

data formulae

P ::= a specific data formulae a ∈ A

The BLSeqA
-satisfaction relation extends the BL-satisfaction relation (definition 2.28)

with the additional cases:

SeqA, s � a iff s = a

BLSeqA
is clearly a sublogic of CLSeqA

, since ◦, ◦− and −◦ are derivable. Recall

that the CL0-model SeqA is not the same as the CL0-lifting of the BL-model. This

suggests that the reasoning will be different. However, the question of whether

CLSeqA
is more expressive than BLSeqA

is subtle. Consider the CLSeqA
-formula

(0 � b ◦ c)(a). It is logically equivalent to a ◦ b ◦ c∨ b ◦ a ◦ c∨ b ◦ c ◦ a. Now consider

the CLSeqA
-formula (0 � True(b))(a). It is equivalent to true ◦ b ◦ true ◦ a ◦ true ∨

true ◦ a ◦ true ◦ b ◦ true, but it has very different structure to the previous example.

In fact, we have shown that CLSeqA
and BLSeqA

are equality expressive using the

standard definition of logical expressivity. However, they are not parametrically as

expressive, as these examples suggest. We believe this parametric nature of CL is

important for the modular Hoare reasoning given in section 3.

18



GDP Festschrift ENTCS, to appear

2.3.2 Multisets

The CL0- model of multisets is the simplest model in which the CL-reasoning col-

lapses to BL-reasoning. This collapse is due to the commutativity of multiset union.

CL for multisets generated by alphabet A, denoted CLMultA , is CL0 extended by

formulae for determining the one-element sequences a ∈ A. In this case, we do not

require additional formulae for analysing the structure of the sequence contexts.

Definition 2.33 [CL for MultA] CL applied to the sequence model MultA, denoted

CLMultA , consists of CLMultA-formulae constructed by extending the CL0-formulae

defined inductively by the grammars in definition 2.14 with the following additional

data formula:

P ::= a specific data formulae a ∈ A

The CLMultA -satisfaction relation extends the CL0-satisfaction relation (definition 2.14)

with the additional a case given as for sequences (definition 2.32).

We again have a formula for data composition, this time given by P1 ◦ P2 ,

(0�P1)(P2) which specifies that a multiset can be split into two parts, one satisfying

P1 and the other P2. This is logically equivalent to (0 � P2)(P1). We also derive

the corresponding right adjoint: the formula P1−◦P2 , (0�P1)�P2 specifies that,

whenever a multiset satisfying property P1 is joined to the given multiset, then the

result satisfies P2. It is logically equivalent to (P1 � P2)(0). This time we only

have one right adjoint due to the commutativity of multiset union. We give some

additional derived formulæ which are specific to this CLMultA-model.

Example 2.34 [CLMultA- derived formulæ]

(i) a ∗ b ∗ a, the multiset {a, a, b}.

(ii) 3a and true ∗ a and a ∗ true, any multiset that contains an a.

(iii) (a−∗ P ) ∗ b and (a � P )(b), a multiset containing a b that satisfies P if a b is

removed and an a added.

Definition 2.35 [BL for MultA] BL applied to the BL-multiset model MultA, de-

noted BLMultA , consists of BLMultA -formulae extended with specific data formulae

a ∈ A and the BLMultA-satisfaction relation extended in the obvious way (as in

definition 2.32 for BL for SeqA).

This time the CLMultA-reasoning collapses to BLMultA-reasoning, since the CL0-

model Multa is the same as the CL0-lifting of the BL-model MultA and we can use

the translations in definition 2.29 extended with the trivial case for a ∈ A.

2.3.3 Trees

CL applied to model TreeA is CL0 extended by specific formulae which can be

interpreted in the CL0-model TreeA presented in Example 2.6. The additional

formulae specify ways of analysing tree contexts.

Definition 2.36 [CL for TreeA] CL applied to the tree model TreeA, denoted

CLTreeA
, consists of CLTreeA

-formulae constructed by extending the CL0-formulae

19



GDP Festschrift ENTCS, to appear

defined inductively by the grammars in definition 2.10 with the following additional

context formulae:

K ::= a[K] | K ◦ P specific context formulae a ∈ A

The CLTreeA
-satisfaction relation is defined by extending the CL0-satisfaction rela-

tion (definition 2.14) with the additional cases:

TreeA, c �K a[K] iff ∃c′ ∈ C. c = a[c′] ∧ TreeA, c′ �K K

TreeA, c �K K ◦ P iff ∃c′ ∈ C, d ∈ D. c = c′ | d ∧ TreeA, c′ �K K ∧ TreeA, d �P P

These additional specific formulae describe two ways of analysing tree contexts:

either tree contexts consist of a top node labelled a with a subcontext underneath

the node, or they can be split into a context and data. We have the derived formulae

a[P ] , (a[P ◦ I])(0), P1 ◦ P2 , and (P1 ◦ I)(P2), with their adjoints â[P ] , a[I] � P

and P1 −◦ P2 , (P1 ◦ I) / P2. Here are some other derived formulae.

Example 2.37 [CLTreeA
-derived formulæ]

(i) a[0], the tree a[0].

(ii) a[true], a tree with root node labelled a.

(iii) 3a[true] and true ∗ a[true], a tree containing a node a.

(iv) a[0] ∗ true and (0 � a[0])(true) and a[true]∨ (a[0] ◦ true), a tree with root node

a and either a subforest and no siblings, or siblings and an empty subforest.

(v) (a[true] I P )(0), a tree into which it is possible to add a subtree with root

node a to obtain a tree satisfying P .

(vi) (0�P )(a[true]) and P ∗a[true], a tree containing a that satisfies P if the subtree

at a is replaced by a 0.

We define BL for trees, corresponding to the static Ambient Logic without quan-

tifiers.

Definition 2.38 [BL for TreeA] BL applied to the BL-model TreeA, denoted

BLTreeA
, consists of BLTreeA

-formulae constructed by extending the BL-formulae

defined inductively in definition 2.25 with the following additional data formulae:

P ::= a[P ] | âP ] | �P specific data formulae a ∈ A

The BLTreeA
-satisfaction relation is defined by extending the BL-satisfaction rela-

20



GDP Festschrift ENTCS, to appear

tion (definition 2.28) with the additional cases:

TreeA, d � a[P ] iff ∃d′ ∈ D. d = a[d′] ∧ TreeA, d′ � P

TreeA, d � â[P ] iff TreeA, a[d] � P

TreeA, d � �P iff (∃d′, d′′ ∈ D. d = d′ | d′′ ∧ TreeA, d′ � P ) ∨

(∃a ∈ A, d′, d′′ ∈ D. d = a[d′] | d′′ ∧ TreeA, d′ � �P )

BLTreeA
is a sublogic of CLTreeA

. The comparison between CLTreeA
and BLTreeA

is subtle. Consider the CL-formula (0 � b1[b2[0]])(a[true]), which specifies that we

can remove a subtree with root label a to obtain a tree b1[b2[0]]. It corresponds

to the BL-formula b1[b2[a[true]]] ∨ b1[b2[0] | a[true]] ∨ (b1[b2[0]] | a[true]). Now con-

sider the CL-formula (0 � � b2[true])(a[true]). It corresponds to the BL-formula

� b2[true] ∧ � a[¬ � b2[true]]. The structure of the CL-formulae is very similar, and

the implication

(0 � b1[b2[0]])(a[true])⇒ (0 � � b2[true])(a[true])

is immediate. By contrast, the structure of the BL-formulae is very different, and

the corresponding implication is much less obvious. We believe that the parametric

nature of our CL-reasoning is essential for our local Hoare reasoning about tree

update given in section 3.

2.3.4 Terms

Terms over a signature do not decompose as a parallel composition of subterms,

due to the fixed arity of function symbols. They do however decompose nicely as

context/subtree pairs. The term model is therefore an interesting model for us to

explore. We apply CL-reasoning to terms in the term model TermΣ (Example 2.6),

extending CL with specific formulae which can be interpreted in the CL-model

TreeA. The additional formulae specify the function symbols of arity 0, and ways

of analysing term contexts.

Definition 2.39 [CL for TermΣ] CL applied to the term model TermΣ, denoted

CLTermΣ
, consists of CLTermΣ

-formulae constructed by extending the CL-formulae

defined inductively by the grammars in definition 2.10 with the following additional

cases:

data formulae:

P ::= f specific data formulae, f : 0 ∈ Σ

context formulae

K ::= f(P1, . . . ,K, . . . , Pr) specific context formulae, f : r ∈ Σ

The CLTermΣ
-satisfaction relation is defined by extending the CL-satisfaction rela-

21



GDP Festschrift ENTCS, to appear

tion (definition 2.14) with the additional cases:

TermΣ, t �P f iff t = f, f : 0 ∈ Σ

TermΣ, t �K f(P1, . . . ,K, . . . , Pr) iff t = f(t1, . . . , , . . . , tr)∧

TermΣ, ti �P Pi, f : r ∈ Σ

From these additional formulae, we can derive a formula for specifying a specific

term. For example, consider the signature Σ = {f : 1, g1 : 0, g2 : 0}. The term

f(f(g1)) can be specified by the term (f(f( )))(g1) which is the application of a

context, where a 0-ary function symbol has been replaced by a context hole, to the

0-ary function symbol.

Example 2.40 [CLTermΣ
-derived formulæ] We give some additional derived for-

mula for CLTermΣ
when Σ = {f : 1, g1 : 0, g2 : 0}.

(i) f[true], a term starting with function symbol f.

(ii) 3f[true], a term containing function symbol f.

(iii) (g1 � f[g1])(true), a term starting with function symbol f.

(iv) (f[true] I P )(g1), a tree into which it is possible to replace a leaf with function

symbol g1 by a term starting with function symbol f to obtain a term satisfying

P .

(v) (g1 � P )(f[true]), a term containing a subterm starting with f that satisfies P

if this subterm is replaced by g1.

For the choice of Σ above, recall that TermΣ cannot have a zero element (dis-

cussion after Example 2.13). We therefore cannot derive the ∗-composition. We

also cannot derive the ◦-composition, since terms cannot be split into two disjoint

parts at the top level. We thus cannot apply BL-reasoning for this model.

22



GDP Festschrift ENTCS, to appear

3 Local Hoare Reasoning

We present a local Hoare reasoning framework for reasoning about commands act-

ing on the data set of a CL-model. We present a general interpretation of Hoare

triples for such commands based on the CL-satisfaction relation. We give a general

definition of local command based on application in the CL-model, and present

general inference rules for the Hoare triples on local commands. We then apply

our general Hoare reasoning to three examples of data update: tree update, heap

update, and term rewriting.

3.1 General Hoare Reasoning

Hoare Triples

Consider the Hoare triple {P}C {Q}, where C is a program command, and P and

Q are two CL-data formulae extended with variables and quantification. It has a

non-standard fault-avoiding partial interpretation: it is partial in that the triple

only holds if the data model satisfies P ; it is fault-avoiding in that P specifies the

presence of the resources necessary for the command to succeed. In our examples,

the resources are the subdata in the working data determined by unique locations.

Any attempt to access a location which is not currently available causes the program

to fault. An immediate consequence of this interpretation is that, when C is run in

a state satisfying P, it will only refer to the locations guaranteed to exist by P.

The behaviour of the commands C on a data set D is given by an operational

semantics describing a relation ;:

• C, s, d ; s′, d′ specifies that the execution of command C starting with variable

store s and data d ∈ D will terminate successfully producing updated store s ′ and

data d′ ∈ D;

• C, s, d ; fault specifies that C has attempted to access a resource not present in

s, d and hence yields a fault.

Definition 3.1 (Interpretation of Hoare Triples) Given a command C, CL-

models Mod with data set D, and two CL-data formulae P and Q, a Hoare triple

{P}C {Q} is said to hold iff whenever s, d �P P for d ∈ D then:

(i) C, s, d ; s′, d′ ⇒ s′, d′ �P Q (partial interpretation)

(ii) C, s, d 6; fault ( fault-avoiding interpretation)

Inference Rules

Our general inference rules for Hoare triples are given in Figure 1. In our examples

of reasoning about update in the following sections, we will extend these general

rules with axioms for specifying specific atomic commands. We assume standard

sequential composition of commands. We do not consider any other general com-

mand constructs: for example, extending our reasoning to the while command just

follows standard techniques.

We assume sets of free variables free(C) and modified variables mod(C) of a

23



GDP Festschrift ENTCS, to appear

Consequence
P ′ ⇒ P {P} C {Q} Q⇒ Q′

{P ′} C {Q′}

Auxiliary Variable

Elimination

{P} C {Q}

{∃x.P} C {∃x.Q}
x /∈ free(C)

Frame
{P} C {Q}

{K(P )} C {K(Q)}
mod(C) ∩ free(K) = ∅

Sequencing
{P} C1 {Q} {Q} C2 {R}

{P} C1 ; C2 {R}

Fig. 1. General Inference Rules for Hoare Triples

command. Intuitively, the set free(C) is the set of variables that may affect the

execution of C, and mod(C) the set of variables that C may modify. Typically, these

sets are defined using a simple syntactic check, as we shall see in our examples. We

require the following natural properties on free(C) and mod(C) for our rules to be

sound; we use the notation [s | x ← v] to denote stores updated with variable x

assigned value v:

• if x /∈ free(C) then

· C, s, d ; fault implies C, [s|x← v], d ; fault

· C, s, d ; s′, d′ implies C, [s|x← v], d ; [s′|x← v], d′

• if x /∈ mod(C) then

· C, s, d ; s′, d′ implies s(x) = s′(x)

The rules of consequence, auxiliary variable elimination and sequencing are stan-

dard Hoare logic rules. The Frame rule is non-standard, and generalises the Frame

rule introduced in [7]. It relies on our assumption that commands behave locally

(definition 3.2). If this is the case then, due to our interpretation of the Hoare

triples, the premise implies that C only requires the resources specified by P , and

therefore any additional data specified by K will be unaltered by that command.

In addition, the side-condition guarantees that, although the store will be modified

by the command, it will not affect any of the variables in K.

The soundness of the Frame Rule relies on the commands behaving locally. A

command is local if it satisfies two properties, which were initially introduced in [7].

Intuitively, these properties are: the safety-monotonicity property which specifies

that, if a command is safe in a state (that is, it does not fault in that state), then it

24



GDP Festschrift ENTCS, to appear

is safe in a larger state; and the frame property which specifies that if a command is

safe in a given state, then any execution of the command on a larger state implies

that it can be tracked to an execution on the smaller state. We now give a formal

definition of local commands.

Definition 3.2 (Local Commands) A command C is local for CL-model Mod =

(D, C, ap, I) if and only if it satisfies the following two properties:

(i) safety-monotonicity property: ∀d ∈ D, c ∈ C. C, s, d 6; fault ∧ ap(c, d)↓ ⇒
C, s, ap(c, d) 6; fault;

(ii) frame property: ∀d, d′ ∈ D, c ∈ C. C, s, d 6; fault ∧ ap(c, d)↓ ∧ C, s, ap(c, d) ;

s′, d′ ⇒ ∃d′′ ∈ D. C, s, d ; s′, d′′ ∧ d′ = ap(c, d′′).

Theorem 3.3 (Soundness) The rules in Figure 3.1 are sound.

Proof. The proof of soundness for the rules is routine, except in the Frame Rule

case which requires the commands to be local. Assume that {P}C{Q}, s, c �K

K, s, d �P P and ap(c, d) ↓. We know that C, s, d 6; fault by the premise and

our interpretation of the Hoare triples. We have C, s, ap(c, d) 6; fault by safety

monotonicity of C. If C, s, ap(c, d) ; s′, d′ then by the frame property ∃d′′. C, s, d ;

s′, d′′ and d′ = ap(c, d′′). By the premise, we have s′, d′′ �P Q. Since mod(C) ∩
free(K) = ∅, we also have s′, c �K K. We may therefore conclude that s′, d′ �P K(Q)

as required. 2

Weakest Preconditions and Small Axioms

The weakest precondition axioms for the atomic commands are a standard ingre-

dient of Hoare reasoning. They imply completeness of the Hoare triple inference

system for straight-line code. They are also typically used in verification tools based

on Hoare reasoning.

Definition 3.4 (Weakest Preconditions) The weakest precondition of a com-

mand C with respect to a postcondition P is a set of states wp(C, P ) where (s, d) ∈
wp(C, P ) iff C, s, d 6; fault and C, s, d ; s′, d′ ⇒ s′, d′ �D P .

If the weakest precondition of a command C with respect to P is expressible as a

formula Pwp then the weakest precondition triple {Pwp}C{P} holds and, whenever

{P ′}C{P} for some data formulae P ′, then P ′ ⇒ Pwp. The weakest precondition

for the sequencing command C1 ; C2 is the standard formula wp(C1,wp(C2, P )).

The weakest preconditions of the atomic commands in our examples of data update

are given in the following sections.

In [10] an alternative style of axioms was introduced, called the small axioms.

These are triples of the form {Pfp}C{Q}, where Pfp just describes the footprint of

command C and Q describes the result of C on that footprint. From our intuition

regarding local commands, it should be possible to derive the weakest precondition

axioms, and hence all Hoare triples, from the small axioms. In the following sections,

we will see that this is indeed the case for our examples.

25



GDP Festschrift ENTCS, to appear

3.2 Hoare Reasoning about Tree Update

We describe a core language for manipulating trees, give small axioms and weakest

precondition axioms for the atomic commands, and show that the weakest precon-

dition axioms are derivable from the small axioms using the general inference rules

given in figure 3.1. We use LocTreeN from example 2.6 as our tree model. Recall

that local Hoare reasoning only works for local commands (definition 3.2). In the

tree case, this means we must use a model in which the nodes are precisely identi-

fied. For example, we shall use the local dispose command [n]t := 0, which disposes

the subtree with top node given by variable n. For this command to be local, the

node value of n must be precisely identified. If the value of n did not describe a

unique node, then the frame property would fail. The tree model LocTreeN there-

fore provides the simplest tree model for illustrating our ideas, since its only node

structure is the unique identifiers. In [1,6], we explore a trees-with-pointers model

and associated update language which correspond much more closely to XML and

XML update. This model has a much more complicated node structure, consisting

of labels (XML tags), unique node identifiers (XML identifiers) and cross-pointers

(XML idrefs). It is easy to adapt the results presented here to this more complicated

setting.

Tree Update Language

Our data storage model resembles that of traditional imperative languages, except

that trees are first-class objects. It consists of two components: a working tree t

(analogous to a heap) and a store s. The store is a function defined on both node

variables and tree variables which are mapped to values:

node variables V arN = {n,m, . . . }

tree variables V arTN
= {x, y, . . . }

stores s ∈ (V arN → N)× (V arTN
→ TN )

This approach of storing trees allows us to break down complex operations, such as

moving trees, into smaller ones that deal with only one area of the working tree at

a time and can hence be analysed locally.

We present a core update language for directly manipulating trees. Our language

is simple, yet expressive enough to illustrate the subtleties of tree update. The

commands consist of variable assignment, updates and sequencing. The update

commands are analogous to standard commands used for updating heaps: dispose,

append, lookup and new. There are however subtle differences. First, our update

commands manipulate whole tree values, not just integers as for heaps. Second,

there are two location choices for where to update, either next to the distinguished

node or just below the node. We use the notation [n]T to denote a subtree with top

node n, and [n]SF to denote the subforest underneath n. Finally, the new command

creates a new node which, unlike the heap case, needs to be specifically located at

a particular node n.

26



GDP Festschrift ENTCS, to appear

Definition 3.5 (Commands for Tree Update) The commands of our tree up-

date language are given by the grammar:

C ::= n := n′ | x := x′ variable assignment

Cup(n) update at location n

C ; C sequencing

The tree updates Cup(n) acting at location n are defined as follows, with each update

command having two variants corresponding to updating at the identified node or at

its subforest:

Cup(n) ::= [n]t := 0 [n]sf := 0 dispose

[n]t ∗= x [n]sf ∗= x append

x := [n]t x := [n]sf lookup

n′ := new [n]t n′ := new [n]sf new

The set free(C) is the set of variables occurring in C. The set mod(C) is {n} for

node variable assignment, {x} for tree variable assignment and lookup, {n ′} for

new, ∅ for the other atomic commands, and mod(C1) ∪mod(C2) for C1 ; C2.

The left-hand dispose command replaces the subtree with top node n by the

empty tree 0; the right-hand dispose command replaces the subforest underneath

node n by the empty tree. The append commands are analogous: the right-hand

command adds the tree value given by x next to node n; the left-hand command

adds it underneath node n. The lookup command assigns either the subtree with top

node n or the subforest underneath n to the variable x. The new commands create

a new tree node with a fresh identifier and an empty subforest, either adds this

fresh node next to the node n or underneath it, and stores the new node identifier

in variable n′.

These update commands all rely on the node identified by variable n to be in the

working tree. If it is not, they will fault. A different error occurs when an append

command tries to insert a tree with a node identifier that clashes with the working

tree. In this case, the rule diverges, returning no result. This choice to diverge

rather than fault is necessary in order to keep the command local (definition 3.2).

In fact, our current choice of update is somewhat unnatural, precisely because of

its dependence on the global state of the tree. A more realistic append operation

is to rename the node identifiers of the tree being inserted with fresh identifiers [6].

Our simpler operation is enough for this paper.

Definition 3.6 (Operational Semantics for Tree Update) The operational se-

mantics of the tree update language is given in Figure 2, using an evaluation relation

; defined on configuration triples C, s, t, terminal states s, t and faults fault.

Example 3.7 [Move] We present a simple program move(n, n′) which takes a sub-

27



GDP Festschrift ENTCS, to appear

s(n′) = n′

n := n′, s, t ; [s|n← n′], t

s(x′) = t′

x := x′, s, t ; [s|x← t′], t

s(n) = n t ≡ ap(c, n[t′])

[n]t := 0, s, t ; s, ap(c, 0)

s(n) = n t ≡ ap(c, n[t′])

[n]sf := 0, s, t ; s, ap(c, n[0])

s(n) = n t ≡ ap(c, n[t′]) s(x) ≡ t′′ t′′ # t

[n]t ∗= x, s, t ; s, ap(c, n[t′] | t′′)

s(n) = n t ≡ ap(c, n[t′]) s(x) ≡ t′′ t′′ # t

[n]sf ∗= x, s, t ; s, ap(c, n[t′ | t′′])

s(n) = n t ≡ ap(c, n[t′])

x := [n]t, s, t ; [s|x← n[t′]], t

s(n) = n t ≡ ap(c, n[t′])

x := [n]sf, s, t ; [s|x← t′], t

s(n) = n t ≡ ap(c, n[t′]) n′ # t

n′ := new [n]t, s, t ; [s|n′ ← n′], ap(c, n[t′] | n′[0])

s(n) = n t ≡ ap(c, n[t′]) n′ # t

n′ := new [n]sf, s, t ; [s|n′ ← n′], ap(c, n[t′ | n′[0]])

C1, s, t ; C
′, s′, t′

(C1 ; C2), s, t ; (C′ ; C2), s
′, t′

C1, s, t ; s′, t′

(C1 ; C2), s, t ; C2, s
′, t′

s(n) = n t 6≡ ap(c, n[t′])

Cup(n), s, t ; fault

C1, s, t ; fault

(C1 ; C2), s, t ; fault

[s|x← v] denotes the store s updated with s(x) = v; similarly for [s|n← n].

t′′ # t specifies that the node identifiers of t′′ and t are disjoint.

n # t specifies that n is not in t.

Fig. 2. Operational Semantics for Tree Update

tree with top node n and moves it underneath the node n′. The program consists

of three commands: the assignment of the subtree to variable x, the disposal of the

28



GDP Festschrift ENTCS, to appear

subtree, and the append of the value of x (the subtree) underneath node n′:

move(n, n′) , x := [n]t ;

[n]t := 0 ;

[n′]sf ∗= x

We will use this example to illustrate our program logic reasoning.

CL for Tree Update

Our application of CL for LocTreeN is essentially the same as that for CLTreeA

given in definition 3.13. The differences are that we use node variables, rather than

node constants, and tree variables in our formulae, and allow quantification over

these variables. These differences are necessary for our Hoare reasoning about our

tree-update commands, which are based on node and tree variables whose values

are determined by a store.

Definition 3.8 [CL for Tree Update] CL applied to the tree model LocTreeN , de-

noted CLLocTreeN
, consists of CLLocTreeN

-formulae constructed by extending the

CL0-formulae defined inductively by the grammars in definition 2.10 with the fol-

lowing additional cases:

data formulae

P ::= x specific data formulae, x ∈ V arTN

∃n. P | ∃x. P quantification, n ∈ V arN , x ∈ V arTN

context formulae

K ::= n[K] | K ◦ P specific context formulae, n ∈ V arN

∃n.K | ∃x.K quantification, n ∈ V arN , x ∈ V arTN

The CLLocTreeN
-satisfaction relation consists of two relations of the form

LocTreeN , s, t �P P and LocTreeN , s, c �K K

where t ∈ TN and c ∈ CN , with the extra store component used to determine the

values of the variables. They are defined analogously to the CLTreeA
-satisfaction re-

lation (definition 3.13) with a standard treatment of the variables and quantification

29



GDP Festschrift ENTCS, to appear

given by:

LocTreeN , s, t �P x iff s(x) = t

LocTreeN , s, t �P ∃x. P iff ∃t′ ∈ TN . LocTreeN , [s | x← t′], t �P P

LocTreeN , s, t �P ∃n. P iff ∃n ∈ N.LocTreeN , [s | n← n], t �P P

LocTreeN , s, c �K n[K] iff ∃c′ ∈ CN . c ≡ s(n)[c′] ∧ LocTreeN , s, c′ �K K

LocTreeN , s, c �K K ◦ P iff ∃c′ ∈ CN , t ∈ TN . c ≡ c′ | t∧

LocTreeN , s, c′ �K K ∧ LocTreeN , s, t �P P

LocTreeN , s, c �K ∃x.K iff ∃t ∈ TN . LocTreeN , [s | x← t], c �P K

LocTreeN , s, c �K ∃n.K iff ∃n ∈ N.LocTreeN , [s | n← n], c �P K

Local Hoare Reasoning about Tree Update

We show that the local Hoare reasoning framework described in Section 3.1 can be

applied to our tree update language.

Lemma 3.9 (Locality for Tree Update) All the commands in our tree update

language are local.

Proof. Variable assignment is trivially local as it is independent of the tree. If

C1, C2 are local then C1 ; C2 is local by definition. Now consider the update

commands at location n. These only fault if n is not in the tree. Hence, the safety

monotonicity condition holds for these commands, since the successful application

of a context to the given tree still has n in the large tree. Notice that all the

operational rules in Figure 2 for the update commands describe the transformation

of a well-defined tree t ≡ ap(c, n[t′]) to a tree t1 ≡ ap(c, t′′) for varying values

of t′′. The frame property holds, since an update on a larger well-defined tree

ap(c′, t) ≡ ap(c; c′, n[t′]), where ; denotes standard context composition, yields a

transformation to the tree ap(c; c′, t′′) ≡ ap(c′, t1). 2

Definition 3.10 (Small Axioms for Tree Update) The small axioms for the

atomic tree update commands are given in Figure 3.

It is straightforward to see that these axioms are indeed small: the preconditions pre-

cisely describe the footprint of the command, and the postconditions just describe

the immediate effect of the command on the footprint. The weakest precondition

axioms in Figure 4 are also easy to read. For example, the formula describing the

weakest precondition of the dispose command [n]t := 0 just states that the tree

contains a subtree identified by variable n, which when replaced by the empty tree

gives property P .

Theorem 3.11 (Weakest Precondition Axioms for Tree Update) The axioms

for the atomic tree update commands given in Figure 4 are weakest precondition ax-

ioms.

30



GDP Festschrift ENTCS, to appear

{(n′ = n1) ∧ 0} n := n′ {(n = n1) ∧ 0}

{(x′ = x1) ∧ 0} x := x′ {(x = x1) ∧ 0}

{n[true]} [n]t := 0 {0}

{n[true]} [n]sf := 0 {n[0]}

{n[y]} [n]t ∗= x {n[y] | x}

{n[y]} [n]sf ∗= x {n[y | x]}

{y ∧ n[true]} x := [n]t {y ∧ (x = y)}

{n[y]} x := [n]sf {n[y] ∧ (x = y)}

{n[y]} n′ := new [n]t {n[y] | n′[0]}

{n[y]} n′ := new [n]sf {n[y | n′[0]]}

where n1, x1, y /∈ mod(C)

Fig. 3. Small Axioms for Tree Update

Proof. The proof for each atomic command is a simple application of the defini-

tions. For example, consider the update command [n]t := 0. We have wp([n]t :=

0, P ) = {(s, t′) | ∃c, t, n. s(n) = n∧ t′ ≡ ap(c, n[t])∧ s, ap(c, n[0]) �P P} by definition.

We must prove that s, t′ �P (0 � P )(n[true]) ⇔ (s, t′) ∈ wp([n]t := 0, P ). This

follows directly from the definition of the CL-satisfaction relation. The proofs for

the other atomic commands are similar. 2

Lemma 3.12 (Derivability of Weakest Precondition Axioms) The weakest

precondition axioms in Figure 5 are derivable from the small axioms in Figure 3

and the proof rules in Figure 1.

Proof. See Figure 5. 2

Using the move program move(n, n′) from Example 3.7, we demonstrate our

local Hoare reasoning. By calculating the weakest precondition of the program

with respect to the postcondition true, we can derive the necessary condition for

non-faulting execution. The following derivation applies the weakest precondition

axioms backwards, and simplifies the formulae at each step.

31



GDP Festschrift ENTCS, to appear

{P [n′/n]} n := n′ {P}

{P [x′/x]} x := x′ {P}

{(0 � P )(n[true])} [n]t := 0 {P}

{(n[0] � P )(n[true])} [n]sf := 0 {P}

{∃y. ((n[y] | x) � P )(n[y])} [n]t ∗= x {P}

{∃y. (n[y | x] � P )(n[y])} [n]sf ∗= x {P}

{∃y.3(y ∧ n[true]) ∧ P [y/x]} x := [n]t {P}

{∃y.3n[y] ∧ P [y/x]} x := [n]sf {P}

{∃y.∀n′. ((n[y] | n′[0]) � P )(n[y])} n′ := new [n]t {P}

{∃y.∀n′. (n[y | n′[0]] � P )(n[y])} n′ := new [n]sf {P}

where y /∈ free(C) ∪ free(P )

Fig. 4. Weakest Preconditions for Tree Update

{(0 � True(n′[true]))(n[true])}

x := [n]t

{(0 � True(n′[true]))(n[true])}

[n]t := 0

{True(n′[true])}

[n′]sf ∗= x

{true}

Hence, the safety precondition of a non-faulting execution of move(n, n′) is (0�

True(n′[true]))(n[true]). This assertion expresses exactly what we would expect:

the current tree must contain nodes n′ and n, but n′ cannot be underneath n since

the subtree with root n can be inserted in a context containing n′. Furthermore, we

can now easily derive a general specification for the command, using tree variables

u, v as place-holders:

{(0 � True(n′[u]))(n[v])}

move(n, n′)

{True(n′[u | n[v] ])}

32



GDP Festschrift ENTCS, to appear

Variable Assignment
˘

(n′ = n1) ∧ 0
¯

n := n′ {(n = n1) ∧ 0}
Frame

˘

(0 � P [n1/n])((n′ = n1) ∧ 0)
¯

n := n′ {(0 � P [n1/n])((n = n1) ∧ 0)}
Cons

˘

(n′ = n1) ∧ (0 � P [n1/n])(0)
¯

n := n′ {(n = n1) ∧ (0 � P [n1/n])(0)}
Cons

˘

(n′ = n1) ∧ P [n1/n])
¯

n := n′ {(n = n1) ∧ P [n1/n]}
Cons/Vars

˘

P [n′/n]
¯

n := n′ {P}

˘

(x′ = x1) ∧ 0
¯

x := x′ {(x = x1) ∧ 0}
Frame

˘

(0 � P [x1/x])((x′ = x1) ∧ 0)
¯

x := x′ {(0 � P [x1/x])((x = x1) ∧ 0)}
Cons

˘

(x′ = x1) ∧ (0 � P [x1/x])(0)
¯

x := x′ {(x = x1) ∧ (0 � P [x1/x])(0)}
Cons

˘

(x′ = x1) ∧ P [x1/x])
¯

x := x′ {(x = x1) ∧ P [x1/x]}
Cons/Vars

˘

P [x′/x]
¯

x := x′ {P}

Dispose

{n[true]} [n]t := 0 {0}
Frame

{(0 � P )(n[true])} [n]t := 0 {(0 � P )(0)}
Cons

{(0 � P )(n[true])} [n]t := 0 {P}

{n[true]} [n]sf := 0 {n[0]}
Frame

{(n[0] � P )(n[true])} [n]sf := 0 {(n[0] � P )(n[0])}
Cons

{(n[0] � P )(n[true])} [n]sf := 0 {P}

Append

{n[y]} [n]t ∗= x {n[y] | x}
Frame

{((n[y] | x) � P )(n[y])} [n]t ∗= x {((n[y] | x) � P )(n[y] | x)}
Cons

{((n[y] | x) � P )(n[y])} [n]t ∗= x {P}
Vars

{∃y. ((n[y] | x) � P )(n[y])} [n]t ∗= x {P}

{n[y]} [n]sf ∗= x {n[y | x]}
Frame

{(n[y | x] � P )(n[y])} [n]sf ∗= x {(n[y | x] � P )(n[y | x])}
Cons

{(n[y | x] � P )(n[y])} [n]sf ∗= x {P}
Vars

{∃y. (n[y | x] � P )(n[y])} [n]sf ∗= x {P}

Lookup

{y ∧ n[true]} x := [n]t {y ∧ n[true] ∧ (x = y)}
Frame

{((y ∧ n[true]) � P [y/x])(y ∧ n[true])} x := [n]t {((y ∧ n[true]) � P [y/x])(y ∧ n[true] ∧ (x = y))}
Cons

{((y ∧ n[true]) � P [y/x])(y ∧ n[true])} x := [n]t {((y ∧ n[true]) � P [y/x])(y ∧ n[true]) ∧ (x = y)}
Cons

{3(y ∧ n[true]) ∧ P [y/x]} x := [n]t {P [y/x] ∧ (x = y)}
Cons/Vars

{∃y. 3(y ∧ n[true]) ∧ P [y/x]} x := [n]t {P}

{n[y]} x := [n]sf {n[y] ∧ (x = y)}
Frame

{(n[y] � P [y/x])(n[y])} x := [n]sf {(n[y] � P [y/x])(n[y]∧ (x = y))}
Cons

{(n[y] � P [y/x])(n[y])} x := [n]sf {((n[y] � P [y/x])(n[y]))∧ (x = y)}
Cons

{3n[y] ∧ P [y/x]} x := [n]sf {(x = y) ∧ P [y/x]}
Cons/Vars

{∃y. 3n[y] ∧ P [y/x]} x := [n]sf {P}

New

{n[y]} n′ := new [n]t
˘

n[y] | n′[0]
¯

Frame
˘

(∀n′. (n[y] | n′[0]) � P )(n[y])
¯

n′ := new [n]t
˘

(∀n′. (n[y] | n′[0]) � P )(n[y] | n′[0])
¯

Cons/Vars
˘

∃y.∀n′.((n[y] | n′[0]) � P )(n[y])
¯

n′ := new [n]t {P}

{n[y]} n′ := new [n]sf
˘

n[y] | n′[0]
¯

Frame
˘

(∀n′. (n[y] | n′[0]) � P )(n[y])
¯

n′ := new [n]sf
˘

(∀n′. (n[y] | n′[0]) � P )(n[y] | n′[0])
¯

Cons/Vars
˘

∃y.∀n′.((n[y] | n′[0]) � P )(n[y])
¯

n′ := new [n]sf {P}

Fig. 5. Derivations of the Weakest Precondition Axioms for Tree Update

33



GDP Festschrift ENTCS, to appear

Comparison with BL-reasoning

We claim that CL is essential for local Hoare reasoning about tree update. In

particular, we believe that it is not possible to do this style of Hoare reasoning

based on BL. The small axioms for tree update in Figure 3 are expressible in BL

for LocTreeN . However, the weakest preconditions are not.

Definition 3.13 [BL for Tree Update] BL applied to the tree model LocTreeN ,

denoted BLLocTreeN
, consists of BLLocTreeN

-formulae constructed by extending the

BL-formulae in definition 2.25 with the following additional data formulae:

P ::= n[P ] | n̂[P ] | x | �P specific data formulae, n ∈ V arN , x ∈ V arTN

∃n. P | ∃x. P quantification, n ∈ V arN , x ∈ V arTN

The BLLocTreeN
-satisfaction relation LocTreeN , s, t �PBL

P is the obvious adapta-

tion of the BLTreeA
-satisfaction relation given in definition 2.38.

BLLocTreeN
can express updates at the top level of trees by using the composition

and branch adjoints to build contexts around the tree. What it cannot do is reason

directly about update in an arbitrary context. Consider the weakest precondition of

[n]t := 0 given by CL-formula (0 �P )(n[true]). Even simple postconditions require

a case-by-case analysis using BLLocTreeN
. For example, recall from section 2.3.3 that

CL-formula (0 � m1[m2[0]])(n[true]) corresponds to BL-formulae m1[m2[n[true]]] ∨
m1[m2[0] | n[true]]∨(m1[m2[0]] | n[true]), whereas CL-formula (0��m2[true])(n[true])

corresponds to BL-formula �m2[true]∧� n[¬� m2[true]]. These BL-preconditions are

clearly not parametric in the postcondition. In [2], we show that it is not possible

to give the weakest precondition for [n]t := 0 using BL-reasoning. This involves

extending the logics with propositional variables, and proving that the CL-formula

(0 � p)(n[true]) for propositional variable p cannot be expressed in BLLocTreeN
.

3.3 Hoare Reasoning about Heap Update

We now describe local Hoare reasoning about heap update. We have already shown

that CL-reasoning for heaps is the same as BL-reasoning for heaps (Theorem 2.29).

The connection is much deeper, in that our Hoare reasoning is exactly analogous

to local Hoare reasoning based on SL [10]. In addition, we shall see that the small

axioms, weakest preconditions and the derivations of the weakest preconditions from

the small axioms are analogous to the tree case.

Heap Update Language

The data storage model is the RAM model used in SL [10]. It consists of a working

heap h ∈ H where H is the data set of the CL0-model Heap given in Example 2.6,

and a store s. We use the notation h · h′ for the composition of heaps, and n 7→ n′

for unary cell with address n and value n′. The store maps node variables to natural

34



GDP Festschrift ENTCS, to appear

numbers.

node variables V arN = {n,m, . . . }

expressions E,F ::= n | nil

stores s ∈ (V arN → N)

We write [s | n← n] to denote the store s updated with s(n) = n. In this paper, the

expressions E are just variables and nil. This is enough to illustrate our reasoning

about the update commands. Extending the expression language to include, for

example, arithmetic, does not our reasoning. is given by:

[[n]]s = s(n) [[nil]]s = 0

Definition 3.14 (Commands for Heap Update) The commands of our heap

update language are given by the grammar:

C ::= n := E variable assignment

Cup(E) update at location E

n := new() new

C ; C sequencing

The heap update commands Cup(E) acting at location E are defined as follows:

Cup(E) ::= dispose(E) dispose

[E] := F mutation

n := [E] lookup

The set free(C) is the set of variables occurring in C. The set mod(C) is {n} for

variable assignment and lookup and new, ∅ for the other atomic commands, and

mod(C1) ∪mod(C2) for C1 ; C2.

The heap update commands are similar to the tree update commands. The main

difference is that heap locations contain unstructured values whilst tree locations

contain trees. The heap dispose command corresponds to the tree dispose command

operating at the tree level, since in both cases the node itself is deleted. The

other heap update commands correspond to tree update commands operating at

the subforest level, since subforests play the role of the contents of a node. Heap

cell mutation [E] := F corresponds to dispose of the subforest [n]sf := 0 followed

by append [n]sf ∗= x. Heap lookup n′ := [E] corresponds to tree lookup x := [n]sf.

The new command for trees differs from the one for heaps in that it specifies the

location where the new tree is added. Keeping these differences in mind, we shall see

that there are remarkable similarities in the small axioms, weakest preconditions,

and derivations for the heap commands and the corresponding tree commands.

35



GDP Festschrift ENTCS, to appear

[[E]]s = n

n := E, s, h ; [s|n← n], h

[[E]]s = n h = h′ · n7→n′

dispose(E), s, h ; s, h′

[[E]]s = n h = h′ · n7→n′ [[F ]]s = n′′

[E] := F, s, h ; s, h′ · n7→n′′

[[E]]s = n h = h′ · n7→n′

n := [E], s, h ; [s|n← n′], h

n /∈ dom(h)

n := new(), s, h ; [s|n← n], h · n7→nil

C1, s, h ; C
′, s′, h′

(C1 ; C2), s, h ; (C′ ; C2), s
′, h′

C1, s, h ; s′, h′

(C1 ; C2), s, h ; C2, s
′, h′

[[E]]s = n h 6= h′ · n7→n′

Cup(E), s, h ; fault

C1, s, h ; fault

(C1 ; C2), s, h ; fault

[s | n← n] denotes the store s updated with s(n) = n.

h · h′ denotes the composition of heaps and n 7→ n′ denotes a unary heap.

Fig. 6. Operational Semantics for Heap Update

Definition 3.15 (Operational Semantics for Heap Update) The operational

semantics of the heap update language is given in Figure 6.

CL for Heap Update

CL-reasoning for heap update is similar to CL-reasoning for multisets given in sec-

tion 2.3.2, except that we now incorporate unary heaps, expressions, expression

equality and quantification since they are necessary for our Hoare reasoning.

Definition 3.16 [CL for Heap Update] CL for heap update, denoted CLHeap, con-

sists of CLHeap-formulae constructed by extending the CL0-formulae defined induc-

tively by the grammars in definition 2.10 with the following additional cases:

data formulae

P ::= E 7→ F | E = F specific data formulae

∃n. P quantification, n ∈ V arN

context formulae

K ::= ∃n.K quantification, n ∈ V arN

36



GDP Festschrift ENTCS, to appear

{(E = n1) ∧ 0} n := E {(n = n1) ∧ 0}

{E 7→ } dispose(E) {0}

{E 7→ } [E] := F {E 7→ F}

{(E = n1) ∧ (n1 7→ n2)} n := [E] {(n = n2) ∧ (n1 7→ n2)}

{0} n := new() {n 7→ nil}

where n1, n2 /∈ mod(C)

Fig. 7. Small Axioms for Heap Update

The extension of the CL0-satisfaction relation is given by:

Heap, s, h �P E 7→ F iff h = [[E]]s 7→ [[F ]]s

Heap, s, h �P E = F iff [[E]]s = [[F ]]s

We define derived formulae used in the Hoare reasoning. We write E 7→ for

∃n.E 7→ n, and E ↪→ F for (E 7→ F ) ∗ true, where the CL0-derived formula P ∗Q

is given in Definition 2.16 and corresponds to ∗ in SL for the heap model.

Local Hoare Reasoning about Heap Update

We give the small axioms, weakest precondition axioms, and derivations of the

weakest preconditions axioms from the small axioms for the heap commands.

Lemma 3.17 (Locality for Heap Update) All the commands in our heap up-

date language are local.

Definition 3.18 (Small Axioms for Heap Update) The Small Axioms for the

atomic heap update commands are given in Figure 7.

Notice the similarity between the small axioms for the heap update commands and

the small axioms for tree update commands given in Figure 3, bar the obvious

variations due to the variation in the commands. We shall see that this similarity

also occurs in the weakest preconditions and derivations. We illustrate this similarity

for the dispose heap command dispose(E) which is analogous to the dispose tree

command [n]t := 0. The small axioms for tree and heap dispose are:

{E 7→ } dispose(E) {0} {n[true]} [n]t := 0 {0}

With the heap command dispose(E), the precondition states that the heap is unary

with expression E denoting the node address and denoting the value of the address

37



GDP Festschrift ENTCS, to appear

{P [E/n]} n := E {P}

{P ∗ (E 7→ )} dispose(E) {P}

{((E 7→ F )−∗ P ) ∗ (E 7→ )} [E] := F {P}

{∃n2.((E ↪→ n2) ∧ P [n2/n])} n := [E] {P}

{∀n. (n 7→ nil)−∗ P} n := new() {P}

where n2 /∈ free(C) ∪ free(P )

Fig. 8. Weakest Preconditions for Heap Update

which is not important. With the tree command [n]t := 0, the precondition states

that the tree has top node n and the subforest underneath is not important.

Theorem 3.19 (Weakest Precondition Axioms for Heap Update) The weak-

est precondition axioms for the atomic heap update commands are given in Figure 8.

The weakest precondition axioms for the heap and tree dispose commands are:

{P ∗ (E 7→ )} dispose(E) {P} {(0 � P )(n[true])} [n]t := 0 {P}

The connection is immediate, since P ∗Q in CL0 is a shorthand for (0 � P )(Q) and

E 7→ is analogous to n[true]. Not only that, but the derivations of these weakest

precondition axioms are exactly analogous.

Lemma 3.20 (Derivability of Weakest Precondition Axioms) The weakest

preconditions in Thm. 3.19 are derivable from the small axioms in Figure 7 and

the proof rules in Figure 1.

Proof. See Figure 9. 2

3.4 Hoare Reasoning about Term Rewriting

We now apply our local Hoare reasoning to term rewriting systems. We consider

rewrite rules as atomic commands. Rewrite rules are not typically regarded as local

commands since they may apply to a number of redexes. They are however local in

the sense that once the redex has been identified, then only the redex is affected by

the rewrite. We formalize this local behaviour by considering located terms, where

each occurrence of a function symbol f is annotated with a unique location n ∈ N

for N defined as for LocTreeN .

Definition 3.21 (Located Terms) The CL-model LocTermΣN
of located terms

generated from signature Σ and node identifiers N is the tuple (TΣN
, CΣN

, ap, { })
where TΣN

denotes the data set of located terms constructed from indexed function

symbols fn : r where f : r ∈ Σ and n ∈ N is unique in the terms, CΣN
is the

38



GDP Festschrift ENTCS, to appear

corresponding set of contexts, ap denotes the partial application of contexts to terms,

and denotes the empty context.

Term Rewriting Update Language

Our data storage model consists of a working term t and a store s. The store is

again a total function from node variables and term variables to values:

node variables V arN = {n,m, . . . }

term variables V arTΣN
= {x, y, . . . }

stores s ∈ (V arN → N)× (V arTΣN
→ TΣN

)

We use the notation [s | n← n] and [s | x← t] as before. We also give expressions

which will be used to define the rewrite commands:

pre-expressions E,F ::= x | fn(E, . . . , E)

The sets freeN(E) and freeT (E) denote the free node variables and tree variables

in E, and are standard. The set of expressions are those pre-expressions with linear

occurrences of the node variables. The semantics of expressions is a partial function

due to uniqueness of node identifiers:

[[x]]s = s(x)

[[fn(E1, . . . , Er)]]s =







fs(n)([[E1]]s, . . . , [[Er]]s) if a well-defined located term

undefined otherwise

Definition 3.22 (Commands for Term Rewriting) The commands for our term

rewriting language are given by the grammar:

C ::= E → F rewriting rule

C ; C sequencing

with the following restrictions:

(i) rewrite rule restrictions: E is not a variable and freeT (F ) ⊆ freeT (E);

(ii) linearity restriction on term variables due to uniqueness of location names:

each x ∈ freeT (E) occurs once in E and each x ∈ freeT (F ) occurs once in F .

The set free (E → F ) is freeN (E) ∪ freeN (F ) and mod(C) is freeN (F ) − freeN (E).

Since term variables are only used internally for pattern matching with the rewrite

command, they are neither modified nor free.

The command E → F acts on the working term t and the store s by finding values

for the term variables in E, such that E with those values evaluates to a subterm of

t, and then replacing that subterm with the one generated by substituting the values

39



GDP Festschrift ENTCS, to appear

into F , with fresh values assigned to F ’s fresh location variables. For example, the

execution of the rewrite command fn(x, y) → gn(x, hm(y)) on the working term

hn1
(fn2

(cn3
, cn4

)) in a store where n = n2 results in the term hn1
(gn2

(cn3
, hn5

(cn4
)))

where n5 is a fresh node value assigned to m in the store. Notice that n5 must be

fresh for the resulting term to be well-formed.

Definition 3.23 (Operational Semantics for Term Rewriting) The operational

semantics of the term rewriting commands is given in Figure 10.

Going back to our specific rewriting example, notice that the operational semantics

only temporarily assigns term variable x to cn3
and y to cn4

. This is because the

term variables in a rewriting command are bound in that command, in the sense

that they are only used to describe the matching of that command to a subterm of

the working term.

CL for Term Rewriting

CL for term rewriting is similar to CL for terms (section 2.3.4), except that it is

extended by expressions and quantification.

Definition 3.24 [CL for Term Rewriting] CL applied to the term model LocTermΣN
,

denoted CLLocTermΣN
, consists of CLLocTermΣN

-formulae constructed by extending

the CL-formulae defined inductively by the grammars in definition 2.1 with the

following additional cases:

data formulae

P ::= E specific data formulae

∃n. P | ∃x. P quantification, n ∈ V arN , x ∈ V arTN

context formulae

K ::= fn(P1, . . . ,K, . . . , Pr) specific context formulae, f : r ∈ Σ, n ∈ N

∃n.K | ∃x.K quantification, n ∈ V arN , x ∈ V arTN

The extension of the satisfaction relation is given by:

LocTermΣN
, s, t �P E iff [[E]]s = t

LocTermΣN
, s, t �K fn(P1, . . . ,K, . . . , Pr) iff t = f[[n]]s(t1, . . . , , . . . , tr) and

LocTermΣN
, s, ti �P Pi, i ∈ {1, . . . , r}

Local Hoare Reasoning about Term Rewriting

We give the small axiom and weakest precondition axiom for the atomic term rewrit-

ing command, and derive the latter from the former as with our previous update

examples.

40



GDP Festschrift ENTCS, to appear

Lemma 3.25 (Locality for Term Rewriting) The commands in our term rewrit-

ing language are local.

Definition 3.26 (Small Axiom for Term Rewriting) The small axiom for com-

mand E → F is simply

{E} E → F {F}

Theorem 3.27 (Weakest Precondition Axiom for Term Rewriting) The weak-

est precondition axiom for command E → F is

{∃x̃′.(∀m̃.(F [x̃′/x̃] � P ))(E[x̃′/x̃])} E → F {P}

where {x̃} = freeT (E), {m̃} = freeN (F )− freeN (E), and {x̃′} ∩ freeT (P ) = ∅.

The substitution x̃′/x̃ reflects the fact that the term variables x̃ in E are bound

in the rewrite command, and can hence be renamed in the logic. The universal

quantification for the m̃ is necessary, because the m̃ can be assigned any fresh value

with freshness being guaranteed by the well-formedness of terms.

Lemma 3.28 (Derivability of Weakest Precondition Axiom) The weakest pre-

condition in Thm. 3.27 is derivable from the small axiom in Defn. 3.26 and the proof

rules in Figure 1.

Proof. See Figure 11. 2

41



GDP Festschrift ENTCS, to appear

Variable Assignment

{(E = n1) ∧ 0} n := E {(n = n1) ∧ 0}
Frame

{P [n1/n] ∗ ((E = n1) ∧ 0))} n := E {P [n1/n] ∗ ((n = n1) ∧ 0)}
Cons

{P [E/n]∧ E = n1} n := E {P}
Cons/Vars

{P [E/n]} n := E {P}

Dispose

{E 7→ } dispose(E) {0}
Frame

{P ∗ (E 7→ )} dispose(E) {P ∗ 0}
Cons

{P ∗ (E 7→ )} dispose(E) {P}

Mutation

{E 7→ } [E] := F {E 7→ F}
Frame

{((E 7→ F ) −∗ P ) ∗ (E 7→ )} [E] := F {((E 7→ F ) −∗ P ) ∗ (E 7→ F )}
Cons

{((E 7→ F ) −∗ P ) ∗ (E 7→ )} [E] := F {P}

Lookup

{(E = n1) ∧ (n1 7→ n2)} n := [E] {(n = n2) ∧ (n1 7→ n2)}
Frame(

((n1 7→ n2) −∗ P [n2/n])

∗ ((E = n1) ∧ (n1 7→ n2))

)

n := [E]

(

((n1 7→ n2) −∗ P [n2/n])

∗ ((n = n2) ∧ (n1 7→ n2))

)

Cons

{(n1 ↪→ n2) ∧ P [n2/n] ∧ (E = n1)} n := [E] {P [n2/n] ∧ (n = n2)}
Cons

{(E ↪→ n2) ∧ P [n2/n] ∧ (E = n1)} n := [E] {P}
Cons/Vars

{∃n2.((E ↪→ n2) ∧ P [n2/n])} n := [E] {P}

New

{0} n := new() {n 7→ nil}
Frame

{(∀n. (n 7→ nil) −∗ P ) ∗ 0} n := new() {(∀n. (n 7→ nil) −∗ P ) ∗ (n 7→ nil)}
Cons

{∀n. (n 7→ nil) −∗ P )} n := new() {P}

Fig. 9. Derivations of the Weakest Preconditions for Heap Update

42



GDP Festschrift ENTCS, to appear

t = ap(c, t1) t1 = [[E]][s | x̃← t̃] t2 = [[F ]][s | x̃← t̃, m̃← m̃] t′ = ap(c, t2)

E → F, s, t ; [s|m̃← m̃], t′

C1, s, t ; C
′, s′, t′

(C1 ; C2), s, t ; (C′ ; C2), s
′, t′

C1, s, t ; s′, t′

(C1 ; C2), s, t ; C2, s
′, t′

t 6= ap(c, [[E]][s | x̃← t̃])

E → F, s, t ; fault

C1, s, t ; fault

(C1 ; C2), s, t ; fault

where {x̃} = freeT (E) and m̃ = freeN (F )− freeN (E).

Fig. 10. Operational Semantics for Term Rewriting

Rewrite

{E} E → F {F}
Frame

{(I ∧ x̃′=x̃)(E)} E → F {(I ∧ x̃′=x̃)(F )}
Cons

{x̃′=x̃ ∧ E[x̃′/x̃]} E → F {x̃′=x̃ ∧ F [x̃′/x̃]}
Vars/Cons

{E[x̃′/x̃]} E → F {F [x̃′/x̃]}
Frame

{(∀m̃.(F [x̃′/x̃] � P ))(E[x̃′/x̃])} E → F {(∀m̃.(F [x̃′/x̃] � P ))(F [x̃′/x̃])}
Cons/Vars

{∃x̃′.(∀m̃.(F [x̃′/x̃] � P ))(E[x̃′/x̃])} E → F {P}

Fig. 11. Derivation of the Weakest Precondition Axiom for Term Rewriting

43



GDP Festschrift ENTCS, to appear

4 Conclusions

We have given a detailed account of CL for reasoning about structured data, and

have compared CL0-reasoning with BL-reasoning. We have analysed several exam-

ples of structured data: sequences and trees where CL0-reasoning is stronger than

BL-reasoning, multisets and heaps where CL0- and BL-reasoning is the same, and

terms where only CL-reasoning is feasible. We believe these examples show that

reasoning about contexts is important for reasoning about structured data. We have

chosen to present the simplest version of CL necessary in order to present our local

Hoare reasoning. There are of course several natural extensions such as context

composition [16], multi-holed contexts, and binding contexts, which we will study

as the application demands.

We have presented a framework for local Hoare reasoning about data update us-

ing CL, which we have applied to tree update, heap update and term rewriting. This

work is a straightforward adaptation of the local reasoning agenda first established

by O’Hearn, Reynolds and Yang in [10], giving us confidence that our CL-reasoning

is the right approach. For tree update, it is possible to describe the small axioms

and frame rule using BL for trees (static AL). It is however not possible to define the

weakest preconditions. In this paper, we illustrate this by example. We show that

the weakest precondition for tree dispose cannot be expressed using BL-reasoning,

since even simple postconditions require a case-by-case analysis which result in a

very different structure for each case. In [2], we prove the formal inexpressivity

result.

Our original motivation for reasoning about tree update was to reason about

XML update. In this paper, we focus on a simple imperative language for manipu-

lating a simple tree model, which is expressive enough to illustrate the subtleties of

reasoning about tree update. In [6], Gardner and Zarfaty study local Hoare reason-

ing for a more substantial tree-update language which combines update commands

with queries. They describe local Hoare reasoning for these more complex com-

mands, but only at the expense of loosing the small axioms. Small-axiom reasoning

should still be possible, since these complex commands have well-defined footprints.

It may be possible to regain the small-axiom approach, by using more complex con-

texts involving a mixture of multi-holed contexts and wiring. Indeed, Sassone et al.

have highlighted Milner’s bigraphs [8] as a good model for XML precisely because

of the additional context structure. They study BiLog [5], a logic for static bigraphs

influenced in part by CL, but do not extend their reasoning to tree update.

In our examples of data update, the CL-reasoning and local Hoare reasoning are

intriguingly similar. This suggests the possibility of unified reasoning about data

update. For data defined inductively by a grammar, we intuitively know how to

give the corresponding CL-theory. We should be able to formalise this intuition,

by providing a uniform way of generating data, contexts and CL-formulae from the

same underlying signature. It remains to be seen whether this idea can be expanded

to generate a unified theory of local Hoare reasoning.

44



GDP Festschrift ENTCS, to appear

References

[1] Calcagno, C., P. Gardner and U. Zarfaty, Context logic and tree update, in: POPL, 2005.

[2] Calcagno, C., P. Gardner and U. Zarfaty, Context logic as modal logic: Completeness and parametric
expressivity (2006), submitted.

[3] Cardelli, L. and A. Gordon, Anytime, anywhere: Modal logics for mobile ambients, in: POPL, 2000.

[4] Cardelli, L. and A. Gordon, Logical properties of name restriction, in: TLCA, LNCS 2044, 2001.

[5] Conforti, G., D. Macedonio and V. Sassone, Spatial logics for bigraphs, in: ICALP, LNCS 3520, 2005.

[6] Gardner, P. and U. Zarfaty, Local reasoning about tree update, in: MFPS, 2006.

[7] Ishtiaq, S. and P. O’Hearn, BI as an assertion language for mutable data structures, in: POPL, 2001.

[8] Jensen, O. and P. Milner, Bigraphs and mobile processes (revised), Technical report, University of
Cambridge (2004).

[9] O’Hearn, P. and D. Pym, Logic of bunched implications, Bulletin of Symbolic Logic 5 (1999), pp. 215–
244.

[10] O’Hearn, P., J. Reynolds and H. Yang, Local reasoning about programs that alter data structures, in:
L. Fribourg, editor, CSL 2001 (2001), pp. 1–19, LNCS 2142.

[11] Pym, D., P. O’Hearn and H. Yang, Possible worlds and resources: The semantics of BI, Theoretical
Computer Science 315 (2004), pp. 257–305.

[12] Pym, D. J., “The Semantics and Proof Theory of the Logic of Bunched Implications,” Applied Logic
Series 26, Kluwer Academic Publishers, 2002.

[13] Reynolds, J., Separation logic: a logic for shared mutable data structures (2002), invited Paper, LICS’02.

[14] Simpson, A., “The Proof Theory and Semantics of Intuitionistic Modal Logic,” Ph.D. thesis, PhD
Thesis, University of Edinburgh (1993).

[15] Yang, H. and P. O’Hearn, A semantic basis for local reasoning (2002), fOSSACS.

[16] Zarfaty, U., Context logic and tree update, PhD thesis. In preparation.

45


	Introduction
	Context Logic
	Basic Context Logic
	Context Logic with Zero
	Applications of CL

	Local Hoare Reasoning
	General Hoare Reasoning
	Hoare Reasoning about Tree Update
	Hoare Reasoning about Heap Update
	Hoare Reasoning about Term Rewriting

	Conclusions
	References

