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Abstract. We introduce a geometric process algebra based on affine geometry, 

with the aim of describing the concurrent evolution of geometric structures in 

3D space. We prove a relativity theorem stating that algebraic equations are in-

variant under rigid body transformations. 
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1  Introduction 

Process algebras are used to study fundamental primitives of interaction between dis-

tributed, concurrent processes. They have been used successfully as a basis of distri-

buted programming languages, and for modeling molecular interaction in biological 

organisms. In this paper, we introduce a geometric process algebra, called 3π, that 

combines the interaction primitives of the π-calculus with geometric transformations, 

in order to extend the applicability of process algebras to geometrical systems. 

One of the key motivating examples of the π-calculus is the handover protocol of 

mobile phones [10]: a mobile phone is connected to a fixed tower, and through the 

connection receives a new frequency to connect to a different tower. In actuality, the 

handover is based on the relative distance (relative signal power) between the mobile 

device and the fixed towers, and hence the protocol depends on geometry. More gen-

erally, one can find many examples of interacting processes that are continually mov-

ing, like interacting transmitters attached to animals or robots, and interacting cells in 

biological organisms. Biological systems, in particular, provide complex examples of 

process interaction that depend on geometry, such as the growth of tissues, the diffu-

sion of signaling molecules, and the overlapping of chemical gradients. During bio-

logical development, tissues expand, split and twist, and there is no fixed coordinate 

system that one can coherently apply. To capture examples such as these, it is natural 

to turn to affine geometry, which is the geometry of properties that are invariant under 

linear transformations and translations.  

Beyond choosing the particular kind of geometry, we must choose how the geo-

metric space relates to the processes that are living within it. How should the position 

of a process be represented? How should a process move from one position to anoth-

er? How should processes at different positions interact? In 3π, processes have access 

to the standard affine basis consists of the origin ⊹ and the orthogonal unit vectors 

↥x,↥y,↥z. However, all geometric data is interpreted with respect to a global frame A, 

which is an affine map. In particular, what a process believes to be the origin, ⊹, is 

actually A(⊹), and this is seen as the location of the process in the global frame. The 
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true size and orientation of the basis vectors is also influenced by A, as they are inter-

preted as A(↥x),A(↥y),A(↥z). The global frame A is inaccessible to processes, al-

though they can carry out comparisons between computed values that may reveal 

some information about A. 

Processes can change position via a frame shift operation M[Q], where the local 

frame M denotes an affine map B: given process M[Q] in a global frame A, then 

process Q is interpreted in the shifted global frame A∘B. The process M[Q] | N[R] 

therefore indicates that processes Q and R are in different frames, with Q shifted by M 

and R by N. Conversely, the process M[Q] | M[R] = M[Q | R] indicates that Q and R 

are in the same frame. Frame shift operations can also be nested, with the process 

M[N1[Q] | N2[R]] indicating that Q is in the frame shifted first by N1 and then M, 

whereas R is shifted by N2 then M. Since M denotes a general affine map, frame shift 

is more than just a change of location: it generalizes the d-π [6] notion of multiple 

process locations to multiple process frames.  

Processes interact by exchanging data messages consisting of channel names or 

geometric data. Process interaction is not restricted by the frame (position) of a 

process. Geometric data is evaluated in its current frame and transmitted ‘by value’ to 

the receiver. For example, we have the interaction: 
 

 P ≝ M[!x(⊹).Q] | N[?x(z).R]  A→  M[Q] | N[R{z\ε}] 
 

where M evaluates to B in the global frame A and ⊹ evaluates to ε = A∘B(⊹). Tech-

nically, this interaction across frame shifts is achieved via the equality: 
 

 P  = !x(M[+]).M[Q] | ?x(z).N[R] 
 

which distributes the frame shifts throughout the process, thus exposing the output 

and input for interaction. In addition to communication, processes can compare data 

values. If R is z=⊹.R’ in our above example, then after interaction this process com-

putes whether A∘B(⊹) = A∘C(⊹), where C is the evaluation of N in A, and evolves 

to R’ only if the original output and input processes are at the same position.  
 

Related Work. Affine geometry is the geometry of properties that are invariant under 

translation, rotation, reflection and stretching. Distances and angles are not necessarily 

preserved by affine maps, but relative positions are: for example, the notion of mid-

point is an affine invariant. Affine geometry is widely used in computer graphics; 

probably the most accessible reference for computer scientists is Gallier's book [5]. It 

has also been used in conjunction with L-Systems in very successful models of plant 

development [11]. However, L-systems are contextual term rewriting systems and, 

unlike 3π, do not have an intrinsic notion of interaction, a notion which is important 

since biological development is regulated by sophisticated intra-cellular interactions.  

SpacePi [8] has been proposed as an extension of the π-calculus to model spatial 

dynamics in biological systems. This approach has similar general aims to our work, 

but is technically rather different: communication is limited to a radius, processes 

have velocity vectors, time is discrete, the preferred simulation technique is discrete 

event simulation, and there is no notion of applying a geometric transformation to a 

process. In future work, we will introduce continuous time in 3π by a stochastic ex-

tension, which will allow for Gillespie-style simulation. The velocity of a process then 
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becomes a consequence of stochastic moves at certain rates. This means that 3π need 

only use 3D space, because the 4th geometric dimension (time) comes from the intrin-

sic dynamics of stochastic π-calculus. Unlike SpacePi, we do not restrict communica-

tion to a radius because that can be achieved by comparing data values, because some 

physical forces have infinite radius, and because geometric constraints on interaction 

are not necessarily of such a simple form (e.g., interaction restricted to adjacent cells 

of odd shapes). 
 

Example: Distance between processes. Let us assume that the global frame is just 

the identity map. Process P below is located at -1 on the x axis, because X applies a 

translation T(-↥x) to it. Similarly, process Q is located at +1 on the x axis by Y. When 

P outputs its origin, the actual value being communicated is thus the point 〈-1,0,0〉: 
this is a computed value that is not subject to any further transformation. Process Q 

receives that value as x, and computes the size of the vector x∸⊹ obtained by a point 

difference. In the frame of Q that computation amounts to the size of the vector 

〈-1,0,0〉 ∸ 〈1,0,0〉, which is 2. Therefore, the comparison ‖x∸⊹‖=2 succeeds, and 

process R is activated, having verified that the distance between P and Q is 2. 
 

 X = T(-↥x)[P]  where P = !m(⊹)     

 Y = T(↥x)[Q]  where Q = ?m(x). ‖x∸⊹‖=2. R   
 

Example: Orthogonal bifurcation in lung development. Lung development in 

mouse is based on three splitting processes [9]. We show how to represent the third 

(orthogonal bifurcation, Orth), which is a proper 3D process where bifurcations alter-

nate between orthogonal planes.  
 

 Orth = !c(⊹). (M90(π/6)[Orth] | M90(-π/6)[Orth])       

 M90(θ) = R(M(θ)[↥y],π/2)∘M(θ)  

 M(θ) = Sc(½)∘R(↥z,θ)∘T(↥y) 
 

The output of the origin ⊹ to the c channel at each ite-

ration provides a trace of the growing process that can 

be plotted. The transformation M(θ) applies a translation T(↥y) by ↥y, a rotation 

R(↥z,θ) by θ around ↥z, and a uniform scaling Sc(½) by ½. The transformation M90(θ) 

first applies an M(θ) transformation in the XY plane, and then applies a further 90° 

rotation around the ‘current’ direction of growth, which is M(θ)[↥y], therefore rotating 

out of the XY plane for the next iteration. Opposite 30° rotations applied recursively 

to Orth generate the branching structure. 
 

Example: Force fields. A force field is a process that receives the location of an ‘ob-

ject’ process (and, if appropriate, a representation of its mass or charge), and tells it 

how to move by a discrete step. The latter is done by replying to the object with a 

transformation that the object applies to itself. This transformation can depend on the 

distance between the object and the force field, and can easily represent inverse 

square and linear (spring) attractions and repulsions. By nondeterministic interaction 

with multiple force fields, an object can be influenced by several of them. 
 

 Force = (?f(x,p). !x(M{p}))*   f is the force field channel; M{p} is a map  

 Object = (νx) !f(x,⊹). ?x(Y). Y[Object]  
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 A uniform field (‘wind’):         M{p} = T(↥x) 

 A linear attractive field at q (‘spring’):     M{p} = T(½∙(q∸p)) 

 An inverse-square repulsive field at q (‘charge’):  M{p} = T((1/‖p∸q‖2)∙(p∸q)) 
 

The ability to express force fields is important for modeling constraints in physical 

systems. For example, by multiple force fields one can set up an arbitrary and time-

varying network of elastic forces between neighboring cells in a cellular tissue. 

2  Processes 

We introduce a process algebra, 3π, where 3-dimensional geometric data (points, vec-

tors, and affine maps) can be exchanged between processes, and where processes can 

be executed in different frames. This is a proper extension of π-calculus with by-value 

communication of geometric data ∆, data comparisons ∆=∆’.P, and frame shifting 

M[P]. By-value communication is achieved by an evaluation relation ∆ A↣ ε, which 

evaluates a data term ∆ with respect to a global frame A to a data value ε. Frame 

shifting is the characteristic construct of 3π: it means running the process P in the 

frame shifted by affine map M. 

The syntax of processes, given in Definition 2.1–1, depends on the syntax of data 

∆ which is defined in full in Section 3. For now, it is enough to know that data terms 

include channel variables xc and variables of geometric sorts; we use x (without sort 

subscript) to denote a generic variable when the sorting can be inferred. Data terms 

also include M[∆], representing data ∆ transformed by an affine map M. Other data 

terms (indicated by ‘...’) are discussed in Section 3. Each data term has a data sort 

σ ∈ Σ = {c,a,p,v,m}, denoting channels, scalars, points, vectors, and maps respective-

ly. The channel variables xc∈Varc have sort c, and the sort of M[∆] is the sort of ∆. 

2.1–1  Definition: Syntax of Processes 
 

 ∆  ::=  xc  ⋮  ...  ⋮  M[∆]          Data terms 

 π  ::=  ?σx(x’)  ⋮  !σx(∆)  ⋮  ∆=σ∆’       Action terms 

 P  ::=  0  ⋮  π.P  ⋮  P+P’  ⋮  P|P’  ⋮  (νx)P  ⋮  P*  ⋮  M[P] Process terms 
 

 

An action term π can be an input ?σx(x’), an output !σx(∆), or a data comparison 

∆=σ∆’. The input and output actions are analogous to π-calculus actions, where the 

input receives a data value of sort σ along channel x which it binds to x’, and the out-

put sends the value of ∆ with sort σ along x. Process interaction only occurs between 

inputs ?σ, and outputs !σ of the same sort σ. A comparison of two data terms of sort σ 

blocks the computation if the terms do not match when evaluated using A↣. The syn-

tax of actions is restricted by sorting constraints: the x in ?σx(x’) and !σx(∆) has a 

channel sort c; the x’ in ?σx(x’) must have sort σ; the ∆ in !σxc(∆) must have sort σ; 

and the ∆,∆’ in ∆=σ∆’ must have sort σ. We often omit sorting subscripts, and we 

assume that variables of distinct sorts are distinct. 

A process term is a fairly standard π-calculus term, consisting of the empty 
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process 0, the action process π.P for action π, choice P+P’, parallel composition P | P’, 

channel restriction (νx)P where x has sort c, and replication P*. In addition, we have 

process frame shifting M[P], which is the execution of process P in a shifted frame 

given by M. We shall see in Section 3 that channel variables do not occur in M; hence 

in (νx)M[P] there then is no possibility that any variable in M is bound by x.  

The free and bound channel variables are defined as for the π-calculus: in particu-

lar, the variable x in ?σy(x).P and (νx)P acts as a binder. We write fvσ(P) to denote the 

free variables of sort σ in P, and assume α-convertibility. As usual, we define τ.P =def 

(νx)(?x(x).0 | !x(x).P) for x∉fvc(P). The substitution P{x\ε} for data value ε follows 

the normal substitution for the π-calculus, with non-standard cases for frame shifted 

processes, M[P]{x\ε} = M{x\ε}[P{x\ε}], and for action processes, (∆=σ∆’.P){x\ε} = 

∆{x\ε}=σ∆’{x\ε}.P{x\ε} and (!σyc(∆).P){x\ε} = !σyc(∆{x\ε}).P{x\ε} and (?σyc(z).P) 

{x\ε} = ?σyc(z).P{x\ε} assuming an α-variant with z≠x. We define the substitution 

∆{x\ε} in Section 3: it is straightforward as ∆ contains no variable binding constructs. 

We say that a term is closed if it does not contain free variables of sorts a,p,v,m; the 

free channel variables evaluate to themselves and so are admitted in the closed terms.  
 

We now give a ternary reduction relation on process terms, written →, which re-

lates two processes and a global frame A. Reduction depends on the evaluation rela-

tion ∆ A↣ ε from data ∆ to values ε, again in a global frame A. The frame A is an 

affine map: any geometric data, such as the origin and the basis vectors, are inter-

preted with respect to this global frame. 

The reduction rules for process terms are just the rules of a by-value π-calculus 

with data terms ∆. Data evaluation is used in the (Red Comm) and (Red Cmp) rules. 

Data comparison ∆=σ∆’.P requires the data evaluation ∆ A↷↶ ∆’ which means there 

exists a data value ε such that ∆ A↣ ε and ∆’ A↣ ε. Data comparison acquires a spe-

cific sense of observation in the frame A, because ∆ and ∆’ may or may not match 

depending on A. The reduction rules also support channel passing and channel match-

ing in the standard π-calculus sense, because channels evaluate to themselves.  

2.1–2  Definition: Reduction 
 

(Red Comm) ∆ A↣ ε  ⇒  !σx(∆).P + P’ | ?σx(y).Q + Q’ A→  P | Q{y\ε} 

(Red Cmp) ∆ A↷↶ ∆’  ⇒  ∆=σ∆’.P A→ P 

(Red Par)  P A→ Q  ⇒  P | R A→ Q | R 

(Red Res) P A→ Q  ⇒  (νx)P A→ (νx)Q  

(Red ≡)  P’ ≡ P,  P A→ Q,  Q ≡ Q’  ⇒  P’ A→ Q’  
 

 

There is nothing specific in these rules about the use of the global frame A: this is 

simply handed off to the data evaluation relation. There is also no rule for process 

frame shifting, M[P], which is handled next in the structural congruence relation. 
 

In the now standard ‘chemical’ formulation [1] of π-calculus, the structural con-

gruence relation has the role of bringing actions ‘close together’ so that the communi-

cation rule (Red Comm) can operate on them. We extend this idea to bringing actions 
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together even when they are initially separated by frame shifts, so that the standard 

(Red Comm) rule can still operate on them. Therefore, structural congruence, ≡ (Defi-

nition 2.1–3), consists of the normal π-calculus rules plus additional rules for frame 

shifting: the (≡ Map...) rules. These map rules essentially enable us to erase frame 

shifts from the process syntax and to push them to the data. In this sense, process 

frame shift M[P] is an illusion, or syntactic sugar, for a π-calculus with frame shift 

only on the data. However, frame shift is important for modularity because, without it, 

we would have to modify the process code to apply the frame to all the data items 

individually.  

2.1–3  Definition: Structural Congruence 
 

(≡ Refl)  P ≡ P  

(≡ Symm)  P ≡ Q  ⇒  Q ≡ P 

(≡ Tran)  P ≡ Q, Q ≡ R  ⇒  P ≡ R  
 

(≡ Act)   P ≡ P’  ⇒  π.P ≡ π.P’ 

(≡ Sum)  P ≡ P’, Q ≡ Q’  ⇒  P+Q ≡ P’+Q’  

(≡ Par)   P ≡ P’, Q ≡ Q’  ⇒  P | Q ≡ P’ | Q’ 

(≡ Res)   P ≡ P’  ⇒  (νx)P ≡ (νx)P’ 

(≡ Repl)  P ≡ P’  ⇒  P* ≡ P’* 

(≡ Map)  P ≡ P’  ⇒  M[P] ≡ M[P’] 
 

(≡ Map Cmp) M[∆=σ∆’.P] ≡ M[∆]=σM[∆’].M[P] 

(≡ Map Out) M[!σx(∆).P] ≡ !σx(M[∆]).M[P] 

(≡ Map In)  M[?σx(y).P] ≡ ?σx(y).M[P]   

     (y∉fvσ(M)) 

(≡ Map Sum) M[P+Q] ≡ M[P]+M[Q] 

(≡ Map Par) M[P | Q] ≡ M[P] | M[Q] 

(≡ Map Res) M[(νx)P] ≡ (νx)M[P] 

(≡ Map Comp) M[N[P]] ≡ (M∘M[N])[P] 

(≡ Sum Comm) P+Q ≡ Q+P 

(≡ Sum Assoc) (P+Q)+R ≡ P+(Q+R)  

(≡ Sum Zero)  P+0 ≡ P 
 

(≡ Par Comm)  P | Q ≡ Q | P 

(≡ Par Assoc)  (P | Q) | R ≡ P | (Q | R) 

(≡ Par Zero)  P | 0 ≡ P 
 

(≡ Res Zero)  (νx)0 ≡ 0 

(≡ Res Sum)  (νx)(P+Q) ≡ P+(νx)Q    

      (x∉fvc(P)) 

(≡ Res Par)   (νx)(P | Q) ≡ P | (νx)Q    

      (x∉fvc(P)) 

(≡ Res Res)   (νx)(νy)P ≡ (νy)(νx)P 
 

(≡ Repl Zero)  0* ≡ 0 

(≡ Repl Par)  (P | Q)* ≡ P* | Q* 

(≡ Repl Copy)  P* ≡ P | P* 

(≡ Repl Repl)  P** ≡ P* 

 

 

The only non-standard rules are the (≡ Map ...) rules. These can be read from left 

to right as pushing frames inside the syntax; the only situation that is not generally 

reversible is with (≡ Map In) because of the side condition. Correctness of the Map 

rules for Sum, Par, and Res is fairly obvious, because all parts of a given process 

should be in the same frame. Note that (≡ Map Par) mimics a rule in d-π [6], and that 

(≡ Map Res) relies on variable sorting so that x cannot occur in M. The rules (≡ Map 

Out) and (≡ Map In) have the effect of removing a layer of frame shifting around in-

puts and outputs. The (≡ Map Comp) rule pushes a frame shift across another frame 

shift, thus flattening the structure and allowing inputs and outputs in different nesting 

levels to come together; we might expect the rule to be M[N[P]] ≡ (M∘N)[P], but we 

need to keep N in its original frame. A rule to push frame shift inside P* is not 

needed, because (≡ Repl Copy) implies that M[P*] ≡ M[P|P*] ≡ M[P]|M[P*], thus 

solving the same recursive equation as M[P]*. A rule M[0] ≡ 0 is not included: it 

might introduce an unconstrained M leading to loss of induction hypotheses.  

Many other rules can be derived, e.g., for communication across frames shifts at 

different depths, and for data comparison inside a local frame. In summary, the appli-
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cation of the structural congruence rules allows us to ‘flatten’ the local frames so that 

the rules in Definition 2.1–2 can be applied directly. There still remains the issue of 

correctness, or plausibility, of the new structural congruence rules. This issue can be 

explored by analyzing the expected derived rules, as we briefly mentioned above, and 

by establishing general properties of the whole system, as done in Section 4. 

We have not discussed recursion, which was used in some of the initial examples. 

However, ordinary recursive definitions in π-calculus can be encoded from replication 

and communication, and this extends in 3π to recursive definitions under frame shift 

by the ability to communicate transformations. 

3  Data 

A vector space over a field F is a set V 

with operations + ∈ V×V→V (vector addi-

tion) and ∙ ∈ F×V→V (scalar multiplica-

tion), such that (V,+) is an abelian group, 

with identity the zero vector ø and inverse 

-v and: a∙(v+w) = a∙v+a∙w, (a+b)∙v = 

a∙v+b∙v, (a∙b)∙v = a∙(b∙v), and 1∙v = v. 

Three-dimensional space is our basic vec-

tor space over the field of reals: the vec-

tors are the points of R3, + is coordinate-

wise addition, and ∙ is coordinatewise multiplication. Euclidean spaces such as R3 

also have the ability to measure. This is achieved by extending the vector space with 

the dot product of vectors, v•w, giving the ability to measure distances and angles, 

and with the cross product of vectors, v×w, giving the ability to generate out-of-plane 

vectors, to measure areas and volumes, and to detect handedness. 

An affine space consists of a set of points P, a vector space V, and for each point p 

a bijection θp between points and vectors giving rise to two operations: p∸q = θq(p) 

and v∔p = θp
-1(v). From two points p,q, we can obtain the free vector p∸q from q to p, 

intended as a vector with magnitude and orientation but without fixed location. Given 

a vector v and a point p, we obtain the point v∔p, which is the point p translated by the 

vector v. The key property is the head-to-tail axiom (p∸q) + (q∸r) = (p∸r). Throughout 

this paper, we use the three-dimensional affine space over R3, consisting of R3 as the 

set of points (including the origin point denoted ⊹), and R3 as the vector space (in-

cluding the standard basis vectors denoted ↥x,↥y,↥z), and with the bijections θq(p) = the 

vector from the origin to p-q. (Technically, we take an isomorphic copy of the vector 

space, so we can distinguish points from vectors in the operational semantics.) 

We are interested in three main groups of transformations over R3. The General 

Affine Group GA(3) is the group of affine maps over R3, which are indicated by script 

letters A, B, C. Affine maps are presented as pairs 〈A,p〉 where A is 3x3 invertible 

matrix representing a linear transformation, and p is a point in R3 used as a translation 

vector. The Euclidean Group E(3) is the subgroup of GA(3) where AT = A-1: namely, 

it is the group of isometries of R3 consisting of rotations, translations and reflections. 

The Special Euclidean Group SE(3) is the subgroup of E(3) where det A = 1: namely, 

 

O(3)

GL(3)

SO(3)

SE(3)SL(3)

E(3)

GA(3)

SA(3)

Translation

Rotation
Shearing
Squishing

Reflection

Preserves distance 
and angles

Preserves 
volume and 
handedness

Preserves 
the origin

General
Scaling

General
Deformation

General
Isometry

Transformation 
Groups
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the direct isometries which exclude reflections. Elements of SE(3) are known as the 

rigid body transformations, preserving distances, angles, and handedness.  

An affine map A has a canonical associated affine frame, namely the frame 

A(⊹),A(↥x),A(↥y),A(↥z); we therefore refer to A itself as a frame. We next introduce 

geometric data and show how to compute data values with respect to an affine frame. 

We define five sets of data values, Valσ, indexed by sorts σ ∈ Σ = {c,a,p,v,m} with 

channel sort c and four geometric data sorts for scalars, points, vectors and maps.  

3.1–1  Definition: Data Values 
The set of data values Val is the union of the following five sets.  

xc ∈ Valc ≝ Varc are the channels.  

a ∈ Vala ≝ R are the scalars.  

p ∈ Valp ≝ R3 are the points, which we write 〈x,y,z〉.   

v ∈ Valv are the vectors, a set isomorphic to Valp with a bijection ↑ : Valp→Valv  

    with inverse ↓ = ↑-1; elements of Valv are written ↑〈x,y,z〉.  

A ∈ Valm ≝ {〈A,p〉 ∈ R3×3×R3 | A-1 exists} are the affine maps. 
 

The basic operators over the data values are given in Definition 3.1–2. Note that 

there are similar operations on different domains: for example, + between reals, + 

between vectors, and ∔ between vectors and points. Note also that vector mapping 

ignores the translation component p (or rather, it cancels when applied to the end 

points of v); this is the sense in which vectors are ‘free’: invariant under translation. 

3.1–2  Definition: Operations on Points, Vectors, and Maps 
 

 〈x,y,z〉 ∸ 〈x’,y’,z’〉  ≝  ↑〈x-x’,y-y’,z-z’〉      point subtraction 

 ↑〈x,y,z〉 ∔ 〈x’,y’,z’〉  ≝  〈x+x’,y+y’,z+z’〉     point translation 

 a∙↑〈x,y,z〉  ≝  ↑〈a∙x,a∙y,a∙z〉         vector scaling 

 ↑〈x,y,z〉 + ↑〈x’,y’,z’〉  ≝  ↑〈x+x’,y+y’,z+z’〉     vector addition  

 ↑〈x,y,z〉 • ↑〈x’,y’,z’〉  ≝  x∙x’ + y∙y’ + z∙z’     dot product  

 ↑〈x,y,z〉 × ↑〈x’,y’,z’〉  ≝  ↑〈y∙z’-z∙y’, z∙x’-x∙z’, x∙y’-y∙x’〉 cross product 
 

 〈A,p〉(q)  ≝  A∙q+p           point mapping  

 〈A,p〉(v)  ≝  (↑∘A∘↓)(v)          vector mapping  

 〈A,p〉∘〈A’,p’〉  ≝  〈A∙A’, A∙p’+p〉       map composition 

 〈A,p〉-1  ≝  〈A-1, -A-1∙p〉          map inverse  
 

 

We now define data terms that we later evaluate to data values in a frame. These 

include constants for the affine basis: ⊹ for the origin, and ↥x,↥y,↥z for the orthogonal 

unit vectors. The syntax of data terms includes the data values, indicated by xc∈Valc, 
a∈Vala, p∈Valp, v∈Valv and A∈Valm, and collectively indicated by ε∈Val. We use 

five disjoint sets of variables, one for each sort σ ∈ Σ, indicated by xσ∈Varσ.  

3.1–3  Definition: Data Terms 
 

 ∆  ::= xc  ⋮  a  ⋮  p  ⋮  v  ⋮  M  ⋮  M[∆]       Data 
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 a ::= r  ⋮  f(ai)  ⋮  v•v’ ⋮  xa  ⋮  a      (i∈1..arity(f)) Scalars  

 p ::= ⊹  ⋮  v+p ⋮  xp  ⋮  p          Points  

 v ::= ↥x  ⋮  ↥y  ⋮  ↥z  ⋮  p-p’  ⋮  a∙v  ⋮  v+v’  ⋮  v×v’ ⋮  xv  ⋮  v Vectors 

 M ::= 〈aij,ak〉  ⋮  M∘M’  ⋮  M-1 ⋮  xm  ⋮  A   (i,j,k∈1..3) Maps   

 ε  ::= xc  ⋮  a  ⋮  p  ⋮  v  ⋮  A         Values 
 

 

Data terms consist of pure terms in roman style, which form the ‘user syntax’, and 

data values in italic style, which are inserted during by-value substitutions resulting 

from process interaction. Note that channels are regarded both as pure terms and val-

ues. Each ∆ term has the appropriate sort σ ∈ Σ; the sort of a data frame shift M[∆] is 

the sort of ∆. The substitution ∆{x\ε} simply distributes the substitution on the struc-

ture of ∆, until the cases x{x\ε} = ε, y{x\ε} = y for y≠x, or ε’{x\ε} = ε’. 

The scalar terms include real number literals r, dot product v•v’, and terms built 

from some basic functions f1(a1,..,am1
) ⋮ ... ⋮ fn(a1,..,amn

), abbreviated f(ai) for 

i∈1..arity(f), covering corresponding functions f1 ... fn on the field of reals plus trigo-

nometry. The point terms include the origin (⊹) and addition of a vector to a point. 

The vector terms include the unit vectors of the standard basis (↥x, ↥y, ↥z), point sub-

traction, the vector space operations, and cross product. 

The map terms are constructed from base map terms, composition, and inverse. 

The syntax 〈a11,a12,a13,a21,a22,a23,a31,a32,a33, a1,a2,a3〉, abbreviated 〈aij,ak〉 for i,j,k∈1..3, 

represents a 3x3 square matrix and a translation vector constructed from scalar terms 

aij,ak. We require the 3x3 matrix to be invertible, which is verified by a run-time 

check of the determinant. 

The term M[∆] describes a data frame shift, which is used to evaluate ∆ in the ad-

ditional frame defined by M. Note that M[∆] = ∆ is not always true even on scalars; 

e.g., M[v•v’] is not the same as v•v’ when M does not preserve distances. Hence, 

M[∆] does not mean apply M to the data value produced by ∆; it means shift frame 

and evaluate the term ∆ in the frame M composed with the global frame. The key fea-

ture of our semantics is the interplay between frame shifts and the global frame.  

In Definition 3.1–4 we define the relation ∆ A↣ ε, which describes the computa-

tion of a closed data term ∆ to value ε, relative to global frame A. The relation A↣ is 

a partial function, described in operational style for ease of induction. The key rule is 

(Frame Shift): when computation encounters a frame shift M[∆], the value of M[∆] in 

frame A is uniquely determined as the value of ∆ in frame A∘B, provided that the 

value of M in frame A is B.  

3.1–4  Definition: Computation of closed data terms in a frame AAAA    
  

(Scalar Real) r A↣  b         if literal r represents b∈Vala 

(Scalar Arith) ai A↣ bi  ⇒  f(ai) A↣  f(bi)  i∈1..arity( f ) if bi∈Vala, f(bi) defined 

(Scalar Dot) v A↣ w,  v’ A↣ w’  ⇒  v • v’  A↣  w • w’ if w,w’∈Valv 
 

(Point Origin) ⊹  A↣  A(〈0,0,0〉) 
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(Point Move) v A↣ w,  p A↣ q  ⇒  v + p  A↣  w ∔ q if w∈Valv, q∈Valp 
 

(Vect Unit)  ↥x  A↣  A(↑〈1,0,0〉),   ↥y  A↣  A(↑〈0,1,0〉),   ↥z  A↣  A(↑〈0,0,1〉) 

(Vect Sub)  p A↣ q,  p’ A↣ q’  ⇒  p - p’  A↣  q ∸ q’ if q,q’∈Valp 

(Vect Scale) a A↣  b,  v A↣ w  ⇒  a∙v  A↣  b∙w  if b∈Vala, w∈Valv 

(Vect Add)  v A↣ w,  v’ A↣ w’  ⇒  v + v’  A↣  w + w’ if w,w’∈Valv 

(Vect Cross) v A↣ w,  v’ A↣ w’  ⇒  v × v’  A↣  w × w’ if w,w’∈Valv 
 

(Map Given) aij A↣ bij,  ak A↣ bk  ⇒  〈aij,ak〉  A↣  〈bij,bk〉 if bij,bk∈Vala,  det(bij)≠0 

(Map Comp) M A↣ B,  M’ A↣ B’   ⇒   M∘M’ A↣ B∘B’ if B,B’∈Valm   

(Map Inv)  M A↣ B   ⇒   M-1 A↣ B-1     if B∈Valm  
 

(Frame Shift) M A↣ B,  ∆ A∘B↣ ε  ⇒  M[∆]  A↣  ε  if B∈Valm 
 

(Value)   ε A↣ ε             if ε∈Val 
  

 

Most of these rules express a straightforward correspondence between the syntac-

tic operations on data terms and semantic operations on values. It is easy to check that 

terms of sort σ compute to elements of Valσ. Note that the rules (Point Origin) and 

(Vect Unit) make essential use of the current frame. The rules (Scalar Arith) and (Map 

Given) are partial: they can cause ‘divide by zero’, ‘zero determinant’, and other er-

rors. However, (Map Inv) is always defined because if M A↣ B, then B must be in-

vertible by (Map Given). The (Frame Shift) rule has already been discussed. The 

(Value) rule normally comes into play after a by-value substitution due to process 

interaction: a value that was already evaluated in some frame is not further evaluated 

in the current frame. Moreover, since Valc = Varc, the (Value) rule covers also the 

evaluation of channels to themselves; that is, xc A↣ xc. 

4  Frame Shift 

In this section we derive our core results, establishing how data computations and 

process reductions change when we shift fames. The formal statements provide suffi-

cient induction hypotheses, and the proofs are therefore straightforward inductions 

and are given in Appendix. These results are then used in Section 5 to establish inva-

riance properties under frame shifts. We first give our main result on data computa-

tion, which describes what happens to data computation when we shift the global 

frame. It is enough to prove this result on closed data terms because the frame shifts 

only occur after the data variables have been substituted for values; see Theorem 4.1–

6 for the global frame shifts on processes that contain open data terms.  

We define a compatibility relation, A⊨∆, between maps A and closed data terms 

∆. A compatibility assumption of the form A⊨∆ (and later A⊨P) is used in our theo-

rems to constrain the map A depending on the vector operators used in ∆; in Section 5 

we show that ∆ is then observably insensitive to being transformed by A. A closed 

data term is affine if it does not contain v•v’ and v×v’ subterms, Euclidean if it does 
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not contain v×v’ subterms, and rigid otherwise.  

4.1–1  Definition: Frame and Group Compatibility 

For A∈GA(3) and closed data term ∆, we write A⊨∆ (A compatible with ∆) iff:  

- if ∆ contains • then A∈E(3);  

- if ∆ contains × then A∈SE(3);  

- otherwise, no restriction on A.  

For group G⊆GA(3) and closed data term ∆, we write G⊨∆ iff ∀A∈G. A⊨∆. 

Hence we have also: GA(3)⊨∆ implies ∆ is affine; E(3)⊨∆ implies ∆ is Eucli-

dean; SE(3)⊨∆ implies ∆ is rigid (i.e., SE(3)⊨∆ always). 
 

Note in particular that A⊨ε always.  

In the formulation of our results we also require the notion of C(∆), which is the 

application of the map C to all the value subterms of ∆:  

4.1–2  Definition: Map Application on Data 

For C = 〈A,p〉 ∈ Valm, define  

    C(ε)  ≝  A∙ε+p if ε ∈ Valp  (on points) 

    C(ε)  ≝  (↑∘A∘↓)(ε) if ε ∈ Valv   (on vectors) 

    C(ε)  ≝  ε    if ε ∈ Vala∪Valm∪Valc  (on scalars, maps, and channels) 

C(∆) is the term obtained by replacing all the value subterms ε of ∆ with C(ε). 
 

For example, consider the term ∆ = ↑〈1,0,0〉 + ⊹, containing the value ↑〈1,0,0〉, and 

with reductions (by (Value) and (Point Origin)): 
 

 ∆   = ↑〈1,0,0〉 + ⊹  A↣  ↑〈1,0,0〉 + A(〈0,0,0〉)  

 C(∆) = C(↑〈1,0,0〉) + ⊹  C∘A↣  C(↑〈1,0,0〉) + (C∘A)(〈0,0,0〉) 
 

That is, for ε = ↑〈1,0,0〉 + A(〈0,0,0〉), we have: 
 

 ∆ A↣ ε and    C(∆) C∘A↣ C(ε) 
 

Similarly, B[⊹] A↣ (A∘B)(〈0,0,0〉) and C(B[⊹]) = B[⊹] C∘A↣ (C∘A∘B)(〈0,0,0〉) = 

C((A∘B)(〈0,0,0〉)), where C(B) = B because maps B are arrays of reals, and like reals 

are not affected by mapping. This suggests the general form of our next theorem: C(∆) 

C∘A↣ means applying an extra C separately to the values inside ∆ via C(∆) (which are 

then not modified by the (Value) rule), and to the other terms inside ∆ via C∘A↣. The 

proof of Theorem 4.1–3 uses geometric facts that are derived in Appendix 1. 

4.1–3   Theorem: Global Frame Shift for Data 

C⊨∆,   ∆ A↣ ε   ⇒   C(∆) C∘A↣ C(ε) 
 

We now give a local frame shift result on processes that is the exact analog of the 

(Frame Shift) rule on data given in Definition 3.1–4. This result uses all the new (≡ 

Map...) rules in the structural congruence relation, except for the (≡ Map Comp) rule. 

The result depends on data computation only in using the (Frame Shift) and (Map 

Comp) rules. It would therefore hold for any data sublanguages and data computation 
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rules which were compatible with these rules. Recall that process reduction, P A→ Q, 

was introduced in Definition 2.1–2. 

4.1–4  Theorem: Local Frame Shift 

M A↣ B,  P A∘B→ Q  ⇒  M[P]  A→ M[Q] 
 

The main theorem in this section, Theorem 4.1–6 (Global Frame Shift for 

Processes), is the extension to processes of Theorem 4.1–3. We show that we can shift 

process reductions to different frames. A shifted process does not reduce to exactly 

the same process as in the original version, e.g. changing from Q to C(Q), but those 

differences have no effect on process traces (under the usual ⊨ assumptions). That is, 

temporary differences due to value substitutions in different frames can then cancel 

out in data comparisons.  

The ⊨ relation extends to processes in the obvious way: C⊨P holds if and only if 

C⊨∆ holds for all data subterms ∆ of P, where C⊨∆ is given in Definition 4.1–1. C(P) 

is the process obtained by replacing all the value subterms ε of P with C(ε).  

4.1–5  Lemma 

C⊨P, P A→ Q  ⇒  C⊨Q 

4.1–6  Theorem: Global Frame Shift for Processes 

C⊨P,   P A→ Q   ⇒   C(P) C∘A→ C(Q) 

5  Observation and Equivalence 

In this section we establish the invariance of process congruence under certain trans-

formations of the global frame. We base our results on barbed congruence, which is 

one of the most general notions of process congruence for the π-calculus 

[4][7][10]Error! Reference source not found. and gives rise to a standard definition 

of algebraic process equation. For 3π, we relativize process equations to affine 

frames, and investigate how the validity of the equality changes when shifting frames.  

Different notions of observation can be characterized by different classes of con-

texts. We choose to observe processes only via channels, that is, only by interaction 

and by restricting the interaction channels. Therefore, we do not allow observation 

contexts that have the flavor of manipulating a whole process, like ?x(y).[] (injecting a 

process into the observer’s code) or M[] (injecting a process into a frame). 

5.1–1  Definition (Barbed Congruence) 

- Observation Context: An observation context Γ is given by: 

        Γ ::= []  ⋮  P|Γ  ⋮  Γ|P  ⋮  (νx)Γ                 where [] only occurs once in Γ.  

    The process, Γ[Q] is the process obtained by replacing the unique [] in Γ with Q. 

- Strong Barb on x:  P↓x   ≝   P ≡ (νy1)..(νyn) (!x(∆).P’ | P”)  with x ≠ y1..yn. 

- AAAABarb on x:  PA⇓x   ≝   ∃P’. P A→* P’ ∧ P’↓x
 
. 

- AAAACandidate Relation:  ( is an Acandidate relation iff for all P(Q:  

    (1) if P↓x then QA⇓x; conversely if Q↓x then PA⇓x; 
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    (2) if P A→ P’ then there is Q’ such that Q A→* Q’ and P’(Q’, 

          if Q A→ Q’ then there is P’ such that P A→* P’ and P’(Q’; 

    (3) for all observation contexts Γ, we have Γ[P] ( Γ[Q]. 

- AAAABarbed Congruence: A≈ is the union of all Acandidate relations, which is itself an 

Acandidate relation. 
 

The following theorem, based on Theorem 4.1–6, establishes that barbed congru-

ence is preserved under frame shift. Recall that C(P) denotes the process P with the 

values shifted by C. We also use C(Γ), with C([]) = [], so that C(Γ[P]) = C(Γ)[C(P)]. 

5.1–2  Theorem: Global Frame Shift for Barbed Congruence 

C⊨P,Q,   P A≈ Q  ⇒  C(P) C∘A≈ C(Q) 

Proof 

Consider the relation ( = {〈C(P),C(Q)〉 | PA≈Q}. We show that ( is a C∘Acandidate 

relation. The statement then follows since if PA≈Q then C(P)(C(Q) and 

C(P)C∘A≈C(Q). Fact: P↓x if and only if C(P)↓x. 
 

1) Consider any 〈C(P),C(Q)〉 in ( with PA≈Q. If C(P)↓x then P↓x. Since PA≈Q and 

P↓x, we have QA⇓x; that is, ∃Q’. Q A→* Q’ ∧ Q’↓x. By Theorem 4.1–6 and Lemma 

4.1–5 we have C(Q)C∘A→*C(Q’). Moreover Q’↓x implies C(Q’)↓x, and hence 

C(Q)C∘A⇓x. The converse is similar. 
 

2) Consider any 〈C(P),C(Q)〉 in ( with PA≈Q. If C(P)C∘A→P” then, by Theorem 4.1–

6, C-1(C(P)) C-1∘C∘A→ C-1(P”); that is, P A→ P’=C-1(P”). Since PA≈Q, there is Q’ 

such that Q A→* Q’ and P’A≈Q’. Hence, by Theorem 4.1–6, there is Q”=C(Q’) such 

that C(Q) C∘A→* Q”. Rewrite P’A≈Q’ as C-1(P”)A≈C-1(Q”); then, by definition of (, 

C(C-1(P”)) ( C(C-1(Q”)); that is, P”(Q”. We have shown that if C(P)C∘A→P” then 

there is Q” such that C(Q) C∘A→* Q” and P”(Q”. The converse is similar. 
 

3) Consider any 〈C(P),C(Q)〉 in ( with PA≈Q. For any observation context Γ, C-1(Γ) 

is an observation context, and hence we have that C-1(Γ)[P] A≈ C-1(Γ)[Q]. By defini-

tion of (, we then have that C(C-1(Γ)[P]) ( C(C-1(Γ)[Q]), that is Γ[C(P)] ( Γ[C(Q)].  

∎ 

Normally, we are interested in equations between processes without computed 

values; that is, with the property that C(P) = P which hence simplifies Theorem 5.1–2. 

We now restrict our attention to such process terms, which we call pure terms. 

5.1–3  Definition: Pure Terms 

We say that a data term ∆ and process term P is pure if it does not contain a value 

subterm ε of sort σ ∈ {a,p,v,m}. We use ∆¤ and P¤ to denote such pure terms. 
 

The invariance of equations between pure terms under certain maps is described 

by a relativity theorem. The key property is that G-equations are G-invariant, meaning 

that for a group G, the validity or invalidity of equations that are syntactically compat-
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ible with G is not changed by G transformations. 

5.1–4  Definition: Equations and Laws 
An equation is a pair of pure process terms P¤,Q¤, written P¤

 = Q¤. It is: 

- a G-equation for G⊆GA(3) iff G ⊨ P¤ and G ⊨ Q¤;  

- a law in A for A∈GA(3) iff P¤
 A≈ Q¤;  

- a law in G for G⊆GA(3) iff, ∀A∈G it is a law in A;  

- B-invariant for B∈GA(3) iff ∀A∈GA(3) it is a law in A iff it is a law in B∘A;  

- G-invariant for G⊆GA(3) iff ∀B∈G it is B-invariant;  

- invariant across G for G⊆GA(3) iff ∀A,B∈G it is a law in B if it is a law in A.  

5.1–5  Theorem: Relativity 
G-equations are G-invariant, and hence invariant across G. 

Proof 

Take A∈GA(3) and B∈G⊆GA(3), and assume that P¤
 = Q¤ is a law in A, that is, 

P¤
A≈Q¤. By Theorem 5.1–2, since B ⊨ P¤,Q¤, we have B(P¤) B∘A≈ B(Q¤). But P¤,Q¤ 

are pure, so we obtain P¤ B∘A≈ Q¤ and hence P¤
 = Q¤ is a law in B∘A. Conversely, 

assume P¤
 = Q¤ is a law in B∘A, that is P¤ B∘A≈ Q¤. By Theorem 5.1–2, since B-1 ⊨ 

P¤,Q¤, we have B-1(P¤) B-1∘B∘A≈ B-1(Q¤). Again, P¤ A≈ Q¤, and P¤
 = Q¤ is a law in A. 

We have shown that G-equations are G-invariant. Assume P¤
 = Q¤ is a G-equation, 

and hence G-invariant, and take A,B∈G. If P¤
 = Q¤ is a law in A then, since 

B∘A-1∈G, it is also a law in B∘A-1∘A by definition of G-invariance, and hence it is a 

law in B. We have shown that G-equations are invariant across G 

∎ 

For the three main transformation groups of interest, Theorem 5.1–5 has the fol-

lowing corollaries: (1) GA(3)-equations (those not using • or ×) are GA(3)-invariant: 

that is, affine equations are invariant under all maps; (2) E(3)-equations (those not 

using ×) are E(3)-invariant: that is, Euclidean equations are invariant under isome-

tries; (3) SE(3)-equations (all equations, since SE(3) imposes no syntactic restrictions) 

are SE(3)-invariant: that is, all equations are invariant under rigid-body maps. Fur-

ther, ‘G-equations are invariant across G’ can be read as ‘G laws are the same in all 

G frames’; we then obtain that: (1) affine laws are the same in all frames; (2) Eucli-

dean laws are same in all Euclidean frames; (3) all laws are the same in all rigid 

body frames. 

For example, the Euclidean equation (↥x•↥x=1. P¤) = P¤ is a law in the ,- frame, 

and hence is a law in all Euclidean frames. Moreover, this equation may be valid or 

not in some initial frame (possibly a non-Euclidean one like a scaling S(2∙↥y)), but its 

validity does not change under any further Euclidean transformation. Note also that 

this equation can be read from left to right as saying that ↥x•↥x=1.P¤ computes to P¤. 

Hence equational invariance implies also computational invariance (but this only for 

computations from pure terms to pure terms, where any value introduced by commu-

nication is subsequently eliminated by data comparison). 

As a second example, for any three points p¤,q¤,r¤, the affine equation ((q¤∸p¤) + 

(r¤∸q¤) = (r¤∸p¤). P¤) = P¤ is a law in the ,- frame, and so is a law in all frames; in 
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fact it is the head-to-tail axiom of affine space. As a third example, for any point p¤, 

the equation (p¤=⊹. P¤) = P¤ is invariant under all translations (because all equations 

are invariant under rigid-body maps); hence, the comparison p¤=⊹ gives the same 

result under all translations, and cannot be used to test the true value of the origin no 

matter how p¤ is expressed, as long as it is a pure term. 

In conclusion, we have shown that all process equations are invariant under rigid 

body transformations (rotations and translations, not reflections), implying that no 

pure process can observe the location of the origin, nor the orientation of the basis 

vectors in the global frame. Moreover, processes that do not perform absolute mea-

surements (via • and ×) are invariant under all affine transformations, meaning that 

they are also unable to observe the size of the basis vectors and the angles between 

them. Finally, processes that use • but not × are invariant under all the isometries, 

meaning that they cannot observe whether they have been reflected. 

 

Conclusions 
 

We have introduced 3π, an extension of the π-calculus based on affine geometry, with 

the primary aim of describing the concurrent evolution of geometric structures in 3D 

space. We have proven a relativity theorem stating that all algebraic equations (under 

a version of barbed congruence) are invariant under all rigid body transformations. If 

a process is unable to observe distances, angles or orientations, then similar results 

also apply to larger classes of transformations. These results have implications for the 

extent to which a process can observe its geometric frame and for the behavior of a 

process in different geometric frames.  
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6  Appendix 1 of 2: Geometry (optional reading) 

6.1  Vector Spaces and Automorphism Groups 

A vector space over a field F is a set V with operations + ∈ V×V→V (vector addition) and ∙ ∈ 
F×V→V (scalar multiplication), such that (V,+) is an abelian group, with identity the zero vec-

tor ø and inverse -v, and moreover: a∙(v+w) = a∙v+a∙w, (a+b)∙v = a∙v+b∙v, (a∙b)∙v = a∙(b∙v), and 

1∙v = v. Three-dimensional space, R3, is our basic vector space over the field of reals: the vec-

tors are the points of R3, + is coordinatewise addition, and ∙ is coordinatewise multiplication. A 

linear map over a vector space V is an f ∈ V→V such that f(v+w) = f(v)+f(w) and f(a∙v) = a∙f(v); 

group axioms then ensure that it preserves also unit and inverse. Lin(V) is the set of such linear 

maps. In Euclidean spaces, e.g. R3, one considers the ability to measure. This is achieved by 

extending the underlying vector space with the dot product of vectors, giving the ability to 

measure distances and angles, and with the cross product of vectors, giving the ability to gener-

ate out-of-plane vectors, to measure areas and volumes, and to detect handedness. Both dot and 

cross product are linear maps in each argument. 

The General Linear Group GL(V) ⊆ Lin(V) of a vector space V is the group of all the auto-

morphisms (bijective linear maps) over V, i.e., invertible elements of Lin(V). When studying 

subgroups of GL(V), it is convenient to use linear algebra to represent the group elements. In 

particular, GL(R3), the group of automorphisms of the R3 vector space, can be given as the 

group of invertible 3×3 matrices A in linear algebra, where matrix multiplication (A∙B) is an 

operation over sizes (n×m) × (m×n) → (m×n). On matrices we use also AT for transposition, 

A+B for addition, a∙A for scalar multiplication, and A-1 for inverse. With the elements v∈R3 

interpreted as 1×3 (column) matrices, we obtain the required linearity properties from linear 

algebra: A∙(v+v’) = A∙v + A∙v’ and A∙(a∙v) = a∙(A∙v) for any scalar a. Note again that only the 

invertible, i.e. bijective, matrices are members of GL(R3). The Special Linear Group SL(R3) is 

the subgroup of matrices with determinant 1: as transformations these preserve volume and 

handedness. 

The General Affine Group GA(V) is the group of affine vector maps over V; these maps are 

presented as pairs 〈A,u〉 where A∈GL(V), and where u∈V is a translation vector. In particular, 

GA(R3) is the affine group over the R3 vector space. We use 3×3 invertible matrices for A, with 

〈A,u〉(v) ≝ A∙v+u for any v∈R3. Geometrically, affine vector maps transform straight lines into 

straight lines, and preserve ratios such as midpoints. The Special Affine Group SA(R3) is the 

subgroup with matrices with determinant 1. 

Concretely, we work always over the field R and the vector space R3, hence we abbreviate 

these groups as GA(3), SA(3), GL(3), SL(3). 

For the next automorphisms groups we need to investigate some special matrices. An or-

thogonal matrix is a square matrix A such that AT = A-1 (and hence A∙AT = AT∙A = id, and also 

det(A) = ±1). All orthogonal matrices are isometries, i.e., preserve distances, which can be seen 

as follows. The vector dot product (of column matrices) is defined as v•w ≝ vT∙w, and v2 ≝ v•v. 

If AT = A-1 we then have that A∙v•A∙w = (A∙v)T∙(A∙w) = vT∙AT∙A∙w = vT∙id∙w = vT∙w = v•w. And 

also (A∙v)2 = v2. Distance in a vector space equipped with dot product is defined as d(v,w) ≝ 

√(v-w)2. For A orthogonal, we then have d(A∙v,A∙w) = √(A∙v-A∙w)2 = √(A∙(v-w))2 = √(v-w)2 = 

d(v,w), that is, A preserves distances.  

The Orthogonal Group O(3), subgroup of GL(3), is the group linear isometries of R3, that 

is, the group of orthogonal matrices, which correspond to rotations and reflections around the 

origin. As we have just shown, members of O(3) preserve dot product: A∙v • A∙w = v•w. The 

special orthogonal group SO(3) contains only the direct linear isometries, that is, just the rota-

tions. Members of SO(3) distribute over cross product: A∙v × A∙w = A∙(v×w) [12]. Intuitively 

that is because cross product can measure areas and handedness, but is insensitive to isometries 

that do not change handedness.  
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The Euclidean Group E(3), subgroup of GA(3), is the group of isometries of R3; its ele-

ments can be given as affine vector maps 〈A,u〉 where A is an orthogonal matrix (a rotation or 

reflection) and u is a translation vector. We have seen that members of O(3) are isometries, but 

such 〈A,u〉 are too: for A∈O(3) we have that d(〈A,u〉(v),〈A,u〉(w)) = d(A∙v+u,A∙w+u) = √(A∙v+u-

(A∙w+u))2 = √(A∙v-A∙w)2 = d(v,w). That is, all affine vector maps 〈A,u〉 where A is an orthogonal 

matrix are also isometries.  

The subgroup SE(3) of E(3) of direct isometries excludes reflections; that is, the determi-

nant of A must be 1. Elements of SE(3) are then the rigid body motions, preserving handedness 

and distances. 

The subgroup relation on the automorphism groups discussed so far forms a cube standing 

on the SO(3) vertex, with GA(3) at the top. Maps contained in the bottom faces of the cube have 

the following interpretation: the face below E(3) preserves distances and angles; the face below 

SA(3) preserves volumes and orientation; the face below GL(3) preserves the origin. Various 

vertices of the cube hold the basic geometric transformations: rotation, translation, reflection, 

shearing, isotropic scaling, and volume-preserving squishing (non-orthogonal matrices with 

det=1). There are many more automorphism groups; e.g., the group of pure translations, below 

SE(3), the group of pure reflections, below O(3), and the group of identities below all of them. 

However, the cube depicts the most studied automorphism groups, and a finer structure is not 

necessary for the study of geometric invariance properties, at least not in this paper. 

We work in GA(3) and its subgroups. For example, we regard an affine vector map 

〈A,u〉∈GA(3) as a member of GL(3) when u=0, and as a member of E(3) when A is orthogonal, 

and further as a member of O(3) when u=0. We fix a representation of affine vector maps based 

on linear algebra.  

6.2  Affine Spaces and Affine Maps 

Affine geometry is intuitively the geometry of properties invariant under translation, rotation, 

reflection and stretching. It can be properly formulated by the notions of affine spaces and af-

fine maps [3][5]. 

6.2–1  Definition: Affine spaces 

An affine space is a triple (P,V,θ) where P is a set (of points), V is a vector space, and θ ∈ 

P×P→V is a function which characterizes ‘the unique vector θ(p,q) from p to q’. The map θ 

must satisfy:  
 

    1)  for each p ∈ P, θp ∈ P→V = λq.θ(p,q) is a bijection; 

    2)  the head-to-tail equation holds: θ(p,q) + θ(q,r) = θ(p,r).  
 

Because of (1), P and V are isomorphic, but there is no canonical isomorphism. The vector 

θ(p,q) is sometimes called the point difference, written q∸p. We also define vector-point addi-

tion as ∔ ∈ V×P→P = λv,p. θp
-1(v) (which is a group action of (V,+) on P).  

The affine space of free vectors over P is a canonical affine space constructed over a set of 

points P that is also a vector space. It is common to take V=P in such a construction. In our 

operational semantics, however, we need to distinguish between points and vectors; hence we 

take for V a set isomorphic but distinguishable from P. We focus on the space of free vectors 

over the points of R3. Note that R3 is also a vector space, with the null vector indicated by ø. 

6.2–2  Definition: The affine space of free vectors over R3  

 The affine space of free vectors over R3 is (R3, FV(R3), ⇑), where: 

- The set of points of the affine space is R3. 

- FV(R3) ≝ {ø}×R3 is a vector space equipped with • and ×, given by the product structure.  

- ⇑ ∈ R3×R3→FV(R3) ≝ λ(p,q).〈ø,q-p〉.   
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Auxiliary definitions and properties: 

- ⇑p ≝ λ(q).⇑(p,q) is a bijection for each p. 

- q∸p ≝ ⇑(p,q) = 〈ø,q-p〉 
- v∔p ≝ ⇑p

-1(v) with 〈ø,q〉∔p = q+p. 

- ↑ ≝ ⇑ø and ↓ ≝ ↑-1 are linear maps, with ↑p = 〈ø,p〉, and ↓〈ø,p〉 = p. 
 

The set {ø}×R3 can be seen also as the set of canonical representatives of free vectors (equiva-

lence classes of vectors with the same size and orientation), and can be explained as the vectors 

rooted at the origin.  

Affine vector maps of the form λv. f(v)+u ∈ V→V with f ∈ Lin(V) are common in the lite-

rature of automorphism groups, as presented in Section 6.1. Affine point maps of the form λq. 

f(q∸o)∔p ∈ P→P instead are common in the literature of affine spaces [5]. Confusingly, they 

are both called just ‘affine maps’. Bijective point and vector maps form groups under function 

composition, identity, and inverse, and these groups are related by a group isomorphism: for 

each choice of origin o, just like there is an isomorphism θo between points P and vectors V, 

there is also a group isomorphism ψo = λh. θo∘h∘θo

-1 between the group of bijective affine point 

maps with origin o, and the group of bijective affine vector maps GA(V). The isomorphism 

transforms a point map that maps a point p seen as a vector p∸o to the point f(p∸o)∔q, into a 

vector map that maps the vector p∸o to the vector f(p∸o)+(q∸o), which when rooted at the origin 

leads to the point (f(p∸o)+(q∸o))∔o = f(p∸o)∔q. Up to this group isomorphism, we consider affine 

point maps (then called just affine maps in the body of this paper) as members of GA(V). 

Affine point maps over the affine space of free vectors over R3 are denoted by script letters 

A,B,C,... and are represented as pairs A = 〈A,q〉. They are applied to points p to obtain trans-

formed points A∙p+q, and are extended to vectors v = ⇑(p,q) by taking A(⇑(p,q)) = 

⇑(A(p),A(q)), which means that A(v) = (↑∘A∘↓)(v), where the translation components cancel: 

this reflects the fact that v are ‘free’ vectors, invariant under translation. These rules for apply-

ing maps, and the rules for composing and inverting maps, are given in Definition 6.2–3. 

6.2–3  Definition: Affine point maps 

A∈GA(3) means A = 〈A,p〉 where ↑∘A∘↓∈GL(3), A is an invertible 3×3 matrix, and p∈R3. 

A∈E(3) means A = 〈A,p〉 where ↑∘A∘↓∈O(3); that is, AT = A-1. 

A∈SE(3) means A = 〈A,p〉 where ↑∘A∘↓∈SO(3); that is, det(A) = 1. 
 

∀q∈R3,  ∀A∈GA(3). A(q) = 〈A,p〉(q) ≝ A∙q+p ∈R3 

∀v∈FV(R3),  ∀A∈GA(3). A(v) = 〈A,p〉(v) ≝ (↑∘A∘↓)(v) ∈FV(R3) 

∀A ,B∈G subgroup of GA(3). A∘B = 〈A,p〉 ∘ 〈B,q〉 ≝ 〈A∙B, A∙q+p〉 ∈G  

∀A∈G subgroup of GA(3). A
-1 = 〈A,p〉-1 ≝ 〈A-1, -A-1∙p〉 ∈G 

 

It should be noted that this definition can be formulated as a theorem in a general treatment of 

the groups of affine vector maps and affine point maps, and their representation in terms of 

linear algebra. For conciseness, we take it here as a given.  

The following proposition collects all the geometric facts needed in Theorem 4.1–3. 

6.2–4  Proposition: Distribution laws of affine point maps 

1) ∀p,q∈R3,  A∈GA(3). A(q)∸A(p) = A(q∸p) ∈FV(R3) 

2) ∀v∈FV(R3),  p∈R3,  A∈GA(3). A(v)∔A(p) = A(v∔p) ∈R3 

3) ∀v,w∈FV(R3),  A∈GA(3). A(v)+A(w) = A(v+w) ∈FV(R3) 

4) ∀a∈R,  v∈FV(R3),  A∈GA(3). a∙A(v) = A(a∙v) ∈FV(R3) 

5) ∀v,w∈FV(R3),  A∈E(3). A(v)•A(w) = v•w ∈R 

6) ∀v,w∈FV(R3),  A∈SE(3). A(v)×A(w) = A(v×w) ∈FV(R3) 
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Proof 

Let A = 〈A,r〉. By Definition 6.2–3: if A∈GA(3), then the vector map ↑∘A∘↓∈GL(3) is a linear 

map; if A∈E(3), then ↑∘A∘↓∈O(3); and if A∈SE(3) then ↑∘A∘↓∈SO(3). Recall that if f ∈ O(3) 

then f(v) • f(w) = v•w, and if f ∈ SO(3) then f(v) × f(w) = f(v×w) [12]. 
1) 〈A,r〉(q) ∸ 〈A,r〉(p) = A∙q+r ∸ A∙p+r = 〈ø,(A∙q+r)-(A∙p+r)〉 = 〈ø,A∙(q-p)〉 = (↑∘A∘↓)∙〈ø,q-p〉 = 

〈A,r〉(q∸p). 

2) 〈A,r〉(〈ø,q〉) ∔ 〈A,r〉(p) = (↑∘A∘↓)(〈ø,q〉) ∔ A∙p+r = 〈ø,A∙q〉 ∔ A∙p+r = A∙(q+p)+r = 〈A,r〉(q+p) = 

〈A,r〉(〈ø,q〉∔p). 

3) 〈A,r〉(〈ø,p〉) + 〈A,r〉(〈ø,q〉) = (↑∘A∘↓)(〈ø,p〉) + (↑∘A∘↓)(〈ø,q〉) = ↑(A∙p) + ↑(A∙q) = ↑(A∙p + A∙q) 

= ↑(A∙(p+q)) = (↑∘A∘↓)(〈ø,p+q〉) = (↑∘A∘↓)(〈ø,p〉+〈ø,q〉) = 〈A,r〉(〈ø,p〉+〈ø,q〉). 
4) a∙〈A,r〉(〈ø,p〉) = a∙(↑∘A∘↓)(〈ø,p〉) = a∙↑(A∙p) = ↑(a∙A∙p) = ↑(A∙(a∙p)) = (↑∘A∘↓)(〈ø,a∙p〉) = 

〈A,r〉(a∙〈ø,p〉). 
5) 〈A,r〉(v) • 〈A,r〉(w) = (↑∘A∘↓)(v) • (↑∘A∘↓)(w) = v•w since ↑∘A∘↓∈O(3). 

6) 〈A,r〉(v) × 〈A,r〉(w) = (↑∘A∘↓)(v) × (↑∘A∘↓)(w) = (↑∘A∘↓)(v×w) since ↑∘A∘↓∈SO(3) = 

〈A,r〉(v×w). 

∎ 
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7  Appendix 2 of 2: Proofs (optional reading) 

7.1–1  Theorem 4.1–3: Global Frame Shift for Data 

C⊨∆,   ∆ A↣ ε   ⇒   C(∆) C∘A↣ C(ε) 

Proof 

The proof is by mutual induction on the derivation of ∆ A↣ ε; that is, by induction on the con-

junction of 5 statements for the 5 sorts σ of ∆, as given in the 5 cases below. When ∆ = ε, the ε 

of the various sorts fall into the respective subcases. Since all these subcases are handled equal-

ly, we show the (Value) case first: 
 

  Rule (Value): Show that C⊨ε,   ε A↣ ε   ⇒   C(ε) C∘A↣ C(ε), for ε of any sort. 

    Then, by (Value) C(∆) = C(ε) C∘A↣ C(ε). 
 

Case (σ=c):  Show that C⊨∆,   ∆ A↣ xc   ⇒   C(∆) C∘A↣ xc.  

Then, ∆ A↣ xc is the consequent of Rule (Value) or: 
 

  Rule (Frame Shift): M A↣ B,  ∆’ A∘B↣ xc  ⇒  M[∆’]  A↣  xc.  

    Since C⊨M[∆’], we have C⊨M and C⊨∆’.  

    It follows that C(M) C∘A↣ B and C(∆’) C∘A∘B↣ xc (by induction).  

    Hence C(M[∆’]) = C(M)[C(∆’)] C∘A↣ xc by (Frame Shift).  
 

Case (σ=a):  Show that C⊨a,   a A↣ b   ⇒   C(a) C∘A↣ b.   

Then a A↣ b is the consequent of Rule (Value) or one of the rules: 
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  Rule (Scalar Real): r A↣ b. Then C(r) = r C∘A↣ b (by (Scalar Real)). 
 

  Rule (Scalar Arith): ai A↣ bi  ⇒  f(ai) A↣  f(bi) with i∈1..arity( f ) 

    Since f(ai) A↣  f(bi) we know that f(bi) is defined.  

    Then C(f(ai)) = f(C(ai)) C∘A↣ f(bi) (by induction and (Scalar Arith)).  
 

  Rule (Scalar Dot): v A↣ w, v’ A↣ w’  ⇒  v • v’  A↣  w • w’, and C∈E(3).  

    C(v•v’) = C(v) • C(v’)  C∘A↣  C(w) • C(w’) (by induction and (Scalar Dot))   

    = w • w’  (by Prop. 6.2–4).  
 

  Rule (Frame Shift)(σ=a): M A↣ B,  a’ A∘B↣ b  ⇒  M[a’]  A↣  b.  

    Since C⊨M[a’], we have C⊨M and C⊨a’.  

    It follows that C(M) C∘A↣ B and C(a’) C∘A∘B↣ b (by induction).  

    Hence C(M[a’]) = C(M)[C(a’)] C∘A↣ b by (Frame Shift).  
 

Case (σ=p):  Show that C⊨p,   p A↣ q   ⇒   C(p) C∘A↣ C(q).   

Then p A↣ q is the consequent of Rule (Value) or one of the rules: 
 

  Rule (Point Origin): ⊹ A↣ A(〈0,0,0〉). 

    C(⊹) = ⊹ C∘A↣ (C∘A)(〈0,0,0〉) (by (Point Origin)) = C(A(〈0,0,0〉)) 
 

  Rule (Point Move): v A↣ w,  p’ A↣ q’ ⇒  v + p’  A↣  w ∔ q’.   

    C(v + p’) = C(v) + C(p’) C∘A↣  C(w) ∔ C(q’)  (by induction and (Point Move))  

    = C(w ∔ q’) (by Prop. 6.2–4). 
 

  Rule (Frame Shift)(σ=p): M A↣ B, p’ A∘B↣ q  ⇒  M[p’] A↣ q.  

    Since C⊨M[p’], we have C⊨M and C⊨p’.  

    It follows that C(M) C∘A↣ B and C(p’) C∘A∘B↣ C(q) (by induction).  

    Hence C(M[p’]) = C(M)[C(p’)] C∘A↣ C(q) by (Frame Shift).  
 

Case (σ=v):  Show that C⊨v,   v A↣ w   ⇒   C(v) C∘A↣ C(w). 

Then v A↣ w is the consequent of Rule (Value) or one of the rules: 
 

  Rule (Vect Unit): ↥x  A↣  7(〈1,0,0〉). 

    C(↥x) = ↥x C∘A↣ (C∘A)(〈1,0,0〉) (by (Vect Unit)) = C(A(〈1,0,0〉)). Similarly for ↥y and ↥z. 
 

  Rule (Vect Sub): p A↣ q, p’ A↣ q’  ⇒  p - p’  ↣  q ∸ q’.  

    C(p - p’) = C(p) - C(p’) C∘A↣ C(q) ∸ C(q’) (by induction and (Vect Sub))  

    = C(q ∸ q’) (by Prop. 6.2–4). 
 

  Rule (Vect Scale): a A↣  b, v’ A↣ w’  ⇒  a∙v’  A↣  b∙w’.  

    C(a∙v’) = C(a)∙C(v’) C∘A↣   b∙C(w’) (by induction and (Vect Scale))  

    = C(b∙w’) (by Prop. 6.2–4). 
 

  Rule (Vect Add): v’ A↣ w’, v” A↣ w”  ⇒  v’ + v”  ↣  w’ + w”.  

    C(v’ + v”) = C(v’) + C(v”) C∘A↣ C(w’) + C(w”) (by induction and (Vect Add))  

    = C(w’ + w”) (by Prop. 6.2–4). 
 

  Rule (Vect Cross): v’ A↣ w’, v” A↣ w”  ⇒  v’ × v”  ↣  w’ × w”, and C∈SE(3).  

    C(v’ × v”) = C(v’) × C(v”) C∘A↣ C(w’) × C(w”) (by induction and (Vect Cross))  
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    = C(w’ × w”) (by Prop. 6.2–4). 
 

  Rule (Frame Shift)(σ=v): M A↣ B, v’ A∘B↣ w  ⇒  M[v’]  A↣  w.  

    Since C⊨M[v’], we have C⊨M and C⊨v’.  

    It follows that C(M) C∘A↣ B and C(v’) C∘A∘B↣ C(w) (by induction).  

    Hence C(M[v’]) = C(M)[C(v’)] C∘A↣ C(w) by (Frame Shift).  
 

Case (σ=m):  Show that C⊨M,   M A↣ B   ⇒   C(M) C∘A↣ B.   

Then M A↣ B is the consequent of Rule (Value) or one of the rules: 
 

  Rule (Map Given):  aij A↣ bij, ak A↣ bk  ⇒  〈aij,ak〉  A↣  〈bij,bk〉, for i,j,k∈1..3 and det(bij)≠0. 

    Then C(〈aij,ak〉) = 〈C(aij),C(ak)〉 C∘A↣ 〈bij,bk〉 (by induction and (Map Given)) 
 

  Rule (Map Comp): M’ A↣ B’, M” A↣ B”  ⇒   M’∘M” A↣ B’∘B” 
    We have C(M’∘M”) = C(M’) ∘ C(M”) C∘A↣ B’∘B” (by induction and (Map Comp)). 
 

  Rule (Map Inv):  M’ A↣ B’   ⇒   M’-1 A↣ B’ -1
 

    We have C(M’-1) = C(M’)-1 C∘A↣ B’ -1 (by induction and (Map Inv)). 
 

  Rule (Frame Shift)(σ=m): M’ A↣ D,  M” A∘D↣ B  ⇒  M’[M”]  A↣  B.  

    Since C⊨M’[M”], we have C⊨M’ and C⊨M”.  

    It follows that C(M’) C∘A↣ D and C(M”) C∘A∘D↣ B (by induction).  

    Hence C(M’[M”]) = C(M’)[C(M”)] C∘A↣ B by (Frame Shift).  

∎  
 

7.1–2  Theorem 4.1–4: Local Frame Shift 

M A↣ B,  P A∘B→ Q  ⇒  M[P]  A→ M[Q] 

Proof 

The proof is by induction on the derivation of P A∘B→ Q. 
 

Rule (Red Comm): ∆ A∘B↣ ε  ⇒  !σx(∆).P’ + P” | ?σx(y).Q’ + Q” A∘B→  P’ | Q’{y\ε} 

    From M A↣ B, we obtain M[∆] A↣ ε by (Frame Shift). By (Red Comm) we than have: 

    !σx(M[∆]).M[P’] + M[P”] | ?σx(y).M[Q’] + M[Q”]  A→  M[P’] | M[Q’]{y\ε} 

    Since M A↣ B, we know that M is closed.  

    Hence, for any variable y, we have M[Q’]{y\ε} = M[Q’{y\ε}]. 

    Therefore, M[!σx(∆).P’ + P” | ?σx(y).Q’ + Q”]  A→  M[P’ | Q’{y\ε}]  

    by (≡ Map Sum), (≡ Map Out), (≡ Map In), (≡ Map Par) and (Red ≡). 
 

Rule (Red Cmp): ∆A∘B↷↶∆’  ⇒  ∆=σ∆’.P’ A∘B→ P’ 

    Since M A↣ B, we have M[∆]A↷↶M[∆’] by (Frame Shift),  

    so from (Red Cmp) we obtain M[∆]=σM[∆’].M[P’] A→ M[P’]. 

    Therefore M[∆=σ∆’.P’] A→ M[P’] by (≡ Map Cmp) and (Red ≡). 
 

Rule (Red Par): P’ A∘B→ Q’  ⇒  P’|R A∘B→ Q’|R 

    By induction M[P’] A→ M[Q’], hence  M[P’]|M[R] A→ M[Q’]|M[R] by (Red Par) 

    and M[P’|R] A→ M[Q’|R] by (≡ Map Par) and (Red ≡). 
 

Rule (Red Res): P’ A∘B→ Q’  ⇒  (νx)P’ A∘B→ (νx)Q’ 
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    By induction M[P’] A→ M[Q’], hence (νx)M[P’] A→ (νx)M[Q’] by (Red Res) 

    and M[(νx)P’] A→ M[(νx)Q’] by (≡ Map Res) and (Red ≡). 
 

Rule (Red ≡):  P ≡ P’,  P’ A∘B→ Q’,  Q’ ≡ Q  ⇒  P A∘B→ Q 

    By (≡ Map), M[P] ≡ M[P’] and M[Q’] ≡ M[Q]. By induction M[P’] A→ M[Q’].  

    Hence M[P] A→ M[Q] by (Red ≡). 

∎ 

The (≡ Map Comp) rule is not used in the proof of the theorem. This indicates that we might 

restrict ourselves to a d-π style calculus without the nesting of frames. In our nested calculus, 

the derived reduction for nested process frame, using Theorem 4.1–4 twice, is: 
 

M A↣ B,  N A∘B↣ C, P A∘B∘C→ Q  ⇒  N[P] A∘B→ N[Q]  ⇒  M[N[P]] A→ M[N[Q]] 
 

In a non-nested calculus, we could emulate this reduction, from the same assumptions, by: 
 

M A↣ B,  N A∘B↣ C, P A∘B∘C→ Q  ⇒  M[N] A↣ C  ⇒  M∘M[N] A↣ B∘C 

 ⇒  (M∘M[N])[P] A→ (M∘M[N])[Q] 
 

using (Frame Shift), (Map Comp) and Theorem 4.1–4. In other words, if we had neither (≡ Map 

Comp) nor nested process frames, we could still emulate M[N[P]] by (M∘M[N])[P]. But with 3 

nested process frames, we end up with 3 nested frames on the maps. Hence we would still need 

to handle nested frames at least on the data. 

7.1–3  Lemma: Congruence Mapping 

 P ≡ Q  ⇒  C(P) ≡ C(Q) 

Proof 

The proof is by induction on the derivation of P ≡ Q.  

The interesting rules are the (≡ Map …) rules; we look at two of them. 
 

Rule (≡ Map): P’ ≡ Q’  ⇒  M[P’] ≡ M[Q’]. By induction C(P’) ≡ C(Q’),  

    hence C(M)[C(P’)] ≡ C(M)[C(Q’)] by (≡ Map), that is C(M[P’]) ≡ C(M[Q’]). 
 

Rule (≡ Map In): M[?σx(y).P’] ≡ ?σx(y).M[P’] (y∉fv(M)). Then y∉fv(C(M)), and we have 

    C(M[?σx(y).P’]) = C(M)[?σx(y).C(P’)] ≡ ?σx(y).C(M)[C(P’)] = C(?σx(y).M[P’])  

    by (≡ Map In). 

∎ 

The ⊨ relation is extended to the process syntax in the obvious way: A⊨P holds if A⊨∆ 

holds for all data subterms ∆ of P, where A⊨∆ is given in Definition 4.1–1.  

7.1–4  Lemma 

P ≡ Q   ⇒   (A⊨P ⇔ A⊨Q)   

Proof 

The proof is by induction on the derivation of the derivation of P ≡ Q.  

Rule (≡ Symm): Q ≡ P  ⇒  P ≡ Q.  

    Then by induction we have that Q ≡ P ⇒ (A⊨Q ⇔ A⊨P) and hence A⊨P ⇔ A⊨Q. 

Rule (≡ Map): P ≡ Q  ⇒  M[P] ≡ M[Q]  

    Then by induction we have (A⊨P ⇔ A⊨Q), hence (A⊨M[P] ⇔ A⊨M[Q]). 

The other cases are routine because of the same data subterms on both sides. 

∎ 
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7.1–5  Lemma 4.1–5 

B⊨P, P A→ Q  ⇒  B⊨Q 

Proof 
Reduction does not introduce new subterms, except for (Red Comm) where the result follows 

from B⊨ε and B⊨Q  ⇒  B⊨Q{y\ε}, and for (Red ≡) where the result follows from Lemma 

7.1–4. 

∎ 

To motivate the theorem, assume the data computation ∆ A↣ ε which, by (Red Comm), 

implies the process reduction: 
 

  !c(∆) | ?c(x).x=ε’ A→  ε=ε’ 
 

Also assume C⊨∆, so we have C(∆) C∘A↣ C(ε’) by Theorem 4.1–3. Hence by (Red Comm): 
 

 !c(C(∆)) | ?c(x).x=C(ε’) C∘A→ C(ε)=C(ε’)  
 

and since C(!c(∆) | ?c(x).x=ε’) = !c(C(∆)) | ?c(x).x=C(ε’)  and  C(ε=ε’) = C(ε)=C(ε’), we have: 
 

  C(!c(∆) | ?c(x).x=ε’) C∘A→  C(ε=ε’) 
 

For this example we have shown that P A→ Q ⇒ C(P) C∘A→ C(Q). Although P has to be re-

placed by C(P) in the shifted frame, the process shape P remains unchanged up to the embedded 

values. Moreover the change does not affect data comparisons in that, if the comparison ε=ε’ 

succeeds in A, then the comparison C(ε)=C(ε’) succeeds in C∘A. This example suggests the 

statement of the following theorem. 

7.1–6  Theorem 4.1–6: Global Frame Shift for Processes 

C⊨P,   P A→ Q   ⇒   C(P) C∘A→ C(Q) 

Proof 

The proof is by induction on the derivation of P A→ Q. 
 

Rule (Red Comm):   ∆ A↣ ε   ⇒  !σx(∆).P’ + P” | ?σx(y).Q’ + Q” A→  P’ | Q’{y\ε},  C⊨l.h.s. 

    By Theorem 4.1–3, C⊨P’, ∆ A↣ ε   ⇒  C(∆) C∘A↣ C(ε). 

    Hence, we can produce the following instance of (Red Comm): 

    !σx(C(∆)).C(P’) + C(P”) | ?σx(y).C(Q’) + C(Q”) C∘A→  C(P’) | C(Q’){y\C(ε)} 

    Since C(Q’){y\C(ε)} = C(Q’{y\ε}), it follows that 

    C(!σx(∆).P’ + P” | ?σx(y).Q’ + Q”) C∘A→  C(P’ | Q’{y\ε}) 
 

Rule (Red Cmp): ∆A↷↶∆’  ⇒  (∆=σ∆’.Q) A→  Q, with C⊨(∆=σ∆’.Q). 

    By Theorem 4.1–3, since C⊨∆=σ∆’ and ∃ε. ∆ A↣ ε and ∆’ A↣ ε,  

    we have that ∃ε’ = C(ε). C(∆) C∘A↣ ε’ and C(∆’) C∘A↣ ε’;  

    hence C(∆) C∘A↷↶ C(∆’). Therefore, by (Red Cmp) we obtain 

    C(∆)=σC(∆’).C(Q) C∘A→ C(Q). It follows that C(∆=σ∆’.Q) C∘A→ C(Q). 
 

Rule (Red Par): P’ A→  Q’  ⇒  P’|R A→  Q’|R, with C⊨P’|R. 

    By induction, since C⊨P’, we have C(P’) C∘A→ C(Q’). 

    Hence by (Red Par), C(P’)|C(R) C∘A→  C(Q’)|C(R), that is, C(P’|R) C∘A→  C(Q’|R). 
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Rule (Red Res): P’ A→  Q’  ⇒  (νx)P’ A→  (νx)Q’, with C⊨(νx)P’. 

    By induction, since C⊨P’, we have C(P’) C∘A→ C(Q’).  

    Hence by (Red Res) (νx)C(P’) C∘A→ (νx)C(Q’), that is, C((νx)P’) C∘A→  C((νx)Q’). 
 

Rule (Red ≡): P ≡ P’,  P’ A→ Q’,  Q’ ≡ Q  ⇒  P A→  Q, with C⊨P. 

    By Lemma 7.1–4, we have C⊨P, P ≡ P’  ⇒  C⊨P’.  

    By induction, we have C⊨P’,  P’ A→ Q’  ⇒  C(P’) C∘A→ C(Q’). 

    By Lemma 7.1–3, we have C(P) ≡ C(P’) and C(Q’) ≡ C(Q).  

    Hence, C(P) C∘A→ C(Q) by (Red ≡). 

∎ 

 

 

 

  


