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Abstract. Recent program logics based on separation logic emphasise
a modular approach to proving functional correctness for fine-grained
concurrent programs. However, these logics have no automation support.
In this paper, we present Caper, a prototype tool for automated reason-
ing in such a logic. Caper is based on symbolic execution, integrating
reasoning about interference on shared data and about ghost resources
that are used to mediate this interference. This enables Caper to verify
the functional correctness of fine-grained concurrent algorithms.

1 Introduction

In recent years, much progress has been made in developing program logics
for verifying the functional correctness of concurrent programs [10,32,29,7,19],
with emphasis on fine-grained concurrent data structures. Reasoning about such
programs is challenging since data is concurrently accessed by multiple threads:
the reasoning must correctly account for interference between threads, which can
often be subtle. Recent program logics address this challenge by using resources
that are associated with some form of protocol for accessing shared data.

The concept of heap-as-resource was a fundamental innovation of separation
logic [26]. It is possible to specify and verify a piece of code in terms of the
resources that it uses. Further resources, which are preserved by the code, can be
added by framing, provided that they are disjoint. Concurrent separation logic
(CSL) [23] uses the observation that threads operating on disjoint resources do
not interfere. This is embodied in the disjoint concurrency proof rule:{

p1
}
c1
{
q1
} {

p2
}
c2
{
q2
}{

p1 ∗ p2
}
c1‖c2

{
q1 ∗ q2

} .

The separating conjunction connective ‘∗’ in the assertion p1 ∗ p2 asserts that
both p1 and p2 hold but for disjoint portions of the heap. In separation logic,
the primitive resources are heap cells, represented x 7→ y, meaning the heap at
address x holds value y. A thread that owns a heap cell has an exclusive right to
read, modify or dispose of it. The separating conjunction x 7→ y ∗ y 7→ z enforces
disjointness: it requires x and y to be different addresses in the heap.

In fine-grained concurrent algorithms, however, threads use shared data, so a
more flexible concept of resources is required. Shared regions [10] are one approach
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to this. A shared region encapsulates some underlying (concrete) resources, which
may be accessed by multiple threads when they perform atomic operations.
The region enforces a protocol that determines how threads can mutate the
encapsulated resources. The region is associated with abstract resources called
guards that determine the role that a thread can play in the protocol. Importantly,
these resources determine what knowledge a thread can have about the region
that is stable — i.e., continues to hold under the actions of other threads.

For example, consider a region that encapsulates a heap cell at address x.
Associated with this region are two guards Inc and Dec. The protocol states
that a thread with the Inc guard can increase the value stored at x, and a thread
with the Dec guard can decrease the value stored at x. A thread holding the Inc
guard can know that the value at x is at most the last value it observed; without
the Dec guard, a thread cannot know that the value will not be decreased by
another thread. Conversely, a thread holding the Dec guard can know a lower
bound on the value at x. A thread that holds both guards can change the value
arbitrarily and know it precisely, much as if it had the resource x 7→ y itself.

In this paper we present Caper, a novel tool for automatic verification of
fine-grained concurrent programs using separation logic. To verify a program,
the user specifies the types of shared regions, defining their guards and protocols,
and provides specifications for functions (and loop invariants) that use these
regions. Caper uses a region-aware symbolic execution (§3.3) to verify the code,
in the tradition of SmallFoot [1]. The key novelties of Caper’s approach are:

– the use of guard algebras (§3.1) as a mechanism for representing and rea-
soning automatically about abstract resources, while supporting a range of
concurrency verification patterns;

– techniques for automatically reasoning about interference on shared regions
(§3.2), in particular, accounting for transitivity; and

– heuristics for non-deterministic proof search (§4), including the novel use of
abduction to infer abstract updates to shared regions and guards.

We introduce our approach by considering a number of examples in §2. We
emphasise that these examples are complete and self-contained — Caper can
verify them without additional input. In §5 we evaluate Caper, reporting results
for a range of examples. We discuss related work in §6 before concluding with
remarks on future directions in §7.

The Caper tool is implemented in Haskell, and uses Z3 [8] and (optionally)
E [27] to discharge proof obligations. The source code and examples are avail-
able [11], as is a soundness proof of the separation logic underlying Caper [12].

2 Motivating Examples

We begin by considering a series of examples that illustrate the programs and
specifications that Caper is designed to prove. In each case, we discuss how
Caper handles the example and why. In later sections, we will describe the rules
and algorithms that underlie Caper in more detail. For each example, we give
the complete source file, which Caper verifies with no further annotation.
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examples/recursive/SpinLock.t

1 region SLock(r,x) {
2 guards %LOCK * UNLOCK;
3 interpretation {
4 0 : x 7→ 0 &*& r@UNLOCK;
5 1 : x 7→ 1;
6 }
7 actions {
8 LOCK[_] : 0  1;
9 UNLOCK : 1  0;

10 }
11 }
12 function makeLock()
13 requires true;
14 ensures SLock(r,ret,0) &*& r@LOCK[1p]; {
15 v := alloc(1);
16 [v] := 0;
17 return v;
18 }
19 function acquire(x)
20 requires SLock(r,x,_) &*& r@LOCK[p];
21 ensures SLock(r,x,1) &*& r@(LOCK[p] * UNLOCK); {
22 b := CAS(x, 0, 1);
23 if (b = 0) {
24 acquire(x);
25 }
26 }
27 function release(x)
28 requires SLock(r,x,1) &*& r@UNLOCK;
29 ensures SLock(r,x,_); {
30 [x] := 0;
31 }

Fig. 1. Caper listing for a spin lock implementation.

2.1 Spin Lock

Fig. 1 shows a typical annotated source file for Caper, which implements a
simple fine-grained concurrent data structure: a spin lock. Note that &*& is
Caper syntax for ∗ — separating conjunction.

Lines 1–11 dsefine a region type, SLock, for spin locks. There are two kinds
of assertions associated with regions, and their shape is dictated by region type
definitions. SLock(r,x,s) is the assertion representing knowledge of a region
r of type SLock with parameter x in abstract state s. The second are guard
assertions of the form r@(G), meaning we hold the guard G for region r.

Line 2 is a guard algebra declaration, indicating the guards associated with a
given region type, and how they compose. There are two kinds of guard associated
with SLock regions: LOCK guards, which are used to acquire the lock, and may
be subdivided to allow multiple threads to compete for the lock (indicated by
% in the guards declaration); and UNLOCK guards, which are used to release the
lock, and are exclusive — only a thread holding the lock owns the UNLOCK guard.

Lines 3–6 declare a region interpretation: the resources held by the region
when in each abstract state. SLock regions have two states: 0 represents that
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the lock is available, which is indicated concretely by the heap cell x 7→ 0; 1
represents that the lock has been acquired, which is indicated concretely by the
heap cell x 7→ 1. In the available state the UNLOCK guard belongs to the region —
a thread that transitions to the acquired state obtains this guard.

Finally, lines 7–10 declare the actions — the protocol governing the shared
region. This embodies both the updates allowed for a given thread and the inter-
ference a thread must anticipate from the environment. A thread can transition
an SLock region from abstract state 0 (available) to 1 (acquired) if it holds the
LOCK[p] guard for any p. Similarly, a thread can transition an SLock region from
acquired to available if it holds the UNLOCK guard.

The makeLock function allocates a new spin lock. It has the precondition
true since it does not require any resources. In the postcondition, the function
returns an SLock region with full permission to its LOCK guard (expressed by
r@(LOCK[1p])). The logical variable r holds the identifier for the region, which is
used to relate assertions that refer to the same region; it is implicitly existentially
quantified as it occurs in the postcondition but neither in the precondition nor
as a parameter to the function. The logical variable ret binds the return value,
which is the address of the lock. When Caper symbolically executes the function
body, at the return it has the resource v 7→ 0 but requires SLock(r, v, 0). This
missing resource is abduced: Caper backtracks searching for a place where it
could have obtained the missing resource. Caper thus tries to construct the
region before executing the return statement. Constructing the region consists
of creating a fresh region identifier and adding the full guards for the region to
the symbolic state (in this case LOCK[1p] * UNLOCK); the resources belonging
to the region according to the interpretation are consumed (removed from the
symbolic state). This is successful for the interpretation 0, leaving the guard
LOCK[1p] for the new region. Caper can then successfully symbolically execute
the return statement, since it has the resources required by the postcondition.

The acquire function attempts to acquire the lock. The precondition asserts
that the spin lock is in an unknown state and that we have permission to acquire
the lock in the form of the LOCK[p] guard. The postcondition asserts that the
lock is in the acquired state (indicated by the 1 in the SLock predicate) and that
we retain the LOCK[p] guard but have also acquired the UNLOCK guard.

The lock is acquired by performing an atomic compare-and-set (CAS) op-
eration, which attempts to set the value stored at address x from 0 to 1. In
symbolically executing the CAS, Caper determines that it needs to open the
region because it does not have x 7→ −. In opening the region, Caper branches
on the interpretation of the region; it must show that both cases are correct. The
CAS itself also introduces branches depending on whether it failed; these are
quickly pruned as the CAS cannot fail if the region is in state 0, nor succeed if it
is in state 1. Immediately after the atomic CAS, Caper must close the region. It
does so by non-deterministically choosing among the interpretations.

If the initial state was 1, the CAS fails and Caper closes with state 1. Since
the state is unchanged, this ‘update’ is permitted. After the atomic operation,
Caper must stabilise the region; since the thread does not own the UNLOCK guard,



Caper 5

another thread could transition the region to state 0. Consequently, after the
CAS, Caper does not know which state the region is in. Since the CAS fails, the
if condition succeeds. Caper then makes the recursive call to acquire using
the specification, which allows it to obtain the postcondition in the end.

If the initial state was 0, the CAS succeeds and Caper closes with state 1.
In doing so, the UNLOCK guard is acquired, since it is part of the interpretation of
state 0, but not of state 1. Caper must then check that the update from state 0
to 1 is permitted by the available guards, LOCK[p] * UNLOCK, which it is. After
the CAS, the thread owns the UNLOCK guard so no other thread can change the
state of the region, and so it is stable in state 1. The result of a successful CAS is
1, so Caper does not symbolically execute the body of the if in this case, and
proceeds to check the postcondition, which is successful.

The verification of the release function proceeds along similar lines.

2.2 Ticket Lock

Fig. 2 shows a Caper listing for a ticket lock. A ticket lock comprises two
counters: the first records the next available ticket and the second records the
ticket which currently holds the lock. (Note that the lock is “available” when the
two counters are equal — i.e. the ticket holding the lock is the next available
ticket.) To acquire the lock, a thread obtains a ticket by incrementing the first
counter and waiting until the second counter reaches the value of the ticket it
obtained. To release the lock, a thread simply increments the second counter.

In Caper, a ticket lock is captured by a TLock region, defined in lines 1–9 of
Fig. 2. In contrast to the SLock region, a TLock region has an infinite number of
states: there is an abstract state for each integer n. The abstract state n of a TLock

region represents the ticket that currently holds the lock. The guards associated
with a TLock region represent the tickets: there is a unique guard TICKET(n)

for each integer n. (This is indicated by the # in the guards declaration.) The
region interpretation of state n ensures that:
– the first counter (x) is the next available ticket number, m, which is at least n;
– the second counter (x+1) is n, the lock-holding ticket number;
– all TICKET resources from m up belong to the region. (A set of indexed

resources is expressed with a set-builder-style notation, as in TICKET{k|k≥m}.)
Note that m is implicitly existentially quantified in the interpretation.

A thread may acquire a ticket by incrementing the next-available-ticket
counter and removing the corresponding TICKET guard from the region. Doing so
does not affect the abstract state of the region, and can, therefore, happen at any
time (no guards are required to do so). In order to increment the lock-holding-
ticket counter, a thread must hold the TICKET(n) resource for the current value
of the counter, n. We might, therefore, expect the actions declaration to be:

8 actions {
9 TICKET(n) : n  n + 1;

10 }

This action declaration is, however, problematic for automation. Between sym-
bolically executing atomic actions, Caper widens the set of possible abstract
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examples/iterative/TickLock.t

1 region TLock(r,x) {
2 guards #TICKET;
3 interpretation {
4 n : x 7→ m &*& (x + 1) 7→ n &*& r@TICKET{ k | k ≥ m } &*& m ≥ n;
5 }
6 actions {
7 n < m | TICKET{ k | n ≤ k, k < m } : n  m;
8 }
9 }

10 function acquire(x)
11 requires TLock(r,x,_);
12 ensures TLock(r,x,n) &*& r@TICKET(n); {
13 do {
14 t := [x + 0];
15 b := CAS(x + 0, t, t + 1);
16 }
17 invariant TLock(r,x,ni) &*& (b=0 ? true : r@TICKET(t) &*& t ≥ ni);
18 while (b = 0);
19 do {
20 v := [x + 1];
21 }
22 invariant TLock(r,x,ni) &*& r@TICKET(t) &*& t ≥ ni &*& ni ≥ v;
23 while (v < t);
24 }
25 function release(x)
26 requires TLock(r,x,n) &*& r@TICKET(n);
27 ensures TLock(r,x,_); {
28 v := [x + 1];
29 [x + 1] := v + 1;
30 }

Fig. 2. Caper listing for a ticket lock implementation.

states for each region according to the rely relation for that region type. Suppose
a TLock region is initially in state 0. If the thread does not hold the TICKET(0)

guard, Caper must add the state 1 to the possible state set. If the thread
does not hold TICKET(1), Caper must add the state 2, and so on. In general,
we cannot expect this widening process to terminate, so we must consider a
transitively-closed rely relation. Caper cannot, in general, compute the transitive
closure, but it is possible to check that a given actions declaration is transitively
closed. We address this in §3.2. The proposed action declaration is, however, not
transitive, since transitions from 0 to 1 and from 1 to 2 are possible, but the
transitive transition from 0 to 2 is not possible in one step.

Instead, we use the actions declaration in Fig. 2, which is transitively closed.
It remedies the problem with the simple version by generalising from a single
increment to allow multiple increments. This is achieved by placing a condition on
the transition that n m is only permitted when n<m, enforcing that the counter
can only increase, as indicated before the vertical bar in the actions declaration.
The guard TICKET{k|n≤k,k<m} denotes the set of all guards TICKET(k) for
k between n and m-1 inclusive. This ensures that a thread can increment the
counter past k only when it holds the TICKET(k) guard. For example, a thread
holding TICKET(n) can transition the TLock region from abstract state n to n+1.
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The precondition of acquire asserts that the ticket lock exists in some
arbitrary abstract state. The postcondition ensures that the lock is in some state
n and that the guard TICKET(n) has been acquired. The function contains two
loops and Caper requires that we provide an invariant for each. The first loop,
lines 13–18, increments the next available ticket. The invariant states that the
region is in some state ni and that once the CAS succeeds (b = 1) we have
the TICKET(t) guard and t is at least ni; the conditional is expressed using
the C-like ? : notation. Similarly to the acquire operation for the spin lock,
Caper opens the region when symbolically executing the CAS operation. Since
there is only one clause in the TLock region interpretation, Caper considers
one generic case, rather than branching as in the spin lock. Immediately after
symbolically executing the CAS operation, Caper needs to close the region. If
the CAS succeeds Caper knows that the next available ticket m is t+1. Hence
the guard TICKET(t) is not included in the set of guards TICKET{k|k≥m} needed
for closing the region, so Caper can transfer the guard TICKET(t) out of the
TLock region. The next loop, lines 19–23, spins until the acquired ticket becomes
the lock-holding ticket. Caper proceeds similarly to the first loop. After the loop,
the invariant and failed loop test are sufficient to establish the postcondition.

The precondition of the release function expresses that the lock-holding
ticket of the region is n and that we hold that ticket. Because we hold the guard
TICKET(n), we can make a transition from abstract state n to abstract state n+1.
No other thread can make a transition, since to transition from n to m one needs
to hold all the guards from n to m-1. Therefore, there is no interference from
other threads on the second counter and we can update it without using a CAS
loop. After the read on line 28, Caper knows that v holds value n by opening
the region. To execute the write on line 29, Caper again opens the region in
state n. Caper closes the region in a new state n1, which must be the value of
the x+1 counter, i.e. n1 = n + 1. The value of m is unchanged, but Caper must
establish that m ≥ n1 = n + 1, which follows from the fact that m ≥ n and that
TICKET(n) (from the thread) is disjoint from TICKET{k|k≥m} (from the region).
Caper must also establish that the transition n n+1 is permitted by the actions
for the available guards, which it is.

Client. Fig. 3 shows an implementation of a simple client using the ticket
lock. Here, the Client(r,x,s,z) region uses a ticket lock region TLock(s,z) to
maintain the lock invariant that two cells, x and x+1, have the same value. The
disjunction with the guard s@TICKET(k) makes it possible to temporarily break
the invariant. The function set(x,z,w) sets the value of the two shared memory
cells to w. Lines 12–13 are a critical section protected by the ticket lock. Note
that the invariant is temporarily broken between the two writes.

In symbolically executing the call to acquire in line 11, Caper uses the
postcondition of acquire to obtain s@TICKET(k) and TLock(s,z,k) for some k.
When Caper symbolically executes line 12, it opens the Client region and must
consider each of the disjuncts of the interpretation. It finds that the right-hand
disjunct is not possible as we already hold the TICKET guard for the current
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examples/iterative/TickLockClient.t

1 region Client(r,x,s,z) {
2 guards 0;
3 interpretation {
4 0 : TLock(s,z,k) &*& (x 7→ a &*& (x+1) 7→ a ∨ s@TICKET(k));
5 }
6 actions {}
7 }
8 function set(x,z,w)
9 requires Client(r,x,s,z,0) &*& TLock(s,z,_);

10 ensures Client(r,x,s,z,0) &*& TLock(s,z,_); {
11 acquire(z);
12 [x] := w;
13 [x + 1] := w;
14 release(z);
15 }

Fig. 3. A Caper listing of a client of the ticket lock.

abstract state k of the lock. Hence it obtains the points-to assertions for x and
x+1, and can perform the write to x. Since the values stored at x and x+1 are now
different, Caper can only close the region by transferring s@TICKET(k) to the
region. When Caper symbolically executes line 13, it again opens the Client

region. This time it finds that the region holds s@TICKET(k) since we have the
points-to predicates. After the assignment, the values stored at x and x+1 are the
same, and Caper can close the region while leaving us with the s@TICKET(k)

resource which Caper then uses to satisfy the precondition of release.

2.3 Stack-based Bag

Fig. 4 shows a Caper implementation of a concurrent bag based on Treiber’s
stack [31]. The stack is lock-free, and uses CAS operations to manipulate the head
of a linked-list structure. To push a new item, a thread constructs a new head
node and atomically updates the head pointer of the bag. When popping an item,
a thread anticipates what the head node is before atomically updating the head
pointer. In both cases, the function of the atomic compare-and-swap operation
is to ensure that no other thread has manipulated the bag between operations.
Unlike the preceding examples, the heap is fundamental to the implementation.

The specification is parametrised by an abstract predicate [24,2] bagInvariant
(line 1). The idea is that adding an item v to the bag requires transferring
ownership of the predicate bagInvariant(v) to the bag, which is returned when
the item is removed. Clients can decide how to instantiate bagInvariant.

In Caper, the head pointer and the linked-list nodes are encapsulated by
separate regions: Bag and BagList, respectively. Note that there is an apparent
hierarchy between Bag and BagList regions: a Bag refers to a BagList, which
may, in turn, refer to another BagList and so on. In this way, we can use regions
to model inductive data structures such as linked lists. While regions can fulfil
a similar role to inductive predicates, they are semantically distinct. Regions
are shared globally, and so may refer to each other in arbitrary, even cyclical
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examples/recursive/BagStack.t

1 predicate bagInvariant(v);
2 region Bag(r,x) {
3 guards 0;
4 interpretation {
5 0 : x 7→ y &*& BagList(s,y,_,_,0) &*& s@OWN;
6 }
7 actions {}
8 }
9 region BagList(s,y,v,z) {

10 guards OWN;
11 interpretation {
12 0 : y = 0 ? true : y 7→ v &*& y+1 7→ z
13 &*& BagList(t,z,_,_,0) &*& t@OWN &*& bagInvariant(v);
14 1 : s@OWN &*& y 7→ v &*& y+1 7→ z &*& BagList(t,z,_,_,_);
15 }
16 actions {
17 OWN : 0  1;
18 }
19 }
20 function push(x,v)
21 requires Bag(r,x,0) &*& bagInvariant(v);
22 ensures Bag(r,x,0); {
23 y := alloc(2); [y] := v;
24 innerPush(x,y);
25 }
26 function innerPush(x,y)
27 requires Bag(r,x,0) &*& y 7→ v &*& y+1 7→ _ &*& bagInvariant(v);
28 ensures Bag(r,x,0); {
29 t := [x];
30 [y + 1] := t;
31 cr := CAS(x,t,y);
32 if (cr = 0) {
33 innerPush(x, y);
34 }
35 }
36 function pop(x)
37 requires Bag(r,x,0);
38 ensures ret = 0 ? Bag(r,x,0) : Bag(r,x,0) &*& bagInvariant(ret); {
39 t := [x];
40 if (t = 0) { return 0; }
41 t2 := [t + 1];
42 cr := popCAS(x,t,t2);
43 if (cr = 0) { ret := pop(x); return ret; }
44 ret := [t];
45 return ret;
46 }
47 function popCAS(x,t,t2)
48 requires Bag(r,x,0) &*& BagList(rt,t,v,t2,_)
49 &*& BagList(rt2,t2,_,_,_) &*& t != 0;
50 ensures ret = 0 ∨ bagInvariant(v); {
51 cr := CAS(x,t,t2); return cr;
52 }

Fig. 4. Caper listing for a concurrent bag implementation.
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ways. Although it appears as though the regions are nested, semantically all
regions exist at the same level. In this example, we achieve a hierarchy through
ownership of guards: the top-level Bag holds the OWN guard for the first BagList,
which holds the OWN guard for the second, and so on.

A Bag region is simple, in that it has no guards and is always in one abstract
state. It simply permits sharing of the resources it holds. The interpretation of
abstract state 0 of a region Bag(r,x) holds a pointer to the first, possibly null,
linked-list node at x in addition to its OWN guard.

The BagList(s,y,v,z) region type represents a list node (or a null termina-
tor) with payload value v at address y and a pointer to the successor z at y+1.
A BagList region is in one of two states, depending on whether it belongs to
the bag or not. Abstract state 0 means that the region belongs to the bag, in
which case it can represent either a null-pointer terminating the list or a list node
with a value and successor, represented by another BagList region. The region
also holds the OWN guard to the successor and the bagInvariant predicate for
its value. The abstract state 1 represents a list node that has been popped. The
interpretation therefore includes the region’s own OWN guard and knowledge of
the successor, but not the successor’s OWN guard or the bagInvariant predicate.

Since the bag can be used concurrently, we do not specify exactly which
elements it contains at a given time. Instead, our specification of push and pop

focuses on ownership transfer of elements pushed to and popped from the bag.

The precondition of push asserts only knowledge of the bag and ownership
of the bagInvariant for the value v to be put in the bag. In the postcondition,
the bagInvariant resource is absent, as it is transferred to the bag. The push

function allocates a new list node and then delegates to a CAS loop in innerPush.

The specification of innerPush is similar to that of push, but the precondition
requires the list node that is to be pushed. Note that the successor of the node,
y+1, is initially undetermined. In lines 29–30, innerPush loads the current head
of the list into the tail pointer of the new node via the variable t. To do so, Caper
opens the Bag region, getting access to x, and closes it again. The observed value
is then written as the successor of the new node, at address y+1, without opening
any regions. To account for the head of the stack having changed since it was
read, a CAS is used to update the head pointer. To symbolically execute the
CAS in line 31, Caper again opens the Bag region. If successful, it must close
and restore the Bag region. This means a new BagList region in state 0 must
be created for the new head. Upon creation, Caper creates the OWN guard for
the new region, which is given to the Bag region, closing it in state 0. If the CAS
does not succeed, it means another thread updated the stack between lines 29
and 31, and innerPush recursively tries again.

The specification of the pop function states that, from a Bag, pop produces
either null (0), in case the bag is empty, or a value satisfying the bagInvariant

predicate. The idea is that the concrete value comes from the underlying linked list,
and the corresponding bagInvariant(v) predicate is removed from a BagList

region. The pop function attempts to CAS the head pointer of the bag to the
successor of the first link, effectively removing the first element from the bag.
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It first reads the head pointer into t, which requires opening the Bag region.
At this point, we obtain the BagList region, which can be freely duplicated,
although the OWN guard remains in the Bag region. After the Bag region is closed
again, we must stabilise the BagList region to account for the fact that another
thread could remove the head node from the stack. That is, its abstract state
could now be 0 or 1. If the head pointer was 0, then the bag was empty and
so 0 is returned. Otherwise, t points to a node, and line 41 reads its successor
pointer into t2. This involves opening the BagList region previously obtained.
It is not necessary to open the Bag region again at this stage. The call to popCAS

at line 42 attempts to update the head node to the successor of the head node.
We give this CAS operation a specification (lines 48–50) to assist Caper. To
symbolically execute that CAS, Caper opens the Bag region containing x and
the OWN guard for the BagList region for the head of the stack. The BagList

region for the previously seen head (with region identifier rt) and the BagList

region for the current head (if it is different) are also opened. Caper determines
that the CAS can only succeed if these two regions are the same. In this case,
the bagInvariant is transferred to the thread, the OWN guard for the successor
is transferred to the Bag region, and the OWN guard for the head is transferred to
its own BagList region. In this process, the state of the BagList region for the
old head is updated from 0 to 1. This is allowed since we have access to its OWN

guard. If the CAS fails, nothing is changed and the pop is retried. On success,
the return value is read from the BagList region that is now in state 1. This
value corresponds to the previously-obtained bagInvariant predicate.

3 Proof System

Caper’s proof system is based on the logic of CAP [10], using improvements
from iCAP [29] and TaDA [7]. The logic is a separation logic with shared regions.

Each shared region has a unique region identifier. A region has an associated
region type, which determines the resources and protocol associated with the
region. Region types T(r, x̄) are parametrised, with the first parameter (r) always
being the region identifier. A region also has an abstract state. In Caper’s logic,
region assertions describe the type and state of a region. The region assertion
T(r, x̄, y) asserts the existence of a region with identifier r and type T(r, x̄) in
abstract state y. Region assertions are freely duplicable; i.e., they satisfy the
equivalence: T(r, x̄, y) ⇐⇒ T(r, x̄, y) ∗ T(r, x̄, y). Moreover, region assertions
with the same region identifier must agree on the region type and abstract state:
T(r, x̄, y) ∗T′(r, x̄′, y′) =⇒ (T, x̄, y) = (T′, x̄′, y′).

Shared regions are also associated with (ghost) resources called guards. Which
guards can be associated with a region, as well as their significance and behaviour
is determined by the type of the region. Guards are interpreted as elements of
a partial commutative monoid (PCM), referred to as a guard algebra. That is,
they have a partial composition operator that is associative, commutative and
has a unit. This is sufficient for them to behave as separation logic resources (see
e.g. [9]). In Caper’s logic, guard assertions assert ownership of guard resources.
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(P (z̄)|G : e1(z̄) e2(z̄)) ∈ Actions(T(r, x̄)) P (w̄)

(e1(w̄), e2(w̄)) ∈ Guar(T(r, x̄), G) (x, x) ∈ Guar(T(r, x̄), G)

(x, y), (y, z) ∈ Guar(T(r, x̄), G)

(x, z) ∈ Guar(T(r, x̄), G)
(†)

(x, y) ∈ Guar(T(r, x̄), G)

(x, y) ∈ Guar(T(r, x̄), G ∗G′)

(P (z̄)|G : e1(z̄) e2(z̄)) ∈ Actions(T(r, x̄)) P (w̄) G ∗G′ defined

(e1(w̄), e2(w̄)) ∈ Rely(T(r, x̄), G′)

(x, y), (y, z) ∈ Rely(T(r, x̄), G)

(x, z) ∈ Rely(T(r, x̄), G)
(†)

(x, y) ∈ Rely(T(r, x̄), G ∗G′)
(x, y) ∈ Rely(T(r, x̄), G)

(x, x) ∈ Rely(T(r, x̄), G)

Fig. 5. Rules defining the Guar and Rely relations.

The guard assertion r@(G1 ∗ . . .∗Gn) asserts ownership of the guards G1, . . . , Gn
associated with region identifier r. Guard assertions are not in general duplicable,
but they distribute with respect to ∗: r@(G1 ∗G2) ⇐⇒ r@G1 ∗ r@G2.

The region type determines how a shared region is used. A region type
definition determines the following properties of regions of that type: the guard
algebra associated with the region; the abstract states of the region and their
concrete interpretation; and the actions that can be used to update the state
of the region, and which guards are required in order to perform each action.
Region type definitions determine two derived relations, Rely and Guar (for
guarantee), which are defined in Fig. 5, based on the actions for the region types.
The relation Rely(T(r, x̄), G) consists of all state transitions that a thread’s
environment may make to a region of type T(r, x̄), if the thread owns guard G.
The relation Guar(T(r, x̄), G) consists of all state transitions that a thread itself
may make to a region of type T(r, x̄), if it owns guard G.

3.1 Guards

The underlying logic of Caper permits the guard algebra for a region to be an
arbitrary PCM. However, in order to reason automatically about guards, Caper
must be able to effectively compute solutions to certain problems within the
PCM. To this end, Caper provides a number of constructors for guard algebras
for which these problems are soluble. These constructors are inspired by common
patterns in concurrency verification, and are useful for many examples. The three
automation problems are as follows.

Frame Inference. Given guard assertions A and B, find a C (if it exists) such that
A ` B ∗ C. This problem has two applications: 1. Computing the Guar relation
requires determining if the guard currently available to the thread (A) entails
the guard required to perform some action (B); 2. At call sites, returns and
when closing regions, symbolic execution consumes assertions (i.e. checks that
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the assertion holds and removes the corresponding resources from the symbolic
state). Frame inference (for guards) does this for guard assertions.

Composition and Compatibility. Given guard assertions A and B, determine their
composition A∗B and the condition for it being defined. Whether it is defined will
be a pure assertion on the free variables of A and B. This also has two applications:
1. Computing the Rely relation requires determining when the guard currently
owned by the thread (A) is compatible with the guard required to perform some
action (B); 2. At entry points, after calls and when opening regions, symbolic
execution produces assertions (i.e. adds resources and assumptions corresponding
to the assertion to the symbolic state). Composition does this for guards.

Least Upper-bounds. Given guard assertions A and B, compute C such that C ` A,
C ` B and for any D with D ` A and D ` B, D ` C. This is used to compose two
actions, which will be guarded by the least upper-bound of the two guards.

Supported Guard Algebras. We present the guard algebras that are sup-
ported by Caper. Each guard algebra has a maximal element, the full guard,
which is generated for a region when it is initially created.

Trivial guard algebra. The trivial guard algebra, 0 in Caper syntax, consists of
one element which is the unit. This algebra is used when a region has no roles
associated with it: it can be used in the same way by all threads at all times.

All-or-nothing guard algebra. An all-or-nothing guard algebra consists of a single
element distinct from the unit, which is the full guard. In Caper syntax, this
algebra is represented by the name chosen for the point; for instance, GUARD
would be the all-or-nothing algebra with point GUARD.

Permissions guard algebra. A permissions guard algebra %GUARD has the full
resource GUARD[1p] which can be subdivided into smaller permissions GUARD[π].
The typical model for permissions is as fractions in the interval [0, 1]. This allows
for (non-zero) permissions to be split arbitrarily often. Caper implements a
different theory of permissions. This theory also allows arbitrary splitting, but
also requires that GUARD[π] ∗ GUARD[π] is undefined for any non-zero π.

The theory can be encoded into the theory of atomless Boolean algebras —
a Boolean algebra is said to be atomless if for all a > ⊥ there exists a′ with
a > a′ > ⊥. The encoding defines the PCM operator as p1 ∗ p2 = p1 ∨ p2 if
p1 ∧ p2 = ⊥ (and undefined otherwise). Conveniently, the first-order theory of
atomless Boolean algebras is complete and therefore decidable (initially reported
by Tarski [30], proved by Ershov [15], and see e.g. [6] for details).

Caper implements three different proof procedures for the theory of permis-
sions. One uses the encoding with Boolean algebras and passes the problem to
the first-order theorem prover E [27]. A second checks for the satisfiability of
a first-order permissions formula directly. The third encodes the satisfiability
problem with bit-vectors and passes it to the SMT solver Z3 [8]. Dockins et al. [13]
previously proposed a tree-share model of permissions, which is also a model
of this theory. Le et al. [20] have developed decision procedures for entailment
checking based on this model, which could also be used by Caper.
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Counting guard algebra. A counting guard algebra |GUARD| consists of counting
guards similar to the counting permissions of Bornat et al. [3]. For n ≥ 0,
GUARD|n| expresses n counting guards. An authority guard tracks the number of
counting guards that have been issued. For n ≥ 0, GUARD|-1− n| expresses the
authority guard with n counting guards issued. The PCM operator is defined as:

GUARD|n| ∗ GUARD|m| = GUARD|n+m| if (n ≥ 0 ∧m ≥ 0) ∨
(n < 0 ∧m ≥ 0 ∧ n+m < 0) ∨ (n ≥ 0 ∧m < 0 ∧ n+m < 0).

This ensures that the authority is unique (e.g. GUARD|-1| ∗ GUARD|-2| is unde-
fined) and that owning GUARD|-1|, which is the full guard, guarantees that no
other thread may have a counting guard.

Indexed guard algebra. An indexed guard algebra #GUARD consists of sets of
individual guards GUARD(n) where n ranges over integers. A set of such individual
guards is expressed using a set-builder notation: GUARD{x | P} describes the set
of all guards GUARD(x) for which P holds of x. The full guard is GUARD{x | true}.
The notation GUARD(n) is syntax for GUARD{x | x = n}. The PCM operator is
defined as GUARDS1 ∗ GUARDS2 = GUARD(S1 ∪ S2) if S1 ∩ S2 = ∅.

The automation problems reduce to testing conditions concerning sets, specif-
ically set inclusion. Sets in Caper are not first-class entities: they are al-
ways described by a logical predicate that is a (quantifier-free) arithmetic for-
mula. For sets characterised in this way, set inclusion can be characterised as:{
x
∣∣P} ⊆ {

x
∣∣Q}

⇐⇒ ∀x. P ⇒ Q. Advanced SMT solvers, such as Z3 [8], have
support for first-order quantification, and Caper exploits this facility to handle
the verification conditions concerning set inclusion.

Product guard algebra construction. Given guard algebras M and N , the product
construction M *N consists of pairs (m,n) ∈M ×N , where the PCM operation
is defined pointwise: (m1, n1) ∗ (m2, n2) = (m1 ∗m2, n1 ∗n2). The unit is the pair
of units and the full resource is the pair of full resources.

Sum guard algebra construction. Given guard algebras M and N , the sum
construction M +N is the discriminated (or disjoint) union of M and N , up to
identifying the units and identifying the full resources of the two PCMs. The
PCM operation embeds the operations of each of the constituent PCMs, with
composition between elements of different PCMs undefined.

Within the Caper implementation, guards are represented as maps from guard
names to parameters that depend on the guard type. For this to work, Caper
disallows multiple guards with the same name in a guard algebra definition. For
instance, INSERT * %INSERT is not legal. The sum construction is implemented
by rewriting where necessary by the identities the construction introduces.

3.2 Interference Reasoning

There are two sides to interference: on one side, a thread should only perform
actions that are anticipated by the environment, expressed by the Guar relation;
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on the other, a thread must anticipate all actions that the environment could
perform, expressed by the Rely relation. Each time a thread updates a region,
it must ensure that the update is permitted by the Guar with respect to the
guards it owns (initially) for that region. Moreover, the symbolic state between
operations and frames for non-atomic operations must be stabilised by closing
the set of states they might be in under the Rely relation. Caper must therefore
be able to compute with these relations effectively.

The biggest obstacle to effective computation is that the relations are transi-
tively closed. Transitivity is necessary, at least for Rely, since the environment
may take arbitrarily many steps in between the commands of a thread. However,
computing the transitive closure in general is a difficult problem. For instance,
consider a region that has the (unguarded) action : n  n + 1. From this action,
we should infer the relation

{
(n,m)

∣∣n ≤ m}
, as the reflexive-transitive closure of{

(n, n+ 1)
∣∣n ∈ Z

}
. It is generally beyond the ability of SMT solvers to compute

transitive closures, although some (limited) approaches have been proposed [14].

Caper employs two techniques to deal with the transitive closure problem.
This first is that, if the state space of the region is finite, then it is possible
to compute the transitive closure directly. Caper uses a variant of the Floyd-
Warshall algorithm [16] for computing shortest paths in a weighted graph. The
‘weights’ are constraints (first-order formulae) with conjunction as the ‘addition’
operation and disjunction as the ‘minimum’ operation.

The second technique is to add composed actions until the set of actions
is transitively closed. When the actions are transitively closed, the Rely and
Guar relations can be computed without further accounting for transitivity (i.e.
the (†) rules in Fig. 5 can be ignored). For two actions P | G : e1  e2 and
P ′ | G′ : e′1  e′2 (assuming the only common variables are region parameters)
their composition is P, P ′, e2 = e′1 | G tG′ : e1  e′2 where t is the least-upper-
bound operation on guards. Using frame inference for guards, we can check if
one action subsumes another — that is, whether any transition permitted by the
second is also permitted by the first.

Caper uses the following process to reach a transitive set of actions. First,
consider the composition of each pair of actions currently in the set and determine
if it is subsumed by any action in the set. If all compositions are already subsumed
then the set is transitive. Otherwise, add all compositions that are not subsumed
and repeat. Since this process is not guaranteed to terminate (for example, for
n  n + 1), Caper will give up after a fixed number of iterations fail to reach a
transitive set. Note that adding composite actions does not change the Rely and
Guar relations, since these are defined to be transitively closed.

If Caper is unable to reach a transitive set of actions, the Rely relation is over-
approximated by the universal relation, while the Guar is under-approximated.
This is sound, since Caper can prove strictly less in such circumstances, although
the over-approximation is generally too much to prove many examples.

It is often practical to represent the transition system for a region type in a way
that Caper can determine its transitive closure. For example, instead of the action
: n  n + 1 we can give the action n < m | : n  m, which Caper can prove
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subsumes composition with itself. Since Caper tries to find a transitive closure,
it is often unnecessary to provide a set of actions that is transitively closed. For
instance, given the actions 0 ≤ n, n < m | A : n  -m and 0 < n | B : -n  n,
Caper adds the following actions to reach a transitive closure:

0 ≤ n, n < m | A * B : n  m;
0 < n, n < m | A * B : -n  -m;
0 < n, n < m | A * B : -n  m;

3.3 Symbolic Execution

Caper’s proof system is based on symbolic execution, where programs are
interpreted over a domain of symbolic states. Symbolic states represent separation
logic assertions, but are distinct from the syntactic assertions of the Caper input
language. To verify that code satisfies a specification, the code is symbolically
executed from a symbolic state corresponding to the precondition. The symbolic
execution may be non-deterministic — for instance, to account for conditional
statements — and so produces a set of resulting symbolic states. If each of these
symbolic states entails the postcondition, then the code satisfies the specification.

A symbolic state S = (∆,Π,Σ,Ξ, Υ ) ∈ SState consists of:
– ∆ ∈ VarCtx = SVar ⇀fin Sort, a variable context associating logical sorts

with symbolic variables;
– Π ∈ Pure = Cond∗, a context of pure conditions (over the symbolic variables)

representing logical assumptions;
– Σ ∈ Preds = Pred∗, a context of predicates (over the symbolic variables)

representing owned resources;
– Ξ ∈ Regions = RId ⇀fin RType⊥ × Exp⊥ × Guard, a finite map of region

identifiers to an (optional) region type, an (optional) expression representing
the state of the region, and an guard expression representing the owned
guards for the region;

– Υ ∈ ProgVars = ProgVar ⇀fin Exp, a map from program variables to expres-
sions representing their current values.
We take the set of symbolic variables SVar to be countably infinite. Symbolic

variables are considered distinct from program variables (ProgVar), which occur
in the syntax of the program code (Stmt), and assertion variables (AssnVar),
which occur in syntactic assertions (Assn). Currently, the set of sorts supported by
Caper is Sort = {Val,Perm,RId}. That is, a variable can represent a program
value (i.e. an integer), a permission, or a region identifier.

We do not formally define the syntax of (symbolic) expressions (Exp) and
conditions (Cond). Expressions include symbolic variables, as well as arithmetic
operators and operators on permissions. Conditions include a number of relational
propositions over expressions, such as equality and inequality (<). They can also
express rely and guarantee relations and inclusions between sets. A context of
pure conditions is a sequence of conditions, interpreted as a conjunction. Symbolic
execution generates entailments between contexts of conditions as verification
conditions. The practical limitation on conditions is that these entailments should
be checkable automatically by means of provers such as SMT solvers.
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dom(γ) = S range(γ) = Γ ∀x, y ∈ S. γ(x) = γ(y) =⇒ x = y ∆ ∩ Γ = ∅
freshSub(∆,Γ, S, γ)

s′1, . . . , s
′
n /∈ ∆ Ξ = [r1 7→ (t1, s1, G1), . . . , rn 7→ (tn, sn, Gn)]

P = (s1, s
′
1) ∈ Rely(t1, G1); . . . ; (sn, s

′
n) ∈ Rely(tn, Gn)

Ξ ′ = [r1 7→ (t1, s
′
1, G1), . . . , rn 7→ (tn, s

′
n, Gn)]

stabilise(∆,Ξ, s′1 : Val; . . . ; s′n : Val,P , Ξ ′)

Φ(f) = (x̄, Apre, Apost)
freshSub(ε,∆, vars(Apre) ∪ x̄, γ) produce(Apre, γ) : (∆, ε, ε, ∅) S0

∀(∆0, Π0, Σ0, Ξ0) ∈ S0. ∃S1.` C : (∆0, Π0, Σ0, Ξ0, [x̄ 7→ γ(x̄)]) S1

∀(∆1, Π1, Σ1, Ξ1, Υ1) ∈ S1. ∃∆′1, Π ′1, Ξ ′1. stabilise(∆1, Ξ1,∆
′
1, Π

′
1, Ξ

′
1)

∃Γ1, γ
′. freshSub(∆1;∆′1, Γ1, vars(Apost) \ (vars(Apre) ∪ x̄), γ′)

∃S2. consume(Apost, γ ∪ γ′) : (∆1;∆′1, Π1;Π ′1, Γ1, ε, Σ1, Ξ
′
1) S2

∀(∆2, Π2, Γ2,P2, Σ2, Ξ2) ∈ S2.∆2, Π2 ` Γ2,P2

Ψ,Φ ` function f(x̄){C}
Fig. 6. Function correctness judgement.

A (spatial) predicate P (ē) ∈ Pred consists of a predicate name P and a list of
expressions ē. Two types of predicates are given special treatment and have their
own syntax: individual heap cells a 7→ b (where a is the address and b the value
stored), and blocks of heap cells a 7→ #cells(n) (where a is the starting address
and n is the number of consecutive heap cells). All other predicates are abstract.

A region map associates region identifiers with knowledge and resources for
the given region. The knowledge consists of the type of the region, which is a pair
of a region type name and list of expressions representing the parameters, and
an expression describing the current state of the region. The resources consist of
a guard. It is possible to have a guard for a region without knowing the type or
state of the region, so these two components can be unspecified (⊥).

Fig. 6 gives the correctness judgement for functions that forms the basis of
Caper’s proof system. The judgement is parametrised by a context of region
declarations Ψ , and a context of function specifications Φ. (Both contexts are left
implicit in the sub-judgements.) The conditions break down into four key steps:

1. A symbolic state is generated corresponding to the function’s precondition
Apre. This is captured by the judgement produce(Apre, γ) : (∆, ε, ε, ∅) S0

which adds resources and assumptions to an initially empty symbolic state.

2. The body of the function is symbolically executed. This is captured by the
judgement ` C : (∆0, Π0, Σ0, Ξ0, [x̄ 7→ γ(x̄)]) S1.

3. The regions of the resulting symbolic states are stabilised to account for
possible interference from other threads. This is captured by the judgement
stabilise(∆1, Ξ1, ∆

′
1, Π

′
1, Ξ

′
1). (Note that stabilisation also occurs at each

interleaving step in the symbolic execution.)

4. Each final symbolic state is checked against the postcondition. This is captured
by the judgement consume(Apost, γ ∪ γ′) : (∆1, Π1, Γ, ε,Σ1, Ξ1) S2 which
removes resources and generates verification conditions that are sufficient for
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the symbolic state to entail the postcondition. These verification conditions
are checked by the judgement ∆2, Π2 ` Γ2,P2.

Step 1 uses the judgement produce ⊆ (Assn× (AssnVar ⇀ Exp))× SState×
P(SState), where SState = VarCtx× Pure× Preds× Regions. The produce judge-
ment (we adopt the produce/consume nomenclature of Verifast [18]) adds re-
sources and assumptions to the symbolic state corresponding to a given syntactic
assertion. It is parametrised by a substitution from assertion variables to ex-
pressions. In producing the precondition, this substitution maps the assertion
variables occurring in the precondition and the function parameters (treated as
assertion variables) to fresh symbolic variables. This is captured by the freshSub
judgement. These fresh symbolic variables are bound in the initial variable context
(∆), while the initial context of conditions (ε), context of predicates (ε) and
region map (∅) are all empty. The judgement produces a set of symbolic states
(sans program variable context). This set should be interpreted disjunctively:
each of the symbolic states is possible after producing the assertion.

Step 2 uses the symbolic execution judgement: (` − : −  −) ⊆ Stmt ×
SState×P(SState). This judgement updates the symbolic state according to the
symbolic execution rules for program statements. The initial program variable
context is given by mapping the function parameters x̄ (treated as program
variables) to the corresponding logical expressions γ(x̄).

Step 3 uses the judgement stabilise ⊆ VarCtx × Regions × VarCtx × Pure ×
Regions. This judgement relates an initial region map (in a given context) with a
new region map that accounts for interference, with an extended context and
additional pure conditions. The judgement is defined by the rule given in Fig. 6.
This rule creates a fresh variable (s′i) to represent the new state of each region and
asserts that it is related to the old state (si) in accordance with the rely relation
for the given region. To account for the region type or state being unknown, we
extend the definition of Rely with the following two rules:

(x, y) ∈ Rely(⊥, G) (⊥, y) ∈ Rely(T(r, x̄), G)

Step 4 uses the judgement consume ⊆ (Assn× (AssnVar ⇀ Exp))× ŜState×
P(ŜState), where ŜState = VarCtx×Pure×VarCtx×Pure×Preds×Regions. The
consume judgement removes resources and adds assertions to the symbolic state.
The symbolic state is extended with a second variable context representing exis-
tentially quantified variables and a second context of pure conditions representing
logical assertions. As an example, consuming the assertion x 7→ 2 where the pred-
icates include a 7→ b can remove that predicate, adding the assertions JxKγ = a
and 2 = b (where γ is the assertion variable substitution). Any assertion variables
occurring in the postcondition that are neither parameters of the function nor
occur in the precondition are treated as existentially quantified. The freshSub
judgement is used again to generate a context and substitution for these variables.

It remains to check that the assertions arising from consuming the postcondi-
tion follow from the assumptions. This is achieved with the entailment judgement:
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produce(A1, γ) : S  {Si}i∈I
∀i ∈ I. produce(A2, γ) : Si  {Si,j}j∈Ji

produce(A1 &*&A2, γ) : S  
{
Si,j

∣∣ i ∈ I, j ∈ Ji}
produce(A1, γ) : (∆,Π; JpKγ , Σ,Ξ) S1

produce(A2, γ) : (∆,Π;¬ JpKγ , Σ,Ξ) S2

produce(p ?A1 :A2, γ) : (∆,Π,Σ,Ξ) S1 ∪ S2

produce(p, γ) : (∆,Π,Σ,Ξ) (∆,Π; JpKγ , Σ,Ξ)

produce(P (ē), γ) : (∆,Π,Σ,Ξ) (∆,Π,Σ;P (JēKγ), Ξ)

produce(e1 7→ e2, γ) : (∆,Π,Σ,Ξ) (∆,Π; Ccell(Je1Kγ , Σ), Σ; Je1Kγ 7→ Je2Kγ , Ξ)

r0 = (T(Jz, ēKγ), JsKγ , 0) S1 = rmerge(∆,Π,Σ,Ξ, JzKγ , r0)

i /∈ dom(Ξ) S2 = rnew(∆,Π,Σ,Ξ, JzKγ , r0, i)

produce(T(z, ē, s), γ) : (∆,Π,Σ,Ξ) S1 ∪ S2

r0 = (⊥,⊥, JGKγ) S1 = rmerge(∆,Π,Σ,Ξ, JzKγ , r0)

i /∈ dom(Ξ) S2 = rnew(∆,Π,Σ,Ξ, JzKγ , r0, i)

produce(z@(G), γ) : (∆,Π,Σ,Ξ) S1 ∪ S2

rmerge(∆,Π,Σ,Ξ, a, r0) ={
(∆,Π; a = i′;Π ′, Σ,Ξ[i′ 7→ r′])

∣∣∃r. Ξ(i) = r ∧mergeRegion(r, r0, Π
′, r′)

}
rnew(∆,Π,Σ,Ξ, a, r0, i) =

{(
∆,Π; a = i;

∧{
i 6= i′

∣∣ i′ ∈ dom(Ξ)
}
, Σ,Ξ[i 7→ r0]

)}
Fig. 7. Selected rules for the produce judgement.

(−,− ` −,−) ⊆ VarCtx× Pure× VarCtx× Pure. The judgement is defined by:

∆,Π ` Γ,P def⇐⇒ ∀δ ∈ J∆K . JΠKδ =⇒ ∃δ′ ∈ JΓ K . JPKδ∪δ′

Here, J∆K is the set of variable assignments agreeing with context ∆ and JΠKδ is
the valuation of the conjunction of the conditions Π in the variable assignment δ.

The produce judgement. The rules for the produce judgement are given in Fig. 7.
The rules follow the syntax of the assertion to be produced. For a separating
conjunction (&*&), first the left assertion is produced and then the right. Producing
a conditional expression (?:) introduces non-determinism: we generate cases for
whether the condition is true or false. For the true case, the first assertion is
produced together with the condition; for the false case, the second assertion is
produced together with the negated condition. Note that this non-determinism is
demonic, in that the proof must deal with all cases. Producing a pure assertion
simply adds it to the logical assumptions (interpreting the assertion variables
through the substitution γ). Producing a predicate assertion adds it to the
predicate context. As a special case, the points-to predicate also adds logical
assumptions, expressed by Ccell, which express that addresses must be positive
and no two cells can have the same address (we elide the formal definition here).
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(A, q) ∈ {(A1, JpKγ), (A2,¬ JpKγ)} consume(A, γ) : (∆,Π, Γ,P ; q,Σ,Ξ) S
consume(p ?A1 :A2, γ) : (∆,Π, Γ,P , Σ,Ξ) S

fv(JpKγ) ⊆ ∆ consume(A1, γ) : (∆,Π; JpKγ , Γ,P , Σ,Ξ) S1

consume(A2, γ) : (∆,Π;¬ JpKγ , Γ,P , Σ,Ξ) S2

consume(p ?A1 :A2, γ) : (∆,Π, Γ,P , Σ,Ξ) S1 ∪ S2

Ξ(i) = ((R, x̄), s, G) s 6= ⊥
consume(R(r, ē, a), γ) : (∆,Π, Γ,P , Σ,Ξ)

 {(∆,Π, Γ,P ; JrKγ = i; Jr, ēKγ = x̄; JaKγ = s,Σ,Ξ)}

Ξ(i) = (t, s,H) takeGuard(∆, t,H, JGKγ , Γ
′, F,P ′)

consume(r@G, γ) : (∆,Π, Γ,P , Σ,Ξ)
 
{

(∆,Π, Γ ;Γ ′,P ;P ′, Σ,Ξ[i 7→ (t, s, F )])
}

Fig. 8. Selected rules for the consume judgement.

The remaining two rules concern regions: producing a region and a guard
assertion respectively. In each case, a region descriptor r0 is created — in the first
case, including the region type and state but the empty guard, and in the second
case, including a guard but no region type or state. We non-deterministically
consider two cases: when the region identified by z already exists in the symbolic
state, and when it represents a completely fresh region. The first case is handled
by rmerge, which non-deterministically merges the region with one of the existing
regions. The second case is handled by rnew, which associates the region with
a fresh identifier (i) and adds assumptions that this is distinct from all other
identifiers. Merging regions is governed by the mergeRegion judgement, which
combines two region descriptors into one, producing a series of assumptions that
are necessary for the merger to be well-defined. We elide the details here.

The consume judgement. A selection of rules for the consume judgement are
given in Fig. 8. Unlike with produce, the syntax of the assertion may not uniquely
determine which rule to apply. For instance, there are two rules for consuming
a conditional assertion. The first rule consumes the conditional by consuming
either the condition and the first assertion or the negated condition and the
second assertion. (This are somewhat analogous to the ∨-introduction rules of
natural deduction.) The second rule non-deterministically assumes the truth or
falsity of the condition, consuming the first or second assertion in the respective
case. This requires that only assumption variables can occur in the condition
(fv(JpKγ) ⊆ ∆), since otherwise the context of assumptions would be ill-formed.
Here, we are exploiting the law of the excluded middle for pure assertion p: that
is p∨¬p holds. Consuming a region assertion asserts that there is a corresponding
region with the specified type and state. Consuming a guard assertion makes use
of the judgement takeGuard(∆, t,H,G, Γ,P , F ), which expresses that guard G
can be removed from guard H leaving the frame F , under conditions P , given
the region type t. Frame inference is used to discharge takeGuard obligations.



Caper 21

Ξ(r) = (T(x̄), s, G)
ΨI(T) = {(Pi, ei, Ai)}i∈I ∀i ∈ I. freshSub(∆,Γi, vars(Pi, ei, Ai), γi)

∀i ∈ I. produce(Ai, γi) : (∆;Γi, Π; JΨP(T)Kγi = x̄; s = JeiKγi ; JPiKγi , Σ,Ξ) Si

open(r) : (∆,Π,Σ,Ξ) 
⋃
{Si}i∈I

Ξ(r) = (T(x̄), s, G) s′ /∈ ∆ Γ = (s′ : Val) P = ((s, s′) ∈ GuarΨ (T(x̄), G))

update(r,∆,Ξ, Γ,P , Ξ[r 7→ (T(x̄), s′, G)])

Ξ(r) = (T(x̄), s, G)
(P0, e0, A0) ∈ ΨI(T) freshSub(∆;Γ, Γ0, vars(P0, e0, A0), γ)

consume(A0, γ) : (∆,Π, Γ ;Γ0,P ; JΨP(T)Kγ = x̄; s = Je0Kγ ; JP0Kγ , Σ,Ξ) S
close(r) : (∆,Π, Γ,P , Σ,Ξ) S

openRegions : (∆,Π,Σ,Ξ, ε) S
∀(∆1, Π1, Σ1, Ξ1, r̄) ∈ S. ∃S1. atomic(α) : (∆1, Π1, Σ1, Υ ) S1

∀(∆2, Π2, Σ2, Υ2) ∈ S1. ∃Γ2,P2, Ξ2. updateRegions(r̄, ∆2, Ξ1, Γ2,P2, Ξ2)
∃s̄, Γ ′2,P ′2, Ξ ′2. createRegions(s̄, ∆2;Γ2, Ξ2, Γ

′
2,P

′
2, Ξ

′
2)

∃S2. closeRegions(s̄, r̄) : (∆2, Π2, Γ2;Γ ′2,P2;P ′2, Σ2, Ξ
′
2) S2

∀(∆3, Π3, Γ3,P3, Σ3, Ξ3) ∈ S3. (∆3, Π3 ` Γ3,P3) ∧ (∆3;Γ3, Π3;P3, Σ3, Ξ3, Υ2) ∈ S3

` 〈α〉 : (∆,Π,Σ,Ξ, Υ ) S3

Fig. 9. Symbolic execution rule for atomic statements.

The symbolic execution judgement. The symbolic execution judgement expresses
how executing a program statement affects the symbolic state. Most of the sym-
bolic execution rules are standard, except that when statements are sequenced
together, the intermediate symbolic state is stabilised (using the stabilise judge-
ment). The other novelty is the symbolic execution of atomic statements (read,
write and CAS operations), which require access to the shared regions. The
symbolic execution rule is given in Fig. 9. It consists of six steps:

1. Regions are opened with the openRegions judgement. This is based on the
open judgement, which opens a single region by producing its interpretation
(by case analysis on the possible interpretations).

2. The atomic statement is symbolically executed with the atomic judgement.
This cannot affect the shared regions.

3. The regions are updated with the updateRegions judgement. This applies the
update judgement to each of the regions, updating the state arbitrarily in a
manner that is consistent with the guarantee for the available guard.

4. New regions may be created with the createRegions judgement. These regions
must be distinct from the existing ones, and will be created along with the
full guard for the region type. At this point, these new regions are open.

5. All of the open regions are closed with the closeRegions judgement. This
applies close for each region, which consumes the interpretation.

6. The generated assertions are checked to follow from the assumptions, and
the assertions are treated as assumptions in the new symbolic state.
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4 Proof Search

The success of separation logic as a basis for symbolic execution is in part due to
its determinacy: given a precondition and a program statement, it is feasible to
compute the strongest postcondition or determine that the program might fault.
Concurrent separation logics, however, depend on auxiliary state, such as Caper’s
regions and guards, which can introduce non-determinism since the program
itself does not specify how the auxiliary state should be updated. For instance,
when closing a region, Caper may have more than one valid choice for the region
state. Consequently, non-determinism is fundamental to Caper’s design and
backtracking is used to resolve the non-deterministic choices in the proof search.
This non-determinism is used in: consuming conditional or disjunctive assertions;
determining which heap cell, region or predicate to consume; choosing which
regions to open; determining which state interpretation to close a region with;
and determining how to rewrite guards.

Since non-determinism introduces branching, which can be detrimental to
performance, Caper uses some heuristics in an effort to prune or avoid bad
branches. For instance, when consuming a heap cell, if there is a cell whose
address matches syntactically (e.g. consuming x 7→ z in a symbolic state with
x 7→ 2) Caper will not consider other cases, which would be eliminated by a later
SMT call. Another example is that Caper prioritises opening different regions
over opening more regions. Opening a region typically involves case analysis, and
so opening multiple regions can lead to bad performance when it is not required.

It is important to note that choices by the user can significantly affect
Caper’s level of non-determinism. For instance, if the abstract state of a region
is determined exactly by the concrete state, Caper will consider fewer possibilities
than if a region can be in multiple states for the same concrete state.

There are a some non-deterministic choices that should not generally be
considered as options everywhere they could be allowed. One of these is region
creation: at any point it is legal to create a new region, provided the appropriate
resources are available. It would quickly make proof search intractable if Caper
considered all possible ways of creating regions at all times. On the other hand,
there is a good indicator for when creating a region will be helpful: when Caper
fails to consume a region assertion. Caper’s backtracking mechanism includes
handlers that introduce additional non-determinism in response to specific failures.
In particular, a failure to consume a region assertion will be handled by attempting
to create an appropriate region.

This behaviour is a form of abductive reasoning: the general reasoning principle
of inferring explanatory hypotheses from a goal. Abduction has previously been
applied to automatically derive separation logic specifications [4]. Our approach
differs in that we infer missing updates to auxiliary state rather than missing
resources in the precondition.

A further application of abduction in Caper is in handling existential logical
variables. Consuming an assertion may introduce a new (existential) logical
variable with some constraints. Caper calls the prover to check that these
constraints are satisfiable; thereafter, Caper only knows that the variable satisfies
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Name Code (lines) Annotations (lines) Time (s)
SpinLock 17 / 17 17 / 18 0.21 / 0.35
TicketLock(Client) 33 (41) / 24 (32) 19 (29) / 17 (27) 0.77 (0.82) / 2.22 (2.23)
ReadWriteLock 36 / 37 25 / 28 3.32 / 15.98
BoundedReadWriteLock 55 / 57 36 / 41 31.01 / 127.34
CASCounter 20 / 20 15 / 16 0.08 / 0.14
BoundedCounter 25 / 25 20 / 21 4.01 / 20.14
IncDec 29 / 29 19 / 21 0.10 / 0.36
ReferenceCount 31 / 30 22 / 24 0.22 / 0.73
ForkJoin(Client) 17 (32) / 17 (32) 16 (30) / 17 (31) 0.05 (0.07) / 0.07 (0.09)
Barrier(Client∗) 71 (127) / 77 (130) 31 (60) / 35 (67) 28.22 (30.50) / 26.96 (31.44)
BagStack† 35 / 30 26 / 26 3.22 / 11.98
Queue‡ 60 / 58 37 / 38 177.33 / 179.82

∗ flags: -c 0 † flags: -c 1 -o 3 ‡ flags: -c 2 -o 3

Table 1. Examples (recursive/iterative).

these constraints. If, later in the symbolic execution, Caper requires the variable
to satisfy additional constraints, then the proof may fail even if there was a
witness satisfying these constraints. The constraints are therefore abductively
propagated back to where the variable was introduced, and the proof is retried.
Since Caper then knows that the additional constraints are satisfied, it can
successfully discharge them when they arise.

5 Evaluation

We have successfully applied Caper to verify a number of concurrent algorithms.
In §2, we discussed the spin lock and ticket lock, whose specifications guarantee
mutual exclusion. We have verified a reader-writer lock, whose specification per-
mits multiple readers or a single writer to enter their critical sections concurrently.
This example uses counting permissions, but we have also verified a bounded
version that does not. We have also verified a number of counter implementations
with specifications that enforce monotonicity (CASCounter, BoundedCounter
and IncDec), and an atomic reference counter (ReferenceCount). We have verified
a library for joining on forked threads and a client that waits for the child thread
to terminate before presenting the work done by the child. We have also verified a
synchronisation barrier and a client that uses it to synchronise threads increment-
ing and decrementing a counter. Finally, we have verified two implementations of
a bag: the stack of §2.3, and a concurrent queue. We summarise these examples in
Table 1, which shows the number of lines of code and annotation and verification
times for recursive and iterative versions of each example. By default, Caper
can create up to two regions at a time (-c 2) and open up to two regions (-o
2). The BagStack and Queue examples require opening up to three regions. The
BarrierClient requires creating no regions, because of an issue with Caper’s
failure handling implementation.

From the verification times, we can observe that the versions that use loops
tend to take longer than the recursive versions. This is due to case analysis which
propagates through loops, but is abstracted in function calls. The high verification
times for the bounded examples are largely due to Caper computing transitive
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closures for finite-state regions. The barrier example also takes significant time
to compute the transitive closure of an infinite-state region. The BagStack and
Queue use nested regions, and Queue has a complicated transition system, which
combine to give a long verification time.

There are three key areas where Caper could use significant improvement.
Firstly, proof search could be improved, for instance by directing the choice of
regions to open and abstracting multiple branches into one. Currently, successful
proofs may take some time and failing proofs take even longer. Secondly, Caper
heuristics used in abduction require improvement, including loop invariants, this
should allow more algorithms to be proved. Thirdly, Caper’s annotations limit
the expressivity of specifications to some extent. For instance, there is no support
for regions with abstract states other than integers. Despite these limitations, we
believe that Caper demonstrates the viability of our approach, and provides a
good basis for further investigation.

6 Related Work

Caper is a tool for automating proofs in a concurrent separation logic with
shared regions, aimed at proving functional correctness for fine-grained concurrent
algorithms. The logic is in the spirit of concurrent abstract predicates (CAP) [10]
taking inspiration from recent developments in concurrent separation logic such
as iCAP [29], TaDA [7], Views [9], CaReSL [32], FCSL [22] and Iris [19].

Smallfoot [1] pioneered symbolic execution for separation logic. While it can
prove functional correctness, it has limited support for concurrency and so cannot
prove fine-grained concurrent algorithms.

SmallfootRG [5] extended Smallfoot to the more expressive logic RGSep [33].
The tool uses shared resources that are annotated with invariants and actions
that can be performed over these resources. The actions that can be performed
are not guarded, which leads to very weak specifications: it can prove memory
safety, but not functional correctness. The abstraction of stabilisation employed
by SmallfootRG is different than the transitivity-based technique of Caper.
SmallfootRG uses abstract interpretation to weaken assertions such that they are
stable, where the abstract domain is based on symbolic assertions. Requiring (or
ensuring) that a set of actions is transitively closed can be seen as an abstraction
that terminates in a single step.

CAVE [34] built on SmallfootRG’s action inference to prove linearisability [17]
of concurrent data structures. That is, CAVE can prove that the operations of a
concurrent data structure are atomic with respect to each other, and satisfy an
abstract functional specification. Caper cannot yet prove linearisability, although
it could in future support abstract atomicity in the style of TaDA [7]. On the other
hand, CAVE cannot prove functional correctness of non-linearisable examples
such as a spin lock.

Other mechanised — but not automatic — approaches based on separation
logic include Verifast [18] and the Coq mechanisation of fine-grained concurrent
separation logic [22,28]. Both approaches support an expressive assertion language,
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including higher-order predicates. They are able to prove functional correctness
properties for fine-grained concurrent programs. Direct comparisons are, however,
difficult. Programs and specifications need adaptation, often more than simple
translation, resulting in different and sometimes weaker specifications. This is due
in part to a smaller core set of operations and in part to a lack of features and
expressivity of logic. However, when examples are comparable, the annotation
overhead of the Caper examples is lower, often significantly. For example, the
spin lock requires 87 lines of annotation in Verifast, compared to 18 in Caper,
while the ticket lock requires 123 lines compared to 17. Verifast takes 0.11s to
check each of these examples.

Viper [21] is a verification infrastructure for program verification based on
permissions. It supports an expressive permission model that includes fractional
permissions and symbolic permissions. It would be interesting to develop a front
end for Viper that implements Caper’s verification approach. A challenging
issue is whether (and how) the non-deterministic proof search can be encoded in
Viper’s intermediate language.

7 Conclusions

We have presented Caper, the first automatic proof tool for a separation logic
with CAP-style shared regions, and discussed the significant innovations that
it involves. As a prototype, Caper provides a foundation for exploring the
possibilities for automation with such a logic. Support for a number of different
features will significantly increase the scope of examples that Caper can han-
dle. We anticipate adding support for the following: additional guard algebra
constructions; richer logical data types, such as sets and inductive data types;
support for abstract and inductive predicates; and support for separation at the
level of abstract states in the spirit of FCSL [22] and CoLoSL [25]. We would
like to investigate inferring loop invariants and other annotations. We would like
to make Caper more usable by providing proofs and failed proofs in a format
that can easily be navigated and interpreted by a user. To this end, Caper
already provides an interactive proof mode that allows a user to drive the proof
search. This enables exploration of, in particular, failing proofs, which has proven
valuable in development of the tool and the accompanying examples. A further
goal is to put Caper on a rigorous footing by formalising its logic in a proof
assistant (such as Coq) and using Caper to generate program proofs that can
be checked in the proof assistant or by a verified checker.
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