
Representing Logics in Type Theory

Philippa Gardner

Doctor of Philosophy

University of Edinburgh

January 1992

To my father

Abstract

Computer Science today has many examples of logics given by proof systems.

Although one intuitively knows how to use these systems and recognise correct

derivations, there is no definitive account which captures this intuition. It is

therefore natural to seek a framework for representing logics, which unifies the

structure common to all logical systems. We introduce such a framework, called

ELF and based on the Edinburgh Logical Framework (ELF). The major advan-

tage of ELF is that it allows us to give precise definitions of representation. Such

definitions are not possible with ELF since information is lost during encoding;

the adequacy theorems of ELF representations are only applicable to particular

encodings and cannot be generalised. We rectify this deficiency using the extra

distinctions between terms provided by the universes of a pure type system which

yields a simple presentation of the type theory of ELF. To do this, we extend

these type systems to include signatures and /3ij-equivalence.

Using the ideas underlying representation in ELF+, we give a standard presen-

tation of the logics under consideration, based on Martin-Löf's notion of judge-

ments and Aczel's work on Frege structures. This presentation forms a reference

point from which to investigate representations in ELF; it is not itself a frame-

work since we do not specify a logic using a finite amount of information. Logics

which do not fit this pattern are particularly interesting as they are more difficult,

if not impossible, to encode.

The syntactic definitions of representations have an elegant algebraic formu-

lation which utilises the abstract view of logics as consequence relations. The

properties of the ELF entailment relation determine the behaviour of the van-

ables and consequence relations of the logics under consideration. Encodings must

preserve this common structure. This motivates the presentation of the logics and

their corresponding type theories as strict indexed categories (or split fibrations)

so that encodings give rise to indexed functors. The syntactic notions of represen-

tation now have a simple formulation as indexed isomorphisms.

Acknowledgements

I would like to thank my supervisor, Gordon Plotkin, for many ideas and inspi-

rational discussions, and for his help when it was needed. I am also indebted to

John Power for his guidance and moral support, and to Eugenio Moggi and Anne

Salvesen for their help in the early stages of this thesis.

My thanks also go to many friends and colleagues, associated with the Labo-

ratory for the Foundations of Computer Science, for their advice, suggestions and

friendship: in particular, to Stuart Anderson, Julian Bradfield, George Cleland,

Zhaohui Luo, James McKinna, Randy Pollack and Alistair Sinclair, and to Claire

Jones for her advice about]I4TEX.

This work was supported by a SERC Research Studentship and, in the finishing

stages, by the Laboratory for the Foundations of Computer Science.

Finally, I cannot thank my family enough for their support and encouragement

throughout.

11

Declaration

I declare that this thesis was composed by myself, and the work contained in it is

my own except where otherwise stated.

Philippa Gardner

111

Table of Contents

Abstractj

Acknowledgementsii

Declaration

Contents . 	iv

Introduction 	 1

Pure Type Systems 	 11

2.1 Introduction to pure type systems11

2.2 Pure type systems with signatures23

2.3 Pure type systems with 077-equivalence34

Logical Systems 	 45

3.1 	Syntax and judgements46

3.2 Proof systems and consequence relations55

The Framework ELF 	 64

4.1 	Representation in ELF65

4.1.1 Representation of first-order logic in ELF 	66

4.1.2 	Adequacy theorem70

4.1.3 	Problems with ELF72

4.2 	The type theory ELF 73

4.2.1 	Definition of the type theory74

4.2.2 	Representation in ELF 76

iv

Table of Contents

	

4.2.3 	Results 79

	

4.2.4 	/3i-long normal forms84

Adequate and Natural Encodings 	 91

5.1 Representation of consequence relations92

	

5.1.1 	Encodings92

	

5.1.2 	Adequate encodings97

	

5.1.3 	More examples100

5.2 Representation of proofs109

	

5.2.1 	Proof expressions110

	

5.2.2 	Natural encodings113

Encodings Expressed as Indexed Functors 	 119

6.1 Indexing of categories120

6.2 Logics as indexed categories121

6.3 ELF as an indexed category124

6.4 Adequate encodings give indexed isomorphisms127

6.5 Natural encodings give indexed isomorphisms131

Conclusions and Future Work
	

135

A. The Type Theory ELF
	

139

v

Chapter 1

Introduction

A wide variety of logical systems are used in Computer Science today. Although

one intuitively knows how to use these systems and recognise correct derivations,

there is no definitive account which captures this intuition. It is therefore natural

to seek a framework for representing logics which unifies the structure common to

all logical systems. The framework must explain the notions central to these logics

such as binding, discharge of assumptions and context sensitive side-conditions.

Moreover, it should be easy to translate a logic to this unified setting and to

recognise when this translation results in a representation of the logic. As well as

providing insights into the important theoretical question of what a logic is, these

goals have an immediate application in the provision of computer-assisted tools

for reasoning with various logics.

Type theories have emerged as leading candidates for frameworks. In this

thesis we introduce such a type theory for representing logics, called ELF+ and

based on the Edinburgh Logical Framework (ELF). The major advantage of ELF

is that it allows us to give precise definitions of representation. Such definitions

are not possible with ELF since information is lost during encoding; the adequacy

theorems of ELF representations are only applicable to particular encodings and

cannot be generalised.

1

Introduction

Type theories and logics

Type theories and minimal intuitionistic logics are connected by the well-known

propositions- as- types principle, sometimes called the Curry—Howard correspon-

dence [CF58] [How80]. With this interpretation a proposition is viewed as a type

whose inhabitants correspond to proofs of this proposition. The idea was devel-

oped further by de Bruijn [dB70] and Martin-Löf [Mar80], who associated the

H-abstraction of dependent type theories with universal quantification. A corn-

prehensive account of these ideas can be found in [Bar90], which presents various

intuitionistic minimal logics as pure type systems [Ber90] [Ter89].

A different interpretation of logics in type theory involves the judgements-

as-types principle, advocated in the work on the Edinburgh Logical framework

(ELF) [HHP89]. It is inspired by Martin-Löf's emphasis of formal systems as cal-

culi for constructing derivations of basic judgements [Mar85]. These judgements

are the formulae in first-order logic and the terms A set, A = B, a E A and

a E A = B in Martin-Löf's type theory. Rules are expressed using two higher-

order forms. If J and K are basic judgements, then the hypothetical judgement

J -* K expresses a form of consequence, that K is provable under the assumption

J, and the general judgement -* J expresses the fact that J is provable uni-

formly in variable x. The judgements-as-types principle asserts that judgements

are identified with types whose objects correspond to derivations in the logic, with

the H-abstraction being used to represent the higher-order forms. Certain type

theories are, thus, candidates for providing a general metatheory for various logics

defined using proof systems.

The Edinburgh Logical Framework

We give a brief outline of representation in the Edinburgh Logical Framework to

illustrate the problems which arise when using this framework. The Edinburgh

Logical Framework (ELF) of Harper, Honsell and Plotkin [HHP89] is a type theory,

closely related to several of the AUTOMATH languages [dB80]. It is based on a

2

Introduction

A-calculus with first-order dependent types with three levels of terms: objects,

types (which classify the objects) and kinds (which classify families of types).

Terms are identified up to 377-equivalence; all matters relating to representations

of logics are treated up to this equality. The specification of a logic is given by a

signature, declaring a finite list of constants; ELF together with this signature

forms the representing type theory of the logic. The method of finding such

representations is informal and so each signature is accompanied by an adequacy

theorem to show that we do indeed have a representation.

The treatment of the syntax in ELF is inspired by Church [Chu40] and Martin-

Löf's theory of arities [NPS90]; binding operators are represented using the

A-abstraction of ELF and higher-order operators. For example, the signature of

first-order logic with arithmetic, denoted by EF0I, consists of two constant types

t and o whose inhabitants correspond to the arithmetic expressions and formulae

respectively. We have constants + : t -* (t -+ t) and V: (t -* o) -* o for addition

and universal quantification respectively. For ELF terms t and u corresponding

to arithmetic expressions, the term +(t)(u) represents their sum, and, for an ELF

term 0 corresponding to a formula, the term V(Ax:t.qS) represents the universal

quantification.

As has already been mentioned, our representation of the rules of inference

focuses on the notion of judgement stressed by Martin-Löf [Mar85]. Logics are

represented in ELF by introducing the judgements-as-types principle mentioned

earlier. The basic judgements of first-order logic are that propositions (expressed

by formulae) are true, sometimes written as 0 true to distinguish the concept of

a formula being well-formed from that of it being true. These are represented by

types of the form true('), where the constant true inhabits the appropriate kind

and the object q5' is in o. The inhabitants of true(q5') are identified with the proofs

of the formula denoted by The structure of the ELF type system allows for the

uniform treatment of higher-order judgements as H-abstractions so that rules can

be represented by constants of the appropriate type. For example, the implication

introduction rule of first-order logic is given by

DI: 110,0 : o.(true(cb) -* true('')) - true(çb j

Accompanying each ELF signature specifying a logic is an adequacy theorem

3

Introduction

to provide some confirmation that the resulting type theory is a representation of

the logic. It gives a correspondence, called an encoding, between the syntax and

basic judgements (and, for a stronger result, the proofs) of the logic and certain

ELF terms such that the consequence relation of the logic and the corresponding

part of the ELF entailment relation coincide. For example, the adequacy theo-

rem accompanying the representation of first-order logic with arithmetic provides

bijections EX and Sx between the arithmetic expressions and formulae with free

variables in X and the 07-equivalence classes of objects in t and o respectively

such that, for formulae 01,
. . , m, and a set of variables X = 1x 1 ,. . . , x,}, we

have

01, • , m H x 0 if and only if

x 1 t,. . . ,x, : t,Pi : tr'ue(6x(1)),... ,Pm : true(Sx(cbm)) iELF
EFOI

p: true(6x(q))

where Pi, . . ,Pm are distinct ELF variables corresponding to proofs of assumptions

çb, and the ELF term p in true(6x(cb)) denotes some proof of q'.

Limitations with ELF

ELF represents an important advance in the study of formal systems. However,

there are problems with using this type theory as a framework, as is illustrated

by the simple encoding of first-order logic outlined above. The adequacy theorem

for first-order logic only applies to this particular representation, since it refers to

specific constants t, o and true declared in EFOE. It cannot be stated generally as

information is lost in the encoding owing to the types being used for many pur-

poses. The terms t, o and true(çb) for : o are all types, so we cannot distinguish

which objects correspond to arithmetic expressions, formulae and proofs without

appealing to the particular types they inhabit. The machinery of ELF also gives

rise to types which are meaningless from a first-order logic perspective: for ex-

ample, the type llx:o.t. Extra types, having no general correspondence with the

underlying logic, also arise from less direct encodings; in some cases, this results in

logics with different consequence relations being specified by the same signature,

which is clearly undesirable. In this thesis we introduce a new framework, which

allows us to make such distinctions without reference to specific types and to give

a precise definition of representations in the type theory.

4

Introduction

The new framework ELF+

We define a new framework, called ELF+ and based on ELF, which retains the

information lost in the ELF encodings, and so allows for a generalisation of the

adequacy theorems of ELF to apply to all signatures specifying logics. This gener-

alisation yields equivalences between logics and their representing type theories. A

problem with ELF is that there is not enough distinction between the ELF types

to determine, in advance, the part of the entailment relation which corresponds to

the consequence relation of the logic, without appealing to the particular encod-

ing under consideration. This distinction is achieved in the new framework ELF+

by splitting the ELF types into three: sorts, types and judgements. The method

of representation in the new framework does not differ greatly from that of ELF.

The difference becomes apparent in the analysis of the resulting type theories. The

interpretation of the consequence relation of the logic in the entailment relation

of the representing type theory is defined as a correspondence between the basic

judgements and the ELF+ judgements, and between the terms of the logic and

the inhabitants of ELF sorts, such that the entailment relation gives a sOund

representation of the consequence relation; such a correspondence is called an en-

coding. An encoding is adequate when the correspondence provides an equivalence

between the logic and the part of the entailment relation determined by the sorts

and judgements. A natural encoding requires a stronger link between proofs and

inhabitants of judgements.

The syntactic definitions of representations have an elegant algebraic formu-

lation which utilises the abstract view of logics as consequence relations. The

properties of the ELF entailment relation determine the behaviour of the van-

ables and consequence relations of the logics under consideration. Encodings must

preserve this common structure. This motivates the presentation of the logics and

their corresponding type theories as strict indexed categories (or split fibrations)

so that encodings give rise to indexed functors. More specifically, a logic, with

a consequence relation satisfying certain properties, provides an indexed category

whose base presents the terms and whose fibres are defined by the consequence

relation. This approach uses ideas from the area of categorical logic (initiated

5

Introduction

by Lawvere [Law70]) applied in general to a wide class of logics, rather than to

particular logics. Using ELF+, we are also able to present the representing type

theory as an indexed category with the sorts providing the base category and the

judgements the fibres. Adequate encoding corresponds to indexed isomorphisms.

By adapting both indexed categories to incorporate the extra information regard-

ing the proofs and the inhabitants of judgements, natural encodings also yield

isomorphisms between indexed categories. As well as giving a simple algebraic

formulation of encodings, this approach provides us with the beginnings of an

algebraic framework for logics.

Not all logics can be represented in ELF+ (or in ELF). There are various reasons

for this: different behaviours of the logic variables, the consequence relation having

properties incompatible with those of the entailment relation, rules with 'awkward'

side-conditions. Using the ideas underlying representations in ELF, we give a

standard presentation of logics defined using formal systems, based on Martin-

Löf's notion of judgements [Mar85] and Aczel's work on Frege structures [Acz80].

This presentation forms a reference point from which to investigate representations

in ELF+; it is not itself a framework since we do not specify a logic using a

finite amount of information. Logics which do not fit this pattern are particularly

interesting as they are more difficult, if not impossible, to encode.

The distinction between terms required by the new framework exploits, and

was partially inspired by, the techniques of Beradi and Terlouw in extending

Barendregi's)¼-cube [Bar90] to pure type systems (PTSs) [Ber90] [Ter89]. Both

ELF and ELF+ are presented as PTSs, adapted to allow for signatures and

/37-equality, to emphasise the link between the two type theories and provide

results for ELF via those for ELF. We use Salvesen's method [Sa189] of incorpo-

rating ij in ELF to extend the @-equivalence of PTSs. To prove the decidability of

ELF, which is essential for the reduction of proof-checking to type-checking, the

Church—Rosser property (CR) for 37-equiva1ence is required. This is not known

for general PTSs and involves a lengthy and subtle proof for ELF [Sa189]. We

prove CR for ELF from the corresponding results for ELF and the untyped

A-calculus, thus avoiding the technical details required in Salvesen's proof [Sa189].

In recent unpublished work [Sa191], Salvesen extends her ideas to include a wide

6

Introduction

class of PTSs'. Her results include the Church—Rosser property, subject reduction

and imply the decidabiity of ELF.

This thesis introduces and develops the new framework ELF+ in chapters 4, 5

and 6, which form the main part of the thesis. An introduction to PTSs is found

in chapter 2. There) the definition of a PTS is adapted to account for signatures

and /3-equality on well-typed terms. The standard presentation of logics is given

in chapter 3, with substitution results handled in this general setting to make the

transfer to the algebraic presentation straightforward. In chapter 4, the new frame-

work is defined and motivated and the method of representation illustrated. An

informal account of the encoding definitions is given, with the formal justification

presented in chapter 5. Examples and counter-examples illustrate the definitions.

The behaviour of the variables and the properties of the consequence relation of

encoded logics, determined by the ELF entailment relation and emphasised in

the logic chapter, motivates the presentation of the logics and their corresponding

type theories as indexed categories (split fibrations), given in chapter 6. Adequate

and natural encodings correspond to isomorphisms between the appropriate in-

dexed categories. We conclude by summarising our achievements and describing

some possible future research resulting from our work.

Related research

The new framework is based on the Edinburgh Logical Framework (ELF) [HHP89],

adapted using techniques from pure type systems (PTSs) [Bar9O]. The design of

ELF was influenced by AUTOMATH [dB80] and by Martin-Löf's work on the

foundations of intuitionistic logic [Mar80]. The seminal work on machine-assisted

proof was initiated in the late 1960s by de Bruijn, whose goal was to develop a

framework for expressing arbitrary mathematical arguments in a notation suitable

for checking by a machine. His approach was based on representing mathematical

texts as terms in a typed A-calculus, reducing proof checking to type checking. A

variety of mathematical theories have been developed and checked, most notably

1 Geuvers has recently proved CR for functional normaiising PTSs.

7

Introduction

the formalisation of Landau's textbook on Mathematical Analysis [Jut 77]. This

work has been important in the development of machine-assisted proof, especially

the NuPRL system of Constable et al. [Con86} and the Calculus of Constructions

of Coquand and Huet [Coq85]. However, this subsequent research differs in spirit

from AUTO MATH in that the latter two are concerned only with the formalisation

of constructive mathematics, whereas AUTOMATH sought to encompass classical

mathematics as well. The ELF project can be viewed as a development of the

AUTOMATH ideas that seeks to keep a clear distinction between the object- and

meta-level. The ELF approach differs in that it aims to develop a general theory

of representations of formal systems.

The work of Martin-Löf [NPS90] influenced the design of ELF and hence ELF.

In particular, his emphasis on the notion ofjudgement and on its uniform extension

to higher-order forms was very important [Mar85]. The system of 'logical types' (as

yet unpublished, but see [NPS90]), providing a basis for his intuitionistic set theory,

is formally similar to the LF type theory, but the applications are substantially

different. In particular, work on ELF is concerned with encoding formal proofs

in arbitrary logical systems and is not concerned with specifically intuitionistic

problems such as proof normalisation. In contrast, Martin-Löf uses the system

of logical types as the foundation for his set theory and does not consider its

application to general formal systems. Martin-Löf also separates expressions, by

using judgements A set, A prop, A true for expressions A, in a similar fashion to

the distinctions of ELFtterms with comparable, although not identical, uses. The

framework All [ACN90] is based on Martin-Löf's ideas.

The extension of Barendregt's A-cube [Bar90] to PTSs [Ber90] [Ter89] provides

a greater range of type theories, one of which forms the basis of ELF+. Baren-

dregt [Bar90] has popularised the notion of PTS and presents various intuitionistic

minimal logics as type theories using the prop ositions- as-typ es paradigm [CF58]

[How80]. This use of type systems to present logics contrasts with the ELF ap-

proach where the type system is used as a metatheory, rather than to present

particular formal systems which happen to fit. The idea of adding signatures to

PTSs appears in Beradi's thesis [Ber90]. Pollack [Po19-] is currently working on an

implementation of PTSs which, therefore, provides an implementation of ELF,

albeit without signatures and i.

Introduction

There has been much work associated with the ELF project. Our empha-

sis on consequence relations is motivated by Avron's research [Avr9l]. Salvesen

[Sa189] proves the Church—Rosser property for the i-equivalence of ELF which

is used in the corresponding result for ELF+. In recent unpublished work, she

extends her ideas to functional PTSs with 77 satisfying strong normalisation. Her

work implies the decidability of ELF. Geuvers has very recently proved the

Church—Rosser property for functional normalising PTSs [Geu91]; throughout

this thesis we just refer to Salvesen's result as this was the one known to us

when writing. Various examples of formal systems have been encoded in ELF.

These include two different variations on Hoare logic [AHMP87] [kHM89], modal

logics from K to S4 [AHMP87], various A-calculi, including A,, A t,, and linear

A-calculus [AHMP87] [AHM89], various type theories, including the LF type sys-

tem itself, Martin-Löf's type theory, and the Damas-Milner type assignment sys-

tem [Har90]. Other results, which have not been used directly in this thesis but

which are still significant to ELF, can be found in [Pym90], [E1190], [PW91]

and [Pfe9l]. Work is currently under way to produce a 'linear' ELF [MPP92] 1

incorporating ideas from Girard's linear logic [Gir87].

Paulson's Isabelle system uses ideas similar to ELF in the context of higher-

order logic [Pau87]. Nipkow has adapted the Isabelle system to allow for order-

sorted polymorphism [Nip9l]. Constable and Howe [CH90] demonstrated the use

of NuPRL as a logical framework, emphasising the use of the richer type structure

of the NuPRL type theory in an encoding. Felty has studied the representation

of logics in A-Prolog, in particular the LF type theory itself [Fel89]. Mendler and

Aczel [MA88] are developing the theory of MaThImP, as a system for doing inter-

active mathematics on a machine that is also based on a general theory of logical

systems, albeit of a rather different flavour than that considered here. Feferman

has proposed a theory of formal systems based on a general system of finitary

inductive definitions [Fef89].

Our algebraic account of representations in ELF+ uses ideas from the area

of categorical logic initiated by Lawvere [Law70], but applied to logics in general

rather than to particular logics. There are various case studies of logics modelled as

categories (see Seely's work on hyperdoctrines [See83] and the references therein,

and also [Amb9l] for an example of a categorical presentation of a first-order

9

Introduction

linear logic). There has been much work on presenting dependent type theories

categorically: for example, contextual categories [Car78] [Str89], categories with

fibrations [Pit89], comprehension categories [Jac9l]; see Jacobs [Jac9l] for a more

complete list. General approaches to modelling logics include the work on institu-

tions [BG90] and model-theoretic logics [BF85]. Algebraic accounts of logics are

investigated by Meseguer [Mes89], Aczel [Acz9lJ and Pym [Pym9l], and Mendler

and Aczel [MA88] provide an algebraic notion of framework for, in particular, the

Logical Theory of Constructions [ACM90].

10

Chapter 2

Pure Type Systems

Pure type systems (PTSs) [Bar90], sometimes called generalised type systems,

provide a concise notation for presenting many type systems in a unified way;

they originate from the work of Beradi [Ber90] and Terlouw [Ter89] who gener-

alise Barendregt's 'cube of typed A-calculi' [Bar90]. We define ELF and the new

framework, ELF+, using this notation to provide simple presentations which em-

phasise the link between the two frameworks and provide results for ELF+ via

those for ELF. In order to give a precise account of these frameworks, however,

we must extend the PTS structure to include 37-equiva1ence and signatures.

2.1 Introduction to pure type systems

A PTS is specified by sets of universes, axioms and rules which determine the

syntax and proof system of the type theory. The universes provide the starting

point on which the type theory is based, with some universes inhabiting others as

indicated by the axioms. For example, ELF has two universes Type and Kind,

with the universe Type inhabiting Kind. The rules determine which families of

terms are allowed; that is, they control the formation of terms of shape llx:A.B.

11

Pure Type Systems

2.1.1 DEFINITIoN A specification of a pure type system is a triple (U, A, R) where

. U is a set, called the set of universes;

• A C U x U is the set of axioms;

. R. C U x U x U is the set of rules.

Remark

This definition is a very minor restriction of Barendregt's definition where U

(called the set of sorts in [Bar90]) is a subset of a set of constants C and the

axioms are elements of C x U. Barendregt only gives one example which uses

this extra expressivity for the axioms and, in example 2.2.2, we argue that

this example is misleading and propose an alternative presentation using

signatures.

A full understanding of the role of the rules is only achieved by studying

the proof system derived from the specification (U, A, 7.) (definition 2.2.5).

The intuition is that, for rule (u, v, w) E 7?, we can form the term llx:A.B

inhabiting w if A inhabits u and if B inhabits v assuming x inhabits A.

Notation The axiom (u, v) is written as u v and the rule (u, v, v) is usually

abbreviated to (u, v).

Let Var be a countably infinite set of variables. It is useful to divide Var into

disjoint finite subsets Var'1 for each u E U; that is, Var = UUEU Var'1 . The

members of Var are usually denoted by x, y, z; when the universe is important we

write x'1 for u E U.

Let (U, A, 7Z) be a specification of a pure type system C . The set of preterms

T is defined by the abstract syntax

T ::= x I u I Hx:T.T I)x:T.T I TY,

where 'u E U and x E Var' for some v E U. We use the letters A, B, M, N to

denote preterms. We say that preterm A is a A-abstraction or 11-abstraction if A is

of the form Ax:A 1 .A 2 or llx:A 1 .A 2 respectively, and let A - B abbreviate Hx:A.B

12

Pure Type Systems

when x fv(B). The notions of free variables, substitution and a-conversion are

special cases of definitions 3.1.10, 3.1.15 and 3.1.13.

2.1.2 DEFINITIoN For preterms M and N, M is a subterm of N if M E Sub(N)

where Sub(N), the set of subterms of N, is defined by

Sub(N) = {N} if N is a variable or universe;

S'ab(N) = {N} U Su(P) U Sub(Q),

if N has one of the shapes llx:P.Q, Ax:P.Q or PQ.

The definitional equality on preterms is /3-equality, which is defined as one would

expect from the usual one-step 3-reduction, denoted by _* 3 [Bar84]. We denote

fl-reduction by , the reflexive and transitive closure of -, and let =,a denote

the corresponding congruence relation of /3-conversion. An important property

of 3-reduction is the Church—Rosser property [Bar84]; that is, if A 	B and

A 	C then B >p D and C >p D for some preterm D. For (-preterms A

and B, A : B is called a (-assertion; we refer to A as the first component of

the (-assertion and often denote (-assertions by a. A (-precontext is a finite

sequence, possibly empty, of (-assertions whose first components are all variables.

For a (-precontext F = (x 1 : A 1 ,. . . , x, : A n), n > 0, the domain of F, dom(F), is

{x1,... , x,}. A precontext F extends precontext A if F is L, Li' for some precontexi

Li'. A precontext F is contained in Li, denoted F ç Li, if every x : A in F is also

in A. A (-sequent is of the form F 1-C A: B, where F is a (-precontext and A

and B are (-preterms; the relation I- is the entailment relation of the type theory.

We sometimes write F FC A: B: C as a shorthand for F F-' A : B and F F-C B : C.

The superscript (is omitted when the PTS is apparent.

2.1.3 DEFINITION The type system for the PTS (with specification (U, A, R,) is

defined by the following formal system:

AXIOM 	QE- u:v 	 u:vEA

FHA:u
START

F, x : A F- x : A
	 u E U,x E Var',x Ødom(F)

13

Pure Type Systems

FI- A:u 	FI -B:C

F, x : A I- B : C
	 uEU,xEVar',x 0 dom(F)

H
FI -A:u 	F,x:AF-B:v

FI-llx:A.B:w
(u) v,w) ER.

A
	FI-Hx:A.B:u 	F,x:A1-M:B 	

uEU
F I- Ax:A.M : Hx:A.B

APP

CONy

FI-M:llx:A.B 	FI- N:A

F I- MN: B[N/x]

FI -A:B 	FI- B':u

F I- A: B'
B = 16 B',u EU

A C-precontext F is a C-context if F is empty or there exist (-preterms A and B
such that F F- A: B. A (-preterm A is a (-term if F A: B for precontext F

and preterm B.

Barendregt uses the abstract symbols *, o and L to denote universes. When

investigating a particular type theory, universes are often labelled more concretely

as, for example, prop, set, type and kind, to convey some meaning relative to the

type theory of interest. This becomes confusing when providing a unified theory

since, for example, the universe type has different meanings in the Calculus of

Constructions [Coq85] and ELF [HHP89]. We use Barendregt's notation in this

chapter and revert to names when describing the new framework.

2.1.4 EXAMPLE The Calculus of Constructions [Coq85] can be presented a4PTS

with specification AC given by

U= {*,D}

A= {*:D}

= {(*, *), (*, 0), (9, *), (0, D)}

14

Pure Type Systems

The * corresponds to Prop and 0 corresponds to Type in [Bar90]. The subsystem

with only the rule (*, *) isjsimpiy typed A-calculus with type variables giving the

basic types. The rules (0, *), (*, 0) and (0, 0) add polymorphic types, dependent

types and higher-order features respectively. The subsystem with the rules (*, *)

and (*, 0) is the All-calculus on which ELF is based (in this case * corresponds

to Type and 0 to Kind in [HHP89]). The system with the rules (*, *) and (0, *)

is essentially Girard's system F [Gir72], and adding the rule (0, 0) to system

F corresponds to Fw [Gir72]. In this way we obtain a collection of eight type

systems all containing simply typed A-calculus and all contained in the Calculus

of Constructions. This collection is known as the 'cube of A-calculi' [Bar90].

2.1.5 EXAMPLE PTSs are also used to present many-sorted minimal intuitionis-

tic logics. For example, Geuvers [Geu90] defines a higher-order logic based on

Church's presentation [Chu40} as the PTS with specification

AHo1 	U = {*, 0, }

A

7= {(*, *), (0, *), (0, D)}

With this definition, objects of 0 correspond to the domains of higher-order logic;

in particular, the domain *, which contains the formulae, is distinguished. The

universe L is a starting universe declared so that domains other than * can be

given. Functional and predicate domains and the objects therein are formed using

the rule (0, 0). Rule (*, *) provides the logical implication and (0, *) provides the

quantification, with the corresponding introduction and elimination rules given by

the A- and APP rules of the PTS.

2.1.6 EXAMPLE Not all PTSs are normalising; for example, the PTS specified by

U= {*}

4=

is an inconsistent system in the sense that every type is inhabited [Bar90].

The following results, taken from [GN91] unless otherwise stated, give the

elementary properties of the entailment relation of an arbitrary PTS specified by

15

Pure Type Systems

(U, A, R.). They have important repercussions when using a PTS to represent a

logic since the properties of the entailment relation and tU consequence relation

must be compatible (as discussed in section 3.2).

The first lemma, adapted from a result in [GN91], states that we can only use

variables that we declare.

2.1.7 LEMMA [Free variable lemma] Suppose F I- B: C for F = (x 1 :A 1 ,. . . ,
Then

the x 1 ,. . . , x are distinct;

fv(B),fv(C) C {x 1 ,. . ., x};

any derivation ofF F- B : C has as subderivation x 1 :A 1 ,. . . , ;_:A_ F- A : ui

for some u2 E U and any i E {1,.. . , n}.

Proof By induction on the derivation of F I- B: C. 	 0

2.1.8 COROLLARY A precontext F = (x 1 :A 1 , . .. , x:A,) is a context if and only

if x 1 :A 1 ,. . . , x_ 1 :A 1 I- A : u i for some ui E U and for each i E {1,. . . , n}, and

the x 1 ,. . . , x are distinct.

The next few lemmas show that contexts behave as expected.

2.1.9 LEMMA Let F be a (-context. Then

FF-u:vforallu:VEA;

FF-x:Awheneverx:AisinF.

Proof By assumption F F- B: C for preterms B and C. The result follows by

induction on the derivation of F F- B : C. 	 0

2.1.10 LEMMA [Substitution] If F,x : A,F' F- B: C and F F- M: A then

F, F'[M/x] F- B[M/x] : C[M/x].

Proof By induction on the derivation of F, x : A, F' F- B: C. We consider two

cases; the others are trivial or similar.

IR

Pure Type Systems

Case 1. The last line is obtained from the START rule and the proof is split into

two subcases.

Subcase 1. If F' is F", y: C and B is y, and the last line in the derivation

is

F, x: A, F" I- C : u

F,x: A,F",y: C F- y: C

for u E U, y E Varu and y dom(F, x : A, F").

By induction, it follows that F, F"[M/x] I- C[M/x] : u and

F, F"[M/x], y: C[M/x} F- y: C[M/x} using the START rule. Since

y 0 x, we have F, F'[M/x] F- y[M/x] : C[M/x].

Subcase 2. If F' is the empty context, B is x, C is A and the last line in

the derivation is

FF- A:u

F, x : A F- x : A
	U EU,x E Var,x dom(F).

By the free variable lemma, fv(A) c dom(F), so A[M/x] is A and

F F- x[M/x] : A[M/x] by the premise.

Case 2. The last line in the derivation is obtained from the APP rule where B is

NN' and C is C'[N/y] and the line is

F, x : A, F" F- N: lly:A'.C' 	F, x : A, F" F- N': A'

F,x : A,F" F- NN': C'[N'/y]

By renaming if necessary, we may assume x 0 y. Using the induction hy-

pothesis, we have F, F"[M/x] F- N[M/x] : lly:A'[M/x].C'[M/x] and

F, F"[M/x} F- N'[M/x] : A'[M/x]. So, using the APP rule, it follows that

F, F"[M/x] F- (NN')[M/x] : C' [Mix] [N' [M/x]/y] , and, using the substitu-

tion results (proposition 3.1.15), we obtain the entailment

F, F"[M/x] F- (NN')[M/x] : (C'[N'/y])[M/x]. 	 0

Next we generalise the substitution lemma to allow for simultaneous substitu-

tion, which will be used extensively in chapter 6.

17

Pure Type Systems

2.1.11 LEMMA [Generalised substitution lemma] The entailments

F, x:A 1 ,... , 	A F- a, for assertion a, and F F- t : A 2 [t1 ,. . . , t_ 141 ,. . . ,

for i E {1, ... ,n} imply r,[/] F- a[/].

Proof 	By many uses of the substitution lemma, we have

F, [t1 /x 1] ... [t,/x,j F- a[t 1 /x 1] .. . [t,/x,]. Using the free variable lemma, we

know that I v(t) 9 dom(F) for each i E {1,... , n} and the sets {x 1 ,. . . ,

and dom(F) are disjoint. Hence, by the substitution results in proposition 3.1.15,

we have F,[i/] F- a[/]. 	 D

2.1.12 LEMMA [Thinning] 1fF F- A: B and F c F' for context F', then F' F- A : B.

Proof By induction on the derivation of F I- A : B (care must be taken in the

11-rule to avoid variable clashes, since x V dom(F) does not guarantee x 0 dom(F')).

0-

Remark This lemma is sometimes called the weakening lemma, but we do not

use this terminology to avoid confusion with the weakening rule. It shows that

postulating more assumptions does not invalidate the provable results. This af-

fects the logics we are able to represent in a type theory; for example, we cannot

represent systems for non-monotonic reasoning.

2.1.13 LEMMA [Generation] Let F F- A : B.

IfAisuEUthenu:vEAandB=vforsomevEU.

IfAisvariablex IL thenx:B I is inFandFF- B :uandB= fl B forsome

uEU.

IfA is llx:A 1 .A 2 then F F-A 1 : u and F,x : A 1 F-A2 : v and B = w for some

('u,v,w) E R.

If A is A 1 A 2 then F F- A 1 : Hx:B1 .B2 and F F- A 2 : B1 and B = ,8 B2 [A 2 1x]
for preterms B 1 and B2 .

IfAisAx:A1 .A2 thenFF- Hx:Ai.B':uforuEUandF,x:A 1 F-A2 :B'and

B = Hx:A 1 .B'.

11]

Pure Type Systems

Proof The proof involves inspecting the derivation of F F- A : B. Call the AXIOM,

START, H-, A- and APP rules the formation rules. We can follow the branch of the

derivation until we get to a formation rule; the only other rules are the WEAK and

CONV rules, which do not affect A. In each case, the conclusion of the formation

rule is F' F- A: B' where F is an extension of F' and B = B'. The result follows

by inspection of the rule used, together with the thinning lemma (lemma 2.1.12).

D

A corollary of the generation lemma shows that, although there can be infinitely

many levels of inhabitation (that is, A 1 : A 2 : A3. . .), we soon get to the universes

with inhabitation given by the axioms. We distinguish the universes which do

not inhabit terms; these provide the starting point with which to build the type

theory.

2.1.14 DEFINITION Let C be the PTS specified by (U,A,R..). An element u of U

is a top universe if u is not the first component of an axiom.

2.1.15 LEMMA Let u be a top universe. Then F 1/ u : A for any preterm A and

context F.

The following result is a more precise statement of the corresponding one in [Bar90],

which does not give the notion of top universe.

2.1.16 COROLLARY [to lemma 2.1.13] The entailment F F- A: B implies that

there is a u E U such that B is u and u is a top universe, or F F- B : U.

Proof Prove by induction on the derivation of F F- A : B. We look at two cases.

The other cases are trivial or similar.

Case 1. F F- A: B is F F- Hx:A';B' : w and the last rule in the derivation is

F F- A':u 	F,x:A'F-B:v

F F- Hx:A I .B I :w
(u) v,w) E 7?.

Either w is a top universe or w : w' E A for some w' E U.

19

Pure Type Systems

Case 2. F H A: B is F F- MN : B'[N/x] and the last line in the derivation is

FF-M:Hx:A'.B' 	FF- N:A'

F F- MN: B'[N/x]

By the induction hypothesis, F F- llx:A'.B' : w for w E U. Using the genera-

tion lemma, we have (u, v, w) E 7?. such that F F- A' : u and F, x : A' F- B' : V.

By the substitution lemma, F F- B'[N/x] : v. 	 0

2.1.17 LEMMA [Permutation] If F,x : A,y: B,F' F- C: D and F F- B: u for some

u EU, then F,y: B,x : A,F' F- C: D.

Proof By induction on the derivation of F, x : A, y: B, F" F- C : D using the thin-

fling lemma (lemma 2.1.12). 	 U

2.1.18 DEFINITIoN Let F, F' be -precontexts of the form (x 1 :A 1 ,. . . , x:A,) and

(x 1 :B1 ,. . . , x,:B,) respectively. 	Then F - 	F' if A 	B2 , for some

i E {1, . . . , n}, and A, is B3 , for all i 0 j with j E {1,.. . , n}. Also F r 	F'

ifA2 >p Bi and F=F' if A=13 B,foralliE {1, ... ,n}.

2.1.19 LEMMA [subject reduction] If F F- A : B and A >p A' then F I- A' : B. If

FF- A: B and F 	F' then F' F- A: B.

Proof It is enough to prove the results for the one-step /3-reduction: that is,

FF-A:BandA_-*A'impliesFF-A':B; 	 (2.1)

FF-A:BandF_* 1 F'imp1sF'F-A:B. 	 (2.2)

These are proved simultaneously by induction on the derivation of F F- A: B. We

consider two possibilities. The other cases are easy or similar.

Case 1. The last applied rule is the 11-rule where A is llx:C.D and B is w and

the last line in the derivation is

FF- C:u 	F,x:CF-D:v

FF-Hx:C.D:w
(u) v,w) El?..

Then 2.1 and 2.2 follow from the induction hypothesis (for 2.2).

20

Pure Type Systems

Case 2. The last applied rule is the APP rule where A is MN and B is D[N/x]

and the last line in the derivation is

	

FF-M:Hx:C.D 	F F- N:C

F I- MN: D[N/x]

The second result follows directly from the induction hypothesis. The first

is proved by looking at cases. If A' is ON where M - M' then by the

induction hypothesis F I- M' : Hx:C.D and so F I- M'N: D[N/x]. If A' is

MN' where N -* N' then by the induction hypothesis F F- N' : C and

F F- MN': D[N'/x]. Since D[N/x] =, D[N'/x], we have F F- MN' : D[N/x]

using the CONV rule. If M is of the form Ax:C'.M' and MN - M'[N/x]

then, by the generation lemma, there exists a -preterm D' and (u, v, w) E 7Z

suchthatFF- C':'u,F,x:C'F-M':D'andF,x:C'F-D':v. Weknow

that Hx:C.D =
,6 Hx:C'.D' implies D = Y. By the substitution lemma

F F- M'[N/x] : D'[N/x] and so F F-: M'[N/x] : D[N/x] since

D[N/x] = D'[N/x]. 	 0

The following result is proved by Jutting [Bar9l], extending Luo's proof for

the Extended Calculus of Constructions [Luo90]. His proof for arbitrary PTSs is

involved and so is not given here. It asserts that PTS judgements are, in Martin-

Löf's terms, 'analytic judgements', since the derived validity of a judgement F F- a

depends only on the variables that actually occur in a [Mar85].

2.1.20 LEMMA [Strengthening] If F,x : A,F' F- B: C then F,F' F- B: C provided

x 0 dom(F') U fv(B) U fv(C). 	 -

2.1.21 DEFINITION A PTS with specification (U,A,7Z) is functional when the

sets A and R. satisfy

u : v,u : v' E A implies v = v';

(it) v, w), (u, v, w') E 7?. implies w = w'.

2.1.22 LEMMA [Unicity of types] Let (be a functional PTS. If F F- A : B and

FF- A: B' then B = B'.

21

Pure Type Systems

Proof By induction on the structure of A. We look at two cases; the others are

trivial or similar. If A is u E U then, by the generation lemma, B 	v o.-..ô.

E cA - -. Since (is functional, we have v
= v:.

If Ais llx:A'.A"

then, again by the generation lemma, there exists (u, v, w), (u , v , w) E 7?. such

that the following hold: F I- A': u, F F- A': u', F,x: A' F- A": v, F,x : A' F- A": v',

and B' sw'. By the induction hypothesis, u = u' and v = v' and so w = w'

since (is functional. 	 D

Remark This result obviously does not hold for arbitrary PTSs since, for exam-

ple, one can declare u: v and u : v' in A.

2.1.23 COROLLARY Let (be a functional PTS. If F I- A: B and B > B' then

F F-A: B'. 	 -

Proof Using the corollary to the generation lemma (corollary 2.1.16), we know

that B is u and u is a top universe, or F F- B: u. If B is u then B and B' are

identical. If F F- B : u then F F- B' : u by the unicity of types lemma and, using

the CONV rule, F F- A: B.

2.1.1 PTS morphism

A simple comparison of PTSs is given in terms of a map between specifications;

that is, a map between the sets of universes which preserves the axioms and rules.

In particular, we use this map to obtain results for ELF+ via those for ELF.

2.1.24 DEFINITIoN Let (and (' be PTSs specified by (U,A,7Z) and (U',A',7?.')

respectively. A PTS morphism from (to ('is a mapping f : U - U' which

preserves the axioms and rules; that is,

if u: v E A then f (u) : f (v) E A';

if (u, v, w) E 7?. then (1(u), f(v), 1(w)) E 7?.'.

To extend a PTS morphism f : (-* (', with (specified by (U, A, 7?.), to a map

between preterms, choose injective maps from Var's to Var, for u E U, and

then define by induction on the structure of preterms. Again, the map can be

22

Pure Type Systems

extended to a map from precontexts of (to precontexts of C. The extensions of

f to the preterms and precontexts of (will also be called f. The following lemma

shows that a PTS morphism f : (—* (' provides a sound interpretation of (in C.

2.1.25 LEMMA If f is a PTS morphism from (to ('then

1' 	A: B implies f(F) fC' f(A) : 1(B).

Proof By induction on the AcrCof derivation of F A: B. 	 U

2.1.26 ExAM PLE There is a simple PTS morphism from the specification of All

(example 2.1.4) to that for the Calculus of Constructions (example 2.1.4) given

by the identity function on the universes, since the rules for All are contained in

those for the Calculus of Constructions.

2.1.27 EXAMPLE Consider the following two specifications:

U = {*, *2, D} 	 U' = {*, D}

A={* 1 :D}

7?. = {(*, * 1, *2), (*, *2, *2)} 	 7?.' = {(*,)}

There is a PTS morphism from (U, A,??.) to (U', A', 7?.'), the speéification of simply

typed A-calculus, given by the forgetful maps 0 - 0 and * i-* * for i E {1, 21.

2.2 Pure type systems with signatures

In ELF, the signatures, declaring constants, and the contexts, declaring variables,

have very different uses: signatures specify logics; contexts, amongst other things,

correspond to assumptions in the representing type theory. Beradi first proposed

the idea of adding signatures to PTSs [Ber90]. In [Geu90] signatures are defined

as special contexts, namely fixed contexts where variable discharge does not oc-

cur. However, in ELF signatures are not special contexts; the formation of the

signature variables is stronger than that of the context variables. We give a simple

notion of signature within a PTS which yields a precise presentation of ELF and

the new framework ELF (up to /3-equality) using the PTS notation. We also give

23

Pure Type Systems

an alternative presentation of simply typed A-calculus with a finite number of base

types using a signature to declare those base types. This differs from Barendregt's

presentation, where base types are treated as universes which results, rather con-

fusingly, in different PTSs for simply typed A-calculi with different base types.

Finally, we propose a more general notion of signature, where the formation of

the signature is separate from the main proof system, to allow greater flexibil-

ity between constant and variable declarations. For example, we obtain a more

natural presentation of various many-sorted minimal intuitionistic logics with the

'structural rules', providing the function and predicate symbols, separate from the

'logical rules' for implication and universal quantification.

2.2.1 EXAMPLE The presentation of AH as a PTS is specified by

11=

In [Geu90], ELF is defined using this PTS with the signatures given as fixed,

initial contexts. However, ELF is a type theory in which signatures are not special

contexts; a constant may be declared in Type, but not a variable.

2.2.2 EXAMPLE The second example is simply typed A-calculus [Bar84], which

illustrates our reasons for working with a slightly restricted definition of PTS and

our misgivings about the original definition. This is given by a set of types, denoted

by T, defined inductively as follows:

• A 1 ,. . . , A E 7 (called the base types);

• if o, r E 7 then (o -* T) e 7 (called the functional types).

Given disjoint, countably infinite sets of variables Var° , for each 01 E 7, the set

of typed A-terms is WET A, where A, is defined by

• x 0. E A0.;

24

Pure Type Systems

M E A_ j and N E A,. imply MN E A;

M E AT and variable x E A imply Ax.M E A r .

This system is presented in [Bar90] by the PTS

U= {*,D}

A =

where * corresponds to T. In this PTS the types are given by variables in Var*,

whereas simply typed A-calculus has a finite set of base types and no variable

types. Because of this, Barendregt [Bar90] proposes the PTS

U= {*}

4=

7= {(*,*)}

where, in his formulation, the axioms are defined as elements of C x U, for a

set C containing U, rather than elements of U x U. A significant advantage of

PTSs is that they unify the presentation of type theories in a compact notation

which emphasises the structure of the type theories. This structure is obscured

in the above example since two simply typed A-calculi with different base types

are expressed as different PTSs. The base types have been over-emphasised by

treating them as universes. Instead, an alternative presentation will be proposed

using signatures to declare the base types, so that these two calculi with different

base types are expressed in terms of one PTS, but with different signatures.

2.2.3 EXAMPLE We are also not satisfied with the presentation of certain mm-

imal intuitionistic logics as PTSs. For example, many-sorted predicate logic is

represented in [Bar90] by the PTS

U = {* 8, *P , 	D8 D'}

4= {*:D,*":EJ"}

7?. = {(*, * 8, *), (*, *), (*8 , DP), (*, *I'), (*, *')}

Elements of * correspond to basic sorts and those of * to the formulae. The

U8 and D are top universes which allow us to define such elements. Elements

25

Pure Type Systems

of the universe 	can be interpreted as higher-order sorts whose inhabitants are

the function symbols of the logic. The inhabitants of * are formed from the rules

*) and (*8, *), and the predicate domains, whose inhabitants are the pred-

icate symbols, are given by (* 8 , DP) The 'logical' rules (*, *") and (*1' , *1') form

the implication and universal quantification with the accompanying introduction

and elimination rules given by the A- and APP rules. This gives an unnatural

presentation of minimal intuitionistic logic since the 'syntactic' rules and 'logical'

rules are mixed, and again we require a finite set of base sorts, rather than variable

sorts.

First, we give a simple method for incorporating signatures into the PTS no-

tation which is enough to give a precise account of ELF and ELF+. Later, we

propose a more general formulation which allows for greater distinction between

the formation of signatures and contexts.

We specify a PTS with signatures using a quadruple of sets of universes, vari-

able universes, axioms and rules. As in the original PTS presentation [Bar90],

we distinguish the universes which variables are declared; we may declare

variables in term A if A inhabits a variable universe, whereas constants may be

declared in terms inhabiting any universe.

2.2.4 DEFINITIoN A specification of a PTS with signatures is a quadruple of the

form (U, V, A, R), where

. U is a set, called the set of universes;

. V c U, called the set of variable universes;

• A C U x U, called the set of axioms;

• R C V x U x U , called the set of rules.

The set of preterms, T, of a PTS with signatures, given by specification

(U, V, A, R.) is defined using countably infinite sets of variables Var and constants

Const using the abstract syntax

T::= xIulaI llx:T.TIAX:T.TITT,

26

Pure Type Systems

where u is a universe, x E Var and a E Const. Again it is useful to divide the

sets Var and Const into disjoint infinite subsets Var' and Cortst for v e V

and u E U. Arbitrary variables and constants are denoted by x, y, z and a, b, c

respectively. The (-preterms, C-assertions and C-contexts are defined as before. A

(-presignature is a finite sequence of C-assertions whose first components are all

constants. A (-sequent is of the form F' l-C A: B for presignature E, precontext F

and preterms A and B. We omit the superscript (when the PTS with signatures

is apparent.

The method of declaring constants is based on the standard approach used,

for example, in the type theory defining ELF [HHP89].

2.2.5 DEFINITION The PTS with signatures, specified by (U,V,A,R.) is defined

by the following proof system:

AXIOM

SIGNATURE

QF E U : v

QF- A: u

HE,a:A a : A

F -

u EU,a e ConstL,a dom()

uEU,aE Const,a V dom(E)

V C V,x E Varv,x dom(F)

E A:u 	QI-E B:C

OFE,a:A B: C

F F- F A : v
CONTEXT

F, x : A I- s x : A

FE-E A:v 	FF-E B:C

F, x : A HE B: C
v EV ,x EV arv ,x V dom(F)

H -RULE
FI-E A:u 	F,x:AHEB:v

F' F- E Hx:A.B: w
(u,v) w) E 1?.

A -RULE
	FH E 11X:A.B:u 	F,x:AI-E M:B 	

uEU
F HE Ax:A.M: Hx:A.B

27

Pure Type Systems

APP
	FI-E M:Hx:A.B 	FI-E N:A

1' HE MN: B[N/x]

FHE A:B 	rl-E B':u
CONy 	 B=B',uEU

B'

A c-signature is a C-presignaturesuch that 1' 	A: B for some precontext F and

preterms A and B. A c-context over signature E is a -precontext LSuch that

F 1-4 A : B for preterms A and B. A PTS with signature E , denoted by (, E), is a

PTS with signatures, denoted by C, such that E is a c-signature and the sequents

of interest are of the form F 1-4 A: B for some precontext F and preterms A and

B.

Remark An alternative system is to replace the signature rules by the rules

I' H A : u

F HEa:A a: A
	 u EU,a E Const',a dom(E)

and

FI- E A:u 	FI-E B:C

Fl- 	B:C E,a:A

	 u EU,a E Const',a d dorn(E).

This allows the signature to be extended at arbitrary points in a derivation rather

than considering it, once formed, as fixed. We do not use this approach as both

logics and ELF have fixed signatures, although it may be more appropriate to

have flexible signatures when using type theories as theorem provers.

One can obtain a simple connection between PTSs with and without signatures

by viewing signatures as initial contexts, as in Geuvers' paper [Geu90]. This link

gives us easy access to results for PTSs with signatures via those for PTSs.

2.2.6 DEFINITION Let C be a PTS with signatures specified by (U,V,A,R). The

fundamental PTS for C, denoted by Cf , is the PTS with specification (U, A, R.).

To obtain the connection between the PTS with signatures and the fundamental

	

PTS, choose a bijection f : VarC U Const" 	Varcf satisfying

f(x) E Var" for x E Var' and v E V;

1(c) E Var's for c E Const and u E U.

28

Pure Type Systems

This is easily extended to preterms, precontexts and presignatures to obtain the

following result.

2.2.7 LEMMA Let C be a PTS with signatures and (f its fundamental PTS. Then

1' i-4 A : B if and only if 1(E), f(1') F-cf 1(A) : 1(B).

Proof Easy induction on derivations. 	 0

As a consequence of this lemma, all the results given in section 2.1 hold for PTSs

with signatures.

2.2.8 EXAMPLE The framework ELF with j3-equality is presented as the PTS

with signatures specified by

CLF 	.u= {*,o}

V= {*}

A= {*:D}

= {(*, *), (*, o)}

This is equivalent to the original presentation given in appendix A.

2.2.9 EXAMPLE Simply typed A-calculus is given by the PTS with signatures,

CA-, specified by

CA- 	U=

V= {*}

A= {*:D}

Simply typed A-calculus with one base type 0 is CA— with signature {0 *} for

0 E Const° , and simply typed A-calculus with two base types 0 and 0' is

with signature {0 : *, 0 : *} for 0, 0 E Const . We may also define constants

in the base types; for example, the signature {0 : *, a 0} for 0 e Const ° and

a E Const* declares a base sort 0 inhabited by base constant a. There is no

restriction on the constants we are able to declare, although thisLcan be L -: by

having no connection between U and V and defining the sets of axioms and rules

as A c (U U V) x (U U V) and 1?. c V x (U U V) x (U U V) respectively.

Pure Type Systems

2.2.10 EXAMPLE The PTS with signature presentation of many-sorted minimal

intuitionistic predicative logic is

(APRED 	U= {*8,*1),*f,08,nP}

v= {*,*"}

A =

7?= {(*8,*8,*f),(*3,*f),(*8,DP),(*8,*P),(*P,*P)}

with only variables corresponding to terms and proofs of formulae permitted.

First-order logic with arithmetic, given in chapter 3, is presented as)tPRED

with signature E = {i : *, 0 : i, succ : i -i i, + : i -* i -# i, =: i -* i

where i, 0 7 succ, +, =E Const. Notice that there is a natural separation into the

'syntactic' rules, (* 8) *8, *) (* *) and (*, Jr), used in the formation of the func-

tion and predicate symbols, and the 'logical' rules, (*, *') and (*', *1'), which give

the formation, introduction and elimination rules for implication and universal

quantification. This motivates an alternative approach of adding signatures.

We discuss a possible alternative method for adding signatures, where the

formation of signatures is separate from the main proof system. This method

incorporates ideas mentioned in Beradi's thesis [Ber90} and is based on discussions

with Geuvers and Pollack. The motivation for this approach is illustrated by the

above example of the presentation of many-sorted predicate logic, where the rules

fall naturally into 'syntactic' and 'logical' rules. We would also like to present,

for example, first-order logic with Peano arithmetic, which includes the induction

schema

0(0) and Vx.(q(x) D cb(succ(x))) implies Vx.(x).

The alternative definition of PTS with signatures has a similar specification to the

previous definition except that we separate the rules into two classes: constant

and variable rules. The idea is that a signature is a context from a PTS defined

using the constant rules; once the signature is formed, the constant rules are

recLundant. This clarifies the intuition that constants are special variables which

cannot be discharged. The specification of a PTS with signatures is now a quintuple

(U, V, A, R, 7Z.4, where

30

Pure Type Systems

• U is a set, called the set of universes;

• V C U , called the set of variable universes;

• A C U x U, called the set of axioms;

• Ru ç U x U x U, called the set of constant rules;

• Rv C V x U x U, called the set of variable rules.

The intuition is that a signature is a context from the PTS specified by (U, A, 7Z)

and the main proof system is essentially defined using V, A and RV . The PTS

with signature E, given by specification (U, V, A, 7, R.), is defined by a context

E from the PTS (E specified by (U, A, 1?), and the proof system given as follows:

AXIOM 	QF4u:v 	 'a:vEA

SIG 	 QF-4a:A
	

E 	a: A,a E dom(E)

START
I', x : A 	x : A
	 v E V,x E Var',x dom(F)

FI-4A:v 	FF-4B:C
WEAK

F,x: A 	B: C

H 	 E
FHC 	

E
A :u 	F, x: AFC B:v

r F- llx:A.B :

V EV ,x EV arV ,x 0 dom(I')

(u) v,w) E 'R.v

A 	 E
[FCHx:A.B :u 	F,x:AF- E M:B

F i-4 Ax:A.M: Hx:A.B

FI-M:Hx:A.B 	FHN:A
APP

F I- MN: B{N/x]

'uEU

31

Pure Type Systems

CONy
FI- A:B 	FI-B':'a

F I- A: B'
B = B',u EU

Remark The side-condition, E H a : A, a E dom(E), for the SIG rule results in

QF4a:Awhenevera:A'EE,EE-A':uforueUandA=A';thiswould

not hold for the more restrictive condition a: A E E.

Remark The results for this system are left for future work since, in this thesis,

the simple notion in definition 2.2.5 is enough for our purposes. For the moment,

just notice that the corresponding result to corollary 2.1.16, namely,

F HE A: B implies B is a top universe or F 	B : u for universe u,

does not hold. For example, let
(

be a PTS with signature E specified by

(U,V,A,'R,7?..) and assume a : Hx:A.B E E, where the formation of the

11-abstraction involves a rule in R u which is not in lZv . We have
()

I- a: Hx:A.B,

but not
()

F- E 11x:A.B : u for some universe u. Therefore, we cannot use the

method of corollary 2.1.23 to prove F HE A : B and B >P C implies F 1E A: C.

2.2.11 EXAMPLE We return to the presentation of minimal intuitionistic first-

order logic which is now given by

CtPRED 	U = {*8, *', 	08 , 0P}

V = {*, *}

A= {*3:D8,*1):D1)}

= {(*8, 	*), (*, *), (* 8 , oP)}

=

First-order logic with arithmetic, given in chapter 3, is presented as
.\PRED with

signature E = {i : *8,0 : i,succ : i -* i,+ : i -+ i -+ i,=: i -+ i -~ *}, where

i, 0 1 succ, +, = are in Comst.

32

Pure Type Systems

2.2.12 EXAMPLE The constant rules in the above example are extended to give

a presentation of first-order logic with Peano arithmetic in this setting:

(\PRED+PA U = {*, *", 1 , D, 0P}

V = {*, *}

A = {* 8 : 08, *": EIPJ
= {(*, 	*), (*, *), (*,D"), (*8, *), (*, *), (OP , 	 , D)}

= {(*8, *) (*, *)}

The signature for first-order logic with Peano arithmetic would include

it : *, 0 : t, succ: t - t, md: H:t -* *1) .(q5(0) - (Hx:t4(x) -* q5(succ(x))))

llx:t.q5(x)}.

Remark This method of presenting the induction schema for Peano arithmetic

is used in Beradi's thesis. An alternative approach is to add the induction schema

to the proof system, rather than the signature.

2.2.13 EXAMPLE In [HHP89], it is stated that the ELF type system has the proof-

theoretic strength of simply typed A-calculus. This is illustrated by viewing ELF

as the PTS with signatures

CLF 	U=

V= {*}

A =

Ru = {(*, *), (*, o)}

R

which is motivated by a result of Geuvers for ELF [Geu90] which implies that,

once the signature has been formed, the (*, 0) rule is redundant.

We do not continue investigating this view of signatures since incorporating the

rules of signature formation within the proof system of the PTS with signatures

is perfectly satisfactory for our purposes.

33

Pure Type Systems

2.3 Pure type systems with /3ij-equivalence

The framework ELF is a type theory with 377-equivalence: all matters relating

to encodings of logics are treated up to this equality. We must therefore extend

the definition of a PTS to include 77-conversion. This is not straightforward. The

Church—Rosser property for PTSs with 3 holds for the usual notion of 0-reduction

on the preterms. This property is lost for arbitrary preterms when the ij-reduction,

)x:A.(Bx)— B if x V fv(B),

is added. For example, the term)tx:A.(Ax:B.M)x reduces viaq to Ax:B.M and

by /3 to)x:A.M, which has a common reduct if and only if A and B do. Let

denote the one-step reduction, defined by -* together with the above reduction,

whose reflexive and transitive closure is 	Salvesen [Sa189] adds /377-equality

to the ELF type system using equality judgements, independent of the notion of

reduction, which restricts the equality to ELF terms. She shows that the Church-

Rosser property holds for terms by a very technical and delicate argument. We

follow her approach and add q to the proof systems of PTSs using the equal-

ity judgements. The results, corresponding to those for the standard definition,

are not known in general. In recent unpublished work [5a191], Salvesen proves

these results for functional PTSs with 77 satisfying strong normalisation, which, in

particular, implies the decidability of the new framework ELF.

The set of preterms of a PTS is extended to include preterms of the form A = B

for preterms A and B. The proof system for PTSs with i is obtained by removing

the CONV rule in the standard proof system for PTSs (definition 2.1.3), replacing

it by a conversion rule containing an equality judgement of the form M = N : A

and adding rules for inferring the equality judgement.

2.3.1 DEFINITION Let (U,A,7Z) be a specification of a PTS (definition 2.1.1).

The PTS with 77, specified by (U, A,.'R), is defined by the proof system given in

table 2.1 and table 2.2.

The notions of (-context and (-term are similar to those for standard PTSs.

34

Pure Type Systems

AXIOM 	QF- u:v 	 u:vEA

FI- A:u
START 	

F, x : A I- x : A 	
U E U, x E Var, x V dom(F)

FI- A:u 	FI- B:C
WEAK 	

B : C F, x : A I- 	
U E U, x E Var, x 0 dom(F)

FF -A:u 	F,x:AF-B:v
H 	 (u,v,w)ER.

FI-IIx:A.B:w

F I- Hx:A.B:u 	F, x : A I- M: B
uEU

F I- Ax:A.M : llx:A.B

FF-M:Hx:A.B 	Fl- N:A
APP

F I- MN: B[N/x]

FI-A:B 	FI- B=u
CONy 	

C: 	
uEU

F1-A:C

Table 2.1: The proof system for a pure type system with 77 specified by (U, A, 7Z).

35

Pure Type Systems

FI -A:B
REFL

FF- A=A:B

FI-A=A':B
SYMM

FHA'=A:B

rHA=A':B FF-A'=A":B
TRANS

FI-A=A":B

FHA=A':u F,x:AHB=B':v
11—EQ (u,v,w)ER.

F I- llx:A.B = llx:A .B' : w

FI-Hx:A.B:u FI-A=A':v 	F,x:AI-M=M':B
A —EQ

F I- Ax:A.M = Ax:A'.M' : flx:A.B

for u, v E U

FI-M=M':Hx:A.B FHN=N':A
APP—EQ

F I- MN = M'N': B[N/x]

FF-A=A':B 	FF - B=C:u
CON V—EQ uEU

FHA=A':C

BETA
	 FF- C:A 	FI-11x:A.D:u 	F,x:Al-B:D 	

uEU
F I- (Ax:A.B)C = B[C/x] : D[C/x]

FI-B:Hx:A.0
FT A

F I-)tx:A.(Bx) = B: 11x:A.0
	 loy xfv(B)

Table 2.2: The proof system for a pure type system with i specified by (U, A, R)

(continued).

36

Pure Type Systems

The following basic results give a few elementary properties of the entailment

relation of an arbitrary PTS with 77 specified by (U, A, R). These are proved by

trivial adaptation of the proofs of the corresponding results for the standard PTS

with 3-conversion and so are not given here. Throughout we use the notation

FF-atodenoteFl-A:BorFI-A=B:CforpretermsA,Band C.

2.3.2 LEMMA [Free variable lemma] Suppose F I- B: C for r = (x 1 :A 1 ,. . .)

Then

the x 1 ,. . . , x are distinct;

fv(B),fv(C) C 1x 1 ,. ..

a derivation F I- B: C has subderivation x 1 :A 1 ,. . . , x_:A_ 1 I- A : u j for

ui E U and each i E {1,... , n}.

2.3.3 LEMMA [Start Lemma] Let F be a context. Then

FI- u:vforu:vE.4;

FI-x:Aforallx:AF.

2.3.4 LEMMA [Substitution]

If F, x : A, F' I- a and F I- M : A then F, F'[M/x] F- a[M/x].

2.3.5 LEMMA [Generalised substitution] If F, x 1 :A 1 ,.. . , 	I- a and, for

i E {1, .. . ,n}, FI- t : A[t 1 ,.. . , t_ 1 /x 1 ,.. . , x_ 1] then F,[/] I- a[1/].

2.3.6 LEMMA [Thinning] If F F- a and F C F' for context F' then F' F- a.

2.3.7 LEMMA [Permutation] If F, x : A, y: B, F' F- a and F F- B : u for some u E U

then F,y: B,x : A,F' F- a.

2.3.8 LEMMA [Weak Generation] Let F F- A : B.

IfAisuthen u:v E A for some u E U.

IfAisxthenx:CEFI0rFF-C:uanduEU.

37

Pure Type Systems

If Ais Hx:A 1 .A 2 then 1' I- A 1 : u and F,x : A 1 I- A 2 : v and (u,v,w) e 7Z for

some w E U.

If A is Ax:A 1 .A 2 then F, x : A 1 I- A 2 : C for some term C and F F- Hx:A 1 .C: u

for u E U.

If A is A 1 A 2 then F I- A 1 : Hx:C1 .C2 and F F- A 2 : C1 for some terms C 1 and

C2 .

Remark The generation lemma for pure type systems with /3-equality is stronger

as it also gives information regarding B using the transitivity rule for /3-equality.

The analogous result cannot be proved for 37-equality using the same technique,

as is illustrated by the following segment of a proof tree:

FF-A:B FF-B=B1 :u

FF-A:B1 FHB1 =B2 :v

F I- A : B2

Here, F I- B 1 = B2 : u does not follow using the transitivity rule as u and v need

not be the same universe.

2.3.9 LEMMA Let u be a top universe. Then F 1/ u : A for any preterm A and

context F.

Remark An obvious question to ask is whether the system with 3-reduction

given on the preterms of the PTS and the system with the equality judgement

giving 3 are equivalent. Coquand [HP91] points out that this is a non-trivial

question and proves they are equivalent concepts for a type system containing

ELF.

Remark In recent unpublished work [Sal9l], Salvesen shows that functional

PTSs with ij and strong normalisation satisfy the Church-Rosser property and

subject reduction. From this, unicity of types, generation and strengthening hold.

In section 4.2.3, we give an alternative proof of the Church-Rosser property for

ELF+ which avoids the technicalities required in Salvesen's proof.

38

Pure Type Systems

The sets of preterms for PTSs with and without 77 are identical since the

differences occur in the proof systems, not the specifications. Also, the definition

of PTS morphism between PTSs with 77 is, therefore, similar to the one for standard

PTSs (definition 2.1.24). The following result, stating that the translation gives

a sound interpretation of the domain PTS in the image PTS, is used to derive

results for ELF from those of ELF.

2.3.10 LEMMA Let f be a PTS morphism from (1 to (2, where (1 and (2 are two

PTSs with i. Then

F F-c' A: B implies f(F) 16 1(A) : 1(B);

F F- A = B : C implies f(F) HC2 1(A) = f(B) : f(C).

Proof This is proved by simultaneous induction on the derivation of F F- 6 a for

a of the form A: B or A = B: C. 	 U

We obtain strong normalisation for ELF+ via the corresponding result for ELF

using the next lemma, and so we are able to apply Salvesen's results to the new

framework.

2.3.11 LEMMA Let f be a PTS morphism from (1 to (2, where (1 and (2 are PTSs

with 17. If (2 is strongly normalising then so is (.

Proof This follows from the fact that f is a map preserving /3- and i-redexes. 0

The next result is unsurprising, but is stated here as it will be used later in our

proof of the Church-Rosser property for ELF.

2.3.12 LEMMA Let f be a PTS morphism from (1 to (2, where (1 and (2 are PTSs

with i, and let A and B be two preterms. Then 1(A) = 1(B) implies that either

A and B are identical or the sets of subterms of A and B (definition 2.1.2) contain

universes.

The PTS presentation of a type theory is defined using a set of preterms de-

termined by the specification. Jutting [Bar9l] shows that each preterm of a PTS

in Barendregt's A-cube can be assigned a unique level such that F I- A: B im-

plies that the level of B is one more than the level of A. The intuition for this

39

Pure Type Systems

is illustrated by two presentations of ELF, one based on the pure type system

All (example 2.2.8) and the other on the original presentation with three sorts

of syntax—objects, families and kinds (appendix A). The AH-preterms of level 0

correspond to objects in the original presentation, preterms of level 1 to the fami-

lies, those of level 2 to the kinds, and the preterm of level 3 to a universe in which

the kinds live. We extend this notion of levels to a certain class of PTSs with

ij by reversing the ordering on levels so that arbitrarily many universes can be

accommodated.

2.3.13 DEFINITIoN Let P denote the set of preterms of a PTS with 77 specified

by (U, A, R.), and let T denote the set of preterms. The level relation # C T x

is defined inductively as follows:

if u is a top universe (definition 2.1.14) then #(u, 0);

if u: v E A and #(v,n) then #(u,n+ 1);

#(u, n) and x e Varu for u E U imply #(x, n + 2);

#(B,n) implies #(Ax:A.B,n) and #(Hx:A.B,n) and #(BA,n).

Notation We say the preterm A has level n if #(A, n).

It is not always the case that PTSs have top universes: for example, the PTS

specified in example 2.1.6 has one universe * and axiom * : *. The level relation

can, therefore, be empty. We restrict our attention to the PTSs whose universes all

have levels. We also impose the restriction that the universes have unique levels.

2.3.14 LEMMA Let C be a PTS with ij whose universes all have unique levels.

Then,

the preterms all have unique levels;

pce
if variable x and Lterm B have the same level then A and A[B/x] have the

same level.

xc 	 O.k. 	 O rerr#.s.

40

Pure Type Systems

Remark The uniqueness is required as the following example shows. Let

U = {u,v,w} and A = {v : u , w : u,v : w}. Then we have #(u, 0), #(v, 1),

#(w, 1) and #(v, 2), which imply #(xv, 3), #(x") 4) and 	3), but not

We show, for a certain class of PTSs, that I' I- A: B and #(A, n + 1) im-

ply #(B, n) for some n > 0. This is achieved, using the technique due to Jut-

ting [Bar9 1], by proving a stronger result whose formulation requires the following

definition.

2.3.15 DEFINITIoN Let A, B and C be preterms of a PTS with 77 whose universes

all have unique levels. Then

A: B is okif #(A,n+ 1) and #(B,n) for some n > 0;

A = B: C is okif #(A,n+ 1) and #(B,n+1) and #(C,n) for some n > 0;

for a of the form A: B or A = B: C, a is hereditarily okif a is ok and all

substatements y: P (occurring just after a symbol 'A' or 'H') in a are ok;

F is hereditarily ok if F is x 1 :A 1 ,. . . , x:A, and x2 : A i is hereditarily ok for

eachiE{1,...,n}.

More restrictions on PTSs are required if we are to show that F I- A : B implies

A : B is ok. By definition, the preterm llx:A.B has the same level as B. It is

therefore necessary to impose the restriction that, for every rule (u, v, w) in the

specification of a PTS, the universes v and w have the same level. We call such

PTSs even.

2.3.16 LEMMA Let C be an even PTS with ij specified by (U, A, R,). Then F F- a

implies that a and F are hereditarily ok, where a is of the form A: B or A = B : C

for preterms A, B and C.

Proof An easy induction on the derivation of F I- a. Lemma 2.3.14 is used for

the cases where the last line in the derivation is an instance of the APP or APP-EQ

rules. The extra condition on the rules in the specification of (is required for the

P1 and P1-EQ rules.

41

Pure Type Systems

Remark Jutting's proof of this result for the type systems in Barendregt's A-cube

uses lemmas specific to the A-cube for the case where the last line in the derivation

is the CONV rule. It is not clear how to generalise his method for PTSs with

/3-equality defined on the preterms. These lemmas are not required for 37-equality

given by incorporating equality judgements into the proof system.

2.3.17 COROLLARY [to lemma 2.3.16] Let (be an even PTS with i specified by

(U,A,R). Then:

FI-'A: B implies #(A,n+l) and #(B,n) for some n> 0;

F F-' A = B: C implies #(A,n + 1) and #(B,n + 1) and #(C,n) for some

n>0.

The adaptation of PTSs with ij to include signatures follows similar lines to

the one for PTSs given in section 2.2. The specification of a PTS with signatures

and ij is the same as the one in definition 2.2.4. The proof system is obtained by

amalgamating definitions 2.1.3 and 2.2 in the obvious way. For completeness, we

present the full proof system for a PTS with signatures and q in tables 2.3 and 2.4,

since we use this presentation to define the new framework ELF+. The results for

PTSs with ij lift to PTSs with signatures and i.

42

Pure Type Systems

AXIOM 	QF-E u:v

SIGNATURE 	
O

() H,a: a: A

()F- E A:u 	.QF- E B:C

()HE ,a:A B: C

U Fr A : v
CONTEXT

F, x : A HE x : A

FHE A:v 	PI-E B:C

F,x : A HE B : C

'u:vEA

U EU,a C Const',a dom(E)

uEU,aEConstL,a V dom(>) *

V C V,x E Var',x V dom(F)

v C V,x C Var",x dom(F)

FF-E A:u 	F,x:AHEB:v
H-RULE 	 (u,v) w)R.

F F- E Hx:A.B: w

FHE HX.A.B.'u 	F,x:AHEM:B
s-RULE 	 uCU

P HE .\x:A.M: llx:A.B

PHE M:Hx:A.B 	FI-E N:A
APP

I- MN : B[N/x]

FI-E A:B 	PH B=B':u
CONy 	 uCU

Table 2.3: The proof system for a PTS with signatures and ij specified by

(U,V,A,7Z).

43

Pure Type Systems

REFL
	

'E A: B

PF- E A=A:B

SYM M FH
E A=A:B

P A' =A: B

PI-E A=A':B PH E A'=A":B
TRANS

P H A = A" : B

U - 11E 	
PHE A=A':u 	P,x:AF- E B=B':v Ii 	it '\ 	V

-- ---s y-',,
F H Hx:A.B = Hx:A'.B' : w

A-EQ
P1- E Hx:A.B:u 	PH E A=A':v 	P,x:AH E M=M':B

P 1-E Ax:A.M = Ax:A'.M' : llx:A.B

for u E U and v E V

P1- M=M':Hx:A.B Fl- N=N':A
APP-EQ 	E 	 E

P HE MN = M'N': B[N/x]

PH A=A':B Fl- 	=
CONy-EQ 	E 	 E B C:u 	

u E U
P A = A' : C

BETA
	FI- E C:A 	PH E IIX:A.D:u 	F,x:AHE B:D 	

U E U
P l-E (Ax:A.B)C = B[C/x] : D[C/x]

B
P HE Ax:A.(Bx) = B : llx:A.0 	

x f v()

Table 2.4: The proof system for a PTS with signatures and ij specified by

(U, V, A, R) (continued).

ETA
	 P HE B : Hx:A.0

44

Chapter 3

Logical Systems

The purpose of this thesis is to provide a new framework, ELF+, for representing

a wide variety of logical systems: that is, logics described using proof systems.

This framework necessarily takes a particular approach to syntax and rules, which

may differ from the approach in the original presentation of such systems. Before

we introduce ELF+, we therefore give a standard presentation of the logics under

consideration, using ideas underlying representations in ELF and ELF. This

presentation does not constitute a framework since we do not specify a logic using

a finite amount of information; as we shall see, the syntax and rules of a logic have

a finitary specification in ELF+. Instead, it forms a reference point from which

to describe representations in ELF+. Logics whose presentations do not fit this

pattern are particularly interesting as they are more difficult, if not inipossible, to

represent.

In this thesis, logics consist of syntax, judgements and a proof system acting

on the judgements. The syntax of a logic is a set of expressions, partitioned by a

set of syntactic classes. For example, the expressions of first-order logic fall into

two syntactic classes, namely terms and formulae. This partitioning of expressions

is also natural in the presentation of, for example, elements of the datatypes int,

list and boo 1. The formation of expressions is based on Aczel's work on Frege

structures [Acz80], inspired by Martin-Löf's theory of arities [NPS90]. With rep-

resentations in ELF+, certain variables of the framework correspond to variables

of the underlying logic so that substitution in the metatheory dictates the be-

haviour of variables in the logic. We define substitution for logics presented in this

standard form. This allows for a smooth translation to an algebraic presentation

of these logics as described in chapter 6.

45

Logical Systems

Proof systems are viewed as calculi for constructing derivations of certain corn-

binations of expressions, identified by the judgements. In first-order logic, the

formulae are the judgements, sometimes written Otrue for formula 0 to distin-

guish the concept of a formula being true from that of it being well-formed. The

judgements of Martin-Löf's type theory [Mar85] are A set, a E A, A = B and

a E A = B, where A, B, a and b are expressions of the type theory. A for-

mal description of the proof systems under consideration is given, from which

the derivations and consequence relation are defined. This description includes

an account of the assumptions and free variables in derivations since these must

be declared explicitly in ELF; in particular, we account for the discharge of as-

sumptions and variables local to derivations. This last point may be unfamiliar

since a full account of the behaviour of variables is rarely given. It is illustrated

by first-order logic where the truth of Vx.0 does not depend on the variable x,

since we treat Vx.cj and Vy.[y/x] as syntactically equivalent, where y is not free

in 0. Not all logics can be represented in ELF+ since their consequence relations

may have properties incompatible with the ELF entailment relation; examples

include systems for non-monotonic reasoning. These restrictions are highlighted

in our presentation.

As is to be expected in research of this generality, many of the ideas discussed

here can be found in the literature. The novelty of our approach lies in the

combination of ideas which give a better understanding of representations in ELF+

and indicate the potential difficulty with finding such representations.

3.1 Syntax and judgements

We describe a collection of logics whose expressions and judgements are formed

by a signature, which is a quadruple of sets of function symbols:

• a set of class symbols C;

• a subset. C' C C, which distinguishes the syntactic classes containing vari-

ables;

• a set of expression symbols E;

46

Logical Systems

a set of judgement symbols J.

The set of class symbols is a finite set of function symbols with arities given by

the natural numbers. For example, the set of class symbols for first-order logic

is {t ° , f°}, consisting of two nullary function symbols which denote the classes of

terms and formulae respectively; for higher-order logic it is {t°,
o, 21 where t

and o are nuflary function symbols and = is a binary symbol. The class symbols

which form the syntactic classes containing variables are distinguished; in first-

order logic, the syntactic class of terms contains variables, whereas the class of

formulae does not.

The formation of the expressions is governed by arities formed from the syn-

tactic classes.

3.1.1 DEFINITIoN Let (C, C') E, J) be the signature of a logic. The set of syntac-

tic classes for this logic is defined inductively as follows:

the nullary class symbols are syntactic classes;

given an n-ary class symbol f, with n > 1, and syntactic classes c1 ,... ,

then f(c 1 ,.. . , c) is a syntactic class.

The syntactic classes containing variables are those syntactic classes formed solely

from elements of C'.

The arities accompanying expression symbols can be viewed as simple types;

this view is inspired by Martin-Löf's theory of arities [NPS90] and follows Aczel's

work on Frege structures [Acz80], modified to retain the partitioning of expres-

sions via syntactic classes. Each arity has the form (a 1 ,. . . , a) -f c for n > 01

where a r ,... , an are arities (called the domain arities) and c is a syntactic class.

Associated with each arity is a level; for n = 0 the level is 0 and, for n > 0, the

level is 1 + 1, where 1 is the maximum level of a 1 ,. .. , a. The set of expression

symbols is a countable set of function symbols, with each symbol accompanied

by an arity indicating the application and binding power of that function symbol.

For example, the set of expression symbols for first-order arithmetic can be given

as

10
 t t-4t succ , +(t,tt, (t,t)-f 3 (t_+f)_f }

47

Logical Systems

The fact that V and 2 are binding operators is indicated by the domain arity of

level 1. For our purposes, the arities can be limited to those of level not exceeding

2, since we require only variables of the logic to occur bound. The set of expression

symbols need not be finite. For example, the set for higher-order logic is

(a=.a=,o) j(o=o=o) V(=0)=0 3(a=0)=0}

	

aj 	 a 	a
aj3

where a and /3 are syntactic classes.

The judgements are defined using a countable set of function symbols, this time

called judgement symbols, with accompanying arities of the form (c, . . .) a,) for

n > 1, where each a2 is a syntactic class. The set of judgement symbols for

first-order logic is {true}, while that for Martin-Löf's type theory is

{

(ezp) set (ezp
, E

,ezp) Equals' equats e (PezPeP)} ,

where exp is the syntactic class of expressions. We do not insist that the set of

judgement symbols be finite since we can envisage judgements indexed by syntactic

classes (for, example, equality judgements).

The formal definitions of the sets of expressions and judgements are straight-

forward. The expressions are generated from countably infinite sets of variables,

one, denoted by Varc, for each syntactic class c containing variables.

3.1.2 DEFINITION Let (C, C', E, J) be the signature of a logic. The set of expres-

sions for this logic is defined inductively as follows:

I. if x is a variable in Varc for syntactic class c formed from C', then x is an

expression with arity C;

if f E E with arity (a 1 ,.. . , a) -f c of level < 2, and e 1 ,.. . , e are expres-

sions of arity a 1 ,. . . , an respectively, then f(e 1 ,.. . , e) is an expression with

arity c;

if e is an expression with arity c of level 0, and x 1 ,. . . , x are distinct variables

with arities a 1 ,. . . , a, each of level 0, then (x 1 , ... , x)e is an 'expression

with arity (a 1 ,... , a) - c.

48

Logical Systems

The logic expressions are those expressions with arity of level 0, and the term ex-

pressions are those logic expressions inhabiting syntactic, classes containing vari-

ables.

Remark In the last clause x 1 , . . . , x, bind any free occurrences in expression e.

We do not distinguish of-equivalent expressions, by which we mean expressions

equivalent up to renaming of bound variables. We delay the formal definitions of

these notions until after the judgements have been defined.

Notation Let e be an expression with arity c of level 0. We say that e inhabits

c. We employ infix and other notational devices as appropriate. For example, we

write q$ A b rather than A(q, b) and 3x.0 rather than 2((x)q5). For convenience,

we sometimes call the variables of the logic the logic variables.

Notice that the expression symbols with arities of level > 0 are not expressions of

the logic. For example, in first-order logic with arithmetic, the symbols succ, D

and V are not expressions. Essentially, we have constructed the 3?-1ong normal

forms of terms of second-order A-calculus, since (x1,... , x,)e conveys the fact

that the x 1 ,... , x are bound in e, as does Ax 1 . . . Ax.e. This analogy is slightly

misleading, however, as our notation does not assume any particular behaviour of

the variables except binding and of-conversion: there is no notion of 3-equivalence,

as we cannot form /3-redexes, and 7-equiva1ence is superfluous as we only abstract

expressions which, by definition, have been fully applied; for example, we have

V((x)x = y), but not V(= y).

We have given a general description of the expressions of a logic. From this,

the judgements identify the combinations of logic expressions which are actually

used in the proof system.

3.1.3 DEFINITION Let (C, C', E, J) be the signature of a logic. The set of judge-

ments for this logic is

{j(e 1 , . . . , e) : j1 	e J for syntactic classes a1,... , an and

logic expressions e 1 ,. . . , e, inhabiting a 1 . . . , a respectively}.

Remark These judgements are sometimes referred to as basic judgements, to

distinguish them from Martin-Löf's higher-order judgements mentioned above and

discussed in the next section.

49

Logical Systems

3.1.4 EXAMPLE We have already seen that the terms and formulae of first-order

arithmetic are generated by

C {t ° , f° };

C' {t ° };

E {0t succt-t , 	 (t,t)-f 	 t—f_+f}.

J {true"}.

3.1.5 EXAMPLE Simply typed A-calculus is sometimes presented informally as

ci ::= i; 1 o Icr => ci;

M I'

l

l

with judgements of the form M: ci. Our presentation uses the quadruple

C {type ° , term° };

C' {term ° };

E {tYPe 0tpe 	(type,type)-type app(t m,term)-term A(type,term-.-*te?m)--*term };
j { COlOfl (tmtYPe)} .

3.1.6 EXAMPLE Another presentation of the syntax of Church's simply typed

A-calculus involves one syntactic class of expressions with no distinction between

the types and terms. This is precisely the view taken by Barendregt et al. [Bar90]

in their uniform presentation of Church's type theories as pure type systems

(PTSs). The expressions (or preterms) and judgements of the PTS with speci-

fication (U, A, R) (see chapter 2) are determined by the quadruple

C {exp 0
};

I 	 0 C {exp };

E {exP 11(exp,exp-+ep)--*ezp A(P,)zP
app'' : u

J { col on zp,ezp) I.

Remark An alternative set of judgement symbols for PTSs is {inhab}, where

the inhabitation of an expression is significant: that is, expression B is inhabited if

F F- A: B for arbitrary expression A and context F. This emphasis on inhabitation

is used in the analysis of representations of consequence relations in ELF+ .

50

Logical Systems

3.1.7 EXAMPLE The syntax and judgements of higher-order logic, whose expres-

sions are the well-typed terms of simply typed A-calculus, are given by

C {t° o° =. 2 }

C' {t ° , o° ,= 2 };

E 	 A(a_/3)-(a=.I3) =c=.c.o D000 v(a=o)=o (cx=o)zo}

where a and 3 range over the syntactic classes;

J { true'°}.
(In Church's formulation of higher-order logic [Chu40], one A-abstraction is used,

rather than infinitely many indexed by the syntactic classes.)

3.1.8 EXAMPLE In the previous example, the set of expression symbols is defined

by indexing over the syntactic classes. A more complicated indexing occurs when

we present the syntax of primitive recursive functions over some domain exp:

C {exp 0
 };

I 	 0 C {exp };

E {zero, SUCCeXPeZP} U fpik 	: i, k E Co., 0 < i < Ic}D U Ct*cr
- 	 -- 	 ----

where expk denotes (exp,. . . , 	for k > 0 and

C on st k denotes an infinite set of function symbols of arity eXPk - xp;
j 	{(ePexP)} - 	 - 	- 	- 	--

3.1.9 EXAMPLE Inevitably there are logics whose usual syntactic presentation

does not coincide with the above format. Part of the work of encoding a logic in

ELF+ involves providing a presentation which matches the one given, although

this is not necessarily possible in all cases. For example, in the A 1-calculus [Bar84]

and the linear lambda calculus (A L-calculus) [AHM89] are examples where the

application of function symbols is restricted, a mechanism which is not allowed in

the above presentation. The A-abstraction for the A 1-calculus is

Ax.M is an expression if M is an expression and x E I

and that for the AL-calculus is

Ax.M is an expression if M is an expression and variable x occurs free once in M.

51

Logical Systems

We now formalise the behaviour of variables in the expressions and judgements

of a logic. It seems acceptable to have common notions of free and bound variables

and a-conversion. A common behaviour of variables of the logic is not so apparent.

For example, in first-order logic the free variables may be regarded as place holders

for term expressions of the same syntactic class. In the ir-calculus [MPW89],

variables are just names which are substituted for other names, while in Hoare

logic [Apt8l] variables play two roles: a variable denotes both a location and the

value within that location. Also, certain logics used in situation theory [Acz90]

have a component-wise substitution; that is, for expression f(a 1 , .. . , a,), each

expression a, is replaced by expression b 2 to obtain f(b 1 ,. . . , b,j.

When representing logics in ELF, the logic variables are identified with certain

variables of the type theory. This determines a particular behaviour of the logic

variables which we now formalise. It is given at this general level to facilitate the

translation from the syntactic presentation of logics described here to the algebraic

presentation described in chapter 6.

Remark In the concluding chapter on future research (chapter 7), we propose

a new notion of framework which does not rely on a common behaviour of the

logic variables; the aim is capture binding and a-conversion at the logic level and

substitution at the schematic (or metatheoretic) level.

The free variables are defined as usual, with (x 1 ,.. . , x,,)e denoting the fact

that the x 1 , . . . , x are bound variables in e.

3.1.10 DEFINITION The set of free variables of an expression or judgement, a, of

a logic, denoted by fv(a), is defined inductively as follows:

if a is a variable then fv(a) = {a};

if a is f(e 1 ,. . . , e,,), where f is an expression orjudgement symbol and n > 0,

then fv(a) = U 1 fv(e);

if a is the expression (x1,... , x)e with n> 0 then fv(a) = fv(e)—{x 1 ,. . . , x}.

We now give the definition of simultaneous substitution for expressions and judge-

ments as it is used extensively in chapter 6. The substitution of one expression for

a variable is an instance of this general definition. For more details see [Sto88].

52

Logical Systems

3.1.11 DEFINITION [Simultaneous substitution] Let t 1 ,. . . , t, be expressions of a

logic and let x 1 ,. . . , x, be distinct variables, with n > 0, such that, for each

i E 11,. . . , n}, the x2 and tj belong to the same syntactic class. Also, let a denote

either an expression or a judgement. Define a[t1 ,. . . , t/x 1 ,.. . ,x,], written more

concisely as a[i/], by induction on the structure of a as follows:

if a is the variable x i then x[/J =

if a is the variable y, for y {x 1 ,.. . , x}, then y[1/] =

if a is f(e 1 , . . . , em), where f is either an expression or judgement symbol

and m > 0, then f(e 1 ,. . . , em)[1/] = f(e1 [t7],. . . , e[t7]);

if a is the expression (y r ,. . . , ym)e, with m > 0, then

((yi,...,ym)e)[1/].= ((zi,...,zm)e[zi,...,zm/ii,...,ym][I/]), where the

Z1. . . Zm are distinct variables such that, for all j E 11,. . . , m}, variable z

is not contained in {x1,... , x,} U U fv(t) U fv(e).

In 4, the z1 ,. . . , Zm are chosen to be the first variables from the appropriate syn-

tactic classes satisfying z1 {x 1 ,. . . , x}UU 1 fv(t)Ufv(e)U{z 1 ,. . . , z_ 1 } using

some standard enumeration of the variables of the logic.

Notation We assume that the notation a[/] implies that I and Y denote finite

sequences of expressions and distinct variables of the same length ii, for n > 0,

such that, for each i E 11,. . . , n}, the t2 and ; belong to the same syntactic class.

We say that [t7] is a substitution. It is a renaming substitution if I is a finite

sequence of distinct variables.

3.1.12 DEFINITION M is a subexpression of N if M E Sub(N), where Sub(N),

the set of subexpressions of N, is defined inductively by

S'ub(x) = {x};

Sub(f(e 1 ,. . . , e,j) = {f(e 1 ,. . . , e,3} U U 1 Sub(e);

Sub((x 1 ,. . . , x)e) = {(x 1 ,. . . , x,)e} U Sub(e).

53

Logical Systems

3.1.13 DEFINITION

A change of bound variables in M is the replacement of the subexpression

(x1,.
..

) x,)N by (yr ,. . . , y)N[i/J, where n > 0 and the yi are distinct

variables which do not occur in N.

M is a-congruent to N, denoted by M = N, if N results from M by a

sequence of changes of bound variables.

The following proposition is trivial to prove by structural induction on expres-

sions and judgements.

3.1.14 PROPOSITION Let a be a judgement of a logic or an expression with arity

a. Then a[/] is also a judgement or an expression with the same arity a.

A more detailed analysis of simultaneous substitution can be found in [Sto88].

Here, we just list those results that will be required later in this thesis.

3.1.15 PROPOSITION Let a be an expression or judgement of a logic. Then, for

n > 0,

a[/] =c a;

%"C

a[/] = a if x 2 V fv(a)/ where T denotes the variables x 1 ,. . . ,

eCC

a[/}[/] =a a[/] if yj V fv(a)t where V denotes the variables y,. . . ,

a [t7} [/Y] = a [/] [i[/] /J if x 2 V fv(), where T denotes the variables

x 1 ,. .

a[/][/] = a[[/]/] provided y2 E fv(a) implies y2 E {x 1 ,. . . ,

where y denotes the variables yr,. . . , y,, and i E 11,. . . , n};

a[t1 /x 1]... [t/x} = a[/] provided the; are distinct and 	U 1 fv(t)

foralljE{1,...,n}.

Remark Part 5 is used extensively in chapter 6 for the categorical presentation

of logics and their representing type theories.

54

Logical Systems

3.2 Proof systems and consequence relations

In this section, we give a formal account of proof systems, from which we define the

derivations and consequence relation of a logic, and which highlights the restric-

tions imposed by requiring consequence relations to be compatible with the ELF

entailment relation; in particular, we concentrate on natural deduction systems.

We account for assumptions and free variables in a derivation since these con-

cepts must be explicitly declared in ELF; this involves explaining the notions of

discharge of assumptions and variables local to derivations. The last point is illus-

trated by first-order logic: the truth of a formula Vx.4 does not rely on x since Vx4

and Vy.q[y/x}, for y not free in 0, are syntactically equivalent. We also link these

ideas to Martin-Löf's notion of higher-order judgements (also called hypothetico-

general judgements in [Mar85]), written in the form J1,. , J to indi-

cate that basic judgement J is provable, generally in x 1 ,.. . , x i,,, from assumptions

• , J; proof systems are represented in ELF+ by regarding rules as tuples of

basic and higher-order judgements. Throughout this section, we assume that a

logic is based on some arbitrary signature which defines sets of syntactic classes,

logic expressions and basic judgements.

Assumptions and free variables are declared explicitly in ELF+ and so must

be taken into account here; derivations in a proof system are therefore based on

the notion of sequent.

3.2.1 DEFINITIoN A sequent of a logic has the form F = J, where F is a finite

set of judgements, J is a judgement and X is a finite set of logic variables such

that fv(F) U fv(J) 9 X, where fv(F) is Uj,€r fv(J).

Notation For a sequent F 	J, the set of judgements F is the set of as-

sumptions for the sequent. We often use the notation F, J1 ,. . . , J 	 J

to denote a sequent with the set of assumptions F U {J1 ,. . . , J} and set of free

variables X U 1x 1 ,. . . , XWJ-

Remark We have restricted ourselves to sets of assumptions. This is a necessary

property if we are to represent logics in ELF+, although it excludes, for example,

various linear logics [Gir87] where assumptions can only be used once. Regarding

55

Logical Systems

derivations as trees, it is perhaps more natural to regard the collection of assump-

tions as a 'multiset': that is, a collection of judgements in which the number of

times each element occurs is significant, but the order of elements is not. We

cannot represent a multiset of assumptions using a context in a type theory since

we have unrestricted use of declared variables in this context. An alternative ap-

proach is to concentrate on ordered sets, that is, collections of distinct judgements

where the order is important. However, this complicates matters and the need

for it seems to be rare. The permutation lemma (lemma 2.1.17) for PTSs ensures

that we do not encounter problems with representing sets of assumptions using

contexts.

3.2.2 DEFINITIoN A rule is a set of (n + 1)-tuples of sequents where n > 0.

Rules are typically written in the form

seq1 . . . seq

seq

where schematic variables and side-conditions may be employed. We call such a

presentation the schematic form of the rule, seq1 . . . seq, are the premises and seq

the conclusion.

3.2.3 DEFINITION An instance of a rule is an element of that rule.

3.2.4 EXAMPLE The D I-rule of natural deduction-style first-order logic [Pra65]

can be written as

F,çbtrue =tx i,btrue

F 	(0 D çb)true

This notation indicates that, for particular instantiations çb' and i ' of the schematic

	

I 	I. 	 . 	 . 	 I. 	I. variables q5 and , the formula, 	D 1', is true using assumptions F if '1' is true

using assumptions F' U {' true}. The discharge of assumptions is reflected by

insisting that qV true occurs in the assumptions of the premise; q5' true need not

occur in the assumptions of the conclusion.

56

Logical Systems

3.2.5 EXAMPLE The VI-rule

VI 	
F 	çbtrue

f X Vx.çb true

denotes that Vx.' is true using assumptions P and free variables in X if ' is true

using the same assumptions and free variables in X U {x}. Variable x is local to

the proof of çb' true from F' since it has no importance in the quantification Vx.':

the formulae Vx.0' and Vx.'{y/x], for y not free in q5', are syntactically equivalent

by a-conversion.

These two examples illustrate our treatment of the discharge of assumptions and

the binding of variables in derivations. An alternative view of rules, and one that

underpins representations in ELF+, is to emphasise these concepts of discharge

and variable binding using Martin-Löf's higher-order judgements. In this view,

rules are (n + 1)-tuples of basic and higher-order judgements. The higher-order

judgements are of the form , 1m J for n,m > 0, where J1,. , m ,

are basic judgements. (When n and m are 0 we omit the arrow). They indicate

that basic judgement J is provable, generally in x 1 ,. . . , x, from assumptions

containing J1 , ..., 'm Two particular kinds of higher-order judgements are often

highlighted: the hypothetical, J -* K, and the general, - J.

Remark To contrast the two concepts of rule, observe that in definition 3.2.2,

the assumptions and free variables are explicitly given whereas, using Martin-Löf's

higher-order judgements, just the information regarding discharge and variable

binding is present. We use the first approach to provide the formal definitions of

derivation and consequence relation, since we concentrate in this thesis on repre-

senting standard consequence relations, defined from basic judgements, in ELF+ .

The second approach is used to describe the representation of rules in ELF+; in the

chapter on future research (chapter 7), we propose investigating a higher-order con-

sequence relation, defined from Martin-Löf's basic and higher-order judgements,

to help analyse the representations of derivations in ELF+ .

3.2.6 DEFINITION A formal system is a finite set of rules.

Remark We define proof systems as formal systems satisfying the cut condition,

which states that derivations can be combined: given derivations of F =' J and

57

Logical Systems

J x K, we obtain a derivation of F, L =x K. A precise definition will be

given once derivations have been defined.

We view derivations as trees of sequents whose formation is governed by the

rules. An alternative view is that derivations are sequences of sequents, where each

sequent is obtained from its predecessors by the application of a rule. The first

approach gives more information regarding the assumptions used at each stage

and so is more appropriate here.

3.2.7 DEFINITION Let P be a formal system. A derivation in P of sequent F = J

is defined inductively as follows:

(F ~ x J)ifJeF;

if TIj is a derivation of F2 =. J, for i E {1,. . . , n} and

(F1 X1 j1, 	, 	 J,, F = 	J) is an instance of a rule in P, then

(11 1 ,. . . , H I F =>X J) is a derivation.

Notation When n = 0, the vertical bar is omitted. We often write

(ll,.. . ,
11

ni F ==>x J) in the form

F=J

omitting the horizontal line when n is 0.

3.2.8 DEFINITIoN Let P be a formal system and let F = J have derivation H.

The set of free variables of H is X.

3.2.9 EXAMPLE The set of free variables in a derivation of F 	J does not

depend solely on the free variables in the assumptions F and conclusion J, as

the following derivation illustrates. Let ç be a formula in first-order logic with

fv(çb) = {x}. The derivation

{Vx.qS} {z} Vx.0

{Vx.q5} 	{z} b[z/x]

{Vx.0} 	{z} z.q[z/x]

requires the free variable z for the second line.

Logical Systems

3.2.10 EXAMPLE The distinction between free variables is important. For exam-

pie, consider the derivation

F, 0 , Vx.q5 X,z

F, 0, Vx. 	X,z çb[z/x]

F, o , Vx.q5 X,z 2z.[z/x]

F x ax.çb F, 	X,z Vx.çb D 3z.[z/x]
3E

F =x Vx.0 D 3z.o[zlxj

When z 0 x then z must be in X, but when z = x this is not necessary.

3.2.11 DEFINITIoN Let P be a formal system. The consequence relation of P,

written Il J for a set of judgements F, judgement J and set of logic variables

X, is defined by

F kX J if and only if a derivation of F =' J exists in P.

Remark We concentrate here on analysing the representation of this standard

consequence relation in ELF+. Later, in section 5.2, we investigate a consequence

relation with explicit reference to proofs and extend the analysis of representations

accordingly. This gives an indication of the feasibility of mimicking derivations

in a logic using its ELF representation. An alternative approach to studying

the representations of derivations is to explore a higher-order consequence rela-

tion, based on Martin-Löf's basic and higher-order judgements. The concluding

chapter on future research explains this further, together with a schematic no-

tion of consequence relation. Our approach differs from Avron's abstract view of

consequence relations [Avr9l], which need not be defined from proof systems.

As has already been mentioned, we view the cut condition as a fundamental

property of the proof system of a logic.

3.2.12 DEFINITION A proof system is a formal system whose consequence relation

satisfies the cut condition

CUT 	FHJandz,JHKimplyF,AF-K.

59

Logical Systems

Remark The 'analogous property of the ELF entailment relation is given by

the substitution lemma (lemma 2.1.10).

We have already imposed some restriction on the proof systems we consider, mo-

tivatéd by the properties of the entailment relation of PTSs. Further restrictions

are required by the properties stated in the thinning lemma (lemma 2.1.12) and

the generalised substitution lemma (lemma 2.1.11).

3.2.13 DEFINITIoN A consequence relation is intuitionistic if it satisfies

(weakening) F 	J implies i. 	J for F ç ;

(substitution) F F-a. J implies F[l/] Fx/{.}ufV() J[l/], where if It 1 ,.. . , t

then fv(l) is u1 fv('t).

Remark Observe that F 	J implies F H 1, J for X C Y, by condition 2.

Finally, we distinguish a particular style of proof system, called a natural deduc-

tion system, based on rules expressed using the schematic form mentioned earlier.

All proof systems with intuitionistic consequence relations have equivalent formu-

lations (in the sense that their consequence relations coincide) as systems using

this style; it is with respect to these formulations that ELF representations are

given.

A natural deduction rule is a rule constructed from the schematic form

seq1 . . . seq,,, 	
side-condition

seq

where seq is F = 	J and each seq, for i E {1,... , n}, has the shape

F, J1 , . . . , J, , J for fl, m > 0. A natural deduction system is a

proof system consisting of natural deduction rules and (possibly) the structural

rules

WEAK
	F='xJ

F, A =4','

F=J 	L,JzK
CUT

F,A =" K

60

Logical Systems

F=,xJ
SUBS

F[/] 	X/{}Ufv() J[/]

Remark Natural deduction systems do not necessarily lead to intuitionistic con-

sequence relations. Weakening, cut and closure under substitution may not hold

due to 'awkward' side-conditions limiting the assumptions. For example, the

presentation of call-by-value A-calculus in [Plo74] consists of the usual untyped

A-terms and rules including the restricted 3-ru1e

(Ax.A)B = A[B/xJ 	 if B is a value,

where a value is an expression which is not an application. As Plotkin points out

in [P1o74], the free variables should range over values and not arbitrary terms.

Otherwise, for M = (Ax.Ax.x)(x), N = Ax.x and L = (Ax.x)(Ax.x), we have

M = N, by the 18-equality, but not M[L/x] = N[L/x], since N[L/x] is in normal

form and M[L/x] cannot be reduced. In [AHM89], the calculus is represented in

ELF by limiting substitution to values.

3.2.14 EXAMPLE A fragment of the natural deduction system for first-order logic

is

F,çbtrue =tx 0 true

F 	(0 D b)true

DE 	
F='.x (çb'çb)true F=qtrue

F 	btrue

VI 	
11 X,z çbtrue

F 	Vx.q5 true

VE 	
F 	Vx.çb true

F 	çb[t/x] true

21 	
F 	cb[t/xJ true

F 	2x.0true

F =x 2x.çbtrue F,true X,z ?J'true

F 	btrue

61

Logical Systems

There is a direct encoding of first-order logic in ELF (example 5.2.4) which

preserves the structure of derivations. Natural deduction systems with no side-

conditions are easy to encode in ELF+, once the syntax has been represented.

3.2.15 EXAMPLE The natural deduction system of S 4 [Pra65] includes the neces-

sitation rule

NEC
	 r = qtrue 	

F consists of modalities,
F 	Dçb true

where a modality is a formula beginning with 0. This logic is represented in

ELF by an indirect encoding which is adequate (definition 5.1.4), but not nat-

ural (definition 5.2.3). It is usually the case that natural deduction rules with

side-conditions which limit the assumptions in the premises are more difficult to

represent.

3.2.16 EXAMPLE It is standard practice to concentrate on theoremhood when

using Hilbert systems. We follow Avron's approach [Avr9l] for incorporating

assumptions into these systems and describe Hilbert systems as special cases of

natural deduction systems with the natural deduction rules restricted to those of

the form

FXJi ... F X Jfl 	
side-condition

that is, no discharge of assumptions or binding of variables occur in these systems.

Remark As Avron cautions, regarding Hubert systems as special natural deduc-

tion systems makes the frequent problem of finding a natural deduction system for

a consequence relation defined from a Hilbert system redundant. A deeper anal-

ysis of the rules and connectives is required to highlight the differences between

these types of systems. This is beyond the scope of this thesis.

The Hubert system of propositional logic [Ham80] can be formulated as the

following natural deduction system:

A 1 	F4 x (çbJ(bDçb))true

A 2 	F = ((q D (6)) D () D (0 D O))true

62

Logical Systems

MP
	 F =x (5D 0) true 	F =x çbtr'ae

1' ='x 'btrue

where, in this case, X denotes a set of propositional variables. This system has

a direct representation in ELF+ using a fragment of the signature given in exam-

ple 5.1.9 to represent Hilbert-style S4 . This natural deduction system is extended

to give a proof system for Hilbert-style S4 [Che80] by incorporating the rules

A 3 	F 	(D 3 q)true

A 4 	F = 	(11(5 j) j (5 3 D1'))true

A 5 	IF =x (00 3 000) true

and either the rule

F = th
NEC
	

0 is a theorem,
l x DØ

which results in a natural deduction system with an undecidable side-condition,

or the rule

Oxc5
NEC

FxDc5

which is not a natural deduction rule. In examples 5.1.9 and 5.2.7, we indicate

that the representation of this presentation of Hilbert-style 84 in ELF is not a

direct encoding, as the behaviour of the assumptions would suggest.

63

Chapter 4

The Framework ELF

We propose a new framework, ELF+, as a type theory for representing logics.

It is based on ELF [HHP89] and follows the same pattern of representation in

that a logic is specified by an ELF signature which gives rise to a correspon-

dence between the logic and the resulting type theory. With ELF, it is possible

to give a general definition of this correspondence with representations providing

equivalences between logics and their representing type theories. This extends

the adequacy theorems [HHP89] for ELF encodings which are only applicable to

particular representations and cannot be generalised. The main point is that the

terms in the ELF universe Type have many uses: they represent the basic judge-

ments and syntactic classes, they are extra terms given by the machinery of ELF

and they are extra terms required in an encoding. This means that information

is lost during representation and so it is impossible to identify, from the repre-

senting type theory, the part of the entailment relation which corresponds to the

consequence relation of the underlying logic. ELF+ has three universes in place

of Type, which allows for more distinction between terms and enables us to give

general definitions of the equivalences we seek.

Before we introduce the new framework, we discuss the representation of first-

order logic in ELF given in [HHP89].• This simple encoding illustrates the problems

with ELF, and also serves as an introduction to representations in ELF+ since

many of the ideas apply. Readers familiar with ELF may skip to section 4.1.3,

which motivates the need for a new framework. In section 4.2, we introduce the

type theory ELF presented as a pure type system with signatures and ij. Recent

64

The Framework ELF

unpublished results of Salvesen [Sa191], 1 which extend her work on incorporating i

in ELF to functional PTSs satisfying strong normalisation, imply that the system

is decidable. We give an alternative proof of the Church-Rosser property for ELF,

a key result for showing decidability, which avoids the technicalities in [Sa189]. Sec-

tion 4.2.2 shows that our new framework ELF+ overcomes the problems identified

in section 4.1.3. In the following chapter, we provide the formal justification for

the new framework.

4.1 Representation in ELF

In both frameworks, denoted indiscriminately by 	a logic is specified by

a signature. The logic expressions, judgements and proofs of the logic are all

represented by terms with the type checking rules enforcing the well-formedness

conditions; in particular, proof checking is reduced to type checking. The variables

of the logic are identified with certain variables of the type theory and the binding

operators are represented using A-abstraction, inspired by Church [Chu40] and

Martin-Löf's system of arities [NPS90]. The advantage of this approach is that

in many cases it enables the machinery associated with handling binding opera-

tors (such as of-conversion and capt ure- avoiding substitution) to be shifted to the

metatheory, rather than be repeated for each presentation. Of course, only binding

operators that behave similarly to A-abstraction can be represented in this way.

Systems with non-standard variable binding have not been fully investigated; the

representation of Hoare logic in ELF [Apt8l] involves a complicated specification

and it is not clear whether the it-calculus [MPW89] can be represented in

Our representation of the rules and proofs focuses on the notion of judgements

stressed by Martin-Löf [NPS90] and described in chapter 3. Proof systems are

viewed as calculi for constructing derivations of basic judgements and rules are

given by schemata formed using Martin-Löf's higher-order judgements. Basic

judgements are represented by terms inhabiting a universe (Type in the case of

'In very recent work {Geu91], Herman has proved the Church-Rosser property for

functional, uorma.lising PTSs

65

The Framework ELF

ELF using the 'judgements-as-types' principle) whose inhabitants correspond to

proofs. The structure of the type system of the two frameworks allows for a

uniform treatment of the higher-order judgements as H-abstractions so that rules

can be represented as constants of the appropriate type.

We present ELF as a PTS with signatures and ij (also given in section 2.3).

The advantage of the PTS notation is that it provides a simple description of

the framework which is easy to understand (contrast this presentation with the

original presentation in appendix A) and which emphasises the differences and

similarities between ELF and the new framework ELF+ .

4.1.1 DEFINITIoN The framework ELF is the PTS with signatures and (exam-

ple 2.2.8) given by the specification

U = {Type, Kind}

V = {Type}

A = {Type: Kind}

= {(Type, Type), (Type, Kind)}

We now proceed to describe the encoding of first-order logic in ELF, specified

by EFoh assuming the language of expressions is that of arithmetic (examples 3.1.4

and 3.2.14). It will be clear that the method applies to any first-order signature.

Many of the ideas discussed here also apply to the new framework, as representa-

tion inELF is similar to that in ELF.

4.1.1 Representation of first-order logic in ELF

The representation of the syntax of first-order arithmetic is straightforward. The

syntactic classes of the first-order terms and formulae are represented in ELF by

the two constants

Type

0 	Type

REP

The Framework ELF

whose inhabitants correspond to individuals and formulae. These inhabitants are

formed by introducing a constant for each expression symbol of the logic:

O:t

succ :

+ :

= : 	-+—*o

o—*o--o

V : (t—+o)--o

In >Fol, there is no declaration of terms to denote variables; variables of first-

order logic are identified with certain ELF variables. Thus, for example, the ELF

term +(succ(x'))(0) in a context declaring x' : t represents the open expression

succ(x) + 0. This means that we can use the A-abstraction of ELF to give the

binding operators so that, for example, the universal quantifier is handled by a

constant whose domain is of function type (t -* o); the formula Vx.x = x is

represented by the term V(Ax:t. = (x)(x)). This allows us to avoid explicitly

formalising the machinery associated with binding operators in each individual

case.

As emphasised in chapter 3, we view proof systems as calculi for generating

derivations of basic judgements. The ELF approach for representing these judge-

ments is based on the 'judgement-as-types' principle where the basic and higher-

order judgements (discussed in chapter 3) correspond to objects of the universe

Type; the inhabitants of these objects correspond to proofs. In EF01, the basic

judgements are given by the constant

true : o - Type

so that, for term ' in o corresponding to formula q, the judgement true(cb')

corresponds to Otrue.

The method for representing proofs as ELF terms inhabiting judgements relies

on the uniform representation of the higher-order judgements. Recall that, if J

and K are basic judgements, then the hypothetical judgement J - K expresses a

form of consequence, that K is provable under the assumption J, and the general

judgement - J expresses the fact that J is provable generally in x for variable

x from syntactic class o. The hypothetical judgement is represented in ELF by

67

The Framework ELF

J' —* K' for terms J' and K' corresponding to the basic judgements J and K, and

the general judgement by Hx':cr'.J' for terms J, o' and x' corresponding to the

basic judgement J, the syntactic class o and the variable x. More generally, we

represent the hypothetico-general judgement J1 ,• , J __* .ai amTfor n, m > 0

by a term of the form 1Ix 1 :A 1 . . . llxm :Am .J; — — X.

For the purpose of encoding, we regard rules 	in their schematic form.

With direct encodings, one constant is declared for each rule in the proof sys-

tem; this is the case for first-order logic and higher-order logic, but is not so for

Hilbert-style S 4 (see examples 5.1.7 and 5.1.9). For the moment, we concentrate

on representing the rules for first-order logic, given in example 3.2.14, which are

given by the schematic form:

R
J

for schematic judgements J1 ,. . . , J and J. This schematic form is represented by

a constant R' inhabiting a type

where the J,. . . , J,, J are terms corresponding to the schematic judgements

and the yi,... , y close the term: that is, fv(J') U U fv(J') = {yi,... Ym}.

An instance of the above rule corresponds to a term R'(a1) . . . (am) inhabiting

(J — ... —* J, —* J')[a1/y] ... [am/ym] for a2 inhabiting , in the appropriate

context.

We give a detailed account of the representation of the natural deduction

system for first-order logic. The rule for implication elimination has two basic

schematic judgements for its premises with two schematic variables denoting for-

mulae. Its constant in EFOI is

DE 	: 	H,:o.true((cb)(')) —+ true(q5) —* true('çb)

The term D E(')(')(p)(q), where çb' and i,b' correspond to formulae t' and and

p and q to proofs of 0 D 0 true and 0 true respectively, inhabits the judgement

true(') and represents a proof of 1' true. The introduction rule for implication

is similarly schematic in two formulae; this time its premise is viewed as a hypo-

thetical judgement. Its corresponding constant is

llcb,:o.(true(cb) —* true(i/')) — true(qf D 0)

The Framework ELF

using infix notation for constant D. A term of the form I(q5')('i/)')(Ap:true(q5').q)

inhabiting true(çb' D /) corresponds to a proof of qS D i/'true, where the

A-abstraction provides a 'proof' of the hypothetical judgement 0 true -f b true:

that is, a function which takes a proof of 0 true and gives a proof of true.

We have seen that binding operators are represented using the A-abstraction

with, for example, the formulae Vx.0 given by V(Ax:t.'). In the representation

of the rules for universal and existential quantification, the schematic formula is

given by the term F : i -f o, so that substitution in the logic is transferred to

/3-reduction in the type theory. The constant for the VE-rule is

VE : HF:L -+ o.11t:t.true(V(F)) - true(Ft)

If F is Ax:t.' and p inhabits true(V(Ax:t.')) then VE(Ax:t.')(0)(p) inhabits

true((Ax:t.')(0)), which 3-reduces to true(ç/i[O/x])

The declaration of the constant corresponding to the universal introduction

rule relies on the uniform treatment of general judgements in ELF

VI : IIF:t -p o.(Hx:t.true(Fx)) -4 true(V(Ax:t.Fx))

For term p : true((b') in context F, x : t, we have VI(Ax:t.çb')(q) inhabiting

true(V(Ax:t.çb') in context F where q is Ax:t.p in llx:t.true((Ax:t.')(x)); here q

corresponds to a 'proof' of the general judgement - çb true: that is, a function

which, given any term, provides a proof of [t/x] true.

The specification of the I-ru1e follows from the ideas already mentioned:

31 	HF:t - o.11t:t.rue(Ft) -+ true(F))

The existential elimination rule has both discharge and variable-occurrence con-

ditions:

3E 	: 	IIF:t - o.Hi,b:o.true(F) -* (Hx:t.true(Fx) - true('çb)) -* true()

The side-condition for the SE-rule is a matter of scoping: since 0 is bound outside

the scope of x, no instance of ' can have x free, as required.

Remark Not all specifications of the rules are so straightforward since the ap-

plication of the rules may depend on 'awkward' side-conditions. For example, the

encoding of Hilbert-style S 4 (example 5.1.9) requires extra constants to represent

the consequence relation of the logic. This is discussed further in the next chapter.

The Framework ELF

4.1.2 Adequacy theorem

Accompanying each specification of a logic in ELF is an adequacy theorem which

identifies the part of the entailment relation which corresponds to the consequence

relation. All matters relating to representations of logics in ELF are treated up to

/37-equivalence; in particular, we use the 077-long normal forms (section 4.2.4) as

representations of these equivalence classes.

Notation Let A be an ELF term. We write A to denote the set

{t: 1' F- t : A and t is in 1377-long normal form with respect to (E; F)}.

For each sequence of variables X, let T(X) and F(X) denote the sets of terms

and formulae with free variables in X.

The adequacy theorem for EF0I uses the evident correspondence between the

arithmetic expressions of first-order logic and inhabitants of t and between for-

mulae and terms in o. It is given by the functions : T(X) -*t and rx
F(X) -* o, where if X is (X m ,... Xterm) then r is (x : t,.. . , x :

for bijection ()' : Var09 	VarType These functions are defined inductively on

the structure of the logic expressions as follows:

=X 	 xEX

= 	0

e(succ(t)) = 	succ(x(t))

x(t+s) = 	+(e(t))(e())

50=s) = 	=(x(s))(ex(t))

=

ox(Vx4) =

6X(3X.0) =

4.1.2 THEOREM [Adequacy theorem for first-order logic] For each sequence of

variables X = (X m , ... Xtm) the functions 	and 6, are bijections satisfying:

The Framework ELF

x and JX are compositional:. that is, for term expressions t E T(Y) and

s i ,. . . , s e T(X) and formula 0 E F(Y),

= y (t)[x (s)/ y (x)J

= öy(c5)[x(s)/y(xI1.

for sequences of logic variables (x 1 , . . . , x,1) and formulae

q5l true,. .. , t/ true HZ} çbtrue if and only if

true(Sx((i1)),. . ., Pm : true(Sx((i,m)) HE: true(8x(q)),

where _: true(6(q)) denotes the inhabitation of true(6x(c5)).

Proof In [HHP89] and also implicit in the proof of theorem 5.1.3. 	 E

Remark In [HHP89], Harper, Honsell and Plotkin give a stronger result for

their adequacy theorem for first-order logic which gives a correspondence between

the structure of proofs in the logic and the structure of their representing terms

in ELF. Ideally, we aim to mimic derivations in a logic using its representation

in ELF. This stronger result gives some measure of the feasibility of this goal.

For the moment, we concentrate on the standard consequence relation for natural

deduction systems 3.2.13. In section 5.2, we define interpretations in ELF which

allow for these stronger correspondences. To distinguish the two standards of

representation, we call a representation adequate when the representation of the

standard consequence relation is analysed, and natural when information regarding

the structure of proofs is also required.

Remark Condition 2 is given for arbitrary ELF terms inhabiting true(8x(1O)) 1

rather than specific terms, since, for the moment, we focus on representing the

standard consequence relation for first-order logic.

4.1.3 EXAMPLE To illustrate the interpretation of first-order logic in (ELF, EFOI),

consider the derivation

{(i, , 0 = q5

{} = O 3

0 	q5 3 (3)

71

The Framework ELVF

This corresponds to the ELF term

D15()(4),5()(Jç5)(Ap:true(ö(()). DI ()(45(>()(Aq:true(8() (i/)).p)),

where, for legibility, we write the terms representing formulae as subscripts. It is

easy to verify that this term inhabits true(ö((0 D 0))) in the empty context.

4.1.4 EXAMPLE The entailments of ELF account for free ELF variables in the

same way that sequents keep track of logic variables. The ELF term corresponding

to the derivation for first-order logic in example 3.2.9 is

(I))()),

which inhabits true(6x (2z.q5[z/x])) in context z' : t,p : true(6x(Vx4)). Notice

that the ELF variable z' occurs free in the term, just as logic variable z is free in

the derivation.

4.1.3 Problems with ELF

The adequacy theorem (theorem 4.1.2) for the ELF representation of first-order

logic only applies to this particular representation since it identifies the part of the

entailment relation, which corresponds to the consequence relation, by appealing

to specific constants in EF0I. We seek a general identification which results in

equivalences between logics and their representing type theories. Such a defini-

tion is not possible in ELF since information is lost during representation as the

universe Type serves many purposes.

Both the basic judgements of a logic and the syntactic classes are represented

in ELF by inhabitants of Type. For example, in (ELF, E 01) we have t, o

and true(q5) for 4 : o in Type. We identify terms of the form true(q) with the

basic judgements and variables of type t with the variables of the logic, but

this information cannot be given, except by appealing to specific constants

in EFo1.

It is not unusual for extra constants to be required in the representation of a

logic. The encoding of first-order logic is a simple representation which does

not illustrate this. The encoding of higher-order logic [HHP89] [AHM89]

72

The Framework ELF

uses extra constants to represent the syntax, and the encoding of Hubert-

style S 4 [AHM89] uses extra constants to represent the consequence relation.

We do not go into details here. The representations of these two logics are

given for ELF in examples 5.1.7 and 5.1.9. The second example illustrates

an instance of representation in ELF where two different logics (that is,

logics having different consequence relations) have the same specification;

the distinction is made apparent in the adequacy theorem. In ELF, logics

with different consequence relations have difference specifications.

3. There are other inhabitants of Type, arising from the machinery of ELF,

which have no meaning in the encoded logic. For example, in (ELF, EFOZ)

the term llx:o.t has no correspondence in the logic.

Remark Some H-abstractions using the rule (Type, Type, Type) do have an in-

terpretation in the underlying logic. The term t -* t contains terms representing

unary expression symbols: for example, succ: t -* i corresponding to the expres-

sion symbol succ. It also contains the term +(t'), which has no direct link as we

only consider complete expressions: that is, t + s rather than t + -. We concentrate

on the basic terms inhabiting Type, the terms which are not H-abstractions, since

these are used to interpret the consequence relation of the logic.

These points show that the framework ELF does not distinguish the terms

representing the basic judgements, the ELF variables corresponding to the logic

variables and the extra terms, resulting from the encoding or machinery of ELF,

without specific reference to the representation under consideration. We propose

a new framework which retains these distinctions.

4.2 The type theory ELF

In this section we introduce the PTS with signatures and ij which defines ELF.

The decidability of the framework follows from recent unpublished work by Salvesen

[5a191] which generalises her results for ELF [5a189] to functional PTSs with ij

satisfying strong normalisation. We give an alternative proof of the Church-

Rosser property, a key result in proving decidability, which avoids the techni-

73

The Framework ELY

calities in Salvesen's work and utilises the similarities and differences between the

two frameworks. It involves two translations: one to ELF, which preserves the

structure but which loses the universe distinction, and the other to the untyped

A-calculus [Bar84}, which retains the universe information but loses the typing in

the A-abstractions. Together they provide CR for ELF from the corresponding

results for ELF and the untyped A-calculus. All matters relating to representations

in ELF+ are treated up to 377-equivalence. We therefore define the /377-long normal

forms, extending a definition found in [Hue75] for the simply typed A-calculus, to

provide the natural witnessing terms for our purposes.

4.2.1 Definition of the type theory

We have illustrated, using the simple encoding of first-order logic, that informa-

tion is lost during representation in ELF. This is due to the lack of distinction

between the terms corresponding to the basic judgements, those corresponding to

the syntactic classes and the extra terms given by the encoding or machinery of

the type theory. The new framework ELF+ gives more distinction between the

terms using three universes, called Sort, Type and Judge, in place of the one ELF

universe Type. The connection between a logic and its representing type theory

is as follows:

basic judgements correspond to inhabitantsof Judge;

. syntactic classes[are represented by inhabitants of Sorts;

• variables of the logic are identified with sort variables (variables in V arS0t) .

The universe Type consists of terms which have no particular link with the logic.

The part of the entailment relation determined by the inhabitants of Sort and

Judge should, therefore, correspond to the consequence relation of the underlying

logic.

74

The Framework ELF

4.2.1 DEFINITION The framework ELF is defined by the PTS with signatures

and ij, specified by (U,V,A,R.):

U = {Sort, Type, Judge, Kind}

V = {Sort, Type, Judge}

A = {Sort: Kind, Type: Kind, Judge : Kind}

= {(Sort, Kind), (Type, Kind)} U {(s, s 2 , Type) : S1, S2 e V}

Notation An ELF term A is a kind if I' 	A: Kind for some context F

and signature E. Similarly, a term A is a sort, type or judgement if it inhabits the

appropriate universe with respect to some context and signature.

The idea of splitting the universe Type of ELF into three motivates the choice

of U, V and A. Some explanation of the rules of ELF+ is necessary. The rules

(Sort, Kind) and (Type, Kind) allow us to represent judgements dependent on

syntactic classes. Just as the ELF rule (Type, Kind) is used to declare the constant

true in o - Type in the ELF representation of first-order logic, we use these ELF+

rules to declare the constants which provide the basic judgements of the logic. It

will be shown that the ELF+ terms representing syntactic classes can inhabit Sort

or Type, but not Judge, since the intention is for the inhabitants of Judge to

correspond to the basic judgements of the represented logic. We therefore see no

reason to include the rule (Judge, Kind).

The H-abstractions of sorts, types and judgements, given by the rules of the

form (s i
, S 2,

 Type) for s 1 , s2 E V, all inhabit Type. The motivation for this is

that we view 11-abstraction as part of the machinery of the metatheory, rather

than as having a direct correspondence in the object logic. This differs from

Barendregt's method of representing certain minimal intuitionistic logics as pure

type systems [Bar90], in which propositions are treated as types and H-abstraction

represents the universal quantification.

Remark A result of the above choice of rules is that the basic judgements cor-

respond to terms inhabiting Judge, whereas the higher-order judgements are rep-

resented by H-abstractions (just as in the ELF case) which inhabit Type. This is

because we define the consequence relation of a logic from basic judgements. An

alternative approach is to view a higher-order consequence relation as fundamen-

tal (see [Avr89]), in which case the higher-order judgements are important and

75

The Framework ELF

must be distinguished from the other ELF terms inhabiting Type. One possibil-

ity is to replace the rule (v, Judge, Type) by (v, Judge, Judge), or perhaps even

(vL..e, New) for some new universe New, for v E V. In this case the basic judge-

ments are distinguished as those terms in Judge which are not H-abstractions, and

the higher-order judgements by the [I-abstractions Hx:A.J and Hp:J.K for J and

K in Judge and A in Sort. However, there are terms of this universe which have no

meaning in the underlying logic and so this approach needs to be explored further.

For the moment we work with the more standard definition of the consequence

relation.

Remark It is not clear whether (Judge, Sort, Type) and (Judge, Type, Type)

should be included. The rule (Judge, Sort, Type) allows for syntax to be depen-

dent on judgements. This is not allowed in the logics described in chapter 3,

although a natural example of a logic where this might occur is intuitionistic first-

order logic extended by the choice operator. The idea is that, given a proof p of

ax.çb(x)true, we obtain a term t, dependent on the proof of 2x.çb(x)true, such

that the judgement 0(t) true holds. Also, there are examples of logics represented

in ELF (see example 5.1.12), whose specifications have been adapted from ELF

encodings, which, although their syntax does not depend on proofs of judgements,

still require these rules for their representation.

4.2.2 Representation in ELF

Representations of logics in ELF+ are similar to those in ELF; the main con-

tribution of ELF is in the analysis of representation rather than the method

of specification. The difference lies in the choice of kind that a constant inhab-

its which depends on the intended use of that constant. We give two examples

to illustrate the differences. The first represents first-order logic and shows that

the problems highlighted in section 4.1.3 with the ELF representation have been

solved. The second encodes higher-order logic and illustrates the method for deal-

ing with extra constants required by an encoding. These examples illustrate that

we can recognise the ELF+ terms corresponding to the term expressions and basic

judgements of the represented logic without appealing to that logic. The formal

analysis is deferred until the next chapter where we also discuss more examples.

76

The Framework ELF

4.2.2 EXAMPLE In the specification of first-order logic in ELF, also denoted by

Fol, the two constants corresponding to the syntactic classes are

Sort

o : Type

The different universes they inhabit indicate the varying roles that t and o play.

The ELF+ terms in sort t correspond to the term expressions of the logic; the ELF+

terms in type o to well-formed formulae which are of no real interest in themselves,

but which are necessary to form the basic judgements. This is mirrored in the

encoding since the basic judgements are formed by the constant

true : o - Judge

The typing indicates that ELF+ terms in sort t correspond to term expressions and

ELF judgements of the form true(cb) for 0 in o to basic judgements. Of course, in

this particular case there is a link between the inhabitants of o and the formulae,

but this is not a general concept, whereas a link between the ELF+ judgements

and the basic judgements is.

Remark Notice the similarity between our approach of separating the ELF

terms corresponding to the term expressions, formulae and basic judgements and

Martin-Löf's intuitionistic type theory [Mar85] with the judgements A set, A prop

and A true. A full comparison of ELF and Martin-Löf's type theory is left for

future research.

As before, arithmetic expressions are represented by declaring a constant for

each expression symbol:

o :t : 	 Sort

succ : : 	Type

+ : : 	Type

= 	: t—*t—o : 	Type

D 	: o —*o --*o : 	Type

V 	: (i -* o) - o : 	Type

The constant 0 inhabits a sort, since it corresponds to a term expression, whereas

other constants, corresponding to higher-order expression symbols, all inhabit

77

The Framework ELY

Type. Just as the higher-order expression symbols are constructs for the logic

expressions, these constants form the inhabitants of t and o. The ELF+ terms +

and +(t) for t : i both inhabit types, whereas +(t)(s) for s : t is in sort t and so

corresponds to a term expression.

The rules for first-order logic are represented in a similar way to the ELF

encoding; we just give one constant corresponding to the D I-rule

Hçb,'çb:o.(true(b) - true(b)) - true(çb 	: Type

We distinguish between rules and proofs; rules correspond to terms inhabiting

Type and proofsto terms inhabiting Judge.

The problems illustrated by the ELF representation of first-order logic in sec-

tion 4.1.3 have been solved. We can now give a general identification of the ELF

terms, which correspond to the basic judgements of the logic since they inhabit

Judge. We can also identify the ELF+ terms which represent the term expres-

sions since they inhabit sorts; in particular, the sort variables correspond to the

variables of the logic. The next example shows the method for coping with extra

constants required in an encoding.

4.2.3 EXAMPLE The representation of first-order logic is simple and direct. Not

all encodings in ELF (or ELF for that matter) are so easy. This is illustrated

by the representation Of the syntax of higher-order logic which is based on simply

typed A-calculus:

	

domains 	a ::=toIa 4 a;

	

terms 	a (Axa.t)a= I

The domains, viewed as syntactic classes, cannot be represented directly as there

are infinitely many of them. In EHoI, the signature specifying higher-order logic

in ELF+, we have the constants

dom : Type

dom

0 : dom

dom -* dom —p dom

S

The Framework ELF

where each class symbol corresponds to a constant to give an obvious link between

the domains and the terms in dom. We associate to each inhabitant of dom a term,

identified with the objects of that domain, given by the constant

obj : dom - Sort

For each a : dom, it is the term obj(a) which represents a domain of higher-order

logic, rather than a itself, since inhabitants of obj(a) correspond to the expressions

of the logic. Thus, obj(a) is a sort and term a in dom is considered an extra

constant required in the encoding as the universes suggest. This demonstrates

the standard technique of using the Type universe to represent extra constants.

The representation of Hilbert-style S 4 in example 5.1.9 requires extra constants

to represent the consequence relation of the logic and also uses this method. The

complete signature EH01 is given in example 5.1.7.

Remark Notice that, in the representations of first-order logic and higher-order

logic in ELF, the term corresponding to the syntactic class of formulae is the

type o in the first and sort obj(o) in the second. The former distinguishes between

the first-order terms and formulae, whereas the latter treats a formula as any other

term expression. This mirrors precisely the behaviour of formulae in first-order

and higher-order logic.

4.2.3 Results

The decidability of ELF follows from very recent work of Salvesen [Sa191] which

extends her results for incorporating 77 in ELF [Sa189] to functional PTSs satisfying

strong normalisation. We give an alternative proof of the Church—Rosser property

(CR) which avoids the technicalities in [Sa189] and utilises the similarities and

differences between the two frameworks. This involves two translations; one is to

ELF, which loses the distinction between universes, and the other is to the untyped

A-calculus [Bar84], losing the type information in the A-abstraction. Together, they

give CR for ELF from the corresponding properties for ELF and the untyped

A-calculus.

Detailed proofs of the following lemmas are given for ELF in [Sa189].

79

The Framework ELF

4.2.4 LEMMA Let (U, V, A, 1?) be the specification of either ELF or ELF in def-

inition 4.1.1 or 4.2.1.

FHA=B:CimpliesFE-A:CandFF-B:C.

FHE A:BimpliesBisKindorFl - E B:uforuEU.

F,x:AE-Ea and FFEA=A' :v forv E Vimplies F,x:A' I-Ea, where a

denotes an ELF assertion.

[instance of the substitution of equalities lemma (lemma 4.2.6)] Let F 	A: v,

forvEV,andFH E N=N':A. Then

F,x: A HE B = B': v for v E V implies F HE B[N/x] = B'[N'/x] :

F, x : A HE B : Kind implies F HE B[N/x] = B[N'/x] : Kind.

Proof (sketch) The result is proved simultaneously by induction on the derivation

of F a for ELF assertion a. Part 4 is required to prove part 1 when the last

line in the derivation uses the APP-EQ rule. It has an unsatisfactory proof which

relies on the properties of the set of rules R. Part 4a is proved from observing

that F HE (Ax:A;B)N = (Ax:A.B)N' : u and F H (Ax:A.B)N = B[N/x] : u and

F HE x:A.B)N = B[N /x] : u where the formation of the)¼-abstractlons relies

on R. Part 4b is proved by noting that B has the form 11x 1 :B1 . . . Hx:B.w for

w E V. Then, by induction on n > 0, one shows that

F,x 1 : B1 [N/x], . .. ,Xk : Bk[N/x] 'E Bk+i[N/x] = Bk+i[N'/x] : Vk

for k E {1,. . . ,n} and Vk E V. The rest of the proof is easy and is left to the

reader. 	 D

4.2.5 LEMMA [substitution of equalities] Let (U, V, A, 1?.) be the specification of

either ELF or ELF found in definition 4.1.1 or 4.2.1. Then

F,x:A,F'HE B=B':CandFHE N — N':A implies

F, F'[N/x] H E B[N/x] = B'[N'/x] : C[N/x].

The Framework ELF

Proof The proof follows from lemma 4.2.4. 	 0

A technical lemma is now given which identifies some constraints on the asser-

tions which hold in The results for ELF are used in our proof of CR for

ELF.

4.2.6 LEMMA Let (U,V,A,R.) be the specification of either ELF or ELF in def-

inition 4.1.1 or 4.2.1.

F V. Ax:A.B: Kind;

1' V. AB : Kind;

F F- A : B and #(A, 2) or #(A, 3) implies A does not contain a universe.

Proof Part 1 is proved by assuming that F HE Ax:A.B: Kind and proving con-

tradiction. The preterm Kind is certainly not a 11-abstraction and so, by in-

specting the possible derivation trees, it follows that A H C = Kind: v for some

context A c F, some preterm C and v E U. By lemma 4.2.4 Kind: v which

contradicts lemma 2.3.9.

Result 2 is also proved by showing that 1' 	AB: Kind gives a contradic-

tion. Again by looking at the possible derivation trees, we must either prove that

C = Kind: v for some term C, context L c F and v E U, which using the

above argument gives a contradiction, or that the last line in the derivation is

an instance of the APP rule. In this case F A: Hx:C.Kind for some term C.

By lemma 4.2.4, F I- 11x:A.Kind : v and so, using the weak generation lemma

(lemma 2.3.8), F, x: C HE Kind: v for v E U which contradicts lemma 2.3.9.

Result 3 is proved by structural induction on A. We consider two cases; the oth-

ers are similar or trivial. When A is of the form Hx:A 1 .A 2 then, by the weak gener-

ation lemma (lemma 2.3.8), F HE A 1 : u and F,x : A 1 HE A 2 : v and (u,v,w) E R.

So #(u, 1), by inspecting A and 7, and, by corollary 2.3.17, #(A 1 , 2). By def-

inition of the level relation , we have #(Hx:A i .A 2 , n) implies #(A2, n). Using

the induction hypothesis A 1 and A 2 contain no universes. If A is A 1 A 2 then, by

the weak generation lemma, F HE A 1 : 11x:B1 .B2 and F HE A 2 : B1 for preterms

B 1 and B2 . We have #(A i ,n) when #(A 1 A 2 ,n) and so, by the induction hy-

pothesis, A 1 does not contain a universe. By lemma 4.2.4, F HE 11x:B1 .B2 : w for

81

The Framework ELV'

w E U. Using the weak generation lemma, F HE B1 : u' and F, x: B 1 HE B2 : v' for

(u v w') E R. So #(u', 1) and #(B1, 2) using corollary 2.3.17. Hence, #(A2, 3)

and so A 2 does not contain a universe, by the induction hypothesis. 	0

Remark It is also the case that 1 and 2 hold for any universe u e U, not just

the top universe Kind. The proof of this, however, involves the Church—Rosser

property.

We now give the two translations, used in the proof of CR for ELF+; one is

from ELF to ELF and the other is from ELF to the untyped A-calculus [Bar84].

The PTS morphism f from ELF to ELF is given by

Sort 	i-* 	Type

Type '-p Type

Judge i-* Type

Kind '-* Kind

and extended to the preterms, precontexts and presignatures, as described in sec-

tion 2.1.1. This provides a sound interpretation of ELF in ELF by lemma 2.3.12:

that is,

	

ELF 	\ F 1ELF a implies f(1') H f(E) f(,

where a is an ELF+ assertion.

The translation from the preterms of a PTS to the untyped A-terms, extended

with the constants U U {ll} U Comst, where U is the set of universes for the PTS,

H is the constant used to translate the H-abstraction and C oust is the set of

constants for ELF+, is defined inductively on the structure of the preterms:

	

C0 = C, 	 c E U

	

= x, 	 for variable x

	

a° = a, 	 for constant a

(Hx:A.B)° = H(A°)(Ax.B°)

(Ax:A.B) ° = .Xx.B °

(AB) ° = A ° B°

It is easy to show that this translation preserves the equality between terms.

The Framework ELF

4.2.7 LEMMA Let C be a PTS with signatures and i. Then F A = B : C im-

plies A ° =p B° , where =,a, 7 denotes the /3ij-equality of the untyped A-terms [Bar84J.

The next lemma is important for our proof of the Church—Rosser property for

ELF. The PTS morphism f from ELF to ELF loses the information about

the universes. Therefore, ELF+ terms, whose images using f are equal, may not

necessarily be identical; for example, f(Type) = f(Sort). However, terms, whose

images using f and ()° are equal, must be identical.

4.2.8 LEMMA Let E be a signature of ELF. For ELF preterms D and E,

if 1(D) = 1(E) and F I_ EIF 1(D) : A, for some preterm A and context F, and

Do =3 E then D and E are identical.

Proof The proof follows by induction on the structure of D and E (which is

the same since 1(D) = 1(E)). If D and E are universes then D° = 677 E° im-

plies D° and E° are identical, using the Church—Rosser property for the untyped

A-calculus. Since ()° preserves the universes, we know that D and E are iden-

tical. The cases when D and E are constants or variables are similar. For the

A-abstraction and application cases, we use the equality 1(D) = 1(E). We know

that 1(D) = 1(E), and so to show that D and E are identical it is enough, by

lemma 2.3.12, to show that D and E do not contain universes. By lemma 4.2.6,

F Vf(E) 1(D) : Kind so we have #(D,2) or #(D,3) using corollary 2.3.17. Us-

ing lemma 4.2.6, this means that 1(D) does not contain a universe. Therefore,

D and E do not contain universes. When D and E are H-abstractions, of the

form llx:D 1 .D2 and llx:E1 .E2 respectively, we require all the premises. We have

F F-EIF Hx 1 : f(D 1).f(D 2) u for u E {Type, Kind} and, by the weak genera-

tion lemma (lemma 2.3.8), F F- f(D) : Type. Hence, #(1(D1),2) and, by

lemma 4.2.6, f(D) does not contain a universe. By lemma 2.3.12, D 1 and E1 are

identical. We now turn to the equality H(D)(Ax.D) = H(E)(Ax.E). Using

CR for the untyped A-calculus and observing that, since fl is a constant, that re-

ductions preserve the outermost application structure, we have Ax.D =)tx.E.

Again by CR, we know that Ax.D and Ax..Ehave a common reduct. By de-

laying i'-reduction using the outermost A-abstraction (if it is used) to last, it

follows that D2° = E° . We also have 1(D2) = 1(E2), by definition of 1, and

F 	 ELF 	
i , x : 1(D1) H f (E) 1(D2) u by the generation lemma. Using the nduction hy-

The Framework ELF

pothesis, it follows that D2 and E2 , and therefore HxD 1 .D2 and llx : E1 .E2 , are

identical. 	 D

We are now in a position to prove Church—Rosser for ELF+ .

4.2.9 THEOREM [Church—Rosser for ELF] F ~_ELF+ A: B and A > A' and
I AA implies A 	III andA 	A Ill forpretermsA F ,AII andAIII

Proof The PTS morphism f from ELF to ELF, sending Sort -* Type, Type i-*

Type, Judge -* Type and Kind i-p Kind, preserves the 3- and ij-redexes and

so results in f(F) F- 1(A) : f(B), f(A) > f(A') and 1(A) > 1(A"). Using

Church—Rosser and subject reduction for ELF [Sa189], we have f(A') > C and

f (A") > C for some ELF term C. Since f preserves 3- and i-redexes, we can

use the same reduction paths to obtain A' > D and A" i' E for ELF+ terms D

and E, such that f(D) = 1(E) = C. The map (..)° from the ELF preterms

to the untyped A-terms also preserves 3- and ij-redexes so that A ° D° and
017

A: 	E° , where 	denotes /3-reduction in the untyped A-calculus, and so
077

D o = E using the Church—Rosser property for the untyped A-calculus. By

lemma 4.2.7, D and E are identical. 	 D

Recall that strong normalisation holds for ELF by lemma 2.3.11 since ELF is

strongly normalising [HHP89]. We appeal to Salvesen's results [Sa191] for subject

reduction, unicity of types, generation and strengthening for ELF.

4.2.4 3-1ong normal forms

Throughout this section we assume that we are dealing with a functional PTS

with signatures and 7 7 satisfying strong normalisation and rely on Salvesen's re-

sults [Sa191]; in particular, we assume CR and subject reduction. We investigate

the equivalence classes of terms with respect to contexts and signatures given by

the equality judgement: that is, if 1' A = B: C then A and B are in the same

equivalence class with respect to (E; F). There are two standard ways of choosing

witnesses for these equivalence classes. One approach selects the /37-normal form

which is the unique term containing no 077-redexes. The other approach identifies

the 377-long normal forrn and is of more relevance to us. The intuition is that

the terms in /37-long normal form with respect to some signature and context

The Framework ELF

are fully-applied. For example, in the ELF+representation of first-order logic, we

associate the formula Vx.y = x with the ELFterm V(Ax:t. = (y)(x)) in context

y: t, rather than the term V(= (y)). The constant =: t -* t -* o in EF0Z is fully-

applied in the first term, but not in the second. The /377-long normal forms are

presented in [Hue75] for the simply typed A-calculus. In [HHP89], Harper, Honsell

and Plotkin give a description of the so called canonical forms, which correspond

to our /377-long normal forms. It is impossible for them to show that each well-

formed term is equal to a unique canonical term since they only have 0-equality.

Felty [Fe189] and Augustsson, Coquand and Nordstrom [ACN90] provide systems

which generate just these canonical forms.

4.2.10 DEFINITIoN Let C be a functional PTS with signatures and ij satisfying

strong normalisation and let A be a preterm. Then,

A is in 077-normal form if it has no subterm of the form (Ax:B 1 .B2)(C)

(called a 3-redex) or Ax:B.Cx for x fv(C) (called an -redex);

A has a /3'q-normal form with respect to (E; 1') if F 1-4 A = B: C and B is

in /377-normal form.

The /377-normal forms provide witnesses to the equivalence classes defined by the

equality relation. They are found using the decidable reduction relation -.

4.2.11 LEMMA Let C be a functional PTS with signatures and ij satisfying strong

normalisation and let F 	A: B. Then,

A has an unique 6i-normal form with respect to (E; F).

if 	A: C then the 3i-normal forms of A with respect to (E; F) and

(; z) are the same.

Proof By strong normalisation, the Church—Rosser property and subject reduc-

tion. 	 o

Remark This lemma shows that a term A has unique 677-normal form irrespec-

tive of the term it inha1its with respect to a particular context and signature.

The Framework ELF

Remark In [HHP891, the canonical forms are defined using the 3-normal forms.

We use the 817-normal forms since they are unique; the 3-normal forms are not

unique using our stronger equality.

The analysis of the shape of the 017-normal forms is required in order to con-

struct the /317-long normal forms. First, a technical lemma is given which extends

lemma 4.2.6. This uses the Church—Rosser property and so was not proved earlier.

4.2.12 LEMMA Let (be a functional PTS with signatures and 77 satisfying strong

normalisation. Then F vc Ax:A.B : u for all u E U.

Proof Assume the contrary. Using the generation lemma, it follows that

F 	u = Hx:C.D v, for v E U and preterms C and D, which is impossible using

strong normalisation and the Church—Rosser property. 	 0

4.2.13 LEMMA Let A be in /317-normal form. The subterms of A (definition 2.1.2)

are also in /3ij-normal form.

Proof By definition.

4.2.14 LEMMA Let (be a functional PTS with signatures and ij satisfying strong

normalisation.

1. A term A in 017-normal form has shape

Ax:Al....Ax fl :A fl .11yl:Bl....Hy m :Bm .@Ml ... Mk for n,m,k > 0, where ©

is a variable, constant or universe and the As, Bs and Ms are in 317-normal

form, and where

A 1 is not a A-abstraction for each i E {1,. . .

B2 is not a A-abstraction for each j E {1,... , m}.

2. Let E = (a1 :A 1 ,. .. , a:A) and F = (x 1 : A+1). .. , Xm : An+m) for n, m > 0.

The /317-normal form of Ak with respect to (E; F), for k E {1,... , n + m}, is

not a A-abstraction.

Proof Part 1 is proved by induction on the structure of A. The non-trivial cases

are when A is a H-abstraction or an application. If A is Hx:C1 .C2 it is enough,

M.

The Framework ELY'

since C2 is in 317-normal form, to show that C2 is not a A-abstraction. Using the

weak generation lemma (lemma 2.3.8), we have F, x : C1 F-c C2 : u for universe u

and context F and so, for this case, the result holds by lemma 4.2.12. For A

of the form C1 C2 , we show that C1 is not a A- or H- abstraction. The former

is immediate since C1 C2 cannot be a @-redex. By the generation lemma, we

know that F I- C1 : 11x:D1 .D2 for preterms D1 and D2 . If C1 is a H-abstraction,

then, by the generation lemma, we have F' HE U = Hx : D1 .D2 : v for universes u

and v. By CR and strong normalisation, since the H-structure is preserved by

/377-reduction, it follows that u must be a 11-abstraction, whichUs (o'r kA^e c.c.e.

For part la, we know that F,x 1 :A 1 ,. . . , x_ 1 :A_ 1 F- A : u, for ui E U and

i E {1,.. . , n}, using the weak generation lemma. From lemma 4.2.12, A i is not a

A-abstraction. Parts lb and 2 are proved in a similar way. D

The /3i-norma1 forms of terms distinguish elements from the equivalence classes

of terms given by the equality judgements. Another way of choosing witnesses to

these classes is to use the 3'q-long normal forms, defined using the 1377-normal

forms. This involves the concept of a constant or variable being fully-applied: for

example, in the ELF encoding of first-order logic the term x : t 	 +(x) : t

is not fully-applied, whereas x : t E-'' +(x)(x) : t is.

4.2.15 DEFINITIoN 	Let F HE A : B and A be in 377-normal form. Then,

the arity of a universe in A with respect to (; F) is 0;

the arity of free variable x or constant a in A with respect to (; F) is the

number of Hs in the prefix of C', where x : C E F or a: C e E and C' is the

1877-normal form of C with respect to (E; F);

the arity of bound variable y in A with respect to (E; F) is the number of

[Is in the prefix of D, the term attached to its binding occurrence.

Remark The definition is proper since D is in /3ij-normal form (lemma 4.2.13),

we have the entailments F HE x: C or F HE a: C by the free variable lemma

(lemma 2.3.2) and D and C' are not A-abstractions (lemma 4.2.12).

4.2.16 DEFINITIoN Let F HE A: B.

EYi

The Framework ELY

The term A is in 37-long normal form with respect to (; F) if it has shape

Ax 1 :A 1 . . . Ax:A.11y 1 :B1 • . Hym:Bm.©Mi,. . . , Mk

for n, m, lc > 0, where the arity of © is k with respect to

(E; F, x 1 :A 1 ,. . . , 	y 1 :B1 ,. . . , y:B,), each A, for i E {1, .. . , n}, is in

/3i-long normal form with respect to (E; F, x 1 :A 1 ,. . . ,x 2 _ 1 :A_ 1), each B1 ,

for j E {1,. . . ,m}, is in 3-long normal form with respect to

(E; I', x 1 :A 1 , . . . , x:A, y 1 :B1 , . . . , y1 _ 1 :B1 _ 1)

and the M1 for 1 E {1,... , k} are in ,13i-long normal form with respect to

(; F, x 1 :A,. . . , XnAn, y 1 :B1 , . . . , ym :B).

The term A has a /3i-long normal form with respect to (E; F) if, for preterm

C, F HE A = C : B and C is in 37-1ong normal form with respect to (E; F)

Remark Notice that the definition of terms in -1ong normal form depends on

the context and signature since, for example, with x: A HE x : A, the variable x

is in 377-long normal form with respect to the appropriate signature and context,

whereas this is not the case for x in x : A -* A HE x : A -* A.

Just as in [HHP89], we use the thj-1ong normal forms, rather than equivalences,

of ELF+ terms in our analysis of ELF+ representations. Given F HE A : B, we state

an algorithm for constructing the 0-1ong normal form of A with respect to (E; F);

the results, which show that the 377-long normal forms are witnessing terms for

the equivalences given by the equality relation, are left for future research, since

they are not essential to our research.

4.2.17 DEFINITIoN Let F HE A : B. The pseudo-long form of A with respect to

(E; F) is constructed as follows:

find the 37-normal form of A with respect to (E; F), which has shape

Ax 1 : A 1 . . . Ax : A.Hy 1 : B 1 . . . 11Ym :. B m .©Mi ... Mk for n, m, k > 0,

where © is a universe, constant or variable;

if © is a universe go to 5;

The Framework ELY

if © is a free variable or constant then replace ©M1 . . . M, by

.\wk + 1.Dk + 1. . . \w,:D,.©M1
...

for p ~! k, where D1 is C1 [M1 /w 1] . . . [M,/w,] for 1 E {k + 1,.
. . ,p}, the

Wk+1 . . . w, are distinct variables which do not occur in u fv(M) U {©},

© : C is declared in F or E and the /3ij-normal form of C with respect to

(E; F) is Hx 1 :C1 . .. Hx:C.EN1 . . . N; now go to 5;

if © is a bound variable then replace ©M1 . . . M, by

	

)(wk+1:Dk+1\w:D,.©Mi . . . 	 •

for p ~! k, where D1 is C1 [M1 /w 1] ... [M,/w j] for 1 E {k + 1 1 . . . ,p}, the

wk+1 . . . are distinct variables which do not occur in u 1 fv(M) U {©}

and © : Hx 1 :C1 . . . Hx:C.sN1 . . . Nq is one of the x : A i or yj : B for

iE {1,.. . ,n} and j E {1,... ,m}; now go to 5;

if n, m, k and p are 0 then stop;

otherwise, for each i E {1, . . . , n}, replace A, by its pseudo-long form with

respect to (E; F, x 1 :A 1 ,. . . , x_ 1 :A_ 1); similarly for each j E {1,. .. , m},

1 E {1,.. . , k} and r E {1,. . . ,p}, replace the B, M1 and Dr by their pseudo-

long forms with respect to (E; F, x 1 :A 1 ,. . . , y 1 :B1 ,. . . ,

(E;F,x1 :A 1 ,. . . ,x:A,y 1 :B1 ,. . . ,y:B) and

(; F, 	. . , 	y 1 :B1 , ... , Y m Bm , Wk+1 	Dk+l,. . . 	 : D_1) re-

spectively.

Remark The hypothesis is that the pseudo-long forms are unique and coincide

with the 3j-long normal forms. It is not obvious, however, that the above algo-

rithm terminates since, for each 1 E {k + 1,.
. .

,p}, the term D1 in parts 3 and 4

may contain 3-redexes. One possibility for providing termination (suggested by

Plotkin) is to use an equivalent algorithm, with the same resulting term as the

one given, which first produces terms that are fully-applied (for example given

F F- ©M1 . . . Mk, the term ©M1 . .. Mk is fully-applied with respect to (; F) if

the arity of © is k) and then 3-reduce; intuitively, the fully-applied condition is

preserved by /3-reduction. This conjecture is left for future work. Dowek [Dow9l]

has a very different proof of termination for essentially the same algorithm for the

89

The Framewoik ELY

Calculus of Constructions [Coq85] and its subtheories. For the remainder of this

thesis, we assume the uniqueness of 67-long normal forms.

ME

Chapter 5

Adequate and Natural Encodings

The formal justification of the new framework ELF is presented in this chapter.

We show that ELF permits general definitions of representation; the syntactic

versions of these definitions are given here, and in the following chapter the simple

algebraic formulations are presented.

Initially, we focus our attention on the consequence relations of formal systems.

In the first section, we define the notion of an adequate encoding of an arbitrary

logic represented in ELF+, which characterises representations of consequence rela-

tions in the entailment relation of the representing type theories. We give examples

of adequate encodings and show that the encoding of A 1-calculus [Bar84] in ELF,

adapted from the ELF signature in [AHM89], is not adequate.

The adequacy theorem accompanying the ELF representation of first-order

logic [HHP89] also links the structure of derivations in the logic with the structure

of certain ELF terms corresponding to the derivations. This gives some indication

that the proof system of the logic can be mimicked by the representation in ELF.

We provide a general definition of this correspondence, called a natural encoding.

Using the same method as in [HHP89], this involves extending the syntax of the

logic to incorporate expressions for proofs and adapting the proof system accord-

ingly. This results in a consequence relation with an explicit account of the proof

expressions. It is not clear how to perform this extension in general. We illustrate

the method using first-order logic which provides a natural encoding in ELF. We

also point out that the encoding of Hilbert-style S 4 in ELF, although adequate, is

not natural.

II

Adequate and Natural Encodings

5.1 Representation of consequence relations

We characterise representations of intuitionistic consequence relations of logics

(definition 3.2.13) in ELF. This characterisation takes two parts; we first define

an encoding, which gives a sound interpretation of the consequence relation in the

entailment relation, and then an adequate encoding which states when this results

in an equivalence. With representations in ELF it is not possible to define the basic

notion of an encoding since, in some cases (example 5.1.12), a single signature is

used to specify logics with different consequence relations.

5.1.1 Encodings

The definition of an encoding is given for an arbitrary logic specified by an ELF

signature. It provides a correspondence between the syntax and judgements of

the logic and the ELF terms in 077-long normal form (justified and defined in

section 4.2.4). This correspondence identifies variables of the represented logic

with sort variables, preserves substitution and gives a sound interpretation of the

consequence relation in the entailment relation. Some care must be taken with

identifying variables of the logic with sort variables. Each variable of the logic

inhabits a unique syntactic class, whereas the corresponding information in the

type theory is determined by the context, and so varies. We therefore define

encodings using functions indexed by sequences of variables of the logic. The

following notation is used throughout.

Notation Let LOG be an arbitrary logic represented in ELF by EL 09 . We

distinguish the following sets of ELF terms:

termr = It for some preterm A, I'
Log

t : A);

sort 	= {c: 1'
Log

C: Sort);

texpr = is : for some c Esortr , F F- EL0g s : c};

judger = {j : F I- ELog j: Judge).

Adequate and Natural Encodings

The correspondence between the encoded logic and its representing type theory is

given using the /3ij-long normal forms and so we distinguish the set

term' = It : t E termr and t is in 37-long normal form w.r.t. (EL 09 ; F)}

and, similarly, the sets sort, texp" and judg4". We also require, for each

preterm A,

= {t: F I- 	t : A and t is in 377-long normal form w.r.t (E LO9 ; F)}. ELog

Recall that T denotes the set of preterms of (ELF+, EL) and VarSo?i and

Var Judge denote the sets of sort variables and judgement variables respectively:

that is, if F ELF+ x : A: Sort then x is a sort variable, and similarly for the Log
judgements.

The set of syntactic classes containing term expressions, the set of term ex-

pressions and the set of judgements of a logic LOG are denoted by SLOG, TLOG

and JLOG respectively. For X a finite sequence of distinct logic variables, TLOG(X)

and JLOG(X) denote the subsets whose members contain free variables in X. We

omit the subscripts when the particular logic is apparent.

5.1.1 DEFINITIoN Let LOG be an arbitrary logic with an intuitionistic conse-

quence relation (definition 3.2.13) specified in ELF by EL 09 . An encoding of

LOG in (ELF, EL O9) is a triple (ii, 6, 6) where ij: S — T is an injective function

satisfying, for all c E 5,

0 	i(c) : Sort,Log

where ij(c) is in 13, j-long normal form with respect to (EL09; ()).

Both 	and 6 are families of injective functions 	: T(X) —* T and

J(X) —* T, for finite sequences of logic variables X = (x',. . . , x) and

for which there are distinguished bijections 1C : Vare Var S0Tt for each c E 5,

such that:

x(r)
= fC() for xC in X;

for each term expression t from syntactic class cr and judgement j, both with

free variables in the sequence X = (x',.. . , x), we have

F)cF•ELog 	(t) :

FF E Sx (j): Judge,

93

Adequate and Natural Encodings

where rX is ((Xi) : ij(o 1),.. . , x (x,) : ij(o)) and x(t) and S(j) are in

/37-long normal form with respect to (EL Og ; rx);

the x and 8, are compositional: that is, for term expressions t e T(Y) and

• . , Sn E T(X) and judgement j E J(Y),

= ey (t)[x (s)/ y (x)}

= Sy(j)[x(s)/y(x)];

the interpretation is sound: that is, for sequences X = (x',. . . , x) and

j) of variables and judgements of the logic respectively,

{jl ... ,jm}H{x1x}jimplies

8x(ji),. ,Pm : 6(jm) H E .

where I'x is (SX(Xi) : 	. . , 	: ?](oj), the Pi, • . ,Pm are distinct

variables in Var9e and ..: &K(j) denotes the inhabitation of ELF term

5(j).

Remark The encoding definition depends on certain properties of the logics

under consideration. The definition of syntactic classes (definition 3.1.1) does not

depend on the variables of the logic so the image of ij is contained in sort. We also

assume that the term expressions and the judgements (definitions 3.1.2 and 3.1.3)

do not contain information regarding proof; this is mirrored in the encoding since,

for each sequence of variables X, the images of 	and 6X are contained in term,677 rx
and judg4" for context of sorts i' s .

Remark An alternative approach is to define encodings without the indexing of

variables and transfer the bookkeeping of variables to the definition of adequacy,

where it is essential. Our method gives simpler definitions.

Remark In general, the /377-long normal forms are not preserved by substitution:

for example, if y: A, x : A — A llz : B.xM: u and y: A HE (Ay:A.y) : A —+ A

then y : A HE llz: B[(Ay:A.y)/x].(Ay:A.y)M[(Ay:A.y)/x] : u which contains a

/13-redex. The compositional definition is well-defined in part 3 since A-abstractions

are not substituted, as substitutions are restricted to inhabitants of sorts.

94

Adequate and Natural Encodings

Remark In the above correspondence we do not link derivations in the logic

and inhabitants of ELF+ judgements since the standard consequence relation of

the logic contains no information about the derivations. The proof information is

therefore disregarded in the entailment relation: that is, we are interested in the

inhabitation of ELF judgements, rather than particular ELF terms.

Notation Let (77, , 8) be an encoding of a logic in ELF. For each sequence

X = (x', . . . , x) of variables of the logic, we let F denote the contexts of

sorts (X(Xi) : 77(0'1),. . . ,(x) : ii(j). We write x : T(X) -+ texp 	and

6x :' J(X) -* judg4 to denote the functions extensionally equal to 	and

6x but with the more precise ranges. These are well-defined by condition 2 in

definition 5.1.1. We also write 77 : S - sort. These functions play a central role

in the definition of an adequate encoding (definition 5.1.4).

5.1.2 PRoposiTioN Let (77,e,8) be an encoding of a logic in ELF using EL 09

and let X and Y be sequences of variables of the logic. If t € T(X) and t e T(Y)

then ex(t) = e(t). Similarly, if j E J(X) and j E J(Y) then 6(j) = 6y (j).j

Proof Follows from the compositional property (part 3 of definition 5.1.1). El

Ideally, the correspondence between a logic and its representation in a frame-

work should be immediately apparent, although it is not clear that this goal is

compatible with the aim of representing a wide variety of logics. With ELF,

the link between the logic and the representing type theory is usually obvious,

although some work must be done to show that it satisfies the conditions required

in definition 5.1.1. We give an encoding of first-order logic in ELF specified by

EFOI (section 4.2.2); other examples of encodings can be found in 5.1.7 and 5.1.9.

In the case of EFoI, the proof that we indeed have an encoding is similar to part of

the proof of the adequacy theorem accompanying the representations of first-order

logic in ELF [HHP89]; this is to be expected as our definitions make the intuition

behind the adequacy theorems precise.

5.1.3 THEOREM The ELF+ signature EFOI gives an encoding of first-order logic

in ELF.

Proof The two syntactic classes of first-order logic, denoted by term and form,

are represented in ELF+ by the terms t and o respectively, which gives the function

95

Adequate and Natural Encodings

i: S -* sort as follows:

i(term) =

For each sequence X = (x1 ,. . . , x) of variables of first-order logic (we omit the

superscripts as there is only one syntactic class), the function 	: T(X) - texr4
is defined inductively on the structure of t E T(X) as follows:

	

ex(x) =X , 	 xEX

= 0

&(succ(t)) = succ(x(t))

x(t + s) =+(Ex(t))(x(s))

where ()/ denotes a bijection from VarLog to Var Sort and rx is (x / 1 : t,...) x / :

The function 	is evidently well-defined, total and injective. Compositionality

for 	is shown to hold by a straightforward structural induction on first-order

term expressions.

Similarly, for each sequence of variables X = (x 1 ,. . . , x,j, the function

J(X) - judg4' is given by 5x(c5 true) = true('yx(q5)) for formula q, where

F(X) -* 4, with F(X) denoting the set of formulae with free variables in

X, is defined inductively as follows:

7x(t = s) = =

=

7xNXM =

'yx(x.0) = 	(Ax' :

where X, x denotes X U {x}. It is easily shown that y, is well-defined. Hence,

6X is a well-defined, total, injective function satisfying part 2 of definition 5.1.1.

The compositional property for 6X is shown by proving the equivalent property

for yx , which proceeds by straightforward structural induction on the formulae of

first-order logic.

All that remains to do is show that the above correspondence provides a

sound interpretation of the consequence relation of the logic in the entailment

Adequate and Natural Encodings

relation of (ELF+, EFO!); in this case, for finite sequences X = (x1)... , x,j and

(i true,.. . , On true) of variables and basic judgements of the logic respectively,

we must show

{ 01 true,. . . 0, true} '{x 1 ,. . . , X} qtrue implies

6(true),... ,p : 6x(0m true) I- _: Sx(cbtrue),

where rX is (x : t,. . . , 	: t) and - : Sx(q5 true) denotes the inhabitation of

8x(ctrue). The proof follows by induction on the derivation of

{ ci true,. , m true} 	{X1,.. . , x} 0 true.

5.1.2 Adequate encodings

An adequate encoding defines an exact correspondence between a consequence

relation of a logic and its representation in ELF. This is important since it not

only states that we get a sound and complete interpretation of the consequence

relation in the entailment relation, but also that we can recover the logic from the

representing type theory since no information has been lost during encoding.

5.1.4 DEFINITIoN An encoding (7,8) is adequate when

ij: S —* sort 97 is a bijection;

for each finite sequence X = (Xal . . , x) of variables, the functions

T(X) — texp' and S :5(X) —* judg4" are 	bijections;r1X

the interpretation is complete; that is, for sequences X = (xv, . . . , x) and

(j 1 ,. . , jm) of variables and judgements of the logic respectively,

6x(ji),. . ,Pm 5(jm)
F'Log 	6x(j) implies

where the Pi . ,Pm are distinct variables in Var Judge and _: 8(j) denotes

the inhabitation of ELF term 6(j).

97

Adequate and Natural Encodings

Remark A weaker notion results if we require only the completeness condition

(part 3); we call such an encoding weakly adequate. For example, the representation

of first-order logic (section 4.2.2) provides a weakly adequate representation of

propositional logic. We do not concentrate on this definition since it is important

to be able to discern from the type theory that part of the entailment relation

which corresponds to the consequence relation of the underlying logic. This is

very important when one wishes to investigate, for example, proof search and

general tactics for representations in ELF+, topics which are beyond the scope of

this thesis, but which are studied in [PW91], [Schm83] and elsewhere.

Remark Weaker notions of encoding require investigation. In chapter 3, we

emphasise that ELF has a certain approach to syntax, which need not be the

same as the approach in the original presentation of the represented logic. We

therefore gave a standard presentation which can be viewed as a transitional stage

between logics and their representations in ELF+. For example, the representation

of Hubert-style S4 (example 5.1.9) uses the transitional logic £new. One possible

avenue to explore is an encoding consisting of two naps; one from the transitional

logic-to the original logic and the other from the to the representation

in ELF.

Notation Let (, , 8) be an adequate encoding. For each context of sorts

Fs = (x:A,. . . , x,:A,) in /377-long normal form, let Xr, denote the sequence

of variables

/ ,i (Aj)1 	j'° (A) 	 (A,)1 	\?7(A)\ ,g 	 ,,,
cr 	a

where gC : VarS0t 4 Varc is the inverse of the function IC : Varc —* VarS0t given

by the encoding. We write 	: texj4 —* T(X rs) and 6. : judg4" _* J(Xrs)

for the inverse of functions 	and 6X respectively.rs

5.1.5 PROPOSITION Let (i,,8) be an adequate encoding. 	The functions

EI 	 / 	.

rs : texp'r _+ T(Xr s) and 8r : 3udge —* J(Xrs) are compositional: thatrs
is, for t E sortAs and j E judgeAs and term expressions si,. .. ,s E sortrs where

As = (x1 :A 1 , . . . , x:A) and rs F- EL09 s : A[s1, ... , s_ 1 1x 1 ,.. . , we have

"'s t[I 	LS)[' rs (s)

	

(SX]) - - - 	' (t__/e (x)];

=

Adequate and Natural Encodings

5.1.6 THEOREM The encoding of first-order logic in (ELF, EF0I) defined in the

proof of theorem 5.1.3 is adequate.

Proof The function i : S —+ sort is obviously a bijection. For each context of

sorts F5 in 1877-long normal form, we define 	: sort' — T(Xr s) by inductionrs

on the structure of the terms in sort 017 (in this case, terms inhabiting t) as follows: rs

	

Er (x) 	g(x) = 	 x E doin(F)

e' (0) = 0 rs

	

Er (succ(t)) 	= succ(e,(t))

= E(t) + E (s) rs

Log 	term 	
— 	S I 	 Log 	ort where g : Var 	—* Var 	is inverse to () : Var * Var 	given in the

proof of theorem 5.1.3. The injective function 6X : T(X) —* sort, for each rX
sequence of variables X, is a bijection since-'rx is its right inverse.

Similarly we have, for each context of sorts F5 in ,877-long normal form, the

function S : judge —* J(X). This is given by 6,(true(çb)) = '4(cb)true,

where : o —* F(Xrs) is the inverse of yj,, : F(Xrs) —* o defined in thers
proof of theorem 5.1.3.

Finally we show, for J1 ,.. J,,, J E judg4" with F5 a context of sorts in

?ij-long normal form, that

F5 ,p1 :J1 ,... ,pm:J HELF+ H: J implies 	. ,(Jm)} HEi(r) 8rs()' m EFOI 	 rs rs

where H is in 377-long normal form with respect to (Epoi ; F5 ,p1 :J1 ,.
. . ,Pmm) and

E(F5) denotes the set {E 'r (x) : x dom(Fs)}.

This is proved by induction on the structure of H. This is proved by induction

on the structure of H: we just look at one case. Let A denote F5 ,p1 :J1 ,. . . ,Pmm,

so that A F- H: J, and assume H is of the form VI(Ax:t.0)(Ax:t.q). Using the

generation lemma and renaming variables if necessary, A, x: t H E q : true(0) and

J is true(V(Ax:t.0)) by the uniqueness of 67-1ong normal forms. By the induction

hypothesis, and using the permutation lemma to obtain A, x : t in the right form,

it follows that

• . ''s,z:em)} H 	(true(0))

Adequate and Natural Encodings

where Y is {4() : y E dom(Fs, x : t)}, and so we have a derivation of the

corresponding sequent 	 's ,z:t(m)} ==>y 'yrs ,Z:t ' 	(0) true. Using the

VI-rule of first-order logic, we infer

	

{ S,z:L') ' 	. 	g ,z:m)} 	Y/{x'} Vx'.'/rs ,L (0) true,
'

where x is ' r5,z:(x). By proposition 5.1.2, it follows that
-

	

1 61
	(rs) 8rs()

U

5.1.3 More examples

5.1.7 EXAMPLE [Higher-order logic] The representation of higher-order logic in

ELF+ gives an example of an adequate encoding which requires extra constants

to express the syntax of the logic in the type theory. There are many ways of

presenting higher-order logic (see for example [Chu40], [And7l], [Sch77], [Tak75]).

We encode the version given in [HHP89], which follows Church in using the simply

typed A-calculus [Mit9l] to form the syntax of the logics with the simple types

being treated as syntactic classes (often called the domains). The syntax and basic

judgements are defined using the signature notation introduced in chapter 3:

C = {i° ,o° ,='.2 }

CI =C
='L 	LLL 	OOO a E = {OL, succ , + 	, 	} U U

r

=
 a a , 	U a

Ua {app' 	A=) } af3 	 aj3

J = {true° }

To illustrate the representation, we consider the following fragment of the natural

deduction system for higher-order logic:

VI 	
1' X, za btrue

1' 	V(A, 0x.) true

VE 	
1' 	V g,.(e)true

I' 	appa ,o(e)(e')true

100

Adequate and Natural Encodings

F 	(e =, e') true
LAM 	

r 	(A,x.e)t ,7x.e') true

EQ 	
' 	 X qStrue ' 4'X (c 	b)true

"X 'çbtrue

F 	(app,.,.(Ae)(x) =T e[e'/x]) true

77 	 F = 	(A qrx.(app yr (e)(x)) 	e)true 	 x V fv(e)

The representation of the domains has already been discussed in example 4.2.3.

They are specified in ELF by the following declarations in the signature EHoI,

adapted from the specification of higher-order logic in ELF [AHM89]:

dom : Type

dom

o : dorn

= : dom - dom -* dom

obj : dom -* Sort

The remaining part of the specification is similar to the ELF representation of

first-order logic. The expressions are specified by a set of constants, one for each

expression symbol of higher-order logic:

o : obj(t)

succ : obj(t=tL)

+ :

obj(000)

= : us: dom.obj(s=s=?o)

V : Hs: dom.obj((s=o)=o)

A : Hs: dom.Ht: dom.(obj(s) -* obj(t)) -* obj(s.t)

app : ils: doni.Ht: dom.obj(s=.t) -* obj(s) -+ obj(t)

Notice that the representation of the quantifier and equality, both indexed by

the domains, makes use of the dependent terms in an essential way, just as in the

101

Adequate and Natural Encodings

ELF representation of higher-order logic. The abstraction operator of higher-order

logic is specified by the constant A to avoid confusion with the A-abstraction of

the type theory, and the constant = is used as an infix operator. In contrast to

Church's formulation [Chu40], both the domain and range term of an abstraction

are explicitly attached to the representation of A-abstractions and applications.

This does not, however, introduce any complications when showing that we have an

adequate representation since the domain and range terms are uniquely determined

for each term expression of function type.

Using the same approach as in the encoding of first-order logic, we declare a

constant to form the truth judgements of the logic:

true : obj(o) -+ Judge

The inference rules are specified using techniques similar to those for first-order

logic. As a notational expedient, we make use of the following 'externalisation' of

the equality constant:

As: dom.Ax: obj(s), Ày: obj(s).app30(app330 =S x)(y)

which inhabits

Hs: dom.obj(s) -* obj(s) -* obj(o)

and which we write in infix form. Again we have one constant for each rule (we

write arguments to applications as subscripts to enhance readability):

VI : Hs: dom.[IF: obj(so).(Hx: obj(s).true(app30 F x)) - true(app3 ,, 0,0 V. F)

VE : Hs: dom.IIF: obj(s=o).11x: obj(s).true(app(80) V. F) -* true(app3 F x)

eq 	: Hq5:obj(o).H:obj(o).true(q5) -* true(q5 , ii') -+ true(i/.)

1_am : Hs, t:dom.11f, g:obj(s)—obj(t).(Hx:obj(s).true(f x 	g x))

true(A 3 , Ax: obj(s).fx 	A 3 , Ax: obj(s).gx)

/3 	: lls, t: dom.Hf: obj(s)—obj(t).Hx: obj(s).

true(app3 (A 3 , (Ax:obj(s).fx)) x 	Ix)

77 	[Is, t: dam .11f: obj(s=t).true(A3 (Ax: obj(s).app 3 Ix) (st) I)

5.1.8 THEOREM The signature EHOL provides an adequate encoding of higher-

order logic in ELF.

102

Adequate and Natural Encodings

Proof The mapping 77 	S - sort is given, for each domain o, by

= obj(j3(cr)), where ,8: S - dom is defined by

8(o)=o

f3(0r = c/) =

The link between the term expressions and inhabitants of sorts is given, for each

finite sequence X of variables of higher-order logic, by : T(X) -* texi4' 1 as

follows:

eX(x)

eX(SUCC)

ex (+)

x((Aqx.e))

Cx((e 	d))

f° (x)

0

succ

+

D

oS

=(fl(o.)) 	 oES

, T E S

app(/3(o))(,3(r))(Cx (e°))(Cx(d°)) 	o, E S

and f° : Var° -* VarSOTt is a bijection for each o E S. The connection between the

judgements of the logic and inhabitants of Judge is given, for each finite sequence

of variables X by S : J(X) -* judg4" , where 6 () = true(x (q)). From these

mappings we obtain an encoding.

The function ij: S - class is a bijection since /3 : S - dom is. To show

that (ij, , 6) provides an adequate encoding, we define functions 	: sort,677 -*

T(Xr s) and 6r, : judg4 -* J(Xrs). Let gC : VarS0t Varc denote the inverse

functions of fC for each syntactic class c. Then, for a context of sorts IF S in /377-long

normal form, we define by induction on the structure of terms inhabiting sorts rs
in this context as follows:

E (x 	= 	g11l(obi(A))(x) 	x : obj(A) E [' rs'

e' (0) = 0

103

Adequate and Natural Encodings

/

e
I
 succ) = succ rs

= + rs

= rs

rs 	= 	(A)

rs

	

(A(A)(B)(Ax:obj(A).e)) 	= 	A_1 (A) (glll(obJ(A))(x))E 	b()(e) rs , Z 0 A

	

e (app(A)(B)(e)(f)) 	= e (e)e' (f). rs 	 i's 	rs

I 	 / 	 / The function 8r : 3udge 5 —* J(Xrs) is given by Srs(true(q5)) = Er (çb)true. Itis

	

routine to show that E'rx and 	are inverse to 	and ä, for each finite sequencerx

of variables X and that the completion condition in definition 5.1.4 is satisfied. E

5.1.9 EXAMPLE [Hubert-style S4] The encoding of Hubert-style S 4 (example 3.2.16)

is an example where an extra constant is used to represent the consequence re-

lation of the logic in ELF. The difficulty lies with the NEC-rule presented, for

example, as:

0 	çi.true
NEC

true

This rule cannot be represented directly by the standard method of declaring a

constant nec inhabiting llc:o.true(q5) -* true(D) since such a constant would

force the inhabitation of true(Dq5) in any context entailing true(q). The solu-

tion due to Avron [AHM89] centres on a logic, denoted by £new , with the same

syntax as 54 , judgements of the form qtrue and çbvalid and the proof system in

table 5.1. The consequence relation of Lne. (denoted by H 7) restricted to the

truth judgements is the same as the consequence relation, H ° , of Hubert-style

S4 .

5.1.10 THEOREM Let 01 ,. . . , , 0 be formulae of Hilbert-style 54 and X a finite

set of logic variables (in this case denoting formulae). Then

{ c'i true,. .. , On true} F-°g (true if and only if {q5 	qS true,. . . , , true} r-
new true

Proof See [Avr86].

104

Adequate and Natural Encodings

A 1 	(c D (' D q)) valid

A 2 	((q53(1'DO))3(3) 3(qO))valid

A3 	(j 4) valid

A 4 	(D(0 3) 3 (EJq5 3 Db))valid

A 5 	(EIO 3 flDq) valid

(0 D 7P) valid çbvalid
MP

1' valid

q valid
TRUTH

çbtrue

(q
MPt 	

') true çbtrue

btrue

Table 5.1: The new logic £new .

105

Adequate and Natural Encodings

In Avron's approach, Hubert-style 54 is represented in ELF by encoding £new

and then, in the accompanying adequacy theorem, limiting the correspondence to

those ELF terms representing the truth judgements. An important advantage of

ELF is that the specification of Hubert-style S 4 is different from the specification

of £new. The difference occurs in the universes in which the terms corresponding

to çttrue and çbvalid inhabit. We declare the constants true : o - Judge and

valid: o -+ Type which indicate that the terms of the form true(q5) correspond to

the basic judgements of Hubert-style S 4 and the terms of the form valid(cb) are

extra terms given by the encoding. (In the representation of £new , the constants

true and valid both inhabit o -* Judge.) The full specification of Hilbert-style

84 , denoted by EM0d, is as follows:

o 	: Sort

o—+o--*o

D 	: 0-40

true : o -+ Judge

valid : o - Type

C 	: 11q5:o.valid(çb) - true(çb)

Al 	: Hqb:o.valid(q D (0 j 0))

A2 	: llçb,b,O:o.valid((çb D (DO)) -* ((D

A3 	: flq:o.valid(Eçb D q)

A4 	: llq5, 'çb:o.valid(D(çb D) D (00 D I0))

A5 	: llq:o.valid(Dq D DD)

MPv : Hq, ib:o.valid(çb) - valid(çb D 0) - valid(b)

Nec 	: llçb:o.valid(q) - valid(Dçt)

MPT : flq5, 'çb:o.true(q) - true(çb D 0) - true('ib)

5.1.11 THEOREM The signature EM0d provides an adequate representation of

Hubert-style 54 in ELF.

Proof The correspondence between the syntax and judgements of Hilbert-style

S4 and terms in (ELF, EM 0d) is easy. We have q : S -* sort given by

ii(form) = 0

106

Adequate and Natural Encodings

and, for X a finite sequence of logic variables (denoting formulae in this case), the

maps 	: T(X) 4 texr4 and 5 : J(X) - judg4 are defined inductively by

x(c5) = 	', 	 çbEX

=

WOO = D(x())

for bijection () 	
Log : Var —* Var Sort and

8x(0 true) = true(x(q))

We must show, for sequences of variables X = (x', . .. , x) and of judgements

(0 true,... , On true), that

	

{ ci true,. 	m true} 1 {x 1 ,. . . , X} true implies

x,Pi : 6 (4 true),... ,Pm Sx(cbmtrue) H
EMod

_: Sx(cbtrue),

for distinct variables Pi, 	,Pm in VarJndge where — : 8(çbtrue) denotes the in-

habitation of Ox(cb true). This fact follows from theorem 5.1.10, together with

a correspondence between £new and (ELF+, EMd) which is given by 77 and, for

each finite sequence of variables X, by and VX : Jnew(X) —* 7, where Jnew (X)

denotes the set of basic judgements in Ln,. with free variables in X. The function

VX is defined by

vx(cb true) = 6x(q5 true)

vx(qvalid) = valid(x (cb)

and, for sequences of variables X = (x1,. .. , x,) and judgements (J1 ,. . . , 1m) in

£new, satisfies

', new {J1 ,... mJ 	j implies F,q1 : vx(Ji),. .. ,q : VX(Jm)
EMod

_: vx(J),

where q1 ,. . . , q are distinct variables from Var Type u Var J1zde and, as usual,

_: vx(J) denotes the inhabitation of vx(J). It is easy to show that (, e, 6) is an

adequate encoding. 	 0

5.1.12 EXAMPLE [Ai-calculus] The A1-calculus [Bar84] is an example of a logic

which has been represented in ELF [AHM89], but whose adapted signature for

107

Adequate and Natural Encodings

ELF+ does not give an adequate encoding. In this calculus the A-abstraction is

restricted to

E A1 and x E fv(M) implies Ax.M E A1 ,

where A1 denotes the set of term expressions. It has already been noted that the

general principle for encoding logics in ELF is to avoid declaring a term whose
00%c

objects L variables; the variables of the encoded logic are identified with the

sort variables. The difficulty therefore in encoding the A 1-calculus is to identify

which expressions have x as a free variable whilst still having the sort variables

stand for logic variables. The method is inspired by the denotational semantics of

the calculus and involves adding an extra constant I: o which limits the applica-

tion of the constant representing the A-abstraction. The signature specifying the

A1-calculus, denoted by E, is:

exp : Sort

I. 	: exp

Hx:exp --- expJx(±)=J—*exp

app : exp -* exp -+ exp

= 	: exp -p exp - Judge

E0 : llx:exp.x = x

El 	Hx,y:exp.x=y—.y=x

E2 : Hx,y,z:exp.(x=y—*y=z—*x=z)

E3 	H 	I : 	x, y, x , y
I :exp.x = y - x I

= yI -* (app(x, x') = app(y, y'))

Hx:exp.app(x, I) = I

llx:exp.app(..L, x) = I

-'-A : I = A1 (Ax:exp.I,E0(I))

,31 	Hx:exp -* exp.Hy:exp.Htx(I) = 4app(A 1(x,t),y) = xy

Remark The signature E, provides an example which makes use of the rule

(Judge, Sort, Type) of the type theory to form the term in which the constant

A1 resides even though, in A1 , the syntax does not depend on proofs. It is not

clear whether this rule, plus (Judge, Type, Type), should in fact be included. This

example does not clarify this point since this signature does not give an adequate

encoding, as our next theorem states.

UM

Adequate and Natural Encodings

5.1.13 THEOREM The signature E 1 does not provide an adequate encoding of

the A1-calculus in ELF.

Proof We suppose (7), e, 6) is such an adequate encoding and show that this re-

suits in a contradiction. 	Since (ij, , 6) is adequate, there is a function

sort 3' -* T(0) such that E' > 0E0 = idT(o) and EO o

>1=
id3 I3 fl. We show

that all possible choices of E >(i) give a contradiction. If E (> (. L) is a variable, x

say, then e0 (x) = 1 which does not satisfy the definition of E0 . If e(-L) is MN for

M, N E A1 , then I = e0 (MN) = 6(Mx)[N/x] for x fv(M) by compositionality

of e and so e0 (Mx) = I. Also, using the same argument for y V fv(M), we have

60 (My) = I, which contradicts the injectivity of E. A similar argument applies

when e' > (..L) is a A-abstraction. D

Remark It is conceivable that there is an encoding from the A 1-calculus to

(ELF, E1) which sends Ax.M E A1 to .X.1 (Ax:exp.M')(p) for ELF term M' rep-

resenting M and p some chosen inhabitant of term (Ax:exp.M')(I) = I. Adding

an extra constant I to the calculus is unlikely to provide an adequate encoding

since the construction of ELF+ terms using constant depends on infinitely many

terms inhabiting x(I) = I for x : exp -* exp.

Remark An alternative approach to representing the A 1-calculus is to transfer

the restriction of the A-abstraction to the rules for the equality judgement; that is,

to declare A in (exp -* exp) -* exp and use a constant dir in (exp - exp) -* Type,

with the intuition that dir(Ax : exp.e) is inhabited if x occurs free in e, to restrict

the inhabitation of the equality judgement. Further research on'the representation

of side-conditions, exploiting the universe Type, is required.

5.2 Representation of proofs

Adequate encodings characterise representations of intuitionistic consequence re-

lations in ELF+. These encodings can be strengthened to give a stronger corre-

spondence which also links derivations in a logic with terms inhabiting judgements

in the representing type theory: we call such encodings complete. A complete en-

coding is natural when this stronger correspondence also yields an equivalence. A

109

Adequate and Natural Encodings

natural encoding captures the intuition that, for example, the representation of

first-order logic is more direct than the representation of Hubert-style S 4 , and gives

some measure of the fact that the proof system can be mimicked by its represen-

tation in ELF. The full statements of the adequacy theorems for ELF [HHP89]

are thus generalised. Following the approach in [HHP89], the syntax of a logic

must be extended to give an explicit account of derivations, and the proof system

adapted accordingly. It is not clear how to do this in general. For the moment,

we illustrate the putative method by example. In particular, we adapt first-order

logic to give anLof proofs and show that EFol provides a natural encoding of first-

order logic in ELF. We also point out that the signature EM 0d gives an adequate

encoding of Hilbert-style S 4 which is not natural.

5.2.1 Proof expressions

In this section, the syntax of first-order logic is extended to include a class of proof

expressions, adapted from the definition in [HHP89], in order to give an explicit

account of derivations in the consequence relation of first-order logic. The idea is

that the derivation of, for example, (4 j b) true, using the D I-rule in the last line,

is denoted by the proof expression I(q)()((p)q) where q is a proof of 0 true

depending on the proof variable p which denotes a proof of 0 true. The discharge

of assumption 0 corresponds to binding the proof variable p. The conclusion

(q D V)) true gives enough information to infer the formulae 0 and , although

this is not so in general as the E-ru1e illustrates. Thus the proof expressions

themselves must carry information regarding the formulae used. Following the

approach advocated in chapter 3, these expressions are generated from a set of

proof symbols, denoted by pf, which have a similar behaviour to the expression

and judgement symbols and which are accompanied by arities, where the set of

arities of first-order logic is adapted to incorporate the class of proof expressions.

110

Adequate and Natural Encodings

The proof symbols for first-order logic are as follows:

D

D 	
1, p1, pf)-*pf

t-pf)--pf

VE(t, t, pf)-+pf

t,pf)-*pf

f, p1, (t, pf) - pf) -- pf

There is a proof symbol for each rule of first-order logic, given in example 3.2.14,

whose arity indicates the schematic variables used in the rule, the proofs assumed

and the required binding of logic and proof variables. The proof expressions are

defined using a countably infinite set of proof variables, distinct from the logic

and schematic variables and denoted by Var00l, in a similar way to the logic

expressions; for exarip1e, the proof expression VI((x)q)((x)p) is formed from the
(t-f t-+pf)--pf proof symbol V 	' 	, the term variable x, the formula q and the proof

expression p. The notions of substitution and a-conversion are similar to those in

definitions 3.1.11 and 3.1.13. Rules are adapted to sets of (n + 1)-tuples of proof

sequents of the form I' p : J, where XLa set of variables of the logic, F is

a set of proof assumptions of the form {p 1 :J1 ,. . . ,pm :Jm }, with J1 ,. . J, basic

judgements with free variables in X and Pi,••• ,pm proof variables, J is a basic

judgement with free variables in X, and p is a proof expression with free variables

in X and free proof variables in {Pi,

Not all proof expressions denote valid derivations of a logic, just as not all

preterms of a PTS are well-formed. The proof system of first-order logic (exam-

ple 3.2.14) is adapted to incorporate these proof expressions and identify the ones

which are valid; see table 5.2.

A complete encoding maps valid proof expressions to terms inhabiting judge-

ments. We assume that the definitions of derivations and consequence relation

with proofs are obvious adaptations of definitions 3.2.7 and 3.2.11 respectively.

Notice that the consequence relation with proofs for first-order logic satisfies the

following:

weakening F 	p: J and F c A implies A F- p: J;

111

Adequate and Natural Encodings

F,p: çbtrue ?X q: btrue

P 	I(çb, b, (p)q) : (0 D &) true

F = p: (') true F =x q: çbtrue

F =xD E(çb,'ib,p,q) btrue

vi
	 F 	p: o true

F 	x \fI((x)cb, (x)p) : 'vlx.çb true

VE
	 F x p : Vx.çb true

F ='x \IE((x)cb,t,p) : cb[t/x]true

31
	 F = p: cb[t/x] true

F 	E((x)q5true,t,p) : 3x.otrue

EIE
	P 	q: 2x.çbtrue F,p: çbtrue =x,b true

=x E((x)çb,i/),q,(x,p)r) : i/Jtrue

Table 5.2: Proof system of first-order logic with proof expressions.

112

Adequate and Natural Encodings

substitution of variables r F- p : J implies F[/] Hx,{ ufV() p[t/] : J[i/],

where ifr is {p 1 :J1 ,.. ,pm :Jm } then F[/} is {Pi : J1 [/],. . . ,p : m{t7}}

and fv(i) = U 1 fv(t) for i = (t1 ,. . . , t,);

substitution of proof variables r 	H: J2 and ,p1 :J1 ,.. ,Pmm 	E : K

implies I', A H, E[ll/] : K[ll/] (renaming variables to avoid conflicting

proof variables if necessary).

5.2.2 Natural encodings

We are now in a position to give a stronger correspondence between first-order

logic and the representing type theory (ELF,EFOl), by linking the valid proof

expressions with ELF terms inhabiting judgements. The definition of encoding

is extended to that of a complete encoding which gives a sound interpretation of the

consequence relation with proofs in the entailment relation; a complete encoding

is natural when it provides an exact link between the consequence relations with

proofs and the corresponding part of the ELF+ entailment relation. These concepts

are defined at the general level for an arbitrary logic with proof expressions since,

although we do not have a general method for constructing proof expressions, we

are able to characterise their behaviour.

A logic with proof expressions consists of syntax extended to incorporate a class

of proof expressions constructed from a countably infinite set of proof variables.

These proof expressions have the usual notions of substitution and a-conversion

applied to both logic and proof variables. The consequence relation with proofs is

defined as a relation of the form A F-s. p: j where X is a set of variables of the logic,

= {p:j 1 ,. . . , p:j} is a set of proof assumptions, with each ji for i E {1, . . . n}

a basic judgement with free variables in X and the Pi, . , Pm distinct proof vari-

ables, j is a basic judgement with free variables in X and p is a proof expression

with free variables in X and free proof variables in {Pi, . .. , Pm}. The proof expres-

sion p is said to be valid. As in the definition of the standard consequence relation

(definition 3.2.11), we impose certain conditions on the consequence relation with

proofs to ensure its compatibility with the entailment relation of ELF. An intu-

itionistic consequence relation with proofs satisfies the weakening condition and is

113

Adequate and Natural Encodings

closed under substitution of variables and proof variables (properties listed above

for first-order logic).

Notation Let EL og be the specification of a logic with proofs in ELF. We

distinguish the following sets of ELF terms:

proofr = {p: for some j E judge, r H 	p : j}

proof = {p:p E proofr and p is in /3i-long normal form w.r.t. (E L0g ; F)}.

We also use SLOG to denote the set of proof expressions in the logic with subset

PLOG(X, i.) containing those proof expressions with free variables in X and free

proof variables in L, for finite sequences of variables X and proof assumptions

L. Let VPLOG(X,) denote the subset PLOG(X, z) consisting of valid proof

expressions. We omit the subscript when the logic is apparent.

COM)At oc

5.2.1 DEFINITIoN Let LOG be an arbitrary logicencoded in ELF by EL og . A

complete encoding of LOG in (ELF, EL O9) is a quadruple (ii, , 8, x) such that

(ii, , 8) is an encoding and, for each finite sequence of variables X = (x',. . . , x)

and of proof assumptions A = (pi :j1 ,. . . , Pm :j), and some given standard bijec-

tion -h: VarT00f , i,rJude the function : P(X,) - T satisfies:

Xx;(P) = h(p) for p declared in ;

for basic judgement j of the logic and proof expression p,

Log 	. 	 ELF+
{pi:3,. . , pm:2m} H{1} p : implies Ux, I 	EL06 Xx ;i(P) : 8xCi),

where context rX is (X(Xi) : 	. . , ç(x) : ii(cr)) and precontext [

is (Xx;(pi) : 8(j1),.. .Xx;(Pm) :

the Xx; is compositional; that is, for proof expressions [I E P(Y, ®) and

E 1 ,. . . , E. e P(X, z) and term expressions t 1 ,. . . , t E T(X), we have

Xx; 1 [1 ,]) = Xy ;o(ll)[x(t), Xx ;i(E)/y(X), xy;o(P)1.

Notation Let (j, , 6, x) be a complete encoding and let X = (x',. . . , x) be

a finite sequence of variables and A = (p1 :j1 ,.. . ,pj) a finite sequence of proof

assumptions. We let I, rA denote the context

(X(Xi) : ij(o),. . . 	: h1(CTn),Xx ;i (Pi) : 6 (j1),. . , Xi(Pm) : 6(jm))

114

Adequate and Natural Encodings

in ,3i-long normal form where, by definition, IP X is a context of sorts and I

is a precontext of judgements. In (ELF+, EL) the valid proof expressions are

represented by terms inhabiting judgements; the proof expressions as a whole are

not represented. We therefore restrict X X;zj to the valid proof expressions: the

function Xx ;i : VP(X, z) —* proof is the function extensionally equal to

Xx; ,a restricted to the domain VP(X, A.).

5.2.2 PRoPosITIoN Let ('ii, , 6, x) be a complete encoding and let X, Y be finite

sequences of variables of the logic and A., 0 be finite sequences of proof assump-

tions. If p is in P(X, A.) and P(Y, 0) then Xx ; (P) = XY ;o(P).

Proof By the compositional condition given in part 3. 	 El

5.2.3 DEFINITIoN A complete encoding (ii, , 6, x) is natural if

(ii, , 6) is an adequate encoding;

for finite sequences of variables X and proof assumptions A., the function

Xx ; : VP(X, Li) —* proof r is a bijection;

the interpretation is complete: that is, for sequences X = (x',. . . , x") and

(p1:j1,. . . , p:j) of logic variables and proof assumptions respectively,

Xx;ii(P) : 8(j) implies {p1 :j1 ,. ,pm:jm} F Lo9
EL09 	 {,...,z} P : J.

5.2.4 THEOREM The signature EF0I provides a natural encoding of first-order

logic in ELF.

Proof In the proof of theorem 5.1.3, we provide a triple ('ij, , 6) which is an

adequate encoding of first-order logic in ELF+. We extend it to a natural encoding

by defining, for each sequence of variables X and proof assumptions A., the function

Xx4 : P(X, A.) —p T, as follows:

115

Adequate and Natural Encodings

Xx ; (P) = P"
	

pE/

Xx ; a(D I(cb)(b)((p)q)) = I(yx(c5))('yx (b))(.\p":6x(cb true).Xx; (p))

Xx ;z(D E(çb)(b)(p)(q)) = E('y ())(7x ())(Xx ;i (P))(Xx; (q))

X x;i (11((X))((X)P) = VI(Ax':t.7 x ,(cb))(Ax':t.x x ,(p))

= 	 (t))(X; (p))

xx ;jx(1((x)cb)(t)(p)) = 	 (t))(Xx;z (p))

=

E\x':t.7x,, ()) ('1(0))((p)) (Ax':LAr":6 x ,(/, true) •Xx, ; ,r (q))

where bijection ()' : V ar 09 	VarSont and the functions 	F(X) -* o,

for each sequence of variables X, are defined in the proof of theorem 5.1.3 and

(.)" : Var' °° ' Var" is a bijecton. The functions XX;A satisfy the conditions

required to make (ii, , 5, x) a natural encoding. The details are left for the reader.

0

5.2.5 EXAMPLE [Higher-order logic] By proceeding analogously to the first-order

case, one can give a language of proof expressions for higher-order logic and a

formal system for deriving valid proof expressions to provide a complete encoding

of higher-order logic in ELF which is natural.

5.2.6 THEOREM The signature Eff 01 provides a natural encoding of higher-order

logic in ELF.

Proof Extend the adequate encoding given in the proof of theorem 5.1.8. 	0

5.2.7 EXAMPLE [Hubert-style S 4] It seems likely that the adequate encoding of

Hilbert-style S4 in ELF, given in theorem 5.1.11, is not natural. The intuition

behind this claim is illustrated by comparing the standard proof system for Hilbert-

style 84 with £new (given in table 5.1). In particular, the derivation

(qD)true çbtrue
btrue

116

Adequate and Natural Encodings

for theorems
(

st') true and qtrue in S4 can be linked with two derivations in

' new :

(q5D b)valid çbvalid

(cb4)true çbtrue

btrue

and
(q5) valid 0 valid

valid

'çbtrue

We believe our definition of a natural encoding will permit this intuition to be

made rigorous.

Remark Our approach for reasoning about representations of derivations, based

on the analysis in [HHP89], is clumsy. An alternative approach is to study the rep-

resentations of 'higher-order' consequence relations, constructed from Martin-Löf's

hyp othetico- general judgements [Mar85]. A slight variation of ELF, where rule

(s, Judge, Type) is replaced by (s, Judge, Judge) for each s in {Sort, Type, Judge},

would allow for a characterisation of the representations of these consequence re-

lations in ELF.

Remark One interesting problem regarding naturality is to compare the rep-

resentations of Hilbert-style propositional logic, specified by >Hjl (a fragment of

EM Od), and natural deduction-style propositional logic, specified by EN at (a frag-

ment of Epoi). It is intuitively clear that EN at provides a less natural representation

of Hilbert-style propositional logic than the normal signature EH& It is not so

obvious that the analysis of naturality given in this section can distinguish this

difference. This is because there is a correspondence between the proofs of the

two propositional logics. The rules for the Hilbert-style logic are derived rules

in the natural deduction presentation. The deduction theorem shows that the

D I-rule in the natural deduction system is not derivable in Hubert-style proposi-

tional logic. Instead, Schönfinkel's abstraction algorithm [HS88] provides a map-

ping from derivations in the natural deduction propositional logic to the derivations

in the Hilbert-style presentation. Using the higher-order consequence relation pro-

posed above, we should be able to show that EHz is a more direct representation

117

Adequate and Natural Encodings

of Hilbert-style propositional logic tham ENat: 	H 	is an instance

of the I-rule, whereas = 	H' 	does not hold, since we know that the

deduction theorem is not derivable.

118

Chapter 6

Encodings Expressed as Indexed Functors

We have emphasised the similarity in structure between the logics of interest and

their representing type theories, due to the fact that the behaviour of the variables

and the consequence relation of the logic is determined by the properties of the

ELF+ entailment relation. Encodings preserve this common structure. This mo-

tivates an algebraic presentation of the logics and their representing type theories

as strict indexed categories [PS78] (or split fibrations [Ben%5]) so that encodings

become indexed functors between them: that is, structure preserving maps rather

than functions satisfying a list of syntactic conditions. More specifically, a logic

with an intuitionistic consequence relation provides a (strict) indexed category,

whose base gives the term expressions and whose fibres are defined by the con-

sequence relation. This approach uses ideas from the area of categorical logic

(initiated by Lawvere [Law70]), but generalised to a wide class of logics. Using

ELF ve are also able to view the representing type theory as a (strict) indexed

category with the sorts providing the base category and the judgements the fibres.

Adequate encodings then correspond to certain indexed isomorphisms. By adapt-

ing both indexed categories to incorporate the extra information regarding the

proofs and inhabitants of judgements, natural encodings also yield isomorphisms

between indexed categories.

The results in chapters 2 and 3 allow a smooth transition frdm the syntactic

definitions of the previous chapter to the algebraic presentations given here.

119

Encodings Expressed as Indexed Fun ctors

6.1 Indexing of categories

The usual categorical structures for presenting logics and dependent type theories

(see the section, 'Related research', in the introduction) employ a categorical no-

tion of indexing. In order to understand the indexing of categories, it is instructive

to look at the indexing of sets, which can be described in two ways. The first is

as a set of indexed categories, {X} 1 , also written as X : I - Set where Set

denotes the class of all sets. The second is as a map f : Y -* I where I is again

the indexing set; the indexed sets are then given by the fibres f'({i}). The cat-

egorical counterpart of the first approach is given by indexed categories [PS78],

and that of the second by fibrations [Benc5]. There are obvious translations be-

tween the two approaches for sets (the analogous categorical concept is called the

'Grothendieck construction'). It is sometimes preferable, for technical reasons, to

use the fibration approach since, extending the set analogy, the map f is defined

in set-theoretical terms whereas the map X is not; its range is the class of all sets.

We choose the indexed category approach since, for our purposes, it is more natu-

ral to present a logic by first considering the syntax, which provides the indexing,

and then the consequence relation. We concentrate on the definitions necessary for

this chapter; an introduction to category theory is given by MacLane [Mac88J and

a clear exposition of fibrations and (strict) indexed categories is found in [BW90]

and [Jac9l].

6.1.1 DEFINITIoN Let C be a category. A strict indexed category is a functor

F : C' - Cat where Cat is the category of small categories. The category C is

the base category and, for c E obj(C), the fibre over c is the category F(c).

Remark A more general notion of indexed category as a pseudo-functor F: C°1' -*

Cat requires isomorphisms F(idc) and F('u o v) F(u) o F(v) with certain

coherent conditions (see Pare and Schumacher [PS78]). For our purposes, the

indexed categories are always strict and so, in future, whenever we refer to indexed

categories we assume that they are strict.

6.1.2 DEFINITIoN Let F : A°1' -* Cat and C : B °1' -* Cat be indexed cate-

gories. An indexed functor from F to G is a pair (crba8e) o) consisting of a functor

120

Encodings Expressed as Indexed Functors

ciba8 e : A -* B (called the base functor) and a natural transformation ci : F

G o oOP

Certain properties of functors and natural transformations lead to conditions

on indexed functors which are used in the analysis of encodings. An isomorphism

F : C - B of categories is a functor F from C to B which is a bijection on objects

and arrows. An equivalent definition is that there exists a functor G : B —* C

such that F o G = idB and G o F = idc . Afunctor F: C -* B is faithful (or an

embedding) when, to every pair c, c' E obj(C) and to every pair f1 , 12 : c -* c' of

morphisms of C, the equalities Ff1 = Fl2 : Fc -* Fc' imply f1 = 12. We will also

require some properties of natural transformations. Given functors F, C: A —* B,

a natural isomorphism a : F -* G is a natural transformation in which every

component aa , for a E obj(A), is an isomorphism. The inverses of the aa are the

components of a natural isomorphism a 1 : G - F, which we call the inverse

natural transformation for a. We write F G when such a natural isomorphism

exists. A faithful natural transformation 0 : F -* G for F and G as above has

faithful functors for its components.

6.1.3 DEFINITIoN A faithful indexed functor is an indexed functor with a faithful

base functor and a faithful natural transformation.

6.1.4 DEFINITIoN An indexed isornorphism is an indexed functor whose base func-

tor is an isomorphism and whose natural transformation is a natural isomorphism.

6.2 Logics as indexed categories

We provide a methodology for presenting logics with intuitionistic consequence

relations as indexed categories, where the term expressions provide the base cate-

gory and the consequence relation the fibres. The common structure is determined

by the properties of the ELF entailment relation which dictates the behaviour

of the variables and consequence relations of the logics under consideration. This

approach is based on the algebraic characterisation of particular logics and their

models (initiated by Lawvere [Law70J), but generalised to a wide class of logics.

It concentrates on the abstract view of logics as consequence relations (due to

121

Encodings Expressed as Indexed Fun ctors

Tarski [Tar56]) and provides the rudiments of an algebraic framework for such

logics.

For a logic with an intuitionistic consequence relation, the base category is

determined by the term expressions.

6.2.1 PROPOSITION Let LOG denote an arbitrary logic with an intuitionistic con-

sequence relation. Then the following defines a category:

objects 	finite sequences of distinct logic variables;

morphisms finite tuples of term expressions (t 1 ,. . . , t) : X -* Y(= (yi,•.. ,

such that, for each i E {1,.. . , n}, the tj and y2 inhabit the same

syntactic class;

composition if(t 1 ,...,t) : X -* Y = (yi,•. .,y) and(s 1 ,. ..,S m) : Y -+ Zthen

(Si,...,Sm) 0(t 1 ,...,t) is (i[/Y] Sm[t/}) : X -*

identity 	(x 1 ,. . . , x,) : X -+ X = (x1 ,.. . ,

Proof Use proposition 3.1.14 and the substitution results (proposition 3.1.15) to

show that A is a category. 	 D

6.2.2 DEFINITION Let LOG denote a logic with an intuitionistic consequence re-

lation. The category defined in proposition 6.2.1 is the term category for LOG.

Remark An analysis of the structure induced by the expression symbols is not

given as this structure is not present in the type theory (typically we represent

these symbols by constants in the signature). This analysis should be possible

using the information provided by the accompanying arities (section 3.1).

Remark We have chosen to define the objects of the base category as sequences of

variables to give an easy correspondence with the contexts of sorts. An alternative

is to use sets of variables and either define an equivalence on the context of sorts

using the permutation lemma or work with some standard enumeration of logic

variables to determine the corresponding context. Both approaches introduce extra

complication when studying encodings as indexed functors. For the same reason,

we also present the assumptions as finite sequences of judgements.

122

Encodings Expressed as Indexed Functors

6.2.3 PRoPosITIoN Let LOG denote a logic with an intuitionistic consequence

relation. Then the following defines an indexed category £ : A ° - Cat. The

base category A is the term category for LOG and, for each X = (xv ,. . . , x) in

obj(A), the fibre £(X) is:

objects 	finite sequences of judgements with free variables in X;

morphisms (j1,. . , jm) - (k r ,. . . , k,) whenever {j i , . . . ,jm} FLOG 	k2 for

ie{l,...,p}.

For each morphism (t 1 ,.. . , t) : Y -* X = (x 1 ,. . . , x,,) in A, the functor

£((t 1 ,. . . 	: X - Y) = ()* : £(X) -+ £(Y) is as follows:

()*((1 	
. ,j,,,,)) = (ii[/],. .

()*((j1j)...* (k 1) k))= (ji[/],...,jm[/])

Proof The fibre £(X), for each X E obj(A), is a preorder since the logic has

a consequence relation which is closed under cut (definition 3.2.12). By propo-

sition 3.1.14, we know that (t 1 ,. . . , t)" is well-defined. It is a functor from the

consequence relation preserving substitution (definition 3.2.13) and the substi-

tution results (proposition 3.1.15). The functor £ : A °" - Cat is therefore

well-defined. It preserves identity and composition using the substitution results

(proposition 3.1.15). D

Remark Notice that the proof of this proposition requires that the consequence

relation preserves substitution (proposition 3.2.13) and satisfies the following cut

condition:

if {j1,...,j} 	k2 for i E {1, ... ,m} and {k i ,..., ICm } [-x 1 then

The weakening property for intuitionistic consequence relations and the fact that

these relations are defined on sets is not fundamental to our presentation of logics

as indexed categories. We concentrate on these logics since they must have this

property to be encodable in ELF.

123

Encodings Expressed as Indexed Fun ctors

6.2.4 DEFINITIoN Let LOG be a logic with an intuitionistic consequence rela-

tion. The indexed category defined in proposition 6.2.3 is the indexed category

determined by LOG.

Remark The standard motivation for presenting logics categorically is to ex-

plain the structure of particular logics: that is, to give a categorical account of

the behaviour of the connectives and quantifiers. It is well-known, for example,

that the universal quantification of intuitionistic first-order logic is right adjoint

to substitution. This analysis concerns the specific properties of logics and, al-

though interesting, is not of fundamental concern to us. Of more relevance is

an explanation of the general stucture common to all logics; the consequence re-

lation, defined from sets of assumptions and logic variables, corresponds to the

base category and fibres having products; Martin-Löf's hypothetical and general

judgements give cartesian closed categories for the fibres in which right adjoints

to substitution exist.

6.3 ELF+ as an indexed category

We do not take the standard categorical approach to representing type theories.

Our presentation is motivated by the use of the type theory as a framework for

representing logics. It has already been emphasised that not all of the entailment

relation of the representing type theory corresponds to the consequence relation of

the underlying logic and, therefore, the whole theory is not presented as an indexed

category. Instead, we take advantage of the separation of ELF+ terms into sorts,

types and judgements to provide an indexed category whose base category is given

by the inhabitants of sorts and whose fibres are given by the judgements. We con-

centrate on ELF+ terms in 37-long normal form since the definitions of adequate

and natural encodings are given with respect to these forms. An alternative is to

present the categorical structure up to 377-equivalence.

The base category of the indexed category determined by (ELF, EL 09) is

defined using the inhabitants of sorts.

124

Encodings Expressed as Indexed Fun ctors

6.3.1 PRoPOSITION Let (ELF, EL og) be the type theory representing a logic.

The following defines a category B:

objects 	contexts of sorts in /3ij-long normal form;

morphisms r —f 	= (x 1 :A 1 ,. . . , x:A) are finite tuples (t 1 ,. . . , t) of

ELF+ terms, such that P5 E LOG t : A[t1,.. . , t_ 1 /x 1 , . . . , ;_1] for

i E {1, . . . , n} and each t 1 is in 377-long normal form with respect

to (EL O9 ; Ps);

composition for morphisms (t 1 ,... ,t) : IPS - A s = (x1 :A 1 ,. .. ,x:A,) and

(s 1 ,. . . ,S m): As - ®, their composite (Si,.. . S) 0 (t 1 ,. . . , t) is

(s1[/j,. . .,Sm[t/1) : -

identity 	(x1)... , x,) : AS - A s = (x1 :A 1 ,. . . , x:A).

Proof To determine that composition is well-defined, we must show that

P HEti :A[ti, . . . , t_ 1 /x 1 ,. . . , ;_], i { 1,. . . , n}, and x 1 :A 1 ,. . . , E- E a

implies F ELog a[/] where a is an ELF assertion. By the thinning lemma

(lemma 2.3.6) and renaming variables if necessary, F, x 1 :A 1 ,.. . , x:A HELog a and

so, by the generalised substitution lemma (lemma 2.3.5) and, observing that sub-

stitution of sorts preserves /3j-long normal forms, the result follows. Using the

start lemma (lemma 2.3.3), the identity is well-defined. The definition of simulta-

neous substitution, together with the accompanying results (proposition 3.1.15),

give the identity and associative laws. D

6.3.2 DEFINITIoN Let (ELF, SLog) be the type theory representing a logic. The

indexed category defined in proposition 6.3.1 is the sort category of (ELF, EL 09)

Remark We have given no account of context extension: that is, given a context

F and an entailment F F- A: 't for universe u containing variables, the extension

is F, x : A. This analysis is not essential for our purposes and is omitted since,

although there has been much research in this area (see [Jac9l] and the references

therein), there is no definitive account of context extension. It is also beyond

the scope of this thesis to give a full explanation of the structure arising from

H-abstraction.

125

Encodings Expressed as Indexed Fun ctors

Using the sort category we define the indexed category determined by

(ELF EL) which presents the subtheory corresponding to the encoded logic.

6.3.3 PRoPOSITIoN Let (ELF, EL og) be the type theory representing an arbi-

trary logic. Then the following defines an indexed category e: B°1' — Cat. The

base category is the sort category of (ELF, ELog), and, for each rs e obj(B), the

fibre E([' s) is the preorder category given by:

objects 	finite sequences of judgements J1 ,. . . , J with J e judg4' for

iE{l,...,n};

morphisms (J1 ,. . . , Jn) " (K1 ,... , Km) whenever

F5 ,p1 :J1 ,... ,p:J F-,
Log

: K, for j e {1,. . .,m}, where — : K2

denotes the inhabitation of judgement K,.

For each morphism (t 1 ,. . . , t,) : As - Ps = (x1 :A 1 ,. .. , x,:A,) in B, the functor

E: ((t1 ,. . . , t)° : P5 —f
As)= ()*

: S(P 5) —+ E() is given by

= (J1 [/],.. .,Jm [t/]);

Proof The fibres are seen to be preorders using the start lemma (lemma 2.3.3),

the generalised substitution lemma (lemma 2.3.5) and the substitution results

(lemma 3.1.15). For each morphism (t 1 ,. . . ,t,,) : As — F, ()* provides a well-

defined functor using the generalised substitution lemma and the start lemma.

Finally, S is a functor, again by the generalised substitution lemma. D

6.3.4 DEFINITIoN Let (ELF+, EL 09) denote the type theory representing an ar-

bitrary logic. The indexed category determined by (ELF, EL O9) is the indexed

category defined in proposition 6.3.3.

Remark Since adequate encodings focus on representing the consequence rela-

tions of logics, the fibres of the indexed category determined by the representing

type theory are preorders: that is, we concentrate on inhabitation of judgements

rather than the terms inhabiting judgements. To study complete encodings, these

indexed categories must be adapted to incorporate the extra information given by

the inhabiting terms (definition 6.5.4).

126

Encodings Expressed as Indexed Fun ctors

6.4 Adequate encodings give indexed isomorphisms

We are now in a position to show that the syntactic definitions given in chapter 5

correspond to simple categorical concepts; more specifically, encodings give rise

to indexed functors such that adequate encodings correspond to indexed isomor-

phisms.

Notation Let (77, , 6) be an encoding of a logic in ELF with standard bijections
1C : Var' —* VarSot. Recall that when X = (x,. . . , x) is a finite sequence of

variables of the logic we let rx denote (f° '(x 1) : 77 (0 1),. . ., f° (x) :

- Also, if (ii, , 8) is an adequate encoding and gc 	Sort : Var 	—* Var c is the inverse of
fC then, for F5 = (x 1 :A 1 ,.. . , x,:A) a context of sorts in 67-1ong normal form,

we let Xrs denote (g 11) (x 1)
1 (A ') ,. g'(A..)(X),r'(A)) where 77-4 is the

inverse of ij: S —p sort.

6.4.1 THEOREM Let (i', , 8) be an encoding of a logic LOG with an intuitionistic

consequence relation in ELF+, and let the indexed categories determined by LOG

and (ELF, EL 0g) be £ : A °" — p . Cat and S B°" — Cat respectively. We can
- 	 .

define a faithful indexed functorL denoted by (ebase , e) : £ — 5, consisting of base

functor ebase A —* B and natural transformation e : £ —+ 5 o ebase , where

eba8e((x1,. . .)x:)) = (X(Xi) : i(oj),.. . 	: 77(o)) for X = (x 1 ,. . . , x);

ebase ((ti,. . . ,t) : X —+ Y) = (e(t1),. .. ,(t)) : eba3e(X) —* eba3e(Y),

and, for each X E obj(A),

ex((Ji ,. . . , J)) = (8(J1), . . . ,

ex((Ji ,. . . , J) 	(K 1 , . . . , Km)) = (6x (1),. . . , 8(J,)) * (6x(K1),.. . ,

Proof ebase is well-defined since the encoding maps distinct logic variables to

distinct sort variables and term expressions to inhabitants of sorts satisfying the

properties stated in condition 2 of definition 5.1.4. Composition is preserved since

eX is compositional for each X = (x', .. . , x) and the identity is obviously

preserved. For each X E obj(A), we have a well-defined functor ex since the

encoding gives a sound interpretation of the consequence relation in the entailment

127

Encodings Expressed as Indexed Functors

relation and the identity and composition are obviously preserved because £(X)

and 5 o e&a, e (X) are preorders. These functors give a natural transformation

e : £ -* S since the functions 6x : J(X) - judgeP? are compositional. It is rx
faithful Lsince ij and, for each X E obj(A), ex and 6X are injective functions. 	0

6.4.2 DEFINITIoN Let (, , 6) be an encoding of an arbitrary logic LOG in ELF.

The indexed functor determined by (ij, , 6) is the indexed functor defined in the-

orem 6.4.1.

The converse of theorem 6.4.1 does not hold; that is, not all indexed functors

give rise to encodings. For example, there is no guarantee that an indexed func-

tor preserves the ordering, or even the length, of tuples. We believe that a more

detailed analysis of the structure of these indexed categories (in particular, the

categorical interpretation of sequences and contexts) will yield a two-way corre-

spondence. We are able to deduce, however, that the indexed functor determined

by an encoding is an indexed isomorphism if and only if the encoding is adequate.

This strong correspondence is feasible since we are dealing with a particular in-

dexed functor, given by the encoding, which preserves the ordering and length of

tuples. The preservation of structure gives rise to the following lemma, used to

link adequacy with isomorphisms.

6.4.3 LEMMA Let (ii, , 6) be an encoding of LOG in ELF by EL 09 such that

the indexed categories determined by LOG and (ELF, E 09) are £ : A °2' - Cat

and S : B ° -+ Cat respectively. Let the indexed isomorphism (ebase) e) £ -+ S

be determined by the encoding and let (fba3e, f) : 5 - £ be the inverse indexed

functor for (ebase) e).

1. Given

S .__J\
f6 a8e ((1) t) J) PS - L5) = (iT,t/ , V) : f&ase(") " fbae('S)

__J Uf
fbase ((X,t,Y) : 	- 	= (x ,t ,y) : fbase(1'$) " fbae(s),

where (ii, t, u) and (, t,) denote two arbitrary morphisms in B containing

ELF+ term t, we have

(a) the lengths of rs and fba3e(F5) and of As and fba3e(S) are the same;

128

Encodings Expressed as Indexed Fun ctors

the lengths of i and ü' and of U and 'O are the same;

t' = t".

2. For each I'g E obj(B), given

frs (U,Jj)) = _I 	! __J fr5((,J,))=p,J ,q'?,

where (3, J,) and (, J,) denote two arbitrary objects of E(F 5) containing

J E judg4', we have:

the lengths of 3 and 3' and of I and r are the same;

J' = J".

Proof By the definition of (eba8e , e) we know that the functor eba,e and, for

all X e obj(A), the functors ex preserve order and length of sequences and tu-

pies. This yields parts la, lb and 2a. Parts lc and 2b follow from the equalities

ebase 0 fbase = idB and efb (rs) ° Irs = idg(rs), for each rs E obj(B), and the

injectivity of i and , 6x, for each X E obj(A). D

We are now in a position to show that adequate encodings correspond to in-

dexed isomorphisms.

6.4.4 THEOREM Let (ij, , 6) be an encoding of an logic LOG with an intuitionistic

consequence relation in ELF+ and let (eba8e) e) : L -* S be the indexed functor

determined by (ii, , 6), where £ : -* Cat and 5: B °" -* Cat. Then (j, , 6) is

adequate if and only if (ebase , e) is an indexed isomorphism.

Proof Since (ij, , 6) is an adequate encoding, we know that there are functions

texj4' _* T(X rs) and 6. : judg4' _* J(Xrs), for each context of sorts

IFS in 37-long normal form, which are inverse to exr and 6Xrs We use these

functors to provide an indexed functor (Ibase, I) : S -p £ which is the inverse

indexed functor of (ebase , e).

The base functor fba8e is given as follows:

fbase ((X141, . . , x:A, 1)) = ((x r'(A1) 	'
i) 	,.. ,rs (xn

where F 5 is (x 1 :A 1 ,. . . ,

fbase((t1,,tm) : rs - 	s) = (3 (t1),... ,(tm)) : fbase (1S) 	fbase(1 S),

129

Encodings Expressed as Indexed Functors

and, for each context of sorts F5 in /3ij-long normal form, the natural transforma-

tion f : 	£ ° fbase is defined, for each F5 E obj(B), by

frs ((Ji,... ,Jm)) =

frs((Ji,•••,Jm) 	(K 1 ,. ..,K)) = (6 (Ji),..•, 6 (Jm))rs

(K)).' 6rs

That (fbaae, f) provides an indexed functor from E to £ follows from the conditions

satisfied by i[', , and 6', s for F5 E obj(B). In particular, we have that fba3e pre-

serves compositionality and that irs' for each rs E obj(B), forms the components

of a natural transformation since 	and 6 preserve substitution (see proposi-

tion 5.1.5): that is, given s E sort, j E judge, where L = (x 1 :A 1 ,. .. , x,:A)

is a context of sorts in /3ij-long normal form and F5 I- t1 : A[t 1 ,. . . , t_ 1 /x 1 ,. .. ,

we have
=

=

The indexed functor (fba8e, f) is inverse to (e&a5e , e) since, for each X E obj(A),

the functions i[, 	and 	are inverse to m ex and 6 respectively.rX

We now show that whenever (6ba8C) e) is an indexed isomorphism then (ii, , 6)

is an adequate encoding. This relies on lemma 6.4.3. Let (fba8e, f) : F -+ £ be

the inverse indexed functor of (ebase , e). Define i/ : sort - S and, for each

rs e obj(Fs), . : texj4 - T and 6, : judg4 - J as follows:

. 'q'(A) = cr for each A E sort, where f&ase ((X : A)) =

• 	(t) = t' for each t sort, where fba3e((X1, . . .) x,,) t) : Fs -i F, x : A) =

(Yi, 	, y, t') : fba8e(FS) -* f 8 (F, x : A);

•

	

1 	 . 	/ 	 . 	.1 61

	

rs (l) = j 	j for each e .judge '1 , where fr 5 ((J)) = (3)

The function j' is well-defined by lemma 6.4.3, the injectivity of ij and the equality

ebase o fba8e = idB . It is the inverse of ij since fbase is the inverse functor of eba8e . For
77 +each Fs E obj(B), the function: texp - T is well-defined by lemma 6.4.3

and the fact that the objects are contexts in 077-long normal form. The equality

eba8e ° fbase = idB implies, for each F5 E obj(B), that t) C T(X rs) where,

if F5 is (x 1 :A 1 ,. . . , x:A), then Xrs is (,(xiy(A1),.. . ,,
(x n)'"); we write

130

Encodings Expressed as Indexed Functors

	

texp —* T(Xr s). For each X E obj(A), the function 	: texppr —+

T(X) is inverse to : T(X) — texp since fba3e is inverse to ebase . We use

a similar argument, this time appealing to the fact that functor frx : e(r) —i
£(fbase(FX)) is inverse to functor ex : £(X) —+ S(eb ase (X)), for all X e obj(A), to

show that the function : judg4" —* J(X) is inverse to : J(X) — judg4.

Finally, the result

rs,pi:ji,. . . 	EELF+
-. j : Judge implies

EL 09

16(i),. ,6(j)} xrs 	5W' rs

where if F. is (x 1 :A 1 , . . . , x,:A,) then Xr s is ((x1) 17 '(Al), . . . , 	(x)'''), fol-

lows from lemma 6.4.3 and the fact that (fba3e, f) is an indexed functor. 	0

6.5 Natural encodings give indexed isomorphisms

The categorical presentation of adequate encodings does not require an explicit

account of the derivations of a logic or the terms inhabiting ELF judgements.

We now include this information regarding proofs in order to express complete en-

codings as indexed functors, with naturality again corresponding to isomorphism.

The definition of the complete indexed category for LOG, which includes the

proof information, has the term category of LOG for its base. Its fibres are defined

using the proof expressions rather than just the consequence relation.

6.5.1 PRoposiTioN Let LOG be an arbitrary logic with an intuitionistic conse-

quence relation with proofs. An indexed category, denoted by £ : A °" — Cat,

has the term category for LOG (definition 6.2.2) as its base category and, for each

X E obj(A), the fibre £(X) consisting of:

objects 	finite sequences of proof assumptions (p 1 :j1 ,. . . ,

morphisms finite tuples of proof expressions

(H 1 ,... ,11m) : (p1 :j1 ,.. .,p:j) —p (q:k,. . .

composition for (H 1 ,... ,llm) : (p1 :j1) .. . ,p:j,) —* (q1 :k 1 ,. . ., qm :km) and for

. . . , E,.) : (q1 :k 1 , q:k) —+ (si:l, . . .) s:l), the composition

(Ei,...,Er)O(Hi, Hm) is

(J1[ll/],. .. ,E7 [ii/]) : (p1 :j1 ,. . ., p:j) —' (s 1 :11 ,. . .

131

Encodings Expressed as Indexed Fun ctors

identity 	(pi,. . . ,p) : (p1 :j1 ,. . ,p:j) —4 (p1 :j1 ,. .. ,p:j).

For each morphism (t 1 ,.. .) t,) : X —* Y = (Yi,. . . , y,) in A, the functor
- £((t 1 ,... ,t) op Y —* X) = (t)* : 	—* Lp(X) is given by

	

()*((p1:j1 . ,pm:jm)) = 	: j1[/],.. . ,p 	im[/]);

	

' H,.) : (p1 :j1 ,. 	,pm :jm) —+ (q1 :k,. . ,q,.:k,.)) =

(r)((p1 :j1 ,. . ,pm :jm)) —

Proof The proof follows from the substitution results (proposition 3.1.15) and the

consequence relation being closed under substitution of logic and proof variables,

as specified in section 5.2.2. 	 D

6.5.2 DEFINITIoN Let LOG be an arbitrary logic with an intuitionistic conse-

quence relation with proof. The complete indexed category for LOG is that defined

in proposition 6.5.1.

The inhabitants of the ELF judgements are incorporated into the indexed cate-

gory determined by (ELF) EL og) in a similar fashion.

6.5.3 PROPosITIoN Let (ELF, EL og) be the type theory representing an arbi-

trary logic. We may define an indexed category, denoted by S: B' —* Cat, with

the sort category for (ELF, SLog) (definition 6.3.2) as its base category and, for

each F5 E obj(B), the fibre 6(F 5) consisting of

objects 	precontexts F j , where ri is (p1 :J1 ,. . . 	such that

J2 E judge for i E {1,. . . , n} and F5 ,p1 :J1 ,. . . , p:J is a context;

morphisms finite tuples of ELF terms

Fj —* A i = (q1 :K1 ,... ,qm :Km) such that

ELOG

composition for (fly,. . . , Hm) : Fj —p 1 j and (E r ,. . , E1) 	z 	— ® j, the

composition is (E 1 [ll/},. . . , E[ll/]) : F —+

identity 	(pi,.. . ,p) : F —* 	= (p1 :J1 ,. . . , p,:J,,).

For morphism (t 1 ,. . . , t,) : rs As = (y 1 :A 1 ,. . . , y:A,) in B, the functor
=

(: e(5) —+ S,(F.) is given by

()*41:J1
...

,pm :Jm)) = (p 	J1[1/]1. ,Pm :
()*

: ((ll,.. .,H 1) : F 	—+ ij) = (H 1 [/],... ,H 1 [/]) 	F[/] —*

132

Encodings Expressed as Indexed Fun ctors

Proof The proof that the e(F) are categories follows the same reasoning as in

the proof of proposition 6.3.1. For each morphism (t 1 ,. . . , the ()* provides a

well-defined functor using the generalised substitution lemma (lemma 2.3.5) and

the start lemma (lemma 2.3.3). Finally, Ep is a functor, again from the generalised

substitution lemma. u

6.5.4 DEFINITION Let (ELF+, EL) represent an arbitrary logic. The complete

indexed category for(ELF, EL Og) is that defined by in proposition 6.5.3.

6.5.5 THEOREM Let (ij, , 6, x) be a complete encoding of a logic with an intuition-

istic consequence relation with proof represented in ELF+, and let the complete

indexed categories be £ A ° - Cat and S B° - Cat respectively. A faithful

indexed functor from L p to EpLcan be defined, with the base functor eba3e : A -+ B,

defined in theorem 6.4.1, and natural transformation ce : Cp - Ep o eba,, defined,

for each X E obj(A), by

cex ((p1 :j1 ,. . . , pm :jm)) = (Xx ;i(Pi) : 6(j1),. . . , Xx ; (Pm) : 6x(irn));

cex((Hi, . . . , H 1) (p1 :j1 , . . . , pm:jm) 	, (q1 :1 1 , . . . , q1 :k 1))

= (Xx ;i(r1 i),. . . , X,(H1)) : ce x ((p1 :ji ,. . . ,pm :jm)) 	ce((q 1 :k1 ,.. . , q1 :k1)),

where A is (p1 :j1 ,. . . , pm :j n).

Proof We have a natural transformation ce : Cp - 	o ebase by the compo-

sitionality of 5, and Xx;' for X e obj(A) and 	obj(Cp(X)). It provides a

faithful indexed functorLslnce ij and, for each X E obj(A) and L E obj(I. p (X)),

the functions 	, Sx and Xx;A are all injective. 	 U

Remark Just as in the encoding case, we believe that, with more analysis of the

structure of these indexed categories, the converse may be proved. This analysis

is beyond the scope of this thesis.

6.5.6 DEFINITIoN Let (ii, , 51 x) be a complete encoding of a logic with an intu-

itionistic consequence relation with proofs in ELF+. The indexed functor deter-

mined by (j, , 5, x) is that defined in theorem 6.5.5.

Remark By definition we know that a complete encoding is an encoding with

an extra correspondence satisfying certain conditions. This is reflected in the

133

Encodings Expressed as Indexed Fun ctors

categorical treatment by defining the indexed functors (idA, F6) : Cp — 12 and

(idB , F6) : Sp —* S, where F 6 and F6 are natural transformations whose compo-

nents are the obvious forgetful functors losing the information regarding the proof

expressions and the inhabitants of judgernents respectively, to obtain the equality

(ebase) e) o (idA , F6) = (idB) F6) o (ebase) ce);

that is, eba3e oidA = idB 0 ebase and, for each X E obj(A), ex oF6 = F6 X 	e(X) 0 cex.

6.5.7 THEOREM Let (ii, , 6, x) be an encoding of a logic with an intuitionistic

consequence relation with proof in ELF+, and indexed functor (ebase , e) : 	—

be the indexed functor determined by (ii, , 6, x), where £ p : A °" —* Cat and

B °' —p Cat. Then (i', , 6, x) is natural if and only if (eba3e , ce) is an indexed

isomorphism.

Proof Adapt lemma 6.4.3 for (fba3e, cf) : Sp —p £p, the inverse indexed functor

of (ebaBe , ce) : Cp —+ £. The proof is similar to that of theorem 6.4.4. 	0

134

Chapter 7

Conclusions and Future Work

In this thesis we have introduced and explored the new framework ELF+. An im-

portant achievement is that, with this framework, we are now able to characterise

what it means to represent a logic. More specifically, we have concentrated on

characterising two consequence relations defined using the proof system of a logic:

the usual consequence relation associated with natural deduction systems and a

consequence relation with explicit reference to proofs. In this concluding chapter,

we summarise some important directions for future work arising from this thesis.

Several specific areas for further research have been identified in earlier chap-

ters, and include:

proof search and general tactics for representations in ELF+ (page 98);

. weaker notions of encoding (page 98);

• the comparison between ELF and Martin-Löf's type theory with the judge-

ments A set, Aprop and Atrue (example 4.2.2);

• the representation of side-conditions using the universe Type (page 109);

• an algorithm for constructing 37-1ong normal forms (section 4.2.4);

• an alternative method for incorporating signatures in PTSs (section 2.2).

In the following sections, we briefly discuss some wider issues, regarding repre-

sentations of logics in frameworks.

135

Conclusions and Future Work

Consequence relations from derivations

In our analysis of representations, we have focused on two types of consequence

relation given by the proof system of a logic. Since our ultimate aim is to mimic

the proof system of a logic using its representation in the framework, the in-

vestigation of the most appropriate consequence relation, which provides enough

information to reconstruct the derivations, is an important area to explore. One

possibility is to use a higher-order consequence relation, based on the basic and

higher-order judgements of Martin-Löf [Mar85] (see chapter 3), to retain informa-

tion regarding the dependency of proofs and the binding of variables in derivations.

Using a slight adaptation of ELF, where the rule (s, Judge, Type) is replaced by

(s, Judge, Judge) for each s E {Sort, Type, Judge}, a general description of the

ELF terms corresponding to the basic and higher-order judgements is possible.

We believe that this general description will allow the characterisation of represen-

tations of higher-order consequence relations in ELF+, and thus provide an easy

analysis of the representation of the structure of derivations.

An alternative approach is to have a more direct representation of the rules as

closed terms (with no free variables) in Judge; that is, rules are specific

H-abstractions in Judge rather than terms inhabiting judgements. For example,

the VI-rule of first-order logic would be identified with the ELF judgement

HqS, 'b:o.(true(q5) - true(b)) - true(q D).

This is a very different concept of representation and so is inevitably more specu-

lative than the one discussed above.

All the notions of consequence relation considered so far are defined with re-

spect to sets of assumptions and indexed by sets of variables, since the restriction

to sets is required if the consequence relation is to be represented by the ELF+

entailment relation. Viewing derivations of natural deduction systems as trees,

it makes more sense to consider multisets of assumptions (advocated in [Avr9l]):

that is, collections of judgements where the ordering is not important but the

number of occurrences is. This leads us to the concept of a 'linear' consequence

relation defined using multisets of assumptions and indexed by sets of variables.

IIj

Conclusions and Future Work

Work in progress on a linear ELF [MPP92], transferring ideas from Girard's lin-

ear logic [Gir87] to type theory, should be relevant here. These ideas should be

compatible with the higher-order consequence relations discussed above.

Schematic consequence relations

When using logics, one usually works with derivations and the consequence relation

at the schematic level. The study of schematic consequence relations arising from

proof systems, an area also proposed by Aczel [Acz9l], is therefore important; this

study would yield a deeper understanding of the informal method of representation

in ELF+, which relies on the schematic presentation of rules. It may even be

possible to provide a methodology for representing logics of a certain standard

form, rather than just an informal method which one must then show to be correct.

This standard form would not constitute a framework since logics would not be

presented using a finite amount of information, but it would give a transitory stage

from which representations in ELF+ should be easy to obtain.

If we wish to investigate the schematic nature of logics, an alternative ap-

proach to frameworks may be more appropriate, where the standard variables and

schematic variables of the logics are treated separately. This separation of vari-

ables is motivated by the observation that, at the schematic level, substitution is

a common notion, whereas a common behaviour of variables of the logic is not so

obvious: for example, the variables of first-order logic, Hoare logic [Apt8l] and the

it-calculus [MPW89] have very different behaviours (see section 3.1). With this

approach to frameworks, we would aim, for instance, to capture a-conversion at

the logic level and substitution at the schematic level.

137

Conclusions and Future Work

Algebraic frameworks

Our work on the algebraic formulation of logics and their representations in ELF+

provides a link between syntactic and algebraic notions of frameworks. In chap-

ter 6, we present logics and their representing type theories as (strict) indexed

categories where the amount of information within these indexed categories de-

pends on the particular consequence relation under investigation. We have shown

that, for both types of consequence relation discussed in this thesis, encodings

determine indexed functors such that "correct'encodings give rise to indexed iso-

morphisms. We conjecture that further analysis of the general structure of these

indexed categories, and in particular of the categorical interpretation of sequences

and contexts (a major research area at the moment), will give an exact correspon-

dence between encodings and indexed functors and, hence, a precise link between

the syntactic and algebraic presentations. These ideas should also apply to the

notion of a higher-order consequence relation discussed above, with the higher-

order structure amounting to the fibres being cartesian closed categories with

right adjoints to substitution. Our ideas thus form the beginnings of an algebraic

framework for representing logics.

138

Appendix A

The Type Theory ELF

The original presentation of ELF [HHP89] is given in this appendix. In chapter 2,

we present an equivalent type theory which is notationally more concise and easier

to understand.

A countably infinite set of variables is given and two countably infinite sets

of constants, disjoint from each other and from the variables: one for object-level

constants, the other for family-level constants. The metavariables x, y, and z

range over the variables, c and d range over the object-level constants, and a and b

over the family-level constants. The abstract syntax of the terms of ELF is given

by the following grammar:

Kinds 	K ::= Type I flx:A.K

Families 	A ::= a Hx:A.B I Ax:A.B I AM

Objects 	M ::= c x I Ax:A.M I MN

The abstract syntax for signatures and contexts is given by the grammar:

Signatures 	E ::= () 	, a:K I E, c:A

Contexts 	F ::= () F,x:A

The ELF type theory is a formal system for deriving assertions of one of the

following forms (the intended meaning is in brackets):

E sig (E is a valid signature)

F (F is a valid context in E)

FF- E K (KisakindinFandE)

FI- E A:K (AhaskindKinFand>J)

F}-EM:A (MhastypeAinFandE)

139

The Type Theory ELF

Valid Signatures

(B-EMPTY-SIG)
() sig

sig I-E K a'dom(E)
(B-KIND-SIC) 	

E, a:K sig

sig I-A:Type cdom()
(B-TYPE-SIG) 	

,c:A sig

Valid Contexts

(B-EMPTY-CTX) 	
E sig

I- ()

I- F 1' F-D A : Type x dom(F)
(B-TYPE-CTX) 	

F-E F,x:A

Valid Kinds

(B-TYPE-KIND) 	
1E F

F HE Type

F,x:A HE K
(B-PI-KIND)

F HE Hx:A.K

Table A.1: The LF Type System

We write F F- a for an arbitrary assertion of one of the forms F HE K, F 'E A: K,

or F HE M : A. The rules for deriving the formation assertions of the ELF type

theory are given in Tables A.1 and A.2.

The inference rules of the ELF type theory make use of a definitional equality,

consisting of the following three forms of assertion:

F HE K K' 	(K and K' are definitionally equal kinds in F and E)

r 	A A' 	(A and A' are definitionally equal families in F and E)

F HE M M' 	(M and M' are definitionally equal objects in F and E)

The first two of these relations are used directly (rules B-CONV-FAM and B-CONy-

OBJ); the third is used to define the others.

The definitional equality relation considered is /3-conversion of the entities at

all levels. Thus we define the definitional equality relation, , between entities of

all three levels to be the symmetric and transitive closure of the parallel nested

140

The Type Theory ELF

Valid Families

(B-CONST- FAM)

(B-PI-FAM)

(B- ABS- FAM)

(B-APP- FAM)

(B-VAR- OBJ)

(B-ABS-OBJ)

(B-APP-OBJ)

(B-CONV-OBJ)

I-S F c:KE>J
F Fr, C: K

F,x:A 1E B : Type
F F-r, Hx:A.B : Type

F,x:AF-B:K
F 1E \x:A.B : Hx:A.K

FI-E A:llx:B.K FI- E M:B
F 'E AM : [M/x]K

FI-E A:K FI-D K' FI-E K=K'
F HE A : K'

F-DF c:AEE
F HE c : A

HE F x:AEF
F HE x : A

F,x:AF-E M : B
F HE Ax:A.M : Hx:A.B

FI-E M:Hx:A.B FH E N:A
F HE MN : [N/x]B

FHE M:A FHA':Type FH E AA'
F HE M : A'

(B-CONV-FAM)

Valid Objects

(B-CON ST-OBJ)

Table A.2: The LF Type System (continued)

141

The Type Theory ELF

(R-REEL)
M—*M

M—M' N—+N'
(R-BETA-OBJ)

(Ax:A.M)N - [N'/x]M'

B—*B' 	N—*N'
(R-BETA-FAM)

(Ax:A.B)N -* [N'/x]B'

M—*M' N—*N'
(R-APP-OBJ)

MN -* M'N'

A—*A' 	M—*M'
(R-APP-FAM)

AM -* A'M'

A—*A' 	M—+M'
(R-ABS-OBJ)

Ax:A.M -

A—*A' 	B—B'
(R-ABS-FAM)

Ax:A.B -*

A — A' B — B'
(R-PI-FAM)

Hx:A.B - [lx:A'.B'

A—*A' 	K—*K'
(R-PI-KIND)

Hx:A.K -* Hx:A'.K'

Table A.3: Parallel Reduction

142

The Type Theory ELF

reduction relation, -*, defined by the rules of Table A.3. The transitive closure of

parallel reduction is denoted by
-c.

143

Bibliography

[Acz80] P. Aczel. Frege Structures and the Notions of Proposition, Truth and Set,

The Kleene Symposium, ed.s Barwise, Keisler and Kunen, North-Holland,

pp 31-59.

[Acz90] P. Aczel. Replacement Systems and the Axiomatisation of Situation The-

ory, Situation Theory and its Applications, CSL1 Lecture Notes No. 22,

Stanford University.

[Acz9l] P. Aczel. The Notion of a Logic, draft.

[ACM90] P. Aczel, D.P. Carlisle and N. Mendler. Two frameworks of theories and

their implementation in Isabelle, in [HP91], pp 3-40.

[Amb9l] S. Ambler. First-order Linear Logic in Semi-monoidal Closed Categories,

Ph.D. thesis, Edinburgh University.

[And7l] P.B. Andrews. Resolution in Type Theory. Journal of Symbolic Logic,

Vol. 36, pp 414-432.

[Apt8l] K.R. Apt. Ten Years of Hoare's Logic: A Survey—A.C.M. Transactions on

Programming Languages and Systems, Part 1, Vol. 3, No. 4, pp 431-483.

[ACN90] L. Augustsson, T. Coquand and B. Nordstrom. A short description of

Another Logical Framework, In formal Proceedings of the First Workshop

on Logical Frameworks, Antibes, ed.s G. Huet and G. Plotkin.

[Avr86] A. Avron. Internalising S4 and S5 in the LF, preprint.

[Avr89] A. Avron. Hypersequents and logical consequences, Technical report

140/89, Institute of Computer Sciences, University of Tel Aviv.

[Avr9l] A. Avron. Simple Consequence Relations, In formation and Computation,

Part 1, Vol. 91, pp 105-139.

144

Bibliography

[AHM89] A. Avron, F.A. Honsell and I.A.Mason. Using Typed Lambda Calculus

to Implement Formal Systems on a Machine, LFCS report series ECS-

LFCS-87-31, Edinburgh University.

[AHMP87] A. Avron, F.A. Honsell, I.A.Mason and R. Pollack. Using typed

lambda calculus to implement formal systems on a machine, LFCS re-

port series ECS-LFC S-87- 31, Edinburgh University.

[Bar84] H. Barendregt. The lambda calculus, its syntax and semantics, 2nd revised

ed., North-Holland, Amsterdam.

[Bar90] H. Barendregt. Lambda Calculi with Types, to appear in: Handbook of

Logic in Computer Science, OUR

[Bar9l] H. Barendregt et al. Lambda Calculus, Summer school, University of Ni-

jmegen, The Netherlands.

[BW90] M. Barr and C. Wells, Category Theory for Computing Science, Prentice

Hall.

[BF85] J. Barwise and S. Feferman: Model-theoretic Logics, Perspectives in Math-

ematical Logic, Spinger-Verlag, New York.

[Ben5] J. Bénabou. Fibred Categories and the Foundations of Naive Category

Theory, Journal of Symbolic Logic, Vol. 50, pp 10-37.

[Ber90] S. Beradi. Type dependence and constructive mathematics, Ph.D. thesis,

Mathematical Institute, Torino, Italy.

[dB70] N. G. de Bruijn. The mathematical language AUTOMATH, its usage and

some of its extensions, in Symposium on Automatic Demonstration, Lec-

ture Notes in Mathematics 125, Springer, pp 29 -61.

[dBr72] N.G. de Bruijir. Lambda calculus notation with nameless dummies, a tool

for automatic formula manipulation, Indag. Math, Vol. 34.

[dB80] N. G. de Bruijn. A survey of the AUTOMATH project, in [HS88],

OMJ i:iiiiiiJ

145

Bibliography

[BG90] R. Burstall and J. Goguen, Institutions: Abstract Model Theory for Spec-

ification and Programming, LFCS report series ECS-LFCS-90-106, Edin-

burgh University.

[Car78] J. Cartmell. Generalised Algebraic Theories and Contextual Categories,

PhD thesis, Oxford University.

[Che80] B.F. Chellas. Modal Logic: an introduction, CUP.

[Chu40] A. Church. A formulation of the simple theory of types, Journal of Sym-

bolic Logic, pp 56-68.

[Con86] R.L. Constable et al. Implementing Mathematics with the NuPri Proof

Development System, Prentice- Hall.

[CH90] R. Constable and D. Howe. NuPRL as a general logic, Logic and Compu-

tation, ed. P. Odifreddi, Acedemic Press.

[Coq85] T. Coquand. Une Theorie des Constructions, Ph.D. thesis, Paris 7.

[Coq9l] T. Coquand. An Algorithm for testing conversion in Type Theory, Inria

and the University of Göteborg/Chalmers, Sweden.

[CF58] H.B. Curry and R. Feys. Combinatory Logic, Vol. 1, Studies in Logic and

the Foundations of Mathematics, North Holland.

[Cut86] N. J. Cutland. Computability: An Introduction to recursive function the-

ory, CUP.

[Dow9l] G. Dowek. Démonst ration Automatique dans le Calcul des Constructions,

These de Doctorat, Paris 7.

[E1190] C. Elliot. Extensions and Applications of Higher-order unification, Ph.D.

thesis, School of Computer Science, Carnegie Mellon University.

[Fef89] S. Feferman. Finitary inductively presented logics, Logic Colloquium 1988,

pp 191-220, Amsterdam, North Holland.

146

Bibliography

[Fe189] A. Felty. Specifying and Implementing Theorem Provers in a Higher-order

Logic Programming Language, Ph.D. Thesis, Department of Computer

and Information Science, University of Pennsylvania.

[Gab8l] D. Gabbay. Semantical Investigations in Heyting's Intuitionistic Logic,

Reidel: Dordrecht, Holland: Boston.

[Gen69] G. Gentzen. Investigations into Logical Deduction, Collected works of

Gentzen, ed. M.E. Szabo, North-Holland, Amsterdam.

[Geu90] J.H. Geuvers. Type systems for Higher-order Logic. Draft. Faculty of

Mathematics and Computer Science, University of Nijmegen.

[Geu91] J.H. Geuvers. The Church—Rosser property for 377-reduction in typed

lambda calculi, draft, University of Nijmegen.

[GN91] J.H. Geuvers and M.J. Nederhof. A Modular Proof of Strong Normalisa-

tion for the Calculus of Constructions, Journal of Functional Program-

ming, Part 2, Vol. 1, pp 61-70.

[Gir72] J.Y. Girard. Interpretation foctionelle et elimination des coupures dans

l'arithmétique d'ordre supérieure, Ph.D. thesis, Paris 7.

[Gir87] J.Y. Girard. Linear Logic, Theoretical Computer Science, Vol. 50,

pp 1-102.

[Ham80] A.G. Hamilton. Logic for Mathematicians, CUP.

[Har90] R. Harper. Systems of Polymorphic Type Assignment in LF, Technical

Report CMU-CS-90-144, School of Computer Science, Carnegie Mellon

University.

[HHP89] R. Harper, F. Honsell and G. Plotkin. A Framework for Defining Logics,

J. Assoc. Comp. Mach.

[HS88] J.R. Hindley and J.P. Seldin. Introduction to Combinators and the

.A-calculus, CUP, 2nd ed.

147

Bibliography

[How80] W.A.Howard. The formulae- as-typ es notion of construction, in [HS88],

pp 479-490.

[Hue75] G.A. Huet. A Unification Algorithm for Typed A-calculus, Theoretical

Computer Science, Vol. 1, pp 27-57.

[HP91] G. Huet and G. Plotkin, editors. Logical Frameworks, CUP.

[Jac9l] B.P.F. Jacobs. Categorical Type theory, Ph.D. thesis, Nijmegen Univer-

sity.

[Jut77] L. S. Jutting. Checking Landau's Grundlagen in the AUTOMATH System,

PH.D. thesis, EindhOven University, Netherlands.

[Law70] F.W. Lawvere. Equality in Hyperdoctrines and Comprehension Schema

as an Adjoint Functor, Proceedings of Symposia in Pure Mathematics,

Vol. XVIII: Applications of Categorical Algebra, American Mathematical

Society.

[Luo90] Z. Luo. Extended Calculus of Constructions, Ph.D. thesis.

[Mac88] S. MacLane. Categories for the Working Mathematician, Springer-Verlag.

[Mar80] P. Martin-Löf. Intuitionistic Type Theory, Padova notes.

[Mar85] P. Martin-Löf. On the meanings of the logical constants and the justifi-

cations of the logical laws, Technical report 2, Scula di Specializzazione in

Logica Matematica, Dipartimento di Mathematica, Università. di Siena.

[Men64] E. Mendelson. Introduction to Mathematical Logic, Princeton, Van Nos-

trad.

[MA88] P.F. Mendler and P. Aczel. The notion of a framework and a framework

for LTC., Proc. Third Annual Symposium on Logic in Computer Science,

Edinburgh.

[Mes89] J. Meseguer. General Logics, Proceedings of the Logic Colloquium '87,

ed. H.D. Ebbinghaus et al., North Holland.

148

Bibliography

[MN86] D. Miller and G. Nadathur. Higher-order logic programming, Proc. 3rd

International Logic Programming Conference, London.

[MPP92] D. Miller, G.D. Plotkin and D. Pym. Linear ELF, to appear.

[MPW89] R. Milner, J.G. Parrow and D.J. Walker, A Calculus of Mobile Mobile

Processes, Parts I and II, LFCS report series ECS-LFCS-89-85 and -86,

Edinburgh, to appear in Journal of Information and Computation.

[Mit9l] J.C. Mitchell. Type Systems for programming languages, Handbook of

Theoretical Computer Science, ed. Jan van Leewen, Vol B: Formal Models

and Semantics.

[Nip9l] T. Nipkov. Order-sorted polymorphism in Isabelle, Proceeding of the Sec-

oñd Annual Workshop on Logical Frameworks, Edinburgh.

[NPS90] B. Nordstrom, K. Petersson and J. Smith. Programming in Martin-Löf's

Type Theory, OUR

[PS78] R. Pare and D. Schumacher. Abstract Families and the Adjoint Functor

Theorems, Indexed Categories and their Applications, ed.s P.T. Johnstone

and R. Pare.

[Pau87] L. Paulson. The foundations of a generic theorem prover, Technical Re-

port 130, Computer Laboratory, University of Cambridge.

[Pfe9l] F. Pfenning, Logic Programming in the LF logical framework, in [HP91],

pp 149-183.

[Pit89] A. M. Pitts. Categorical Semantics of Dependent Types, notes on a talk

given at SRI Menlo Park and at the Logic Colloquium in Berlin.

[P1o74] G. D. Plotkin. Call-by-name, Call-by-value and the A-calculus, Theoretical

Computer Science, North-Holland, Vol. 1, pp 125-159.

[Po19-] R. Pollack. Ph.D thesis, Edinburgh.

149

Bibliography

[Pra65] D. Prawitz. Natural Deduction: A Proof-Theoretical study. Almquist and

Wiksell, Stockholm.

[Pym9OJ D.J. Pym. Proofs, Search and Computation in General Logic, Ph.D

Thesis, Edinburgh University.

[PW91] D.J. Pym and L.A. Wallen. Proof search in the All-calculus, in [HP91].

[Pym9l] D.J. Pym. Talk at the Second Annual Workshop on Logical Frameworks

Edinburgh.

[Sa189] A. Salvesen. The Church-Rosser Property for LF with /3ij-reduction, talk

at the First Annual Workshop on Logical Frameworks, Antibes.

[Sa191] A. Salvesen. The Church-Rosser Property for Pure Type Systems with

/37-reduction, draft.

[Schm83] D. Schmidt. A Programming Notation for Tactical Reasoning, Report

C SR- 141-83, Edinburgh University.

[Sch77] K. Schiitte. Proof Theory, Springer-Verlag.

[See83] R.A.G. Seely. Hypérdoctrines, Natural Deduction and the Beck Condi-

tion, Zeitschrift für Mathematisch Logik ud Grundlagen der Mathematic,

Vol. 29.

[Smu6l] R. M. Smullyan.Theory of Formal Systems, Princeton University Press,

New Jersey.

[Sto88] A. Stoughton, Substitution Revisited, Theoretical Computer Science,

Vol. 59.

[Str89] T. Streicher. Correctness and Completeness of a Categorical Semantics of

the CAlculus of Constructions, Ph.D. thesis, Passau University.

[Tak75] G. Takeuti. Proof Theory, North-Holland.

[Tar56] A. Tarski. Logic, Semantics and Metamathematics, OUR 	-

150

Bibliography

[Ter89] J. Terlouw. Een nadere bewijstheoretishe analyse van GSTT's, Internal

Report, Faculty of Mathematics and Computer Science, University of Ni-

jmegen, Holland.

151

