
Symmetric Action Calculi

Philippa Gardner and Lucian Wischik 1

February 1999

Abstract

Many calculi for describing interactive behaviour involve names, name-abstraction and name-restriction.
Milner’s reflexive action calculi provide a framework for exploring such calculi. It is based on names and
name-abstraction. We introduce an alternative framework, the symmetric action calculi, based on names,
co-names and name-restriction (or hiding). Name-abstraction is intepreted as a derived operator. The
symmetric framework conservatively extends the reflexive framework. It allows for a natural intepretation
of a variety of calculi: we give interpretations for the π-calculus, the πI -calculus and a variant of the fusion
calculus. We then give a combinatory version of the symmetric framework, in which name-restriction also
is expressed as a derived operator. This combinatory account provides an intermediate step between our
non-standard use of names in graphs, and the more standard graphical structure arising from category
theory. To conclude, we briefly illustrate the connection between our work and Yoshida’s process graphs.

1 Introduction

There are many calculi for describing interactive behaviour based on names, name-abstraction and name-
restriction. Examples of such calculi include the π-calculus [MPW92], the fusion calculus [VP98] (which aims
to be more foundational than the π-calculus and which does not use name-abstraction), calculi for describing
features in distributed systems such as the ambient calculus [CG98] and the distributed π-calculus [Sew97],
the spi-calculus for analysing security protocols [AG97] and the ν-calculus [PS93]. The naming constructions
are also present in conventional imperative programming languages. Milner introduced action calculi [Mil96]
as a graphical framework within which to explore a foundational understanding of such calculi. We introduce
the symmetric action calculi, which conservatively extend the reflexive action calculi [Mil94] and which have
different naming primitives.

The action calculus framework treats name 〈x〉 and name-abstraction (x)P as primitive. Name-abstraction
declares x as a local name which expects an input. The way this calculus expresses the restriction (νx)P is
by supplying a dummy input. The following graphs illustrate the two techniques used to achieve this:

(a)

PSfrag replacements
xy
zuv
K
L
M
Kp

G1
G2
tsν
new

(x)P
xzv
out
in (b)

PSfrag replacements
xy
zuv
K
L
M
Kp

G1
G2
tsνnew

(x)P
xzv
out
in

The first graph interprets the restriction (νx)P by declaring a constant node new; it corresponds to the
action term new · (x)P ′. The second graph interprets restriction with a reflexive loop, and corresponds to
the action term ↑ ((x)(〈x〉 ⊗ P ′)).

The symmetric action calculi in contrast are based on the notion of name x+, co-name x− and name-hiding
()x. The name-hiding operator just declares that x is a local name; this fits in well with the intuitive notion
of restriction. Graphically we represent (t)x by simply crossing out (or hiding) the name x. Name-abstraction
is interpreted by (x− ⊗ P)x, where the co-name x− provides the input port previously incorporated within
the abstraction operator.

We start in section 2 with a brief review of Milner’s existing reflexive action calculi. Section 3 introduces the
symmetric action calculi, and shows by way of example how the π- and πI -calculi and a variant of the fusion
calculus can be naturally expressed within the symmetric framework. The symmetric framework conserva-
tively extends the reflexive framework. Our proof of this uses weak normal forms, known as molecular forms.

1Computing Laboratory, University of Cambridge, e-mail: Philippa.Gardner@cl.cam.ac.uk and ljw1004@cl.cam.ac.uk.
Gardner is supported by an EPSRC Advance Fellowship. Wischik is supported by an EPSRC Studentship.

1

Section 4 introduces symmetric molecular forms, briefly reviews reflexive molecular forms, and outlines of
the proof of conservativity. Finally in Section 5 we give a combinatoric presentation of the symmetric action
calculi. In this presentation name-hiding is a derived operator. (Analogously, λ-abstraction is a derived oper-
ator in combinatory logic.) Symmetric combinators provide an intermediate step between the non-standard
use of names in symmetric action calculi graphs, and the more standard graphical structures arising from
category theory. A full understanding of the categorical models, however, requires further investigation. The
concluding section briefly explores the connection between symmetric action calculi and Yoshida’s process
graphs [Yos95] (which are a non-deterministic extension of Lafont’s interaction nets [Laf97]).

2 Reflexive Action Calculi

In this section we summarise the reflexive action calculi and briefly explain the corresponding graphs. By
way of example we give an action calculus corresponding to the synchronous π-calculus [MPW92]. A more
detailed account of action calculi may be found in the introductory paper [Mil96], and of reflexive action
calculi in [Mil94]. The categorical models and corresponding type-theory presentation is given in [GH97], and
a tutorial paper [Gar99a] links the action calculi with other graphical grameworks studied in the literature.

The plan is as follows. We construct a set of terms (Definition 2.1) and quotient the terms by an
equational theory (Definition 2.2). We call the equivalence classes so generated actions; the set of all actions
is called the action calculus. The intention is that an action correspond to a process, and that a reaction
relation on actions correspond to reactions between processes.

An action calculus is specified by a signature K = (P,K), which consists of a set P of basic types p, q, . . .
called primes, and a set K of constants K,L, . . . called controls. Each control has an associated arity
((m1, n1), . . . , (mr, nr)) → (m,n). Here the m s and n s are finite sequences of primes. These sequences
are called tensor arities; we write ε for the empty sequence and ⊗ for concatenation. We assume a fixed
denumerable set X of names x, y, . . . , each of which has a prime arity, and we write x :p to indicate that x
has the prime arity p.

Definition 2.1 [Terms] The set of reflexive terms over signature K , denoted by RT(K), is the algebra freely
generated by the basic operators: identity idm, composition ·, tensor ⊗, permutation pm,n, reflexion ↑k,
datum 〈x〉, abstraction (x) and the controls K. A term t is assigned an arity t : m → n, for input arity m
and output arity n, using the following rules:

idm : m → m
s : k → l t : l → m

s · t : k → m

s : k → m t : l → n

s⊗ t : k ⊗ l → m⊗ n

pm,n : m⊗ n → n⊗m
t : k ⊗m → k ⊗ n

↑k t : m → n

〈x〉 : ǫ → p, x :p
t : m → n

(x)t : p⊗m → n
x :p

t1 : m1 → n1 . . . tr : mr → nr

K(t1, . . . , tr) : k → l
K : ((m1, n1), . . . , (mr, nr)) → (k, l) in K

If a term contains no controls we call it a wiring term. The notions of free and bound name are standard:
(x)t binds x in t, and 〈x〉 represents a free occurrence of x. We write t{y/x} to denote capture-avoiding
substitution. (We assume the ability to generate fresh names, so that substitution does not involve α-
conversion. α-conversion is a consequence of the equational theory in Definition 2.2.) The set of names
free in s, t, . . . is denoted by fn(s, t, . . .). Given a possibly empty sequence of names ~x = x1, . . . , xr with
x1 : p1, . . . xr : pr, we write |~x| for p1 ⊗ . . . ⊗ pr. Composition · binds more tightly than tensor ⊗. In this
paper we implicitly assume that terms have the correct arities; all equations are between terms of the same
arity.

It is standard category-theory practice to describe graphs using algebraic theories. Action-calculi graphs
differ from standard graphs in that they incorporate names and name-abstraction within the graph. Figure 1

2

illustrates the sort of graphs described by terms in the reflexive action calculus; the equational theory on
terms given in Definition 2.2 intuitively corresponds to graph equality. The graphs were introduced in [Jen99],
and [Gar99a] provides an overview.

(a)

PSfrag replacements

x
y

zuv

K

L
M
Kp

G1
G2
tsνnew

(x)P
xzv
out
in (b)

PSfrag replacements

x

y
zuv

K

L
M
Kp

G1
G2
tsνnew

(x)P
xzv
out
in (c)

PSfrag replacements

x

y
zuv
K

L

M
Kp

G1
G2
tsνnew

(x)P
xzv
out
in

Figure 1: Graph (a) represents the term (〈x〉⊗ 〈y〉) ·K ⊗ 〈y〉 which has arity 0 → 2. Graph (b) represents (y)((〈x〉⊗
〈y〉) ·K ⊗ 〈y〉) : 1 → 2, in which the wire formerly marked y becomes part of the left interface. Graph (c) represents
(y)(〈x〉 · L(〈y〉) ⊗ 〈y〉) and illustrates a wire crossing a control boundary through the use of the abstracted name y.
In all examples K : () → (2, 1) and L : ((0, 1)) → (1, 1).

The equational theory upon reflexive action terms is generated by the axioms of a strict symmetric
monoidal category, the axioms for reflexion and two additional axioms for naming.

Definition 2.2 [The theory RAC] The equational theory RAC is the set of equations upon reflexive action
terms generated by the following axioms:

1. the axioms of a strict symmetric monoidal category

A1. s · idn = s = idm · s
A2. s⊗ idε = s = idε ⊗ s
A3. idm ⊗ idn = idm⊗n

A4. s · (t · u) = (s · t) · u
A5. s⊗ (t⊗ u) = (s⊗ t)⊗ u
A6. (s · t)⊗ (u · v) = (s⊗ u) · (t⊗ v)

P1. pk,m · (s⊗ t) = (t⊗ s) · pl,n, s : m → n, t : k → l
P2. pm,n · pn,m = idm⊗n

P3. pm⊗n,k = (idm ⊗ pn,k) · (pm,k ⊗ idn)

2. the axioms for reflexion

R1. idǫ =↑k idk

R2. idk =↑k pk,k

R3. (↑k t)⊗ idm =↑k (t⊗ idm)
R4. (↑k s) · t =↑k (s · (idk ⊗ t))
R5. s · (↑k t) =↑k ((idk ⊗ s) · t)
R6. ↑l (↑k t) =↑k↑l ((pl,k ⊗ idm) · t · (pk,l ⊗ idn))

3. the naming axioms, illustrated in Figure 2

σ. (〈y〉 ⊗ idm) · (x)t = t{y/x}, x :p, y : p
δ. (x)((〈x〉 ⊗ id) · t) = t, x 6∈ fn(t)

Remark 2.3 Without R1, the reflexion axioms correspond to a category with a trace operator [JSV96].
In fact the axiom R1 does not hold for arbitrary traced monoidal categories. It was first suggested as an
action calculi axiom by Jensen in [Mil94] and is included here because it is necessary for the conservativity
result in Section 4. (Milner’s original presentation [Mil96] has different primitive operators and axioms. Our
presentation is equivalent, and relates more simply to category theory.)

3

(a)

PSfrag replacements

x

y

z

uv

K

L
M
Kp

G1
G2
tsν

new
(x)P
xzv
out
in

=

PSfrag replacements

x

y

z

uv

K

L
M
Kp

G1
G2
tsν

new
(x)P
xzv
out
in (b)

PSfrag replacements

x

y
zuv
K
L
M
Kp

G1
G2
t

sν
new
(x)P
xzv
out
in

=

PSfrag replacements
xy
zuv
K
L
M
Kp

G1
G2
t

sν
new
(x)P
xzv
out
in

Figure 2: Graph (a) illustrates an instance of the σ-axiom. Graph (b) represents the δ-axiom. The equations for the
two graphs are: (a) (〈z〉 ⊗ idǫ) · (y)((〈x〉 ⊗ 〈y〉)·K ⊗ 〈y〉) = (〈x〉 ⊗ 〈z〉)·K ⊗ 〈z〉 and (b) (x)((〈x〉 ⊗ id) · t) = t.

Quotienting terms RT(K) by the theory RAC gives rise to equivalence classes. We call these equivalence
classes reflexive actions. The set of these actions is called the reflexive action calculus specified by K .

The purpose of the reaction relation ց on actions is to describe their interactive behaviour. It relates
actions of the same arity and is preserved under tensor, composition, reflexion and abstraction. In addition,
we intend that the interactive behaviour of the calculus be expressed through the reaction of its controls.
Accordingly we impose the minimality condition that there is no s with id ց s, which implies that wiring
actions do not react. It may be the case that further conditions should be imposed, perhaps in relation to
the connectedness and locality of graphs.

Observational properties of the reaction relation are currently under investigation. Leifer and Milner
have a contextual bisimulation result for non-nested action calculi: that is, for action calculi specified by
controls with arity () → (m,n). The nesting case appears significantly more difficult.

Definition 2.4 [Derived Operators] Let ~x denote the list of names x1, . . . , xr and |~x| = m. The following
derived operators are used throughout the paper:

(~x)t
def
= (x1) . . . (xr)t, xi distinct

〈~x〉
def
= 〈x1〉 ⊗ . . .⊗ 〈xr〉

copym
def
= (~x)〈~x, ~x〉

discm
def
= (~x)idǫ

Let ()t denote the term t and 〈 〉 denote the term idε. (Notice that copym and discm are defined using
particular names. With α-conversion, which can be deduced from the σ- and δ-axioms, we are justified in
choosing these names at will.)

Remark 2.5 It is possible to reformulate the action calculus by writing (~x, ~y)〈~y, ~x〉 for pm,n and (~x)〈~x〉 for
idm, with |~x| = m and |~y| = m. The term idǫ is however still necessary. This reformulation is closer in
syntax to the π-calculus, while our actual choice of presentation is more natural from the category-theory
perspective.

Example 2.6 We present the synchronous π-calculus [MPW92] and give the corresponding action calculus.
The set of π-processes is defined by the abstract grammar

P ::= nil
∣∣ P |P

∣∣ (νz)P
∣∣ x〈~y〉.P

∣∣ x(~z).P

and is subject to the standard rules for structural congruence. It has binding input processes x(~z).P and
non-binding output processes x〈~z〉.P . The reaction relation is generated by the rule

x〈~y〉.Q|x(~z).P ց Q|P{~y/~z}

and is closed under composition, restriction and the structural congruence.
The corresponding action calculus PIC is specified by the signature K = ({1}, {in, out}) with the arity

rules

t : ǫ → m

out(t) : 1 → ǫ

t : m → ǫ

in(t) : 1 → ǫ

4

and the reaction relation

〈x〉 · out(s) ⊗ 〈x〉 · in(t) ց s · t.

Reaction is not permitted inside out or in. The reaction relation is illustrated in figure 3

PSfrag replacements

x

y
zuv
K
L
M
Kp

G1
G2

t

s

ν
new
(x)P
xzv

out

in
ց

PSfrag replacements
xy
zuv
K
L
M
Kp

G1
G2

ts

ν
new
(x)P
xzv
out
in

Figure 3: The reaction relation for PIC. The contents of the controls out and in correspond to concretions and
abstractions in the π-calculus. (We shade s and t to indicate that they are being used as parameters).

The translation ()′, which maps π-processes to action terms of arity ǫ → ǫ, is defined inductively by

(nil)′ = idǫ

(P |Q)′ = P ′ ⊗Q′

(ν.(z)P)′ = ↑ ((z)(〈z〉 ⊗ P ′)
(x〈~y〉.Q)′ = 〈x〉 · out(〈~y〉 ⊗Q′)
(x(~z).P)′ = 〈x〉 · in((~z)P ′)

Remark 2.7 In [Mil96], Milner gives an example action calculus corresponding to the asynchronous π-
calculus [HT92, Bou92]. He chooses to interpret the π-process x〈~y〉 by the action calculus term 〈x, ~y〉 · out.
In our presentation we instead incorporate the ~y s within the body of the out control, interpreting the π-
processes x〈~y〉.Q by the action calculus term 〈x〉 · out(〈~y〉 ⊗Q′). In our presentation the body of the control
corresponds to concretion, presented in [Mil99]. Since Milner is working in the non-reflexive case, he also
declares an extra control new : ǫ → 1 and translates (νx)P by new · (x)P ′.

Notice the asymmetry in the operators of action calculi: datum 〈x〉 : ǫ → p is a primitive naming operator,
but discard disc : p → ǫ is a derived anonymous operator. The following section explores a symmetric
version.

3 Symmetric Action Calculi

In this section we introduce the symmetric action calculi. These incorporate two datums: normal datum
x+ : ǫ → p and a co-datum x− : p → ǫ. With this choice, we are able to introduce a name-hiding operator (t)x
which does not affect the interface of the graph (as is the case with name-abstraction). We show that several
variants of the π-calculus can be naturally expressed as symmetric action calculi. In particular, restriction
in these π-calculi correspond directly to name-hiding in the symmetric action calculi.

The plan is the same as for the reflexive action calculi. We construct terms and quotient them by an
equivalence relation. We call the equivalence classes so generated symmetric actions, and we call the set of
symmetric actions the symmetric action calculus.

Definition 3.1 [Terms] The set of symmetric terms over a signature K , denoted by ST(K), is constructed
from the basic operators: identity idm, composition ·, tensor ⊗, permutation pm,n, datum x+, co-datum x−,

5

name-hiding ()x and the controls K. A term t is assigned an arity t : m → n using the following rules:

idm : m → m
s : k → l t : l → m

s · t : k → m

s : k → m t : l → n

s⊗ t : k ⊗ l → m⊗ n

pm,n : m⊗ n → n⊗m

x+ : ǫ → p, x :p x− : p → ǫ, x :p
t : m → n

(t)x : m → n

s1 : m1 → n1 · · · sr : mr → nr

K(s1, . . . , sr) : k → l
K : ((m1, n1), . . . , (mr, nr)) → (k, l) in K .

Figure 4 illustrates the graphical notation for these operators.

(a)

PSfrag replacements
x

y

z

uv

K

L

M
Kp

G1
G2
tsνnew

(x)P
xzv
out
in (b)

PSfrag replacements
x

yz

uv

K

L

M
Kp

G1
G2
tsνnew

(x)P
xzv
out
in (c)

PSfrag replacements
x

y z

uv

K

L

M
Kp

G1
G2
tsνnew

(x)P
xzv
out
in

Figure 4: (a) Nodes marked • are called naming nodes. (b) In general naming nodes are labelled by sets of names
indicating that the names are joined, or equal: algebraically this is written y+ ·z−. (c) We draw a line through a name
when it has been hidden by the name-hiding operator ()y. Notice that the name-hiding does not change the interface
of the graph. The symmetric terms for these graphs are: (a) y+ ·K · z− ⊗ y+ · L; (b) y+ · z− ⊗ y+ ·K · z− ⊗ y+ · L;
(c) (y+ · z− ⊗ y+ ·K · z− ⊗ y+ · L)y .

The notion of free and local names is standard: x is local inside ()x, and both x+ and x− represent free
occurences of x. We write t{y/x} for the standard capture-avoiding substitution. All equations are between
terms of the same arity.

The equational theory upon symmetric terms is generated by the axioms of a strict symmetric monoidal
category, and some additional naming axioms.

Definition 3.2 [The theory SAC] The equational theory SAC is the set of equations upon symmetric terms
generated by the following axioms:

1. the axioms of a strict symmetric monoidal category, given in Definition 2.2,

2. the naming axioms, where x 6∈ fn(s) in N1-N6 (σ and δ are illustrated in figure 5)

σ. (y+ · x− ⊗ t)x = (x+ · y− ⊗ t)x = (t{y/x})x
δ. (x+ ⊗ x−)x = idp, x :p

N1. ((t)x)y = ((t)y)x
N2. (s)x = s
N3. (t · s)x = (t)x · s
N4. (s · t)x = s · (t)x
N5. (t⊗ s)x = (t)x ⊗ s
N6. (s⊗ t)x = s⊗ (t)x

We intuitively think of y+ · x− as joining the nodes y and x in the graph. The σ-axiom states that if x is
local then y can be substituted for x. Lemma 3.3 part 3 shows that this property is also true in the non-local
setting, provided that we retain the information that x and y are joined. Thus, although the algebraic
structure gives an inherent directionality to the graphs, the connections between names are non-directional.

6

(a)

PSfrag replacements
x

y z

uv

K

L

M
Kp

G1
G2
tsνnew

(x)P
xzv
out
in

=

PSfrag replacements
xy

z

uv

K

L

M
Kp

G1
G2
tsνnew

(x)P
xzv
out
in

(b)

PSfrag replacements

x

y
zuv
K
L
M
Kp

G1
G2
tsν

new
(x)P
xzv
out
in

=

PSfrag replacements
xy
zuv
K
L
M
Kp

G1
G2
tsν

new
(x)P
xzv
out
in

Figure 5: Graph (a) shows an application of the σ-axiom corresponding to the symmetric term equation (y+ · z− ⊗
y+ ·K · z− ⊗ y+ · L)y = (z+ ·K · z− ⊗ z+ · L). Graph (b) shows the δ-axiom.

Lemma 3.3

1. [α-conversion] (t)x = (t{y/x})y, y 6∈ fn(t)

2. x+ · x− = idǫ

3. [free substitution] y+ · x− ⊗ t = y+ · x− ⊗ t{y/x} = y+ · x− ⊗ t{x/y}.

The symmetric actions are the equivalence classes obtained by quotienting terms ST(K) by the theory SAC.
The set of these actions is called the symmetric action calculus specified by K .

Definition 3.4 [Derived Operators] Let ~x denote the list of names x1, . . . , xr with |~x| = m. Define

~x+
def
= x1

+ ⊗ . . .⊗ xr
+

~x−

def
= x1

− ⊗ . . .⊗ xr
−

(t)~x
def
= (. . . ((t)x1

)x2
. . .)xr

newm
def
= (~x+)~x

discm
def
= (~x−)~x

(~x)t
def
= (~x− ⊗ t)~x

↑m t
def
= ((~x+ ⊗ id) · t · (~x− ⊗ id))~x

copym
def
= (~x− ⊗ ~x+ ⊗ ~x+)~x

mergem
def
= (~x− ⊗ ~x− ⊗ ~x+)~x

]m
def
= mergem · discm

[m
def
= newm · copym

Remark 3.5 Using the derived operator for reflexion, it is not difficult to prove the equalities corresponding
to the reflexive axioms R1 to R6 in Definition 2.2. We are also able to prove analogous equalities to the
axioms B1-B8 given in Definition 5.2. Also, notice that a simple wiring context can turn an input wire
into an output wire and vice versa: given s : m → p ⊗ n we have (idp ⊗ s) · ([p ⊗ idm) : p ⊗m → n. This
demonstrates that the difference between the input and output arities is present for algebraic convenience
rather than necessity.

Example 3.6 We now give symmetric action calculi into which can be embedded three variants of the
π-calculus. The first variant is the synchronous π-calculus mentioned in the previous section (however we
now embed it into a symmetric action calculus rather than a reflexive one). The second is the πI -calculus
of Sangiorgi [San96], and the third is a variant of the fusion calculus of Victor and Parrow [VP98] which we
call the πF -calculus.

7

The three calculi differ in the binding of their input and output processes: the π-calculus binds on the
input process, the πI -calculus binds on both input and output processes, and the πF -calculus binds on
neither. Processes in the three algebras are generated by the abstract grammars

(π) P ::= nil
∣∣ P |P

∣∣ (νx)P
∣∣ x〈~y〉.P

∣∣ x(~z).P
(πI) P ::= nil

∣∣ P |P
∣∣ (νx)P

∣∣ x(~z).P
∣∣ x(~z).P

(πF) P ::= nil
∣∣ P |P

∣∣ (νx)P
∣∣ x〈~y〉.P

∣∣ x〈~y〉.P

where, in the output and input processes, the round brackets (~z) denote distinct bound names and the angle
brackets 〈~y〉 denote free names. The processes are subject to the standard structural congruence.

The reaction relations for the three calculi are generated by the rules

(π) x〈~y〉.P |x(~z).Q ց P |Q{~y/~z}

(πI) x(~z1).P |x(~z2).Q ց (ν~z)(P{~z/~z1}|Q{~z/~z2}), ~z fresh

(πF) (ν~u)(x〈~y〉.P |x〈~z〉.Q|R) ց (ν~u)((P |Q|R)σ), side-conditions (see below)

Notice that the πI reaction relation is symmetric in the behaviour of the output and input processes. The
πF reaction relation is also symmetric, but its binding encompasses R and occurs outside the output and
input processes. The side-conditions express the following constraints: that the ~u are distinct and provide
witnesses for the equivalence relation S generated by {~y = ~z}; and that σ is a substitution with domain {~u}
and range {~y, ~z} such that σ agrees with S (that is, vSw iff σv = σw). The πF reaction rule is similar to
that for the fusion calculus, except that the fusion calculus additionally requires that the domain and range
of σ do not intersect.

We have one symmetric action calculus SPIC for interpreting both the π-calculus and the πI -calculus. It
is specified by the signature K = ({1}, {in, out}) with the arity rules

t : ǫ → m

out(t) : ǫ → 1

t : m → ǫ

in(t) : 1 → ǫ

Given a process P we translate it to a SPIC term P ′. The process nil is translated to the SPIC term idǫ.
Parallel composition | is translated to tensor ⊗. Restriction (νx)P is translated to name-hiding (P ′)x. The
various different forms of input and output action are translated as follows:

(x〈~y〉.P)′ = out(~y+ ⊗ P ′) · x− (non-binding output)
(x(~z).P)′ = out((~z+ ⊗ P ′)~z) · x− (binding output)
(x(~z).P)′ = x+ · in((~z− ⊗ P ′)~z) (binding input)

The reaction relation for SPIC, illustrated in figure 6, is generated the rule

out(s) · x− ⊗ x+ · in(t) ց s · t

Reaction is not permitted inside in or out. The π-calculus and the πI -calculus have different images in SPIC.
For π-processes P and Q we have the results that P ≡ Q iff P ′ = Q′, and that P ց Q iff P ′ ց Q′. The

proofs for the reverse direction require weak normal forms for the symmetric action calculi, introduced in
the next section. We believe that the results also hold for πI processes.

To interpret the πF -calculus we use a symmetric action calculus with the same controls as SPIC, but with
the different reaction relation generated by the rule

(out(~y+ ⊗ s) · x− ⊗ x+ · in(~z− ⊗ t)⊗ r)~u ց (~y+ · ~z− ⊗ s⊗ t⊗ r)~u

where the ~u are distinct and provide witnesses for the equivalence relation generated by {~y = ~z}. The
translation of πF -processes is as above, with the non-binding input translated by

(x〈~y〉.P)′ = x+ · in(~y− ⊗ P ′) (non-binding input)

The structural congruence is preserved by the translation. We are currently working on the connection
between the reaction relations.

8

PSfrag replacements

x

y
zuv
K
L
M
Kp

G1
G2

t

s

ν
new
(x)P
xzv

out

in ց

PSfrag replacements
xy
zuv
K
L
M
Kp

G1
G2

ts

νnew
(x)P
xzv
out
in

Figure 6: The reaction relation for SPIC.

These examples indicate that the symmetric action calculi provide a natural framework for presenting at
least some variants of the π-calculus. We are currently studying the presentation of other calculi including
the ambient, spi, λ- and ν-calculi, referenced in the introduction. We believe that the restriction operator is
an important part of any calculus which involves names, and that it is a positive feature that the symmetric
action calculi interpret restriction directly.

4 Symmetric molecular forms

In this section we introduce symmetric molecular forms. Definitions 4.1 to 4.4 describe molecular terms and
their equational theory; quotienting gives equivalence classes, called molecular forms. Proposition 4.9 shows
that symmetric molecular forms are (weak) normal forms for the symmetric action calculus. The remainder
of this section uses the molecular forms to prove that the symmetric action calculi conservatively extend the
reflexive action calculi.

Definition 4.1 [Symmetric molecular terms] The set of symmetric molecular terms SM(K) over a signature
K consist of terms a defined by the abstract grammar

a ::= (~x; ~µ; ~y)R;~z a : |~x| → |~y|
µi ::= ~ui ·K~ai ·~vi K~ai : |~ui| → |~vi|

where ~x, ~y, ~ui, ~vi are lists of names, ~µ is a multiset µ1, . . . , µr of symmetric molecules, ~z is a set of names,
K~ai respects the arity of K given in K , and R is an equivalence relation on names which respects arities and
which is finitely generated (that is, R can be generated from a finite set of axioms).

An example molecular form and its corresponding graph are shown in figure 7. Notice that the syntax for
molecular terms is closely related to the graphical presentation.

PSfrag replacements
xy
z

u

v

K

L

M
Kp

G1
G2
tsνnew

(x)P xzv
out
in

Figure 7: Graph corresponding to the molecular term (; x·K ·z, x·L·u; u){x=z,z=v};u

In the molecular term a = (~x; ~µ; ~y)R;~z , all names in ~z are local. The free names of a are

fn(a) = ({~x, ~y} ∪ fn(~µ) ∪ fn(R))\{~z}

where fn(~ui ·K~ai · ~vi) = {~ui, ~vi} ∪ fn(~ai) and fn(R) is the set of all names in R which are not in singleton
equivalence classes. We write Clo(R) for the reflexive, symmetric and transitive closure of a relation R and
write {x1 = y1, . . . , xr = yr} as short-hand for Clo({x1 = y1, . . . , xr = yr}).

We wish to define substitution on molecular terms. To do this it is first necessary to define substitution
on the equivalence relation R.

9

Definition 4.2 Let R and S be finitely-generated equivalence relations on names which respect arities. We
define the following operations:

R+ S
def
= Clo (R ∪ S)

R− v
def
= Clo {(x, y) s.t. xRy and x 6= v and y 6= v}

{u/v}R
def
= (R+ {u = v})− v

It is a standard result that these relations are themselves finitely-generated equivalence relations
which respect arities. The expected properties hold: R+ S = S +R; σ(R + S) = σR + σS; and
({y/x}R) + {x = y} = R+ {x = y}.

Substitution on molecular terms is now easy to define.

Definition 4.3 [Substitution] Given ~µ = µ1, . . . , µr, a = (~x; ~µ; ~y)R;~z and σ = {u/v}, we define σ(a) by

σ(a) =

{
a if v ∈ {~z}
(στ~x;στ~µ;στ~y)στR;στ~z if v 6∈ {~z}

where τ = {u
′
/u} for some fresh u′, and σµi = σ~ui ·Kσ~ai ·σ~vi for µi = ~ui ·K~ai ·~vi.

The equational theory on symmetric molecular terms is generated by two simple axioms: if a local name
is not used in the body it can be removed (or added), and if two names x and y are related then one can be
substituted for the other.

Definition 4.4 [The theory SMAC] The equational theory SMAC is the set of equations upon terms generated
by the axioms

ν. (~x; ~µ; ~y)R−v;~z = (~x; ~µ; ~y)R;v,~z v 6∈ {~x, ~y, ~z} ∪ fn(~µ)
σ. (~x; ~µ; ~y)R;~z = (σ~x;σ~µ;σ~y)R;~z σ = {u/v}, uRv

and the structural rules

~a = ~b

~u·K~a·~v = ~u·K~b·~v

~µ = ~η

(~x; ~µ; ~y)R;~z = (~x; ~η; ~y)R;~z

The symmetric molecular forms of a particular symmetric action calculus are the equivalence classes
obtained by quotienting the molecular terms in SM(K) by the equational theory SMAC. The next step
is to show that molecular forms correspond to actions in the symmetric action calculi. This is done in
Proposition 4.9. First we need some definitions and lemmas. Their proofs are straightforward and have been
omitted.

Lemma 4.5 [α-conversion] If a = (~x; ~µ; ~y)R;v,~z , u 6∈ fn(a) and σ = {u/v}, then

(~x; ~µ; ~y)R;v,~z = (σ~x;σ~µ;σ~y)σR;u,~z

Definition 4.6 [Derived operators] Let a = (~x1; ~µ; ~x2)R;~x, b = (~y1; ~η; ~y2)S;~y, c = (~x1 ~y1; ~µ; ~x2 ~y2)R;~z . By
α-conversion we may assume that the names in each term are disjoint from the local names in the others.
Define

idm
def
= (~x; ; ~x) ;~x |~x| = m

a · b
def
= (~x1; ~µ, ~η; ~y2)R+S+{ ~x2= ~y1};~x,~y | ~x2| = ~y1|

a⊗ b
def
= (~x1, ~y1; ~µ, ~η; ~x2, ~y2)R+S;~x,~y

pm,n

def
= (~x, ~y; ; ~y, ~x) ;~x,~y |~x| = m, |~y| = n

x−

def
= (x; ;) ;

x+
def
= (; ;x) ;

(a)y
def
= (~x1; ~µ; ~x2)R;~x,y y 6∈ {~x}

↑m c
def
= (~y1; ~µ; ~y2)R+{ ~x1= ~x2};~z | ~x1| = | ~x2| = m

K(~s)
def
= (~x; ~x·K(~s)·~y; ~y) ;~x,~y K : |~x| → |~y|, ~x, ~y 6∈ fn(~s)

10

Using these derived operators we define a equality-preserving translations between the symmetric term
algebra and the symmetric molecular forms. These translations are mutually inverse.

Definition 4.7 [Translation] The translation [[·]] : ST(K) → SM(K) is defined inductively on the structure
of symmetric terms using the operators in definition 4.6.

Definition 4.8 [Translation] The translation (̂) : SM(K) → ST(K) is defined inductively on the structure
of molecular forms by

̂(~x;µ1, . . . , µr; ~y)R;~z = (~x− ⊗ ~y+ ⊗
⊗

µ̂i ⊗ R̂)~z

where µ̂i = ~ui
+ ·Ki(~̂ai) · ~vi− and R̂ is the tensor

⊗
x,y x

+ ·y− for each pair of different names x, y related in
R.

Proposition 4.9

1. s, t ∈ ST(K) and s = t in SAC implies [[s]] = [[t]] in SMAC

2. s, t ∈ SM(K) and a = b in SMAC implies â = b̂ in SAC

3. [̂[s]] = s in SAC

4. [[â]] = a in SMAC

It is also possible to show that the derived molecular operators satisfy the axioms for an action calculus given

in Definition 2.2. The translation (̂) moreover preserves those derived operators given in Definition 4.6.

Conservativity

We will use molecular forms to demonstrate that the symmetric action calculi conservatively extend the
reflexive action calculi. First, we present an overview of reflexive molecular forms. A full description is given
in [Mil94].

Definition 4.10 [Reflexive molecular terms] The reflexive molecular terms RM(K) over a signatureK consist
of terms a defined by the abstract grammar

a ::= (~x)[µ1 · · ·µr]〈~y〉 a : |~x| → |~y|
µi ::= 〈~ui〉K~ai(~vi) K~ai : |~ui| → |~vi|

where ~x, ~y, ~ui, ~vi are lists of names, ~µ is a multiset µ1, . . . , µr of reflexive molecules and K ∈ K ∪ {ν} with
ν : ǫ → p. The intention is that ν generates a new name; graphically it is represented by a closed loop,
as in Figure 8. An term is well-formed if the arities are respected and the names in ~x and each ~vi are all
mutually distinct; we will consider only well-formed terms. The equational theory RMAC is generated by
α-conversion, and the removal or addition of superfluous ν s given by the axiom

(~x)[ν(w), ~µ]〈~y〉 = (~x)[~µ]〈~y〉 w not free in ()[~µ]〈~y〉

The reflexive molecular forms are the equivalence classes obtained by quotienting terms RM(K) by the theory
RMAC.

The definition of a derived reflexion operator for molecular terms, used in Proposition 4.12 and in the
conservativity result, is complicated. It requires a reflexive substitution which has the ability to introduce
new names. This reflexive substitution {u/v}∗ is defined in terms of two other substitutions: the standard
capture-avoiding substitution σ = {u/v}, and a syntactic substutition u/v which is not capture-avoiding at
the top level.

11

Definition 4.11 [Reflexive substitution] Let a = (~x)[~µ]〈~y〉, ~µ = µ1, . . . , µr and µi = ~ui ·Ki~ai ·~vi. Then

{u/v}∗a =

(~x)[ν(v), ~µ]〈~y〉 if u = v, v 6∈ {~x,~vi}
u/va if u 6= v, v 6∈ {~x,~vi}
undefined if v ∈ {~x,~vi}

where u/va = (σ~x)[u/v~µ]〈σ~y〉 and u/vµi = 〈σ~ui〉Ki(σ~ai)(σ~vi)

The derived reflexion operator is now given by

↑ ((v, ~x)[~µ]〈u, ~y〉)
def
= {u/v}∗(~x)[~µ]〈~u〉

The other operators are defined in [Mil94].

(a)

PSfrag replacements
xy
zuv

K

L
M
Kp

G1
G2
tsνnew

(x)P
xzv
out
in

=

PSfrag replacements
xy
zuv

K

L
M
Kp

G1
G2
tsνnew

(x)P
xzv
out
in (b)

PSfrag replacements
xy
zuv

K

L
M
Kp

G1
G2
tsνnew

(x)P
xzv
out
in

=

PSfrag replacements
xy
zuv

K

L
M
Kp

G1
G2
tsνnew

(x)P
xzv
out
in

Figure 8: Two cases of reflexion in reflexive molecular forms. (a) In reflecting ↑ (x)[〈x〉K]〈x〉, note that the reflexive
substitution on the same name {x/x}∗ introduces a special ν control to give ()[ν(x), 〈x〉K]〈x〉, and that this control
corresponds to a closed loop in the graph. (b) Reflexive substitution on different names {y/x}∗ does not introduce
new controls, as in ↑ (x)[〈x〉K(y)]〈yx〉 = ()[〈x〉K(x)]〈x〉.

Proposition 4.12 Just as in Proposition 4.9, we can define translations between reflexive molecular terms
RM(K) and the reflexive terms RT(K) which are equality-preserving, mutually inverse and which preserve
the operators.

The reflexive molecular forms are somewhat awkward: they use an extra control ν, they use the com-
plicated reflexive substitution to derive the reflexion operator, and they require the bound names in each
molecule to be distinct. In contrast our symmetric molecular forms do not require an extra control, there is
a simpler derived reflexion operator, and there are no constraints upon the local names. In this section we
provide a conservative translation from reflexive molecular forms to symmetric molecular forms.

Definition 4.13 [Translation] Let a = (~x)[µ1, . . . , µr]〈~y〉 be an arbitrary reflexive molecular term, where
µi = 〈~ui〉Ki~ai(~vi). The translation [[·]] : RM(K) → SM(K) is defined by

[[a]] = (~x; [[µ1]], . . . , [[µr]]; ~y)I;~x,~v1,... ,~vr

where

[[µi]] =

{
~ui ·Ki[[~ai]]·~vi if K ∈ K

if K = ν

Proposition 4.14 If a, b ∈ RM(K) and a = b in RMAC(K) then [[a]] = [[b]] in SMAC(K).

To prove the converse, we define a subset of the symmetric molecular terms which turns out to be
the image of [[]]. Let SMR(K) denote the subset of SM(K) in which all symmetric terms have the form
(~x;µ1, . . . , µr; ~y)I;~z, where

• µi = ~ui ·Ki~ai ·~vi for ~ai ∈ SMR(K),

• all the names in ~x and each ~vi are distinct,

• and {~x,~v1, . . . , ~vr} ⊆ {~z}.

12

A key property of this subset is that if a, b ∈ SMR(K) and a = b in SMAC then a and b differ only by
α-conversion and some superfluous local names in {~z}.

Definition 4.15 [Translation] Let a = (~x;µ1, . . . , µr; ~y)I;~x,~v1,... ,~vr ,~z with a ∈ SMR(K) and µi = ~ui ·Ki~ai ·~vi.
The translation | · | : SMR(K) → RM(K) is defined by

|a| = (~x) [ν~z, 〈~u1〉K1|~a1|(~v1), . . . , 〈~ur〉Kr|~ar|(~vr)] 〈~y〉

Proposition 4.16 [Conservativity]

1. a, b ∈ SMR(K) and a = b in SMAC implies |a| = |b| in RMAC.

2. a ∈ RM(K) implies |[[a]]| = a in RMAC.

3. a ∈ SMR(K) implies [[|a|]] = a in SMAC.

Propositions 4.16 and 4.14, together with the fact that the translations preserve the operators, imply
that the symmetric action calculi conservatively extend the reflexive action calculi.

5 Combinatoric Presentation

Ultimately we would like to develop categorical models for the symmetric action calculi. A significant step
towards this end is the combinatoric presentation given in this section. This involves expressing name-
hiding as a derived operator rather than as a primitive. Our results illustrate the expressive power of the
name-hiding operator. They are analogous to the results given in [Gar99b] for non-symmetric action calculi.

To express name-hiding as a derived operator, we push it progressively inside terms until it can be
dismissed. For example, consider the symmetric term (x− ⊗ x+ ⊗K(x+))x : p ⊗m → p⊗ n corresponding
to graph (a) of figure 9. Our technique is to declare a family of controls Km indexed by arity information.
This index records the arity of those names that have been pushed inside. Applying this technique to (a)
gives Kp((x− ⊗ x+ ⊗ x+)x) : p ⊗ m → p ⊗ n, which is shown in graph (b). Finally the name-hiding can
be dismissed since the contents of this control are simply a copy operator, as can be seen in graph (c).
By dismissing name-hiding in this way, we can express every symmetric term using just the operators
id,p, x+, x−, copy,merge,disc and new, along with indexed controls. We therefore choose these as the
combinators for the symmetric action calculi.

(a)

PSfrag replacements

x

y
zuv

K

L
M
Kp

G1
G2
tsνnew

(x)P
xzv
out
in (b)

PSfrag replacements

x

y
zuv
K
L
M

KpG1
G2
tsνnew

(x)P
xzv
out
in (c)

PSfrag replacements
xy
zuv
K
L
M

KpG1
G2
tsνnew

(x)P
xzv
out
in

Figure 9: In this sequence of graphs we push name-restriction progressively inside controls until it can be dismissed.
We use this technique in defining a combinatoric presentation for symmetric action calculi.

Definition 5.1 [Combinators] The set of combinatory terms over signature K , denoted by CT(K), is con-
structed from the basic operators: identity idm, composition ·, tensor ⊗, permutation pm,n, datum x+,
co-datum x−, copy ⊳m, merge ⊲m, discard ωm, new νm and the indexed controls Km. A combinator t is

13

assigned arity t : m → n, for arities m and n, using the rules

idm : m → m
s : k → l t : l → m

s · t : k → m

s : k → m t : l → n

s⊗ t : k ⊗ l → m⊗ n

pm,n : m⊗ n → n⊗m

x+ : ǫ → p, x :p x− : p → ǫ, x :p

⊳m : m → m⊗m ⊲m : m⊗m → m

ωm : m → ǫ νm : ǫ → m

t1 : m1 → n1 . . . tr : mr → nr

Km(t1, . . . , tr) : k → l
K : ((m1, n1), . . . , (mr, nr)) → (k, l) in K

We choose to assign prime arities to names, since it makes the connection with the original presentation
clearer. It would also be possible to allow names to have arbitrary arities.

The axioms for the wiring terms are intuitive. The axioms for the controls are necessary to permit the
movemement of wiring terms inside indexed controls. They are illustrated in figure 10.

(C1)

PSfrag replacements
xy
zuv
K
L
M
Kp

G1
G2
t

sνnew
(x)P
xzv
out
in

=

PSfrag replacements
xy
zuv
K
L
M
Kp

G1
G2
t

sνnew
(x)P
xzv
out
in

(C2)

PSfrag replacements
xy
zuv
K
L
M
Kp

G1
G2
t

s
νnew

(x)P
xzv
out
in

=

PSfrag replacements
xy
zuv
K
L
M
Kp

G1
G2
t

s
νnew

(x)P
xzv
out
in

(C3)

PSfrag replacements
xy
zuv
K
L
M
Kp

G1
G2
t

s
νnew

(x)P
xzv
out
in

=

PSfrag replacements
xy
zuv
K
L
M
Kp

G1
G2
t

s
νnew

(x)P
xzv
out
in (C4)

PSfrag replacements
xy
zuv
K
L
M
Kp

G1
G2
t

sνnew
(x)P
xzv
out
in

=

PSfrag replacements
xy
zuv
K
L
M
Kp

G1
G2
t

sνnew
(x)P
xzv
out
in

Figure 10: Four of the combinator axioms. They are given algebraically in Definition 5.2.

Definition 5.2 [The theory SC] The equational theory SC is the set of equations upon terms generated by
the axioms of a strict symmetric monoidal category given in definition 2.2 and the following axioms:
1. the axioms for copy, merge, new and discard (we write ⊳mn as shorthand for ⊳m⊗n)

B1. ⊳mn = (⊳m ⊗ ⊳n) · (idm ⊗ pm,n ⊗ idn)
⊲mn = (idm ⊗ pm,n ⊗ idn) · (⊲m ⊗⊲n)

B2. ωmn = ωm ⊗ ωn

νmn = νm ⊗ νn

B3. ⊳m · (ωm ⊗ idm) = idm

(νm ⊗ idm) ·⊲m = idm

B4. ⊳m · pm,m = ⊳m

pm,m ·⊲m = ⊲m

B5. ⊳m · (⊳m ⊗ idm) = ⊳m · (idm ⊗⊳m)
(⊲m ⊗ idm) ·⊲m = (idm ⊗⊲m) ·⊲m

B6. νm · ωm = idǫ

B7. ⊲m ·⊳m = (⊳m ⊗ idm) · (idm ⊗⊲m) = (idm ⊗⊳m) · (⊲m ⊗ idm)
B8. ⊳m ·⊲m = idm

14

2. the axioms for naming, where x :p

B9. x+ · x− = idǫ

B10. x+ ·⊳p = x+ ⊗ x+

⊲p · x− = x− ⊗ x−

B11. x+ · ωp = idǫ

νp · x− = idǫ

3. the control axioms (again, Kkmnl is shorthand for Kk⊗m⊗n⊗l)

C1. (idk ⊗ pn,m ⊗ id) ·Kkmnl(~s) · (idk ⊗ pm,n ⊗ id) = Kknml((idk ⊗ pn,m ⊗ id) · ~s · (idk ⊗ pm,n ⊗ id))

C2. idm ⊗Kn(~s) = Km,n(idm ⊗ ~s)

C3. (⊳m ⊗ id) · (id⊗Km(~s)) · (⊲m ⊗ id) = Km(~s)

C4. (idk ⊗⊲m ·⊳m ⊗ id) ·Kkmml(~s) · (idk ⊗⊲m ·⊳m ⊗ id) = (idk ⊗⊲m ·⊳m ⊗ id)·
Kkmml((idk ⊗⊲m ·⊳m ⊗ id) · ~s · (idk ⊗⊲m ·⊳m ⊗ id)) · (idk ⊗⊲m ·⊳m ⊗ id)

C5. (x+ ⊗ id ⊗ id) ·Kkm(~s) · (x− ⊗ id⊗ id) = Km((x+ ⊗ id) · ~s · (x− ⊗ id))

Remark 5.3 The axioms B1-B7 correspond to a known categorical structure called a Frobenius algebra.
This structure combined with the additional axiom B8 has a free characterisation previously discovered by
Hyland. Finding a categorical interpretation of the control axioms remains the subject of ongoing discussion.

Definition 5.4 [Name-hiding] Let s : m → n be a combinator in CT(K) and let x : p. The derived name-
hiding operator (s)x : m → n is given by

(s)x
def
= (νp ⊗ id) · [x− ⊗ x+ ⊗ s]x · (discp ⊗ id)

where [x− ⊗ x+ ⊗ s]x is defined inductively on the structure of s as follows:

[x− ⊗ x+ ⊗ s]x
def
= idp ⊗ s, x 6∈ fn(s)

[x− ⊗ x+ ⊗ x+]x
def
= ⊳p

[x− ⊗ x+ ⊗ x−]x
def
= ⊲p

[x− ⊗ x+ ⊗ (s1 · s2)]x
def
= [x− ⊗ x+ ⊗ s1]x · [x− ⊗ x+ ⊗ s2]x

[x− ⊗ x+ ⊗ (s1 ⊗ s2)]x
def
= (⊳p ⊗ id) · (id⊗ pp,m ⊗ id) · ([x− ⊗ x+ ⊗ s1]x ⊗ [x− ⊗ x+ ⊗ s2]x)·

(id ⊗ pk,p ⊗ id) · (⊲p ⊗ id)

[x− ⊗ x+ ⊗Km(~s)]x
def
= Kp⊗m([x− ⊗ x+ ⊗ ~s]x)

Using this name-hiding operator, it is simple to define translations [[·]] : ST(K) → CT(K) and
| · | : CT(K) → ST(K) by induction on the structure of the terms. The only interesting cases are those
of controls, namely

[[K(t1, . . . , tr)]] = Kǫ([[t1]], . . . , [[tr]])

which has an empty index since no name-hiding operator has yet been pushed inside, and

|Km(t1, . . . , tr)| = (~x− ⊗ ~x+ ⊗K((~x+ ⊗ id) · |~ti| · (~x− ⊗ id)))~x

with ~x fresh and |~x| = m.

Proposition 5.5

1. s, t ∈ ST(K) and s = t in SAC implies [[s]] = [[t]] in SC.

2. s, t ∈ CT(K) and s = t in SC implies |s| = |t| in SAC.

3. Given t ∈ ST(K), we have |[[t]]| = t in SAC.

4. Given t ∈ CT(K), we have [[|t|]] = t in CS.

15

6 Conclusion and additional work

To conclude, we briefly describe the connection between Yoshida’s process graphs [Yos95] and non-nested
symmetric action calculi. Process graphs extend Lafont’s interaction nets [Laf97] to allow for non-determinism.
Using these graphs, Yoshida shows that a minimal set of combinators can be used to represent the π-calculus
[Yos98]. Figure 11 illustrates some process graphs. The nodes K,L,M are the same as nodes in interaction
nets. As with interaction nets, the nodes have distinguished principle ports. The joins in the wires are
named; these names may be free or hidden. Reaction occurs between two nodes that are joined on their
principal ports.

(a)

PSfrag replacements
x

y

zuv

K L

M
Kp

G1

G2
tsνnew

(x)P
xzv
out
in

PSfrag replacements
xy

z

uv
K
L

M

Kp

G1

G2

tsνnew
(x)P
xzv
out
in (b)

PSfrag replacements

x

y
zuv

K L

M

Kp

G1
G2
tsν

new
(x)P
xzv
out
in

(c)

PSfrag replacements

x

y
zuv

K L

M

Kp

G1
G2
tsνnew

(x)P
xzv
out
in

Figure 11: (a) Juxtaposition of graphs G1 and G2 is simply their tensor composition, in the case where their free
names are distinct. (b) We may connect the graphs with a partition y = z and then rename the join, in this case
by the name x. The partition corresponds to the equivalence relation R in our symmetric molecular forms, and
relabelling is given by the σ- and ν-axioms. (c) Hiding in the process graphs corresponds directly to name-hiding in
the symmetric action calculi, and is illustrated by crossing out the name in question.

There are three operations on process graphs, also illustrated in Figure 11:

juxtaposition, which allows two graphs to be placed side-by-side if they have distinct free names;

connection which, given a graph G and a partition Σ of the free names in G, allows the names equal
in Σ to be joined together and renamed; and

hiding, which removes some of the names.

Using an argument similar to that which connects interaction nets with simple directed graphs [Gar99a],
we can show that Yoshida’s graphs corresponds to non-nested symmetric molecular forms with the shape
(; ~µ;)I;~z for {~z} ⊆ fn(~µ).

In this paper we have introduced the symmetric action calculi. Our framework differs from the action
calculus framework in its use of name-hiding as a primitive operator. We have shown that the π-calculus,
the πI -calculus and a variant of the fusion calculus all have natural presentations in our framework. We
have proved that the symmetric action calculi conservatively extend the reflexive action calculi. Finally, we
have provided a combinatory version of the symmetric action calculi: this is a step towards a categorical
formulation of the graphs. We are currently looking at the presentation of other calculi based on names and
name-restriction.

Acknowledgements We would like to thank J. Leifer and D. Wischik for their help and patience.

16

References

[AG97] Mart́ın Abadi and Andrew D. Gordon. A calculus for cryptographic protocols: The spi calculus. In
Proceedings of the Fourth ACM Conference on Computer and Communications Security, Zürich,
pages 36–47. ACM Press, April 1997.

[Bou92] Gérard Boudol. Asynchrony and the π-calculus (note). Rapport de Recherche 1702, INRIA
Sofia-Antipolis, May 1992.

[CG98] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Proc. of Foundations of Software
Science and Computation Structures (FoSSaCS), ETAPS’98, LNCS 1378, pages 140–155, March
1998.

[Gar99a] P. Gardner. Graphical presentations of interactive systems. Submitted for publication; available
at http://www.cl.cam.ac.uk/~pag20/, January 1999.

[Gar99b] Philippa Gardner. Closed action calculi. Theoretical Computer Science, 1999. To appear.

[GH97] Philippa Gardner and Masahito Hasegawa. Types and models in higher-order action calculi. In
Proceedings of TACS 97, Sendai, Japan, 1997.

[HT92] Kohei Honda and Mario Tokoro. On asynchronous communication semantics. Lecture Notes in
Computer Science, 612, 1992.

[Jen99] O. Jensen. Ph.D. thesis, University of Cambridge. 1999. In preparation.

[JSV96] A. Joyal, R. Street, and D. Verity. Traced monoidal categories. Mathematical Proceedings of the
Cambridge Philosophical Society, 119(3), 1996.

[Laf97] Yves Lafont. Interaction combinators. Information and Computation, 137(1):69–101, 1997.

[Mil94] R. Milner. Action calculi V: Reflexive Action Calculi. Manuscript, 1994.

[Mil96] R. Milner. Calculi for interaction. Acta Informatica, 33(8):707–737, 1996.

[Mil99] R. Milner. Communicating and Mobile Systems: The Pi Calculus. Cambridge University Press,
1999. To appear.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Information and Control,
100:1–77, 1992.

[PS93] A. M. Pitts and I. D. B. Stark. Observable properties of higher order functions that dynamically
create local names, or: What’s new? Lecture Notes in Computer Science, 711, 1993.

[San96] D. Sangiorgi. Pi-calculus, internal mobility and agent-passing calculi. Theoretical Computer
Science, 167(2), 1996.

[Sew97] Peter Sewell. Global/local subtyping for a distributed π-calculus. Technical Report 435, University
of Cambridge, August 1997. Available from http://www.cl.cam.ac.uk/users/pes20/.

[VP98] B. Victor and J. Parrow. Concurrent constraints in the fusion calculus. In Proceedings of
ICALP’98, number 1443 in Lecture Notes in Computer Science, pages 455–469. Springer-Verlag,
1998.

[Yos95] N. Yoshida. Graph notation for concurrent combinators. Lecture Notes in Computer Science,
907:393–412, May 1995.

[Yos98] N. Yoshida. Minimality and separation results on asynchronous mobile processes: Representability
theorems by concurrent combinators. In Proceedings of CONCUR ’98, LNCS 1466, pages 131–146,
Springer-Verlag, 1998.

17

