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Abstract

We introduce Xdπ, a peer-to-peer model for reasoning about the dy-
namic behaviour of web data. It is based on an idealised model of semi-
structured data, and an extension of the π-calculus with process mobility
and with operations for interacting with data. Our model can be used
to reason about behaviour found in, for example, dynamic web page pro-
gramming, applet interaction, and service orchestration. We study be-
havioural equivalences for Xdπ, motivated by examples.
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1 Introduction

Web data, such as XML, plays a fundamental rôle in the exchange of information
between globally distributed applications. Applications naturally fall into some
sort of mediator approach: systems are divided into peers, with mechanisms
based on XML for interaction between peers. The development of analysis
techniques, languages and tools for web data is by no means straightforward.
In particular, although web services allow for interaction between processes and
data, direct interaction between processes is not well-supported.

Peer-to-peer data management systems are decentralised distributed systems
where each component offers the same set of basic functionalities and acts both
as a producer and as a consumer of information. We model systems where each
peer consists of an XML data repository and a working space where processes
are allowed to run. Our processes can be regarded as agents with a simple
set of functionalities; they communicate with each other, query and update
the local repository, and migrate to other peers to continue execution. Process
definitions can be included in documents1, and can be selected for execution
by other processes. These functionalities are enough to express most of the
dynamic behaviour found in web data, such as web services, distributed (and
replicated) documents [2], distributed query patterns [26], hyperlinks, forms,
and scripting.

In this paper we introduce the Xdπ-calculus, which provides a formal seman-
tics for the systems described above. It is based on a network of locations (peers)
containing a (semi-structured) data model, and π-like processes [22, 27, 17] for
modelling process interaction, process migration, and interaction with data.
The data model consists of unordered labelled trees, with embedded processes
for querying and updating such data, and explicit pointers for referring to other
parts of the network: for example, a document with a hyperlink referring to
another site and a light-weight trusted process for retrieving information associ-
ated with the link. The idea of embedding processes (scripts) in web data is not
new: examples include Javascript, SmartTags and calls to web services. How-
ever, web applications do not in general provide direct communication between
active processes, and process coordination therefore requires specialised orches-
tration tools. In contrast, distributed process interaction (communication and
co-ordination) is central to our model, and is inspired by the current research
on distributed process calculi.

We study behavioural equivalences for Xdπ. In particular, we define when
two processes are equivalent in such a way that when the processes are put in
the same position in a network, the resulting networks are equivalent. We do
this in several stages. First, we define what it means for two Xdπ-networks to be
equivalent. Second, we give a translation of Xdπ into a simpler calculus (Xπ2),
where the location structure has been pushed inside the data and processes. This
translation technique, first proposed in [9], enables us to separate reasoning
about processes from reasoning about data and networks. Third, we define

1We regard process definitions in documents as an atomic piece of data, and we do not
consider queries which modify such definitions.
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process equivalence for Xπ2, and provide a proof method based on a labelled
bisimulation. Finally, we study examples: in particular, we prove how services
can be transparently replicated.

1.1 A Simple Example

We use the hyperlink example as a simple example to illustrate our ideas. Con-
sider two locations (machines identified by their IP addresses) l and m. Location
l contains a hyperlink at p referring to data identified by path q at location m:

l

RQ

m

q
p

In the working space of location l, the process Q activates the process embedded
in the hyperlink, which then fires a request to m to copy the tree identified by
path q and write the result to p at l.

The hyperlink at l, written in both XML notation (LHS) and ambient no-
tation used in this paper (RHS), is:

    <To>
<Link>

        m:q
    </To>

    </Code>

    <Code>
        P

</Link>

Link

CodeTo

2P

Link[ To[ @m:q ] | Code[ 2P ] ]

@m:q

This hyperlink consists of two parts: an external pointer @m:q, and a scripted
process 2P which provides the mechanism to fetch the subtree q from m. Pro-
cess P has the form

P = readp/Link/To(@x:y).load〈x, y, p〉

The read command reads the pointer reference from position p/Link/To in the
tree, substitutes the values m and q for the parameters x and y in the con-
tinuation and evolves to the output process load〈m, q, p〉, which records the
target location m, the target path q and the position p where the result tree
will go. This output process calls a corresponding input process inside Q, using
π-calculus interaction. The specification of Q has the form:

Qs = !load(x, y, z).go x. copyy(X).go l.pastez〈X〉
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The replication ! denotes that the input process can be used as many times as
requested. The interaction between the load and load replaces the parameters
x, y, z with the values m, q, p in the continuation. The process then goes to m,
copies the tree at q, comes back to l, and pastes the tree to p.

The process Qs is just a specification. We refine this specification by having
a process Q (acting as a service call), which sends a request to location m for
the tree at q, and a process R (the service definition) which grants the request.
Processes Q and R are defined by

Q =!load(x, y, z).(νc)(go x.get〈y, l, c〉 | c(X).pastez〈X〉)

R =!get(y, x, w).copyy(X).go x.w〈X〉
Once process Q receives parameters from load, it splits into two parts: the pro-
cess that sends the output message get〈q, l, c〉 to m, with information about the
particular target path q, the return location l and a private channel name c (cre-
ated using the π-calculus restriction operator ν), and the process c(X).pastep〈X〉
waiting to paste the result delivered via the unique channel c. Process R re-
ceives the parameters from get and returns the tree to the unique channel c at
l. Using our definition of process equivalence, we show that Q does indeed have
the same intended behaviour as its specification Qs, and that the processes are
interchangeable independently from the context where they are installed.

1.2 Related Work

Our work is related to the Active XML approach to data integration developed
independently by Abiteboul et al. [4]. They introduce an architecture which is
a peer-to-peer system where each peer contains a data model very similar to
ours (but where only service calls can be scripted in documents), and a working
space where only web service definitions are allowed. Moreover Active XML
service definitions cannot be moved around. In this respect our approach is more
flexible: for example, we can define an auditing process for assessing a university
course—it goes to a government site, selects the assessment criteria appropriate
for the particular course under consideration, then moves this information (web
service definition) to the university to make the assessment.

Several distributed query languages, such as [24, 19, 8], extend traditional
query languages with facilities for distribution awareness. Our approach is clos-
est to the one of Sahuguet and Tannen [26], who introduce the ubQL query
language based on streams for exchanging large amounts of distributed data,
partly motivated by ideas from the π-calculus. There has been much study of
data models for the web in the XML, database and process algebra communities.
Our ideas have evolved from those found in [3] and [10]. Our process-algebra
techniques have most in common with [18, 9, 16]. Process calculi have also been
used for example to study security properties of web services [15], reason about
mobile resources [14], and in [25] to sketch a distributed query language. Bier-
man and Sewell [7] have recently extended a small functional language for XML
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with π-calculus-based concurrency in order to program Home Area Networks
devices.

Our work is the first attempt to integrate the study of mobile processes and
semi-structured data for Web-based data-sharing applications, and is charac-
terised by its emphasis on dynamic data.

2 A model for dynamic web data

We model a peer-to-peer system as a sets of interconnected locations (networks),
where the content of each location consists of an abstraction of a XML data
repository (the tree) and a term representing both the services provided by
the peer and the agents in execution on behalf of other peers (the process).
Processes can query and update the local data, communicate with each other
through named channels (public or private), and migrate to other peers. Process
definitions can be included in documents and can be selected for execution by
other processes.

2.1 Syntax

2.1.1 Trees

Our data model extends the unordered labelled rooted trees of [10], with leaves
which can either be scripted processes or pointers to data. We use the following
constructs: edge labels denoted by a, b, c ∈ A, path expressions denoted by
p, q ∈ E used to identify specific subtrees, and locations of the form ª, l, m ∈ L,
where the ‘self’ location ª refers to the enclosing location. The set of data trees,
denoted T , is given by

T ::= 0 | T |T | a[ T ] | a[ 2P ] | a[ @l:p ]

Tree 0 denotes a rooted tree with no content. Tree T1 |T2 denotes the composi-
tion of T1 and T2, which simply joins the roots. A tree of the form a[ ... ] denotes
a tree with a single branch labelled a which can have three types of content: a
subtree T ; a scripted process 2P which is a static process awaiting a command
to run; a pointer @l:p which denotes a pointer to a set of subtrees identified
by path expression p in the tree at location l. Processes and path expressions
are described below. The structural congruence for trees states that trees are
unordered, and scripted processes are identified up to the structural congruence
for processes (see Table 1).

2.1.2 Processes

Our processes are based on π-processes extended with an explicit migration
primitive between locations, and an operation for interacting directly with data.
The π-processes describe the movement of values between channels. Generic
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Structural congruence is the least congruence satisfying alpha-conversion,
the commutative monoidal laws for (0, |) on trees, processes and networks,
and the axioms reported below:

(Trees)

U ≡ V ⇒ a[ U ] ≡ a[ V ]

(Values)

P ≡ Q ⇒ 2P ≡ 2Q v′ ≡ w′ ∧ ṽ ≡ w̃ ⇒ v′, ṽ ≡ w′, w̃
(Processes)

(νc)0 ≡ 0 c 6∈ fn(P ) ⇒ P | (νc)Q ≡ (νc)(P |Q)
(νc)(νc′)P ≡ (νc′)(νc)P ṽ ≡ w̃ ⇒ c〈ṽ〉 ≡ c〈w̃〉

V ≡ V ′ ∧ P ≡ Q ⇒ updatep(χ, V ).P ≡ updatep(χ, V ′).Q
(Networks)

(νc)0 ≡ 0 c 6∈ fn(N) ⇒ N | (νc)M ≡ (νc)(N |M)
(νc)(νc′)N ≡ (νc′)(νc)N P ≡ Q ⇒ l〈P 〉 ⇒ l〈Q〉
l [T ‖ (νc)P ] ≡ (νc)l [T ‖P ] T ≡ S ∧ P ≡ Q ⇒ l [T ‖P ] ≡ l [S ‖Q ]

Table 1: Structural congruence for Xdπ.

variables are x, y, z, channel names or channel variables are a, b, c and values,
ranged over by u, v, w, are

u ::= T | c | l | p | 2P | x

We use the notation z̃ and ṽ to denote vectors of variables and values respec-
tively. Identifiers U, V range over scripted processes, pointers and trees. The
set of processes, denoted by P, is given by

P ::= 0 | P |P | (νc)P | b〈ṽ〉 | b(z̃).P | !b(z̃).P
| go l.P | updatep(χ, V ).P | runp

The processes in the first line of the grammar are constructs arising from the
π-calculus: the nil process 0, the composition of processes P1 |P2, the restriction
(νc)P which restricts (binds) channel name c in process P , the output process
b〈ṽ〉 which denotes a vector of values ṽ waiting to be sent via channel b, the
input process b(z̃).P which is waiting to receive values from an output process
via channel b to replace the vector of distinct, bound variables z̃ in P , and
replicated input !b(z̃).P which spawns off a copy of b(z̃).P each time one is
requested. We assume a simple sorting discipline, to ensure that the number of
values sent along a channel matches the number of variables expected to receive
those values. Channel names are partitioned into public and session channels,
denoted CP and CS respectively. Public channels denote those channels that
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are intended to have the same meaning at each location, such as finger, and
cannot be restricted. Session channels are used for process interaction, can be
restricted, and cannot be free in the scripted processes occurring in data. We
assume upon the latter the usual notions of free and bound names (fn, bn).

The migration primitive go l.P is common in calculi for describing distributed
systems; see for example [16]. It enables a process to go to l and become P .
An alternative choice would have been to incorporate the location information
inside the other process commands: for example using l·b〈ṽ〉 to denote a process
which goes to l and interacts via channel b.

The generic update command updatep(χ,U).P is used to interact with the
data trees. Patterns χ, ξ have the form

χ ::= X | @x:y | 2X,

where X denotes a tree or process variable. Here U can contain variables and
must have the same sort as χ. The variables free in χ are bound in U and
P . The update command finds all the values Ui given by the path p, pattern-
matches these values with χ to obtain the substitution σi when it exists. For
each successful pattern-matching, it replaces the Ui with Uσi and evolves to
Pσi. Simple commands can be derived from this update command, including
standard copyp, cutp and pastep commands. Command runp prescribes, for all
scripted processes 2Pi found at the end of path p, to run Pi in the workspace.

The structural congruence on processes is similar to that given for the π-
calculus, and is given in Table 1. Notice that it depends on the structural
congruence for trees, since trees can be passed as values.

2.1.3 Networks

We model networks as a composition of unique locations, where each location
contains a tree and a set of processes. The set of networks, denoted N , is given
by

N ::= 0 | N |N | l [T ‖P ] | (νc)N | l〈P 〉
The location l [T ‖P ] denotes location l containing tree T and process P . It is
well-formed when the tree and process are closed (have no free variables), and
the tree contains no free session channels. The network composition N1 |N2 is
partial in that the location names associated with N1 and N2 must be disjoint.
Communication between locations is modelled by process migration, which we
represent explicitly: the process l〈P 〉 represents a (higher-order) migration mes-
sage addressed to l and containing process P , which has left its originating loca-
tion. In the introduction, we saw that a session channel can be shared between
processes at different locations. We must therefore lift the restriction to the
network level using (νc)N . Structural congruence for networks is defined in
Table 1, and is analogous to that given for processes.
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2.2 Semantics

2.2.1 Path Expressions

In the examples of this paper, we use a very simple subset of XPath expres-
sions [20]. In our examples, “/” denotes path composition and “.”, which can
appear only inside trees, denotes the path to its enclosing node.

Our semantic model is robust with respect to any choice of mechanism which,
given some expression p, identifies a set of nodes in a tree T (modulo structural
congruence). We let p(T ) denote the tree T where the nodes identified by p
are selected, and we represent a selected node by underlining its contents. For
example the selected subtrees below are S′ and T ′:

T = a[ a[ S ] | b[ S′ ] | c[ T ′ ] ]

A path expression such as ∗/a might select nested subtrees. We give an example:

∗/a(T ) = a[ a[ S ] | b[ S′ ] | c[ T ′ ] ]

2.2.2 Reduction Semantics

The reduction relation ↘ describes the movement of processes across locations,
the interaction between processes and processes, and the interaction between
processes and data. Reduction is closed under network composition, restriction
and structural congruence, and it relies on the updating function Ãp given in
Table 2, which we will explain later. The reduction relation is given in Table 3.

The rules for process movement between locations are inspired by [5]. Rule
(Exit) always allows a process go l.P to leave its enclosing location. At the
moment, rule (Enter) permits the code of P to be installed at l provided that
location l exists2. In future work, we intend to associate some security check
to this operation. Process interaction (rules (Com) and (!Com)) is inspired by π-
calculus interaction. If one process wishes to output on a channel, and another
wishes to input on the same channel, then they can react together and transmit
some values as part of that reaction.

The generic (Update) rule provides interaction between processes and data.
Using path p it selects for update some subtrees in T , denoted by p(T ), and then
applies the updating function Ãp to p(T ) in order to obtain the new tree T ′ and
a set of substitutions Σ, used to generate the continuation processes. Given a
subtree selected by p, the function Ãp pattern matches the subtree with pattern
χ to obtain substitution σ (when it exists) and updates the subtree with V σ.
The formal definition3 of Ãp , parameterised by Θ = p, l, χ, V , is given in Table 2.

Rule (Up) in Table 3 deserves some explanation. First of all it substitutes in
U any reference to the current location and path with the actual values l and p,
denoted U{l/ ª, p/.}. It then matches the result with χ, to obtain substitution

2This feature is peculiar to our calculus, as opposed to e.g. [16], where the existence of
the location to be entered is not a precondition to migration. Our choice makes the study of
equivalences non-trivial and models an important aspect of location failure.

3Where Σ is a multiset of substitutions and ⊕ is multiset union.
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(Zero) 0 ÃpΘ0, ∅ (Link) @m:q ÃpΘ@m:q, ∅

(Proc) 2Q ÃpΘ2Q, ∅ (Node)
U ÃpΘU ′,Σ

a[ U ] ÃpΘa[ U ′ ], Σ

(Par)
T ÃpΘT ′, Σ1 S ÃpΘS′, Σ2

T |S ÃpΘT ′ |S′,Σ1 ⊕ Σ2

(Up)
match(U{l/ ª, p/.}, χ) = σ V σ ÃpΘV ′, Σ Θ = p, l, χ, V

a[ U ] ÃpΘa[ V ′ ], {σ} ⊕ Σ

Table 2: Update Semantics

Reduction Axioms

(Exit) m [T ‖Q | go l.P ] ↘ m [T ‖Q ] | l〈P 〉
(Enter) l [T ‖Q ] | l〈P 〉 ↘ l [T ‖Q |P ]

(Com) l [T ‖ c〈ṽ〉 | c(z̃).P |Q ] ↘ l [T ‖P{ṽ/z̃} |Q ]

(Com!) l [T ‖ c〈ṽ〉 | !c(z̃).P |Q ] ↘ l [T ‖ !c(z̃).P |P{ṽ/x̃} |Q ]

(Update)
p(T )Ãp p,l,χ,V T ′, {σ1, · · · , σn}

l [T ‖ updatep(χ, V ).P |Q ]↘ l [T ′ ‖Pσ1 | · · · |Pσn |Q ]

(Run)
p(T )Ãp p,l,2X,2XT, {{2P1/2X}, · · · , {2Pn/2X}}

l [T ‖ runp |Q ]↘ l [T ‖P1 | · · · |Pn |Q ]

Contextual Rules

(Res)
N ↘ N ′

(νc̃)N ↘ (νc̃)N ′

(Par)
N ↘ N ′

N |M ↘ N ′ |M

(Struct)
N ≡ M ↘ M ′ ≡ N ′

N ↘ N ′

Table 3: Reduction Semantics

σ; when σ exists, it continues updating V σ, and when we obtain some subtree
V ′ along with a process R, it replaces U with V ′ and it returns Pσ in parallel
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with R.
The ability to select nested nodes introduces a difference between updating

the tree in a top-down rather than bottom-up order. In particular the resulting
tree is the same, but a different set of processes P is collected. We chose the
top-down approach because is bears a closer correspondence with intuition: a
copy of P will be created for each update still visible in the final tree outcome.
For example,

l [ a[ b[ T ] ]‖ update∗(X, 0).P ]↘ l [ a[ 0 ]‖P{b[ T ]/X} ]
whereas, following a bottom-up approach we would have

l [ a[ b[ T ] ]‖ update∗(X, 0).P ]

↘ l [ a[ 0 ]‖P{b[ 0 ]/X} |P{T/X} ]
because first we would transform a[ b[ T ] ] in a[ b[ 0 ] ] generating P{T/X}, and
then transform a[ b[ 0 ] ] in a[ 0 ], generating P{b[ 0 ]/X}.

2.2.3 Derived Commands

Throughout our examples, we use the derived commands given in Table 4. When
concerned with access control issues, it may become desirable to include each of
these derived forms as primitives, in order to use fine-grained security policies.
Nonetheless it is important to be aware that semantically are all expressible
through a single construct.

copyp(X).P , updatep(X, X).P copy the tree at p and use it in P

readp(@x:y).P , updatep(@x:y, @x:y).P

�
read the pointer at p,
use its location and path in P

cutp(X).P , updatep(X, 0).P cut the tree at p and use it in p

pastep〈T 〉.P , updatep(X, X |T ).P

�
where X is not free in T or P ,
paste tree T at p and evolve to P

Table 4: Derived Commands

Example 2.1 The following reaction illustrates the cut command:

l [ c[ a[ T ] | a[ T ′ ] | b[ S ] ]‖ cutc/a(X).P ]

↘ l [ c[ a[ 0 ] | a[ 0 ] | b[ S ] ]‖P{T/X} |P{T ′/X} ]
The cut operation cuts the two subtrees T and T ′ identified by the path expression
c/a and spawns one copy of P for each subtree.

Now we give an example to illustrate run and the substitution of local refer-
ences:

S = a[ b[ 2go m.go ª .Q ] | b[ 2update./../c(χ, T ).P ] ]

11



l [S ‖ runa/b ]

↘ l [S ‖ go m.go l.Q | updatea/b/../c(χ, T ).P ]

The data S is not affected by the run operation, which has the effect of spawning
the two processes found by path a/b. Note how the local path ./../c has been
resolved into the completed path a/b/../c, and ª has been substituted by l.

2.3 Dynamic web data at work

We give some examples of dynamic web data modelled in Xdπ.

2.3.1 Web Services

In the introduction, we described the hyperlink example. Here we generalise this
example to arbitrary web services. We define a web service c with parameters
z̃, body P , and type of result specified by the distinct variables w̃ bound by P :

Define c(z̃) as P output 〈w̃〉 ,!c(z̃, l, x). P. go l. x〈w̃〉
where l and x are fresh variables not occurring in P or w̃, which are used to
specify the return location and channel. For example, process R described in
the introduction can be written Define get(q) as copyq(X) output 〈X〉.

We specify a service call at l to the service c at m, sending actual parameters
ṽ and expecting in return the result specified by distinct bound variables w̃:

l·Call m·c〈ṽ〉 return (w̃).Q , (νb)(go m.c〈ṽ, l, b〉 | b(w̃).Q)

This process establishes a private session channel b, which it passes to the web
service as the unique return channel. Returning to the hyperlink example, the
process Q can be given by

!load(m, q, p). l·Call m·get〈q〉 return (X).pasteq〈X〉
Notice that it is easy to model subscription to continuous services in our

model, by simply replicating the input on the session channel:

l·Subscribe m·c〈ṽ〉 return (w̃).P , (νb)(go m.c〈ṽ, l, b〉 | !b(w̃).P )

Note that some web services may take as a parameter or return as a result some
data containing another service call (for example, see the intensional parameters
of [1]). In our system the choice of when to invoke such nested services is
completely open, and is left to the service designer.

2.3.2 XLink Base

We look at a refined example of the use of linking, along the lines of XLink. Links
specify both of their endpoints, and therefore can be stored in some external
repository, for example

XLink[ To[ @n:q ] | From[ @l:p ] | Code[ 2P ] ]
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XLinkBase[ XLink[ ... ] | ... | XLink[ ... ] ]

Suppose that we want to download from an XLink server the links associated
with node p in the local repository at l.

We can define a function xload which takes a parameter p and requests from
the XLink service xls at m all the XLinks originating from @l:p, in order to
paste them under p at location l:

!xload(p).l·Subscribe m·xls〈l, p〉 return (x, y, 2χ)
.pastep〈Link[ To[ @x:y ] | Code[ 2χ ] ]〉

Service xls defined below is the XLink server. It takes as parameters the two
components l, p making up the From endpoint of a link, and returns all the pairs
To, Code defined in the database for @l:p.

Define xls(l, p) as P output 〈x, y, 2χ〉
P = copyp1

(@x:y).copyp2
(2χ)

p1 = XLinkBase/XLink[ From[ @l:p ] ]/To

p2 = XLinkBase/XLink[ From[ @l:p ] | To[ @x:y ] ]/Code

In p1 we use the XPath syntax XLink[ From[ @l:p ] ]/To to identify the node To
which is a son of node XLink and a sibling of From[ @l:p ]; similarly for p2.

2.3.3 Forms

Forms enhance documents with the ability to input data from a user and then
send it to a server for processing. For example, assuming that the server is at
location s, that the form is at path p, and that the code to process the form
result is called handler, we have

form[input[ 0 ]

| submit[ 2copy./../input(X).go s.handler〈X〉 ]
| reset[ 2cut./../input(X) ]]

where runp/form/submit (or runp/form/reset) is the event generated by clicking on
the submit (or reset) button. Some user input T can be provided by a process

pastep/form/input〈T 〉
and on the server there will be a handler ready to deal with the received data

s [S ‖ !handler(X).P |... ]
This example is suggestive of the usefulness of embedding processes rather than
just service calls in a document: the code to handle submission may vary from
form to form, and for example some input validation could be performed on the
client side.
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3 Behaviour of dynamic web data

In the hyperlink example of the introduction, we have stated that process Q and
its specification Qs have the same intended behaviour. In this section we provide
the formal analysis to justify this claim. We do this in several stages. First, we
define what it means for two Xdπ-networks to be equivalent. Second, we give a
translation of Xdπ into a simpler calculus (Xπ2), where the location structure
has been pushed inside the data and processes. This translation technique, first
proposed in [9], enables us to separate reasoning about processes from reasoning
about data and networks. Third, we define process equivalence for Xπ2, and
provide a proof method based on a labelled bisimulation. Finally, we study the
examples: we show that Q behaves like Qs and we prove that services can be
transparently replicated.

3.1 Network Equivalence

We apply a standard technique for reasoning about processes distributed be-
tween locations to our non-standard setting. The network contexts are

C ::= − | C |N | (νc) C

We define a barbed congruence between networks which is reduction-closed,
closed with respect to network contexts, and which satisfies an additional obser-
vation relation described using barbs. In our case, the barbs describe the update
commands, the commands which directly affect the data.

Definition 3.1 A barb has the form l·β, where l is a location name and β ∈
{updatep}p∈E . The observation relation, denoted by N ↓ l·β, is a binary relation
between Xdπ-networks and barbs defined by

N ↓l·updatep
, ∃C, S, χ, U, P, Q. N ≡ C[l [S ‖ updatep(χ,U).P |Q ]

that is, N contains a location l with an updatep command. The weak observation
relation, denoted N ⇓l·β, is defined by

N ⇓l·β , ∃N ′. N ↘ N ′ ∧N ′ ↓l·β
Observing a barb corresponds to observe at what points in some data-tree a
process has the capability to read or write data.

Definition 3.2 Barbed congruence ('b) is the largest symmetric relation R
on Xdπ-networks such that N RM implies

• N and M have the same barbs: N ↓l·β⇒ M ⇓l·β;

• R is reduction-closed: N ↘ N ′ ⇒ (∃M ′.M ↘∗ M ′ ∧ N ′R M ′);

• R is closed under network contexts: ∀C.C[N ]RC[M ].
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Example 3.1 Our first example illustrates that network equivalence does not
imply that the initial data trees need to be equivalent:

N = l [ b[ 0 ]‖ !pasteb〈a[ 0 ]〉 | !cutb(X) ]

M = l [ b[ a[ 0 ] | a[ 0 ] ]‖ !pasteb〈a[ 0 ]〉 | !cutb(X) ]

We have N 'b M since each state reachable by one network is also reachable
by the other, and vice versa.

An interesting example of non-equivalence is

l [T ‖ updatep(X, X).0 ] 6'b l [T ‖ 0 ]

Despite this particular update (copy) command having no effect on the data and
continuation, we currently regard it as observable since it has the capability to
modify the data at p, even if it does not use it.

Example 3.2 Our definition of web service is equivalent to its specification.
Consider the simple networks

N = l [T ‖ l·Call m·c〈ṽ〉 return (w̃).Q|R ]

Ns = l [T ‖ go m.P{ṽ/z̃}.go l.Q|R ]

M = m [S ‖Define c(z̃) as P output 〈w̃〉 |R′ ]
If c does not appear free in R and R′, then

(νc)(N |M) 'b (νc)(Ns |M)

A special case of this example is the hyperlink example discussed in the introduc-
tion. The restriction c is used to prevent the context providing any competing
service on c. It is clearly not always appropriate however to make a service
name private. An alternative approach is to ensure service uniqueness, intro-
ducing a linear type system as for example in [6], or requiring unique receptors
for each channel, as for example in [12].

3.2 Separation of Data and Processes

Our aim is to define when two processes are equivalent in such a way that, when
the processes are put in the same position in a network, the resulting networks
are equivalent. In order to do this, we introduce the Xπ2-calculus, in which
the location structure is pushed locally to the data and processes, in order to
be able to talk directly about processes. We translate the Xdπ-calculus in the
Xπ2-calculus, and equate Xdπ-equivalence with Xπ2-equivalence.
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(Trees) T ::= 0 | T |T | a[ T ] | a[ 2	yP ] | a[ @l:p ]

(Processes)
P ::= l·0 | P |P | l·b〈ṽ〉 | l·b(z̃).P | !l·b(z̃).P | (νc)P

| l·go m.P | l·updatep(χ, V ).P | l·runp | l〈P 〉 | 0
(Stores) D ::= ∅ | {l 7→ T} ]D

(Networks) (D, P )

Table 5: The calculus Xπ2.

3.2.1 The Xπ2 calculus

In Table 5 we give the syntax of Xπ2. Trees are defined as in Xdπ, apart from
scripted processes being located at ª. Networks are represented by pairs where
the first component (the store) contains a map from location names to data trees,
and the second component is a parallel composition of located processes. We
use notation lyP to express that P is a parallel composition of processes located
at l. The set loc(P ) denotes all li such that P ≡ (νb̃)(l1yP1 | · · · | lnyPn).

Processes deserve more explanation: parallel composition, restriction and
the migration message are as usual; l·0 and l·b〈ṽ〉 represent respectively a null
process and an output process located at l — the input, replicated input, migra-
tion and update are similar, and 0 stands for the null location. Well-formedness,
defined formally in Table 9, requires that loc(P ) = dom(D) for (D, P ), that the
migration message cannot be prefixed by any other process, that the continu-
ation of an explicitly located process be located at the same location, except
for the case of go m.P , where P must be located at m. Additionally, well-
formedness requires the same conditions given for Xdπ4.

Structural congruence for trees, stores, networks and processes is defined in
Table 6. Note how l·0 | lyP ≡ly P , whereas for example l·0 6≡ 0: this choice
guarantees that starting from a well-formed network (D, P ) there is always
at least one process (possibly null) located at l, for each l ∈ dom(D), and
there is never a process located at m for m 6∈ dom(D). In Table 7 below, we
give the semantic rules for Xπ2. The rules correspond closely with those for
Xdπ. Reduction is closed under restriction, parallel composition and structural
congruence (rules (Res), (Par) and (Struct)).

3.2.2 Barbed congruence for Xπ2

Definition 3.3 Reduction contexts for processes are C ′ ::= − | C ′ |P | (νc)C ′,
and reduction contexts for networks are C ::= (B ] −, C ′), where C[(D, P )] is
(B ]D,C ′[P ]).

4In practice we are going to encode Xdπ terms in Xπ2 terms which will be well-formed by
construction.
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Structural congruence is the least congruence satisfying alpha-conversion,
the commutative monoidal laws for (0, |) on trees, processes and networks,
and the axioms reported below:

(Trees) U ≡ U ′ ⇒ a[ U ] ≡ a[ U ′ ]

(Values) v′ ≡ w′ ∧ ṽ ≡ w̃ ⇒ v′, ṽ ≡ w′, w̃ P ≡ Q ⇒ 2P ≡ 2Q

(Processes) (νc)0 ≡ 0 l·0|lyP ≡ly P (νc)l·0 ≡ l·0
c 6∈ fn(P ) ⇒ P |(νc)Q ≡ (νc)(P |Q) (νc)(νc′)P ≡ (νc′)(νc)P
V ≡ V ′ ∧ P ≡ Q ⇒ l·updatep(χ, V ).P ≡ l·updatep(χ, V ′).Q

(Stores) dom(D) = dom(B) ∧ (∀l ∈ dom(D).D(l) ≡ B(l)) ⇒ D ≡ B

(Networks) D ≡ B ∧ P ≡ Q ⇒ (D, P ) ≡ (B, Q)
(Abstractions) V ≡ V ′ =⇒ (χ)V ≡ (χ)V ′

Table 6: Structural congruence for Xπ2.

Note that Xπ2 has in some sense more reduction contexts than Xdπ. In
particular, according to the definition above, we can insert a new process in a
location which is already defined, whereas in Xdπ that is not allowed. Nonethe-
less when reasoning about weak equivalences this difference is no longer a limi-
tation, because we can add in Xdπ a process message to install a new process
in an existing location, preserving weak bisimilarity.

Barbed congruence for Xπ2 is analogous to that for Xdπ.

Definition 3.4 Barbs for networks are defined as

(D, P ) ↓l·updatep
, ∃C ′, χ, U, P ′. P ≡ C ′[l·updatep(χ,U).P ′]

(D, P ) ⇓l·β , (D, P ) →∗ (D′, P ′) ∧ (D′, P ′) ↓l·β
Definition 3.5 Barbed congruence (∼=b) is the largest symmetric relation R
on Xaπ2 networks such that (D, P )R (B,Q) implies:

• (D,P ) ↓l·β⇒ (B,Q) ⇓l·β;

• (D,P ) → (D′, P ′) ⇒ (∃B′, Q′.(B, Q) →∗ (B′, Q′) ∧ (D′, P ′)R (B′, Q′));

• ∀ C.C[(D,P )]RC[(B,Q)].

3.2.3 From Xdπ to Xπ2

Recall the hyperlink example:

N = l [ Link[ To[ @m:q ] | Code[ 2P ] ]‖Q ] |m [S ‖R ], where

Q = !load(m, q, p).(νc)(go m. get〈q, l, c〉 | c(X).pastep〈X〉)
R = !get(q, l, c).copyq(X).go l.c〈X〉
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Reduction Axioms

(Exit) (∅,m·go l.P ) → (∅,m·0 | l〈P 〉)
(Enter) ({l 7→ T}, l〈P 〉) → ({l 7→ T}, P )

(Com) (∅, l·c〈ṽ〉 | l·c(x̃).P ) → (∅, P{ṽ/x̃})
(!Com) (∅, l·c〈ṽ〉 | !l·c(x̃).P ) → (∅, !l·c(x̃).P |P{ṽ/x̃})

(Update)
p(T )Ãp p,l,χ,V T ′, {σ1, · · · , σn}

({l 7→ T}, l·updatep(χ, V ).P ) → ({l 7→ T ′}, Pσ1 | · · · |Pσn)

(Run)
p(T )Ãp p,l,2X,2XT, {{2P1/2X}, · · · , {2Pn/2X}}

({l 7→ T}, l·runp) → ({l 7→ T}, P1 | · · · |Pn)

(The function Ãp is analogous to the one defined in Table 3.)

Structural Rules

(Res)
(D,P ) → (D′, P ′)

(D, (νc)P ) → (D′, (νc)P ′)

(Par)
(D, P ) → (D′, P ′)

(D ] E, P |R) → (D′ ] E, P ′|R)

(Struct)
(D,P ) ≡ (B, Q) → (B′, Q′) ≡ (D′, P ′)

(D, P ) → (D′, P ′)

Table 7: Reduction rules for Xπ2.

The translation to Xπ2 involves pushing the location structure, in this case
the l and m, inside the data and processes. We use ([N ]) to denote the translated
data and []S[] to denote the translation of tree S; also [[N ]] for the translated
processes and 〈[P ]〉l for the translation of process P which depends on location
l. Our hyperlink example becomes

([N ]) = {l 7→ Link[ To[ @m:q ] | Code[ 2〈[P ]〉	 ] ],m 7→ ([S])}
[[N ]] = !l·load(m, q, p).(νc)(l·go m.m·get〈q, l, c〉 | l·c(X).pastep〈X〉 |

!m·get(q, l, c).m·copyq(X).m·go l.l·c〈X〉

There are several points to notice. The data translation [] [] assigns locations
to translated trees, which remain the same except that the scripted processes
are translated using the self location ª: in our example 2P is translated to
2〈[P ]〉	. The use of ª is necessary since it is not pre-determined where the
scripted process will run. In our hyperlink example, it runs at l. With an
HTML form, for example, it is not known where a form with an embedded
scripted process will be required. The process translation [[ ]] embeds locations
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in processes. In our example, it embeds location l in Q and location m in
R. After a migration command, for example the go m. in Q, the location
information changes to m, following the intuition that the continuation will be
active at location m. The encodings are formally defined in Table 10.

3.2.4 Properties of the translation

The crucial properties of the encoding are that it preserves the observation
relation and is fully abstract with respect to barbed congruence. The proofs are
in Appendix A.1

Lemma 3.1 N ↓l·β if and only if (([N ]), [[N ]]) ↓l·β.

Theorem 3.1 N 'b M if and only if (([N ]), [[N ]]) 'b (([M ]), [[M ]]).

3.3 Process Equivalence

We now have the machinery to define process equivalence. We use the notation
(D,P ) to denote a network in Xπ2, where D stands for located trees and P
for located processes. A network (D, P ) is well formed if and only if (D, P ) =
(([N ]), [[N ]]) for some Xdπ network N .

3.3.1 Process Equivalence

Definition 3.6 Processes P and Q are barbed equivalent, denoted P ∼b Q, if
and only if, for all D such that (D,P ) is well formed, (D,P ) 'b (D, Q).

Example 3.3 Recall the web service example in Example 3.2. The processes
below are barbed equivalent:

Q1 = 〈[l·Call m·c〈ṽ〉 return (w̃).Q]〉l Q2 = 〈[go m.P{ṽ/z̃}.go l.Q]〉l

P0 = 〈[Define c(z̃) as P output 〈w̃〉]〉m
(νc)(Q1 |P0) ∼b (νc)(Q2 |P0)

These equivalences are known to be difficult to prove. Below we provide
a method for proving such equivalences, by extending the labelled transition
system of the π-calculus and defining a location-sensitive bisimulation relation
on processes. In particular, we develop a bisimulation equivalence ≈ with the
property that, given two Xπ2 processes P,Q, then P ≈ Q implies P ∼b Q.

3.3.2 Labelled transition system

We define in Table 8 an early labelled transition system for Xπ2 processes.
Labels α are:

α ::= l·c〈ṽ〉 | (b̃)l·c〈ṽ〉 | l·c(ṽ) | l·updatep(U , (χ)V ) | l·runp | τ
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(Exit) m·go l.P
τ−→ m·0 | l〈P 〉 (Enter) l〈P 〉 τ−→ P

(Res)
P

α−→ P ′

(νc)P α−→ (νc)P ′
c 6∈n(α)

(Par)
P

α−→ P ′

P |Q α−→ P ′ |Q
bn(α)∩fn(Q)=∅

(Struct)
P ≡ Q

α−→ Q′ ≡ P ′

P
α−→ P ′

(Open)
P

(ã)l·c〈ṽ〉−→ P ′

(νb)P
(b,ã)l·c〈ṽ〉−→ P ′

b6=c,b∈fn(ṽ)

(In!) !l·c(x̃).P
l·c(ṽ)−→ !l·c(x̃).P |P{ṽ/x̃} (In) l·c(x̃).P

l·c(ṽ)−→ P{ṽ/x̃}
(Com) l·c〈ṽ〉 | l·c(x̃).P τ−→ P{ṽ/x̃} (Out) l·c〈ṽ〉 l·c〈ṽ〉−→ l·0
(Com!) l·c〈ṽ〉 | !l·c(x̃).P τ−→!l·c(x̃).P |P{ṽ/x̃}
(Update) l·updatep(χ, V ).P

l·updatep(U,(χ)V )−→ P{U1/χ} | · · · |P{Un/χ}
where U={U1,··· ,Un}

(Run) l·runp
l·runp−→ l·0 (Zero) 0 τ−→ l·0

Table 8: Labelled Transition System

Note that the label for update contains an abstraction (χ)V meaning that the
variables in χ are bound in V . We use the standard notation

α³, τ−→∗ ◦ α−→
◦ τ−→∗

if α 6= τ , and
τ³, τ−→∗

. We say that an action α is relevant to a process
P , abbreviated by rel(α, P ), if α has the form (b̃)l·c〈ṽ〉 and {b̃} ∩ fn(P ) = ∅.

3.3.3 Bisimilarity

Definition 3.7 Given a process P and a set of locations Λ, such that ∆ =
Λ \ loc(P ), for ∆ = {l1, · · · , ln}, n ≥ 0, we call P | l1·0 | · · · | ln·0 the extension
of P to Λ, and we denote it by PΛ.

Definition 3.8 (Data equivalence) Given a set of locations Λ and a relation
on processes R, we denote by ≡(R,Λ) the relation generated by the same ax-
ioms and rules as ≡ but with axiom P ≡ Q =⇒ 2P ≡ 2Q replaced by
(∀l ∈ L.(P{p/.}{l/ ª})ΛR(Q{p/.}{l/ ª})Λ) =⇒ 2P ≡(R,Λ) 2Q.

From the previous definition, we have for example that ≡(≡,Λ) coincides with
≡ for any Λ 6= ∅. We now extend data equivalence to actions of the lts.

Definition 3.9 (Action Equivalence) An equivalence relation R on values in-
duces a corresponding relation on lts actions according to the following rules:
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ṽRũ

l·c〈ṽ〉Rl·c〈ũ〉
ṽRũ

(b̃)l·c〈ṽ〉R(b̃)l·c〈ũ〉
ṽRũ

l·c(ṽ)Rl·c(ũ)
URU ′ ∧ (χ)VR(ξ)V ′

l·updatep(U , V )Rl·updatep(U ′, V ′)

uRu′ ∧ URU ′
{u} ⊕ UR{u′} ⊕ U ′

2PR2P ′ ∧ URU ′
{P} ⊕ UR{P ′} ⊕ U ′

Definition 3.10 (Store Equivalence) An equivalence relation R on values in-
duces a corresponding relation on stores according to the following rule

TRT ′ ∧DRD′ =⇒ {l 7→ T} ]DR{l 7→ T ′} ]D′

Definition 3.11 Bisimilarity (≈) is the largest symmetric relation ≈̇ such that

P ≈̇Q implies loc(P ) = loc(Q) and if P
α−→ P ′ with rel(α,Q) then Q

α′³ Q′

where α′ ≡(≈̇,loc(P )) α and P ′≈̇Q′.

Theorem 3.2 ≈ is a congruence.

Theorem 3.3 Process equivalence is a sound approximation of barbed equiva-
lence. In particular, ≈ ⊆ ∼b.

Remark 3.1 For simplicity, we do not consider the interesting issue related
to completeness of bisimulation for the asynchronous π-calculus, which have
been thoroughly studied in [21]. Our issues are orthogonal, and we believe that
our bisimulation can be adapted analogously. Nonetheless it remains an open
problem whether a bisimulation informed of [21] would be complete for Xπ2.
We are not aware of counterexamples besides the ones holding for π-calculus.

Example 3.4 We show that we can replicate a web service in such a way that
the behaviour of the system is the same as the non-replicated case. Let in-
ternal nondeterminism be represented as P ⊕ Q , (νa)(a | a.P | a.Q), where
a 6∈ fn(P |Q). We define two service calls to two interchangeable services, ser-
vice R1 on channel c and R2 on channel d:

Q1 = [[l·Call m·c〈ṽ〉 return (w̃).Q]]l

Q2 = [[l·Call n·d〈ṽ〉 return (w̃).Q′]]l

Pm = [[Define c(z̃) as P1 output 〈w̃〉]]m
P1 = [[go n.d〈z̃, l, x〉 ⊕R1]]m

Pn = [[Define d(z̃) as P2 output 〈w̃〉]]n
P2 = [[go m.c〈z̃, l, x〉 ⊕R2]]n

We can show that, regardless of which service is invoked, a system built out
of these processes behaves in the same way:

Q1 |Pm |Pn ∼b Q2 |Pm |Pn
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We can also show a result analogous to the single web-service given in Exam-
ple 3.3. Given the specification process

Qs = [[go m.R1{ṽ/z̃}.go l.Q⊕ go n.R2{ṽ/z̃}.go l.Q′]]l

we can prove the equivalence

(νc, d)(Q1 |Pm |Pn) ∼b (νc, d)(Qs |Pm |Pn)

where the restriction of c and d avoids competing services on the same channel.
In particular, if Q = Q′, R1 = R2, and R1 does not have any barb at m, then

(νc, d)(Q1 |Pm |Pn) ∼b (νc, d)([[go m.R1{ṽ/z̃}.go l.Q]]l |Pm |Pn).

This equivalence illustrates that we can replicate a web service without a client’s
knowledge.

Theorem 3.4 We prove the equivalence anticipated in Example 3.3. Similar
reasoning applies for Example 3.4.

Q1 = 〈[l·Call m·c〈ṽ〉 return (w̃).Q]〉l (1)
Q′1 = 〈[l·Subscribe m·c〈ṽ〉 return (w̃).Q]〉l (2)
Q2 = 〈[go m.P{ṽ/z̃}.go l.Q]〉l (3)
P0 = 〈[Define c(z̃) as P output 〈w̃〉]〉m (4)

Then

1. (νc)(Q′1 |P0) ∼b (νc)(Q2 |P0)

2. If P returns its results only once, (νc)(Q1 |P0) ∼b (νc)(Q2 |P0)

Proof.

1. We show that
(νc)(Q′

1 |P0) ≈ (νc)(Q2 |P0)

We consider always the case when the LHS moves first. The symmetric
case is analogous.

Note that both processes have the same domain. The only action that
(νc)(Q′1 |P0) can perform is a τ by rule (Exit), to become

(νc)((νb)(m〈m·c〈ṽ, l, b〉〉 | !l·b(w̃).Q) |P0)

We let Q2 perform its (Exit) operation and we must show that

(νc)((νb)(m〈m·c〈ṽ, l, b〉〉 | !l·b(w̃).Q) |P0) ≈ (νc)(m〈myP{ṽ/z̃}.h·gol.Q〉 |P0)

for some h depending on the translation for obtaining Q2, in particular by
the translation of P at m. The LHS can only perform a τ action by rule
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(Enter) and the RHS can do the same (both domains remain the same),
giving us

(νc)((νb)(m·c〈ṽ, l, b〉 | !l·b(w̃).Q) |P0) ≈ (νc)(myP{ṽ/z̃}.h·go l.Q |P0)

Now the LHS can do a τ by (Com!), (Par) and (Struct), and the RHS stays
the same:

(νc, b)(!l·b(w̃).Q |P0 |myP{ṽ/z̃}.h·go l.l·b〈w̃〉) ≈ (νc)(myP{ṽ/z̃}.h·go l.Q |P0)

where also the LHS contains the h·go l. prefix determined again by the
translation of P at m. By hypothesis, b 6∈ fn(P{ṽ/z̃}), P binds w̃ and the
free variables of Q are contained in w̃. Therefore we can continue adding
pairs to the bisimulation relation by performing the same action on both
sides as far as P{ṽ/z̃} is concerned. In particular P can split in more than
one thread of activity, and any of these threads can eventually terminate
firing the continuation h·go l.l·b(ũ) for some ũ computed by P from ṽ. We
represent such a generic case by the pair

(νc, b)(!l·b(w̃).Q |P0 |myP ′{ṽ/z̃}.h·go l.l·b(w̃) |h·go l.l·b〈ũ〉)

≈ (νc)(myP ′{ṽ/z̃}.h·gol.Q |h·gol.Q{ũ/w̃} |P0)

After moving with rules (Exit) and (Enter) on both sides, we reach

(νc, b)(!l·b(w̃).Q |P0 |myP ′{ṽ/z̃}.h·go l.l·b(w̃) | l·b〈ũ〉)

≈ (νc)(myP ′{ṽ/z̃}.Q |h·gol.Q{ũ/w̃} |P0)

and by (Com!) on the LHS only

(νc, b)(!l·b(w̃).Q |Q{ũ/w̃} |P0 |myP ′{ṽ/z̃}.h·go l.l·b(w̃))

≈ (νc)(myP ′{ṽ/z̃}.Q |Q{ũ/w̃} |P0)

The same procedure can be carried on for the other derivatives of myP ′{ṽ/z̃}.
2. The proof is similar to the previous case, but relies on the assumption

that there will be exactly one reply.

2

4 Concluding Remarks

This paper introduces Xdπ, a simple calculus for describing the interaction be-
tween data and processes across distributed locations. We use a simple data
model consisting of unordered labelled trees, with embedded processes and
pointers to other parts of the network, and π-processes extended with an ex-
plicit migration primitive and an update command for interacting with data.
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Unlike the π-calculus and its extensions, where typically data is encoded as
processes, the Xdπ-calculus models data and processes at the same level of ab-
straction, enabling us to study how properties of data can be affected by process
interaction.

Alex Ahern has developed a prototype implementation, adapting the ideas
presented here to XML standards. The implementation embeds processes in
XML documents and uses XPath as a query language. Communication between
peers is provided through SOAP-based web services and the working space of
each location is endowed with a process scheduler based on ideas from PICT
[23]. We aim to continue this implementation work, perhaps incorporating ideas
from other recent work on languages based on the π-calculus [11, 13].

Active XML [4] is probably the closest system to our Xdπ-calculus. It
is based on web services and service calls embedded in data, rather than π-
processes. There is however a key difference in approach: Active XML focusses
on modelling data transformation and delegates the role of distributed process
interaction to the implementation; in contrast, process interaction is fundamen-
tal to our model. There are in fact many similarities between our model and
features of the Active XML implementation, and we are in the process of doing
an in-depth comparison between the two projects.

Developing process equivalences for Xdπ is non-trivial. We have defined a
notion of barbed equivalence between processes, based on the update operations
that processes can perform on data, and have briefly described a proof method
for proving such equivalences between processes. There are other possible defi-
nitions of observational equivalence, and a comprehensive study of these choices
will be essential in future. We also plan to adapt type theories and reasoning
techniques studied for distributed process calculi to analyse properties such as
boundary access control, message and host failure, and data integrity. This
paper has provided a first step towards the adaptation of techniques associated
with process calculi to reason about the dynamic evolution of data on the Web.
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wf(c),wf(l),wf(@l:p),wf(2	yP ), similarly for variables.
wf(P ) (loc(D) = loc(P )) (fV(D) ∪ fCs(D) ∪ fV(P ) = ∅)

wf(D, P )

wf(0) wf(l·0)
wf(P ) wf(Q)

wf(P |Q)
wf(P ) lyP

wf(l〈P 〉)
wf(ṽ)

wf(l·c〈ṽ〉)
wf(v′) wf(ṽ)

wf(v′, ṽ)

wf(P ) lyP

wf(l·c(z̃).P )
wf(P ) lyP

wf(!l·c(z̃).P )
wf(P )

wf((νc)P )
wf(P ) myP

wf(l·go m.P )
wf(P ) wf(U) lyP

wf(l·updatep(χ,U).P )

Table 9: Well-formedness for Xπ2 networks.

A Proofs

A.1 Proof of Full Abstraction

First we define non-unique normal forms for both Xdπ and Xπ2 processes. Then
we define the encoding from Xdπ to Xπ2 and an inverse encoding exploiting Xπ2

normal forms. Finally we establish a close correspondence between the notions
of observation, reduction and context in the two calculi. We use Notation l 6yP
to mean that there are no P ′, Q,R such that P ≡ Q | lyP ′ |R. In the rest of
this section, we consider only well-formed networks, for both languages.

Lemma A.1 (Normal forms)

1. For every Xdπ network N with loc(N) = {l1, ..., lk}
N ≡ (νc̃)(m1〈Q1〉 | . . . |mh〈Qh〉 | l1 [T1 ‖P1 ] | . . . | lk [T1 ‖Pk ] | 0)

where each Pi is non-restricted.

2. For every Xπ2 process P with loc(P ) = {l1, ..., lk}
P ≡ (νc̃)(m1〈Q1〉 | . . . |mh〈Qh〉 | l1yP1 | . . . | lkyPk | 0)

where each liyPi is a non-restricted (possibly null) process located at li.

Proof. Both cases follow by using the structural congruence rules for α-
conversion, scope extrusion and commutativity of the parallel operator. 2

We define in Table 10 the encoding from Xdπ to Xπ2 terms, and in Table 11
the inverse encoding. The second encoding is defined on Xπ2 processes in normal
form only.
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([0]) = ∅
([N |M ]) = ([N ]) ∪ ([M ])
([(νc)N ]) = ([N ])
([l [T ‖P ]]) = {l 7→ []T []}
([l〈P 〉]) = ∅

[[0]] = 0
[[N |M ]] = [[N ]] | [[M ]]
[[(νc)N ]] = (νc)[[N ]]
[[l [T ‖P ]]] = 〈[P ]〉l
[[l〈P 〉]] = l〈〈[P ]〉l〉

[]0[] = 0
[]T |T ′[] = []T [] | []T ′[]
[]a[ T ][] = a[ []T [] ]
[]@l:p[] = @l:p
[]c[] = c, []l[] = l, []p[] = p
[]x[] = x, []χ[] = χ
[]v′, ṽ[] = []v′[], []ṽ[]
[]2P [] = 2〈[P ]〉	

〈[0]〉l = l·0
〈[P |Q]〉l = 〈[P ]〉l | 〈[Q]〉l
〈[(νc)P ]〉l = (νc)〈[P ]〉l
〈[go m.P ]〉l = l·go m.〈[P ]〉m
〈[a〈ṽ〉]〉l = l·a〈ṽ〉
〈[a(x̃).P ]〉l = l·a(x̃).〈[P ]〉l
〈[!a(x̃).P ]〉l =!l·a(x̃).〈[P ]〉l
〈[updatep(χ,U).P ]〉l = l·updatep(χ, []U []).〈[P ]〉l
〈[runp]〉l = l·runp

Table 10: Encodings from Xdπ to Xπ2.

D((νc)P )D = (νc)D(P )D

D(l〈P 〉 |Q)D = l〈DP(P )〉 | D(Q)D

D(lyP | l 6yQ)D = l [DV(D(l))‖DP(P ) ] | D(Q)D

D(0)D = 0

DV(0) = 0
DV(T |T ′) = DV(T ) | DV(T ′)
DV(a[ T ]) = a[DV(T ) ]

DV(@l:p) = @l:p
DV(c) = c, DV(l) = l, DV(p) = p
DV(x) = x, DV(χ) = χ
DV(v′, ṽ) = DV(v′),DV(ṽ)
DV(2P ) = 2DP(P )

DP(l·0) = 0
DP(P |Q) = DP(P ) | DP(Q)
DP((νc)P ) = (νc)DP(P )
DP(l·go m.P ) = go m.DP(P )
DP(l·a〈ṽ〉) = a〈DV(ṽ)〉
DP(l·a(x̃).P ) = a(x̃).DP(P )
DP(!l·a(x̃).P ) =!a(x̃).DP(P )
DP(l·updatep(χ,U).P ) = updatep(χ,DV(U)).DP(P )
DP(l·runp) = runp

Table 11: Inverse Encodings

Observation 1 Both encodings and both reduction relations preserve well-formedness:

• if N is well-formed then (([N ]), [[N ]]) is well-formed, and if N ↘ N ′ also
N ′ is well-formed;

• if (D, P ) is well-formed and P is in normal form then D(P )D is well
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formed, and if (D, P ) → (D′, P ′) also (D′, P ′) is well-formed.

Lemma A.2 (Inverse encoding) For all networks N and for all networks
(D,P ) the encodings given in Table 10 and Table 11 are complementary up to
structural congruence:

1. N ≡ N ′ = D([[N ′]])([N ′]);

2. (D,P ) ≡ (D,P ′) = (([D(P ′)D]), [[D(P ′)D]]).

Proof. Both cases follow by inspection of the rules of the two encodings,
using points (i) and (ii) of Lemma A.1 and Observation 1. 2

The following lemma is the crucial step towards the full abstraction result.

Lemma A.3 (Operational Correspondece) For all Xdπ networks N , N ↘
N ′ if and only if (([N ]), [[N ]]) ↘ (([N ′]), [[N ′]]).

Proof. We split the proof in two, showing by induction on the derivations
that for all Xdπ networks N and for all Xaπ2 networks (D, P )

1. if N ↘ N ′ then (([N ]), [[N ]]) → (([N ′]), [[N ′]]);

2. if (D,P ) → (D′, P ′) then D(P )D ↘ D(P ′)D′ .

We show the two most interesting cases for each point.

1. • (Par) We consider directly the case when rule (Par) is applied, as (Res)

and (Struct) are trivial. We want to show that

N |M ↘ N ′|M ⇒ (([N |M ]), [[N |M ]]) → (([N ′|M ]), [[N ′|M ]])

By the premise of rule (Par) we have N ↘ N ′ and, by definition of
encoding, we need to show that

(([N ]) ∪ ([M ]), [[N ]]|[[M ]]) → (([N ′]) ∪ ([M ]), [[N ′]]|[[M ]])

By induction we have that

N ↘ N ′ ⇒ (([N ]), [[N ]]) → (([N ′]), [[N ′]])

Since N and M are disjoint, we have that dom(([N ]))∩dom(([M ])) = ∅
and therefore we can use the (Par) rule of Xπ2 to conclude, deriving

(([N ]) ] ([M ]), [[N ]]|[[M ]]) → (([N ′]) ] ([M ]), [[N ′]]|[[M ]])

• (Com) Again we skip the cases of (Par), (Res) and (Struct), and we
consider directly the application of (Com). Let R = c〈ṽ〉 | c(x̃).P |Q
and R′ = P{ṽ/x̃}|Q. We want to show that

l [T ‖R ] ↘ l [T ‖R′ ]⇒ (([l [T ‖R ]]), [[l [T ‖R ]]]) → (([l [T ‖R′ ]]), [[l [T ‖R′ ]]])
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By definition of encoding and R

(([l [T ‖R ]]), [[l [T ‖R ]]]) = ({l 7→ []T []}, l·c〈[]ṽ[]〉 | l·c(x̃).〈[P ]〉l|〈[Q]〉l)

and by (Par) and (Com) we derive

({l 7→ []T []}, l·c〈[]ṽ[]〉 | l·c(x̃).〈[P ]〉l|〈[Q]〉l) → ({l 7→ []T []}, (〈[P ]〉l){[]ṽ[]/x̃}|〈[Q]〉l)

Again by definition of encoding and of R′ we conclude with

(([l [T ‖R′ ]]), [[l [T ‖R′ ]]]) = ({l 7→ []T []}, 〈[P ]〉l{[]ṽ[]/x̃}|〈[Q]〉l)

2. • (Par) The reasoning is analogous to the corresponding case of point (i),
with the additional complication that, since the premise (D, P ) →
(D′, P ′) of (Par) might involve a network (D, P ) not well-formed,
in order to apply the inductive hypothesis it may be necessary to
use (Struct) to reorganise the original process, followed by an ad-hoc
instance of rule (Par).

• (Com) In order to derive a transition for a well-formed network (D, P )
from this rule, we must start from a sub-network of the form (∅, R)
where R = l·c〈ṽ〉|l·c(x̃).P ′, obtaining the transition

(∅, l·c〈ṽ〉|l·c(x̃).P ′) → (∅, P ′{ṽ/x̃})

Then, we can always apply rules (Par) and (Struct) with B = {l 7→
D(l)} to group together all the other sub-processes of P located at l
(process lyQ), obtaining

(B, R|lyQ) ↘ (B,P ′{ṽ/x̃}|lyQ)

which is a reduction on well-formed networks because also R is lo-
cated at l by well-formedness of P ′ and by Observation 1. We can
use (Struct) to put the term in normal form and we can now use the
inverse encoding

D(ly(R|Q))B ≡ l [DV(B)‖DP(R)|DP(Q) ]

where DP(R) = c〈DV(ṽ)〉|c(x̃).DP(P ′), to derive the corresponding
reduction with rule (Com) in Xdπ

l [DV(B)‖DP(R)|DP(Q) ]↘ l [DV(B)‖DP(P ′){DV(ṽ)/x̃}|DP(Q) ]

At this point standard reasoning using rules (Par), (Res) and (Struct)

closes the proof.

2

Lemma A.4 (Observational Correspondence) For all Xdπ networks
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1. N ↓l·β if and only if (([N ]), [[N ]]) ↓l·β;

2. N ⇓l·β if and only if (([N ]), [[N ]]) ⇓l·β.

Proof.

1. Follows from the definitions of ↓ for the respective calculi and by Lemma A.2.

2. Follows from (i) and from Lemma A.3.

2

Lemma A.5 (Contextual Correspondence) For all Xdπ networks N

1. for all Xdπ contexts C1[−] there is an Xπ2 context C2[−] such that

(([C1[N ]]), [[C1[N ]]]) ≡ C2[(([N ]), [[N ]])];

2. for all Xπ2 contexts C2[−] there is an Xdπ context C1[−] such that

D(C2[(([N ]), [[N ]])])C2[(([N ]),[[N ]])]
∼= C1[N ].

Proof. Case (1) follows directly by the definition of encoding. Case (2) is
non-trivial because a context C1[−] in Xπ2 can place a process into an exist-
ing location, whereas contexts for Xdπ do not have this power. Therefore it
is necessary to simulate the insertion of a process P at l by placing in paral-
lel to N the message l〈P 〉, which after a reduction produces the desired effect. 2

A.1.1 Proof of Theorem 3.1

Theorem A.1 N ∼= M if and only if (([N ]), [[N ]]) ∼= (([M ]), [[M ]]).

Proof. The definition of ∼= is the same for both calculi, Lemma A.4 guar-
antees that observables are preserved, Lemma A.3 guarantees that reduction is
preserved, and Lemma A.5 guarantees that contexts are preserved. 2

A.2 Proof of Congruence

Lemma A.6 (Variant Lemma) P ≈ Q =⇒ P{b/a} ≈ Q{b/a} for any a, b ∈
C, b 6∈ fn(P,Q).

Proof. By a straightforward adaptation of the corresponding proof in [18]. 2

Lemma A.7 (Substitution lemma) Let P be a term with free variables x̃:

ṽ ≡(≈,loc(P )) ṽ′ =⇒ P{ṽ/x̃} ≈ P{ṽ′/x̃}
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Proof. The relation {(P{ṽ/x̃}, P{ṽ′/x̃})|ṽ ≡(≈,loc(P )) ṽ′} is a bisimulation.
Note that ṽ and ṽ′ can differ only if they contain trees that are structurally
equivalent, or processes which are bisimilar. The idea is that after a binding
action (such as (Com), etc.) it is possible to write explicitly the substitution, as
in l·a〈v〉 | l·a(x).l·b〈x〉 τ−→ l·b〈x〉{v/x}, whereas in comparing actions such as
l·b〈v〉, l·b〈v′〉 we reason using the hypothesis. 2

Observation 2 By having rule (Struct) in the lts, we automatically have that
bisimulation up to structural congruence is a bisimulation.

Lemma A.8 If P ≈ Q then P | l·0 ≈ Q | l·0.

Proof. Suppose l ∈ loc(P ). Then, by definition of ≈, l ∈ loc(Q), and by
≡, P | l·0 ≡ P ≈ Q ≡ Q | l·0. Suppose l 6∈ loc(P ). Then, by definition of ≈,
l 6∈ loc(Q). Since P

τ−→ P | l·0, then Q
τ³ Q′ ≈ P | l·0, and l ∈ loc(Q′). By

definition of lts, Q | l·0 τ³ Q′ | l·0 and by ≡, Q′ | l·0 ≡ Q′ ≈ P | l·0. 2

A.2.1 Proof of Theorem 3.2

Proof. The proof is based on an analogous proof for the asynchronous
π-calculus found in [18]. We need to show the following three points:

1. ≈ is an equivalence relation;

2. P ≈ Q =⇒ (νc̃)P ≈ (νc̃)Q;

3. P ≈ Q =⇒ P |R ≈ Q |R.

It is important to keep in mind, during the proof, the distinction between session
names and public names, that a scripted processes is well-formed only if it has
no free session names, and that processes can be used as values only when they
are scripted.

1. Reflexivity and symmetry are immediate. We show transitivity: the rela-
tion R = {(P, Q)|P ≈ R ∧ R ≈ Q} is included in ≈. Suppose P

α−→ P ′

and rel(α, Q). There are two cases, based on the relevance of α to R. If
rel(α, R) the proof is straightforward. If α is not relevant to R then the
action must necessarily be a bound output, in order to have bound names.
Suppose therefore α = (b̃)l·a〈ṽ〉 and there exists c̃ such that {c̃} ⊆ {b̃},
and {c̃} ⊆ fn(R). Now choose a c̃′ with the same length as c̃, in such
a way that {c̃′} ∩ fn(P, Q, R) = ∅. By the side condition on the lts rule
(Par), {c̃} ∩ fn(P ) = ∅ and by Lemma A.6, P = P{c̃′/c̃} ≈ R{c̃′/c̃} = R′.
Similarly we get R′ ≈ Q. But now rel(b̃, R′), and reasoning as in the
previous case, we can conclude.
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2. We show that R = {((νc̃)P, (νc̃)Q)|P ≈ Q} is included in ≈. Tau tran-
sitions, output and update commands are trivial, whereas input requires

some attention. Suppose (νc̃)P
l·a(ṽ)−→ P ′ where we use rule (Struct) to

alpha-convert c̃ to c̃′ in order to avoid the capture of some free ses-

sion name in ṽ. Then it is the case that (νc̃)P ≡ (νc̃′)(P{c̃′/c̃}) l·a(ṽ)−→
(νc̃′)P ′′ ≡ P ′, and since {a, ṽ} ∩ {c̃′} = ∅, we have P{c̃′/c̃} l·a(ṽ)−→ P ′′. By

Lemma A.6 we get Q{c̃′/c̃} l·a(ṽ′)
³ Q′′ ≈ P ′′ with ṽ ≡(≈,loc(P )) ṽ′. Again

since {a, ṽ} ∩ {c̃′} = ∅ we have (νc̃)Q ≡ ((νc̃′)Q{c̃′/c̃}) l·a(ṽ′)
³ (νc̃′)Q′′ and

we are done.

3. We show that {(νc̃)(P |R), (νc̃)(Q |R′))|P ≈ Q ∧ Rloc(P ) ≈ R′loc(P )} is
included in ≈. There are three interesting cases, depending whether
(νc̃)(P |R) α−→ P ′ is caused by an action of P alone, of R alone, or by a
communication between P and R.

(a) Suppose (νc̃)(P |R) α−→ (νc̃)(P ′ |R) with rel(α, (νc̃)(Q |R′)) is de-
rived from P |R α−→ P ′ |R which comes from P

α−→ P ′. By P ≈ Q

follows Q
α′³ Q′ ≈ P ′, by rule (Par) follows Q |R′ α′³ Q′ |R′ and by

(Res) (νc̃)(Q |R′) α′³ (νc̃)(Q′ |R′). Adding R (respectively R′) in par-
allel can make the domain of the processes bigger, but we derive from
Lemma A.2 that

α ≡(≈̇,loc(P )) α′ =⇒ α ≡(≈̇,loc(P |R)) α′

(b) The case when R moves is similar to the previous case.

(c) Suppose that for some fresh b̃, d̃, we have P ≡ (νb̃)(l·a〈ṽ〉 |P1) where
a 6∈ {b̃}, and R ≡ (νd̃)(l·a(x̃).R1 |R2). Then

(νc̃)(P |R) τ−→ (νc̃, b̃)(P1 | (νd̃)(R1{ṽ/x̃} |R2))

and P
(b̃)l·a〈ṽ〉−→ P1.

By P ≈ Q we have that

Q
τ³ Q3

(b̃)l·a〈ṽ′〉−→ Q2
τ³ Q1 ≈ P1

and (b̃)l·a〈ṽ〉 ≡(≈̇,loc(P )) (b̃)l·a〈ṽ′〉. By syntactical reasoning Q3 ≡
(νb̃)(l·a〈ṽ′〉 |Q2), again with a 6∈ {b̃}.
By Rloc(P ) ≈ R′loc(P ) we have that R

l·a(ṽ)−→ (νd̃)(R1{ṽ/x̃} |R2) = R3

implies (by syntactical reasoning)

R′
τ³ (νẽ)(l·a(ỹ).R′1 |R′2)

l·a(ṽ′′)−→ (νẽ)(R′1{ṽ′′/ỹ} |R′2)
τ³ R′3 ≈ R3

for some v′′ ≡(≈̇,loc(P |R)) v, and ẽ fresh.
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We can now derive

(νc̃)(Q |R′) τ³ (νc̃)(Q3 | (νẽ)(l·a(ỹ).R′1 |R′2))
τ−→ (νc̃, b̃)(Q2 | (νẽ)(R′1{ṽ′/ỹ} |R′2))

τ³ (νc̃, b̃)(Q1 |R4)

and by Lemma A.7, R4 ≈ R′3.
The cases where R performs a replicated input or an output are
similar.

2

A.3 Proof of Soundness

We start stating some properties of the lts.

Lemma A.9 (i) P
l·updatep({U1,··· ,Un},(χ)V )−→ Q ⇐⇒ P ≡ (νc̃)(l·updatep(χ, V ).R′ |R)∧

Q ≡ (νc̃)(R′{U1/χ} | · · · |R′{Un/χ} |R). (ii) P
l·runp−→ Q ⇐⇒ P ≡ l·runp |R ∧

Q ≡ l·0 |R.

Proof. In both cases (=⇒) follows by induction on the derivation in the lts,
(⇐=) follows by structural induction on P . 2

Lemma A.10 (i) P
τ−→ P ′ ∧ loc(P ) = loc(P ′) =⇒ (∀D. wf(D, P ) =⇒

(D,P ) → (D, P ′)). (ii) P
τ³ P ′ ∧ loc(P ) = loc(P ′) =⇒ (∀D. wf(D, P ) =⇒

(D,P ) →∗ (D, P ′)).

Proof. (i) Tau transitions in the lts are independent from D. The only
case that needs attention is (Enter): in could be the case that in the lts is pos-
sible to perform such a transition, whereas in the reduction relation it is not
(if l 6∈ dom(D)). The condition loc(P ) = loc(P ′) prevents this situation from
happening. (ii) It is the transitive closure of the previous case. 2

Lemma A.11 If (D, P ) → (D′, P ′) then one of the following holds:

1. P
τ−→ P ′ and D′ = D.

2. P
l·updatep(U,(χ)V )−→ P ′ where





D = {l 7→ T} ] E
p(T )Ãp p,l,χ,V T ′,Σ
range(Σ) = U
D′ = {l 7→ T ′} ] E

3. P
l·runp−→ P ′′ where





D = {l 7→ T} ] E, D′ = D
p(T )Ãp p,l,2X,2XT, Σ
range(Σ) = {2P1, · · · , 2Pn}
P ′ ≡ P ′′ |P1 | · · · |Pn
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Proof. By induction on the derivation of (D,P ) → (D′, P ′). There are six
base cases, we show the case where the axiom used is (Update), which is the most
interesting. Suppose that we have p(T ) Ãp p,l,χ,V T ′, {σ1, · · · , σn} and therefore
({l 7→ T}, l·updatep(χ, V ).Q) → ({l 7→ T ′}, Qσ1 | · · · |Qσn). By rule (Update) in

the lts we have Q
l·updatep(U,(χ)V )−→ Q′ where Q′ ≡ Q{U1/χ} | · · · |Q{Un/χ} for

any U = {U1, · · · , Un}. By choosing a specific U = range(Σ) we conclude. 2

Lemma A.12 Let D, E be two disjoint stores, where Λ = dom(D), Λ′ =
dom(E) (and Λ ∩ Λ′ = ∅). We have

D ≡(≈,Λ) B =⇒ D ] E ≡(≈,Λ∪Λ′) B ] E

Proof. Follows by structural induction on D, applying every time Defini-
tion 3.10. The base case follows by induction on the derivation of D ≡(≈,Λ) B
noticing that by Lemma A.2, 2P ≡(≈,Λ) 2Q =⇒ 2P ≡(≈,Λ∪Λ′) 2Q. 2

Lemma A.13 Let T ≡(≈,Λ) S and (χ)V ≡(≈,Λ) (ξ)V1. If p(T )Ãp p,l,χ,V T ′,Σ
then p(S)Ãp p,l,ξ,V1S

′,Σ′ where T ′ ≡(≈,Λ) S′ and range(Σ) ≡(≈,Λ) range(Σ′).

Proof. By well-founded induction on the depth of nesting of selected nodes
inside of T . The base case (when p(T ) = T ) requires a simple induction on the
structure of T . The inductive step (where the nesting of selected nodes inside
of T is n + 1) follows again by structural induction. The only interesting case
is the one for rule (Up), reported below for convenience:

match(U{l/ ª, p/.}, χ) = σ V σ Ãp p,l,χ,V V ′, Σ
a[ U ] Ãp p,l,χ,V a[ V ′ ], {σ} ⊕ Σ

By definition of ≈ Λ, the trees T and S have the same structure (up-to struc-
tural congruence), and can only differ in the definition of the scripted processes.
Therefore p(T ) selects the same nodes as p(S), up-to equivalence. If T has a
selected node a[ U ], then S has a selected node a[ U ′ ], with U ≡(≈,Λ) U ′, where
the nesting depth can be at most n. Since (χ)V ≡(≈,Λ) (ξ)V1 and V, V1 can-
not contain selected nodes, if match(U{l/ ª, p/.}, χ) = σ then match(U ′{l/ ª
, p/.}, ξ) = σ′, and V σ ≡(≈,Λ) V1σ

′, where the nesting depth in V σ and V1σ
′ is

at most n, which permits to use the inductive hypothesis to derive the conclu-
sion. 2

A.3.1 Proof of Theorem 3.3

Proof. We have to show that for all D such that (D, P ) is well formed,
P ≈ Q =⇒ (D,P ) 'b (D, Q). In fact, we show a weaker property: the relation

S = {((D, P ), (B,Q))| P ≈ Q ∧ D ≡(≈,Λ) B}
where Λ = dom(D, B) = loc(P,Q), is included in 'b.
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1. Assume (D, P ) ↓l·updatep. By definition of barbs and by Lemma A.9 we

have P
l·updatep(U,(χ)V )−→ P ′, and since loc(P ′) = loc(P ), by P ≈ Q we have

Q
l·updatep(U ′,(ξ)V ′)

³ Q′, with loc(Q′) = loc(Q). By Lemma A.10 and again
Lemma A.9 and definition of barbs we conclude with (B,Q) ⇓l·updatep.

2. Let (D, P )S(B, Q). We show under the hypothesis P ≈ Q and D ≡(≈,Λ)

B, that (D,P ) → (D′, P ′) =⇒ (B, Q) →∗ (B′, Q′) and (D′, P ′)S(B′, Q′).
If (D,P ) → (D′, P ′), by Lemma A.11 we have three cases:

(a) P
τ−→ P ′ and D′ = D. By the hypothesis P ≈ Q, we have Q

τ³
Q′ ≈ P ′, where loc(Q′) = loc(Q). By Lemma A.10 we get (B, Q) →∗

(B, Q′), and therefore (D, P ′)S(B, Q′).

(b) P
l·updatep(U,(χ)V )−→ P ′ where D = {l 7→ T}]E, p(T )Ãp p,l,χ,V T ′,Σ and

D′ = {l 7→ T ′}]E. Noting that loc(P ) = loc(P ′), by hypothesis Q
τ³

Q1

l·updatep(U ′,(ξ)V ′)−→ Q2
τ³ Q′ ≈ P ′, for Λ = loc(Q′) = loc(P ′) and

(χ)V ≡(≈,Λ) (ξ)V ′, U ≡(≈,Λ) U ′. By Lemma A.10 we get (B, Q) →∗

(B, Q1), and by Lemma A.9 we get Q1 ≡ (νc̃)(l·updatep(ξ, V ′).R′ |R)
where Q2 ≡ (νc̃)(R′{U ′

1/ξ} | · · · |R′{U ′
n/ξ} |R) for U ′ = {U ′

1, · · · , U ′
n}.

By definition of →, (B, Q1) → (B′, Q′
2), where by hypothesis B =

{l 7→ S} ] E′ and S ≡(≈,Λ) T , and B′ = {l 7→ S′} and Q′
2 ≡

(νc̃)(R′{U ′′
1 /ξ} | · · · |R′{U ′′

n/ξ} |R) for p(B)Ãp p,l,ξ,V ′S
′,Σ′ and U ′′ =

{U ′′
1 , · · · , U ′′

n} = range(Σ′). By Lemma A.13, B′ ≡(≈,Λ) D′ and
range(Σ) ≡(≈,Λ) U ′′. By repeatedly using closure under parallel com-

position of ≈, we get Q′
2 ≈ Q2. By Q2

τ³ Q′ ≈ P ′, and by transitivity
of ≈, we get Q′2

τ³ Q′′ ≈ P ′, which together with B′ ≡(≈,Λ) D′ gives
us (D′, P ′)S(B′, Q′).

(c) P
l·runp−→ P ′′ where D = {l 7→ T}]E, P ′ ≡ P ′′ |R and R ≡ P1 | · · · |Pn

for p(T )Ãp p,l,2X,2XT, Σ and range(Σ) = {P1, · · · , Pn}, and D′ = D.

By P ≈ Q we get Q
τ³ Q1

l·runp−→ Q2
τ³ Q′′ ≈ P ′′. By Lemma A.10 we

get (B, Q) →∗ (B,Q1). By Lemma A.9, Q1 ≡ l·runp |Q′′
1 and Q2 ≡

l·0 |Q′′
1 . By definition of → and by Lemma A.13 follows that there is

R′ such that (B, Q1) → (B, Q2 |R′), where by repeatedly exploiting
the closure of ≈ under parallel composition we have R ≈ R′. Again
by Lemma A.10 we get (B,Q2 |R′) →∗ (B, Q′′ |R′). From P ′′ ≈ Q′′

and R ≈ R′ we get P ′′ |R ≈ Q′′R ′, and since loc(R) = loc(R′) =
{l} ∈ loc(P ) we get (D, P ′)S(B, Q′).

3. Suppose (D, P )S (B,Q). Given an arbitrary C[−] = (E,C ′[−]), by the
hypothesis P ≈ Q and by Theorem 3.2 (congruence of ≈) we have C ′[P ] ≈
C ′[Q]. In order for C[(D, P )] to be well-formed it must be the case that for
some Λ′, Λ′ = loc(C ′[P ]) = dom(D ] E). By the hypothesis D ≡(≈,Λ) B
and by Lemma A.12 we have D ] E ≡(≈,Λ′) B ] E, which together with
C ′[P ] ≈ C ′[Q] implies C[(D, P )]S C[(B, Q)]. 2
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