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Abstract

We introduce the Xdπ calculus, a peer-to-peer model for reasoning about dynamic
web data. Web data is not just stored statically. Rather it is referenced indirectly,
for example using hyperlinks, service calls, or scripts for dynamically accessing data,
which require the complex coordination of data and processes between sites. The
Xdπ calculus models this coordination, by integrating the XML data structure with
process orchestration techniques associated with the distributed pi-calculus. We
study behavioural equivalences for Xdπ, to analyze the various possible patterns of
data and process interaction.
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1 Introduction

Web data, such as XML, plays a fundamental rôle in the exchange of in-
formation between globally distributed applications. Applications naturally
fall into some sort of mediator approach: systems are divided into peers, with
mechanisms based on XML for interaction between peers. The development of
analysis techniques, languages and tools for web data is by no means straight-
forward. In particular, although web services allow for interaction between
processes and data, direct interaction between processes is not well-supported.
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Peer-to-peer data management systems are decentralized distributed systems,
where each component offers the same set of basic functionalities and acts
both as a producer and as a consumer of information. We model systems
where each peer consists of an XML data repository and a working space of
running processes. Our processes can be regarded as agents with a simple set
of functionalities; they communicate with each other, query and update the
local repository, and migrate to other peers to continue execution. Process
definitions can be included in documents 1 , and can be selected for execution
by other processes. These functionalities are enough to express most of the
dynamic behaviour found in web data, such as web services, distributed (and
replicated) documents [2], distributed query patterns [32], hyperlinks, forms,
and scripting.

The idea of embedding processes (scripts) in web data is not new: examples
include Javascript, SmartTags and calls to web services. However, web appli-
cations do not in general provide direct communication between active pro-
cesses, and process coordination therefore requires specialized orchestration
tools. In contrast, distributed process interaction—describing both communi-
cation and coordination—is central to our model, and is inspired by the current
research on distributed process calculi. In this paper we introduce the Xdπ-
calculus, which provides a formal semantics for the systems described above.
It is based on a network of locations (peers) containing a data model, and π-
like processes [28,35,22] for modelling process interaction, process migration,
and interaction with data. The data model is a basic model of semi-structured
data—unordered labelled trees with explicit pointers (URLs) for referring to
other parts of the network—with embedded processes for querying and up-
dating such data: for example, a hyperlink with an external pointer referring
to another site, and a light-weight trusted process for retrieving information
associated with the link.

The embedding of processes in data provides many alternative patterns for
exchanging information on the web. We study behavioural equivalences for
Xdπ. In particular, we define when two processes are equivalent in such a
way that, when the processes are put in the same position in a network, the
resulting networks are equivalent. We do this in several stages. First, we define
what it means for two Xdπ-networks to be equivalent. Second, we translate
Xdπ into a simpler calculus (Core Xdπ), where the location structure has been
pushed inside the data and processes. This translation technique, also found
in [10], enables us to separate reasoning about processes from reasoning about
data and networks. Finally, we define process equivalence and study examples.
In a companion paper [26], we analyze alternative notions of network and
process equivalence, and give a proof method for process equivalence based on

1 We regard process definitions in documents as an atomic piece of data, and we
do not consider queries which modify such definitions.
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labelled-bisimulation.

1.1 A Simple Example

As an illustrative example, we use a hyperlink which consists of an external
pointer to a remote location, and a process which ‘follows’ the pointer and
gets the target subtree. Consider the picture
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This picture represents two distinct locations l and m. Each location contains a
data tree (the triangles) and a working space of active processes (the processes
Q0, Q and R). Location l contains a hyperlink at the node identified by path
p, with an external pointer to data identified by path q at location m. In the
working space of location l, a process can activate the hyperlink (click on the
hyperlink), firing a request to m to copy the tree identified by path q and
write the result to p at l. Below we give specific processes Q0, Q and R, to
show how activating a hyperlink and firing a request might be modelled.

The hyperlink, written in both XML notation (LHS) and the notation used
in this paper (RHS), has the form:

    <To>
<Link>

        m:q
    </To>

    </Code>

    <Code>
        P

</Link>

Link

CodeTo

!P

Link[ To[ @m:q ] | Code[!P ] ]

@m:q

This hyperlink consists of two parts: an external pointer @m:q, and a scripted
process !P which activates the mechanism to fetch the subtree at q from m.
The process Q0 has the form runp/Link/Code which triggers the execution of P
in the working space. Process P has the form

readp/Link/To(@x:y).load〈x, y, p〉

The read command reads the external pointer at p/Link/To in the tree, sub-
stitutes the values m and q for the parameters x and y in the continuation,
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and evolves to the output process load〈m, q, p〉. This output process records
the target location m, the target path q, and the position p where the result
tree will go. This output process will call a corresponding input process inside
Q using π-calculus interaction.

One possible candidate for Q is

Qs =!load(x, y, z).gox. copyy(X).go l.pastez〈X〉

The replication ! denotes that the input process can be used as many times as
requested. The interaction between the load and load replaces the parameters
x, y, z with the values m, q, p in the continuation. The process then goes to m,
copies the tree at q, comes back to l, and pastes the tree to p.

The process Qs is unsubtle, and does not mimic what happens in practice.
Instead, we use a process Q (acting as a service call) which sends a request
to location m for the tree at q, and a process R (the service definition) which
grants the request. Processes Q and R are defined by

Q =!load(x, y, z).(νc)(gox.get〈y, l, c〉 | c(X).pastez〈X〉)

R =!get(y, x, w).copyy(X).go x.w〈X〉
Once process Q receives parameters from load, it splits into two parts: a
process go m.get〈q, l, c〉 that sends the output message get〈q, l, c〉 to m, with
information about the particular target path q, the return location l and a
private channel name c created using the π-calculus restriction operator ν; and
the process c(X).pastep〈X〉 waiting to paste the result delivered via the unique
channel c. Process R receives the parameters from get, copies the appropriate
subtree, and returns it to the unique channel c at l. Using our definition of
process equivalence, we show that the processes Qs and Q are interchangeable.

1.2 Related Work

Models of distributed systems and distributed data access have, until quite
recently, been entirely separate research topics. Data models tend to describe
data manipulation without modelling the underlying distribution layer. In con-
trast, process models describe exchanges of data and processes between peers,
but tend to abstract from the actual data. Our work on the Xdπ calculus is the
first attempt to integrate the study of mobile processes and semi-structured
data for Web-based data-sharing applications, and is characterized by its em-
phasis on dynamic data.

The Xdπ calculus is probably most related to the Active XML model for data
integration developed independently by Abiteboul et al. [4]. They introduce
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a peer-to-peer model where each peer contains a data model similar to ours
except that only service calls can be scripted in documents, only documents
(and hence service calls) can migrate between locations, only service definitions
can be in the working space, the data resulting from a service call must return
to the position of that service call, and the underlying distribution layer is not
modelled. In contrast, our process approach is more flexible. For example, we
can define an auditing process for assessing a university course: it goes to a
government site, selects the assessment criteria appropriate for the particular
course under consideration, then moves this information (a service definition)
to the university to make the assessment.

The database and process algebra communities have studied several data mod-
els for the web. Our tree model extends those found in [3] and [11] with dy-
namic behaviour and with a stronger emphasis on links. Several distributed
query languages, such as [30,25,8,32], extend traditional query languages with
facilities for distribution awareness. Our approach is closest to the one of Sa-
huguet and Tannen [32], who introduce the ubQL query language for stream-
ing large amounts of distributed data, partly motivated by ideas from the
π-calculus.

The Xdπ processes are based on an extension of the asynchronous π-processes
of [22,23] with explicit locations, along the lines of dπ [21]. Core Xdπ uses the
polyadic synchronization of eπ [10]. In [18] we propose a proof technique for the
equivalence of Xdπ processes, based on higher-order bisimulation techniques
studied for example in [36,14,33]. In [26], we study alternative notions of net-
work and process equivalence, and give a proof method based on first-order
bisimulation which exploits the technique of [33,24] for translating higher-
order to first-order labels. Process calculi have been used to study several web
features, such as security properties of web services [20], mobile resources [19],
and a sketch of a distributed query language [31]. Bierman and Sewell [7] have
extended a small functional language for XML with π-primitives in order to
program Home Area Network devices. We believe that Xdπ will provide a
useful, but challenging, framework in which to study such applications.

2 A Model of Dynamic Web data

We model a peer-to-peer system as a set of interconnected locations (net-
works), where the content of each location consists of a term (the tree) repre-
senting the local data and a term (the process) representing both the services
provided by the peer, the agents executing on behalf of other peers, and lo-
cal agents waiting for answers from remote queries. Processes can query and
update the local data, communicate with each other through named chan-
nels, and migrate to other peers. Migration should not be interpreted as a
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prescription on possible implementations, but rather as a conceptual device
to distinguish clearly local from non-local interaction, useful to express both
remote communication and more advanced protocols involving code mobility.

2.1 Trees

Our data model is an unordered edge-labelled rooted tree, with leaves con-
taining internal and external pointers, and with embedded (static) processes
which may be activated by a process in the working space. Semi-structured
data models are often unordered [3], in contrast with the ordered trees of
XML documents. The choice of using edge-labelled rooted trees, compared
with node-labelled forests, is merely a matter of style. Another choice was
to embed processes and pointers throughout the tree, rather than just at the
leaves. The ideas in this paper do not depend on these choices. The set of
trees is generated from a set of edge labels A with elements denoted by a, b, c,
a set of path expressions E with elements p, q used to identify subdata within
a data tree, and a set of locations L with generic elements denoted by l,m
and a special element ! which denotes the enclosing location. The set of data
trees T is given by

T ::= 0 empty rooted tree

| T |T composition of trees, joining the roots

| a[ T ] edge labelled a with subtree T

| a[ !P ] edge labelled a with scripted process !P

| a[ @l:p ] edge labelled a with pointer @l:p

The composition of trees is total, analogous to tag labels not being unique
in XML. A scripted process !P is a static process awaiting a command to
run. A pointer @l:p refers to data identified by path expression p at location l.
Processes and path expressions are described below. We have a structural con-
gruence on trees, which states that trees are unordered and scripted processes
are identified up to the structural congruence for processes (see Table 1).

2.2 Processes

We use the process orchestration techniques associated with the π-calculus to
coordinate the movement of data and processes between sites. We model the
exchange of data and channels between processes using the π-calculus com-
munication, model private channel creation using the restriction operator, and
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extend the π-processes with an explicit migration primitive for moving pro-
cesses between locations. We model the local interaction between the data tree
and processes in the working space, by a simple update operation for rewriting
data and a simple run command for activating the processes embedded in the
data.

Let a, b, c ∈ C denote channel names or channels variables. Channel names are
partitioned into public and session channels, given by the disjoint sets CP and
CS respectively. Public channels denote those channels that are intended to
have the same meaning at each location, such as finger, and cannot therefore
be restricted. Session channels are used for process interaction, and are not free
in the scripted processes occurring in data. Values consist of channel names
or all forms of data: trees, scripted processes, locations and path expressions.
Formally, the set V of values (ranged over by u, v, . . .) is given by u, v ::=
a | T | !P | l | p. Let ṽ denote a tuple of values, and let x̃ denote a
tuple of variables over such values. The set of processes P is given by

P ::= 0 the nil process

| P |P composition of processes

| (νa)P declare new channel name a

| a〈ṽ〉 output values ṽ on channel a

| a(x̃).P input parameterized by distinct variables x̃

| !a(x̃).P replication of an input process

| go l.P migrate to l, continue as P

| runp run the processes identified by path expression p

| updatep(χ, V ).P update command, described below

The channel name a is bound in (νa)P , and the distinct variables x̃ are bound
in a(x̃).P and !a(x̃).P . We assume a simple sorting discipline on channels, to
ensure that the number of values sent along a channel matches the number
of variables expected to receive those values. We write a and a.P when the
tuples of values and variables are empty.

The migration primitive go l.P is common in calculi for describing distributed
systems; see for example [21]. It enables a process to go to l and become P .
An alternative choice would have been to incorporate the location information
inside the other process commands: for example, using l·c〈ṽ〉 to denote the
output of a message addressed to channel c at location l. We will in fact use
such terms in our study of process equivalence in Section 7.

The command runp activates the scripted processes identified by the path
expression p in the local tree.
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The update command updatep(χ, V ).P is a simple rewriting command used to
locally update the data tree, by pattern-matching the data identified by path
expression p to the pattern χ. Patterns have the form

χ ::= X matches tree T ; assigns T to variable X

| @x:y matches pointer @l:p; assigns l and p to x and y

| !X matches embedded process !P ; assigns P to X

The data term V ranges over trees, pointers and scripted processes, extended
with variables associated with the patterns. The variables in χ are bound in V
and P . The update command finds all the values Vi given by the path expres-
sion p, and pattern-matches these values with χ to obtain the substitution σi

when it exists. For each successful pattern-matching, it replaces the Vi with
V σi and starts Pσi in parallel 2 .

We may derive simple commands from this general update command, such as
the standard readp, copyp, cutp and pastep commands:

readp(@x:y).P def= updatep(@x:y, @x:y).P

{
read the pointer at p,

use its location and path in P

copyp(X).P def= updatep(X,X).P copy the tree at p; use it in P

cutp(X).P def= updatep(X, 0).P cut the tree at p; use it in p

pastep〈T 〉.P
def= updatep(X,X |T ).P

{
where X is not free in T or P ,

paste tree T at p; evolve to P

The structural congruence on processes is similar to that for the π-calculus,
and is given in Table 1. Notice that it depends on the structural congruence
for trees, since trees can be passed as values.

2.3 Networks

We model networks as a composition of unique locations, where each location
contains a tree and a process. The set N of networks is given by

N ::= 0 | N |N | l [T ‖P ] | (νc)N

2 Instead of continuing with process Pσi for each i, an alternative choice would
have been to continue with Pσ, where σ is the substitution obtained by joining all
the values obtained during the update pattern-matching. Our techniques are robust
with respect to this choice. We have chosen a simple update rewriting command for
the interaction between processes and data. In future, we envisage combining our
work with an imperative language for updating trees [9].
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(Trees) V ≡ V ′ ⇒ a[ V ] ≡ a[ V ′ ]

(Values) v′ ≡ w′ ∧ ṽ ≡ w̃ ⇒ v′, ṽ ≡ w′, w̃ P ≡ Q ⇒ !P ≡ !Q

(Processes) (νc)(νd)P ≡ (νd)(νc)P (νc)0 ≡ 0

c %∈ fn(P ) ⇒ P | (νc)Q ≡ (νc)(P |Q) ṽ ≡ w̃ ⇒ c〈ṽ〉 ≡ c〈w̃〉

V ≡ V ′ ⇒ updatep(χ, V ).P ≡ updatep(χ, V ′).P

(Networks) (νc)(νd)N ≡ (νd)(νc)N (νc)0 ≡ 0

c %∈ fn(N) ⇒ N | (νc)M ≡ (νc)(N |M)

T ≡ S ∧ P ≡ Q ⇒ l [T ‖P ] ≡ l [S ‖Q ]

l [T ‖ (νc)P ] ≡ (νc)l [T ‖P ]

Table 1
Structural congruence for Xdπ is the least congruence satisfying alpha-conversion,
the commutative monoidal laws for (0, |) on trees, processes and networks, and the
axioms reported above.

The network composition N1 |N2 is partial in that the location names associ-
ated with N1 and N2 must be disjoint. The location l [T ‖P ] denotes location
l containing a tree T and a process P . It is well-formed when the tree and pro-
cess are closed, and the tree contains no free session channels. In our hyperlink
example, we saw that a session channel can be shared between processes at
different locations. We must therefore lift the restriction to the network level
using (νc)N . The structural congruence for networks is defined in Table 1,
and is analogous to that given for processes.

2.4 Path Expressions

Our semantic model is robust with respect to any choice of mechanism which,
given some expression p, identifies a set of nodes in a tree T . We regard a path
p as a function from trees to sets of nodes (up to structural congruence): p(T )
denotes the tree T where the nodes identified by p are selected. For simplicity
we do not show node identifiers explicitly, but we underline the selected nodes.

In this paper, we use a very simple subset of XPath expressions [27], where
“a” denotes a step along an edge labelled a, “/” denotes path composition,
“..” a step back, “//” any node, and “.”, which can appear only inside trees,
denotes the path from the root of the tree to the current node. For example,
in a[ a[ S ] | b[ S ′ ] | c[ T ′ ] ] we have underlined the nodes selected by path //a.
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2.5 Pattern Matching

Pattern matching of XML-like values is an active research topic. In this pa-
per, we will just consider a very basic form of pattern matching, which merely
matches trees, pointers and scripted processes. Pattern matching is carried
out by the partial function match(−,−) which takes two arguments: the first
is either a tree, or a pointer, or a scripted process, and the second is a pat-
tern. If the first argument matches the pattern in the second, match returns a
substitution binding the variables occurring in the pattern. The definition of
match is:

match(T,X) = {T/X}
match(@l:p, @x:y) = {l, p/x, y}

match(!P,!X) = {!P/!X}

2.6 Reduction and Update Semantics

The reduction relation ↘ describes the movement of processes across loca-
tions, the interaction between processes and processes, and the interaction
between processes and data. The reduction axioms are reported in Table 2.
Reduction is closed under structural congruence and reduction contexts, which
are given by

C ::= − | C |N | (νc)C

There are two rules for process movement between locations: rule (Stay)

describes the case where the process is already at the target location, and rule
(Go) allows a process go l.P at m to leave m and reach l. This rule depends on
the existence of location l. In contrast, the migration rule for dπ [21] always
assume that migration is possible. Our choice has a profound effect on the
behavioural equivalences studied in Section 7. In future work, we will associate
some security check to this operation.

The rules (Com) and (!Com) describe standard π-calculus interaction.

The generic (Update) rule provides interaction between processes and data, and
depends on the auxiliary updating function "! also given in Table 2. Using
path expression p, the rule selects for update some data in T , denoted by p(T ),
it applies the updating function "! to p(T ) in order to obtain the new data
T ′ and the set of bindings Σ, and finally spawns a copy of the continuation Pσ
for each σ ∈ Σ. This function "! is parameterized by p, l,χ, V . It essentially
matches the underlined data with pattern χ to obtain substitution σ (when it
exists), updates the data with V σ and records σ. Rule (Up) is subtle. It matches
any selected (underlined) U in p(T ) with χ, to obtain substitution σ; when
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Reduction axioms:

(Stay) m [T ‖Q | go m.P ] ↘ m [T ‖Q | P ]

(Go) m [T ‖Q | go l.P ] | l [S ‖R ] ↘ m [T ‖Q ] | l [S ‖R |P ]

(Com) l [T ‖ c〈ṽ〉 | c(z̃).P |Q ] ↘ l [T ‖P{ṽ/z̃} |Q ]

(Com!) l [T ‖ c〈ṽ〉 | !c(z̃).P |Q ] ↘ l [T ‖ !c(z̃).P |P{ṽ/x̃} |Q ]

(Update)
p(T )!! p,l,χ,V T ′, {σ1, · · · ,σn}

l [T ‖ updatep(χ, V ).P |Q ] ↘ l [T ′ ‖Pσ1 | . . . |Pσn |Q ]

(Run)
p(T )!! p,l,!X,!XT, {{!P1/!X}, · · · , {!Pn/!X}}

l [T ‖ runp |Q ] ↘ l [T ‖P1 | . . . |Pn |Q ]

Updating function:

(Zero) 0!! Θ0, ∅ (Link) a[ @m:q ] !! Θa[ @m:q ], ∅

(Script) a[ !Q ] !! Θa[ !Q ], ∅ (Node)
T !! ΘT ′,Σ

a[ T ] !! Θa[ T ′ ],Σ

(Par)
T !! ΘT ′,Σ1 S !! ΘS′,Σ2

T |S !! ΘT ′ |S′,Σ1 ⊕ Σ2

(Up)
match(U,χ) = σ V σ!! ΘV ′,Σ Θ = p, l,χ, V

a[ U ] !! Θa[ V ′ ], {σ{l/ ", p/.}}⊕ Σ

Table 2
Reduction axioms and updating function. The reduction relation on networks is the
smallest relation closed with respect to reduction contexts, structural congruence
and the reduction axioms. In the updating function, Σ is a multiset of substitutions,
⊕ denotes multiset union, and Θ = p, l,χ, V are the parameters of an update or run
command.

σ exists, it continues updating V σ, which might also contain other selected
(underlined) nodes, until we obtain the data V ′ and the set of substitutions
Σ; it then replaces U with V ′ and adds to Σ the substitution σ{l/ !, p/.},
where any reference to the current location and path is substituted with the
actual values l and p.

We give an example illustrating the derived cut command:

l [ c[ a[ T ] | a[ T ′ ] | b[ S ] ] ‖ cutc/a(X).P ]↘

l [ c[ a[ 0 ] | a[ 0 ] | b[ S ] ] ‖P{T/X} |P{T ′/X} ]

The cut operation cuts the two subtrees T and T ′ identified by the path
expression c/a and spawns one copy of P for each subtree. The next example
illustrates run and the substitution of local references:

S = a[ b[ !go m.go ! .Q ] | b[ !cut./../c(X).P ] ]
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l [S ‖ runa/b ]↘ l [S ‖ go m.go l.Q | cuta/b/../c(X).P ]

The data S is not affected by the run operation, which has the effect of spawn-
ing the two processes found by path a/b. Note how the local path ./../c has
been resolved into the completed path a/b/../c, and ! has been substituted
by l.

Remark 2.1 The ability to select nested nodes introduces a difference between
updating the tree in a top-down rather than bottom-up order. In particular the
resulting tree is the same, but a different set of processes P is collected. We
chose the top-down approach because it bears a closer correspondence with
intuition: a copy of P will be created for each update still visible in the final
tree outcome. For example, if Q = update//(X, 0).P

l [ a[ b[ T ] ] ‖Q ]↘ l [ a[ 0 ] ‖ P{b[ T ]/X} ] top-down

l [ a[ b[ T ] ] ‖ Q ]↘ l [ a[ 0 ] ‖P{b[ 0 ]/X} |P{T/X} ] bottom-up

because first a[ b[ T ] ] becomes a[ b[ 0 ] ] giving P{T/X}, and then a[ b[ 0 ] ] be-
comes a[ 0 ], giving P{b[ 0 ]/X}.

3 Dynamic Web Data at Work

3.1 Web Services

In the introduction, we described the hyperlink example. Here we generalize
this example to arbitrary web services. Web services have sometimes been
defined as “web sites for computers” or, in other words, language-independent
interfaces to web sites, which function similarly to remote procedure calls. We
define a web service c with parameters z̃, body B (a concatenation of prefixes),
and type of result specified by the distinct variables w̃ bound by B:

Def c(z̃) as B out 〈w̃〉 def= !c(z̃, l, x). B. go l. x〈w̃〉

where l and x are fixed parameters (not in B, w̃) which are used to specify
the return location and channel. For example, process R described in the
introduction can be written Def get(q) as copyq(X) out 〈X〉.

We specify a service call at l to the service c at m, sending actual parameters
ṽ and expecting in return the result specified by distinct bound variables w̃:

l·Call m·c〈ṽ〉 ret (w̃).Q def= (νb)(gom.c〈ṽ, l, b〉 | b(w̃).Q)

This process establishes a private session channel b, which it passes to the web
service as the unique return channel. Returning to the hyperlink example, the
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process Q running at l can be given by

!load(m, q, p). l·Call m·get〈q〉 ret (X).pastep〈X〉

Notice that it is easy to model subscription to continuous services in our model,
by simply replicating the input on the session channel:

l·Sub m·c〈ṽ〉 ret (w̃).Q def= (νb)(gom.c〈ṽ, l, b〉 | !b(w̃).Q)

Note that some web services may take as a parameter or return as a result
some data containing another service call (for example, see the intensional
parameters of [1]). In our system the choice of when to invoke such nested
services is completely open, and is left to the service designer.

3.2 XLink Base

We look at a refined example of the use of linking, along the lines of XLink.
XLink is an XML standard for describing hyperlinks, intended in a very general
sense. Simplifying, we can say that an XLink is an entity which denotes a set of
“sources” and a set of “destinations”, and which describes a relation between
those two sets. An HTML tag < A href= URL> ... can be interpreted as an
XLink with a single source (the associated URL), a single implicit destination
(the current browser window) and a implicit relation which is “get a document
from the source and display it at the destination”.

As we have mentioned, links specify both of their endpoints, and therefore can
be stored in some external repository, for example

XLink[ To[ @n:q ] | From[ @l:p ] | Code[ !P ] ]

XLinkBase[ XLink[ ... ] | ... | XLink[ ... ] ]

Suppose that we want to download from an XLink server the links associated
with node p in the local repository at l. We can define a function xload which
takes a parameter p and requests from the XLink service xls at m all the
XLinks originating from @l:p, in order to paste them under p at location l:

!xload(p).l·Sub m·xls〈l, p〉 ret (x, y,!X)

.pastep〈Link[ To[ @x:y ] | Code[ !X ] ]〉

Service xls defined below is the XLink server. It takes as parameters the two
components l, p making up the From endpoint of a link, and returns all the
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pairs To, Code defined in the database for @l:p.

Def xls(l, p) as B out 〈x, y,!X〉
B = copyp1

(@x:y).copyp2
(!X)

p1 = XLinkBase/XLink[ From[ @l:p ] ]/To

p2 = XLinkBase/XLink[ From[ @l:p ] | To[ @x:y ] ]/Code

In p1 we use the XPath syntax XLink[ From[ @l:p ] ]/To to identify the node To
which is a son of node XLink and a sibling of From[ @l:p ]; similarly for p2.

3.3 Forms

Forms enhance documents with the ability to input data from a user and then
send it to a server for processing. The simplest and more common example of
a form is the interface of your favourite search engine: it consist of a text field
where the user can write the search criteria and a button that, when clicked,
causes the input text to be sent to a server to execute the search.

For example, assuming that the server is at location s, that the form is at path
p, and that the code to process the form result is called handler, we have

form[ input[ 0 ]

| submit[ !copy./../input(X).go s.handler〈X〉 ]

| reset[ !cut./../input(X) ]]

where runp/form/submit (or runp/form/reset) is the event generated by clicking on
the submit (or reset) button. Some user input T can be provided by a process

pastep/form/input〈T 〉

and on the server there will be a handler ready to deal with the received data

s [S ‖ !handler(X).P |... ]

This example suggests the usefulness of embedding processes rather than just
service calls in a document: the code to handle submission may vary from
form to form, and for example some input validation could be performed on
the client side.
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4 Behaviour of Dynamic Web Data

In the hyperlink example of the introduction, we have stated that the processes
Q and Qs basically have the same intended behaviour in any context contain-
ing R. In this section we provide the formal analysis to justify this claim. We
do this in several stages. First, we define what it means for two Xdπ networks
to be equivalent. Then, we indicate how to translate Xdπ into another (equiv-
alent) calculus, called Core Xdπ, where it is easier to separate reasoning about
processes from reasoning about data. Finally, we define process equivalence on
Core Xdπ terms.

4.1 Network Equivalence

We apply a standard technique for reasoning about processes distributed be-
tween locations to our non-standard setting. We define a barbed congruence
relation between networks which is reduction-closed, closed with respect to
reduction contexts, and which satisfies an additional observation relation de-
scribed using barbs. In our case, a barb describes the path where an update
command can affect the data.

Definition 4.1 A barb has the form l·p, where l is a location name and p is a
path. The observation relation, denoted by N ↓ l·p, is a binary relation between
Xdπ-networks and barbs defined by

N ↓l·p iff ∃ C,T,χ,U,P,Q. N ≡ C[l [T ‖ updatep(χ, U).P |Q) ]]

that is, N contains a location l with an updatep command. The weak observa-
tion relation, denoted N ⇓ l·p, is defined by

N ⇓l·p iff ∃N ′. N ↘∗ N ′ ∧N ′ ↓l·p

Observing a barb corresponds to observing at what points in some data tree
a process has the capability to read or write data. Notice that a barb l·p gives
no information on how the data is modified, and ignores run commands. This
additional information can be observed indirectly using contexts.

Definition 4.2 Barbed congruence (∼=) is the largest symmetric relation R
on Xdπ-networks such that N RM implies

• N and M have the same weak barbs: N ⇓l·p⇒M ⇓l·p;
• R is reduction-closed: N ↘ N ′ ⇒ (∃M ′.M ↘∗ M ′ ∧ N ′R M ′);
• R is closed under network contexts: ∀C.C[N ]RC[M ].
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In the companion paper [26], we have studied alternative notions of network
equivalence based on different observation relations, looking for example at
the shape of tree data, at the presence of outputs, and at the existence of
locations. These alternative notions coincide with each other, and yield an
equivalence relation which is more liberal than the one presented here. We
study this specific equivalence in order to distinguish processes based on their
attempts to interact with the data tree: that is, equivalent processes have
equivalent permissions to access data.

4.2 Examples

Our first example illustrates that network equivalence does not imply that the
initial data trees need be equivalent.

Example 4.1 Consider the networks N and M given by

N = l [ b[ 0 ] ‖ !pasteb〈a[ 0 ]〉 | !cutb(X) ]

M = l [ b[ a[ 0 ] | a[ 0 ] ] ‖ !pasteb〈a[ 0 ]〉 | !cutb(X) ]

We have N ∼= M since each state reachable by one network is also reachable
by the other, and vice versa.

Similarly, network equivalence does not imply that the initial processes need
be structurally congruent.

Example 4.2 Consider the process xch(T1, T2) defined below, which continu-
ously replaces T1 with T2 and vice versa.

xch(T1, T2) = (νc)(c | !c.updatep(X,T1).updatep(X,T2).c)

For all T1, T2 and T we have l [T ‖ xch(T1, T2) ] ∼= l [T ‖ xch(T2, T1) ] because
the processes have the same barbs, and if T contains a subtree at p, they can
simulate each other. Yet, xch(T1, T2) .≡ xch(T2, T1).

Our next example shows that equivalence is sensitive to the interactions with
data also when they have no effect.

Example 4.3 A minimal example of non-equivalence is given by

l [T ‖ updateT (X,X).0 ] .∼= l [T ‖ 0 ]

Despite this particular update (copy) command having no effect on the data
and the continuation process, we currently regard it as observable since it has
the capability to modify the data at p, even if it does not use it. The networks
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above would be equivalent if we chose instead the structure of trees as the
observable (see [26]).

We conclude this section with a web service related example.

Example 4.4 We now place our definition of web service given in Section 3.1
into a generic context in order to show it equivalent to its specification. Con-
sider the simple networks

N = l [T ‖ l·Call m·c〈ṽ〉 ret (w̃).Q|R ]

Ns = l [T ‖ go m.P{ṽ/z̃}.go l.Q|R ]

M = m [S ‖ Def c(z̃) as P out 〈w̃〉 |R′ ]

If c does not appear free in R and R′, then

(νc)(N |M) ∼= (νc)(Ns |M)

A special case of this example is the hyperlink example discussed in the intro-
duction. The restriction c is used to prevent the context providing any com-
peting service on c. It is clearly not always appropriate however to make a
service name private. An alternative approach is to introduce a linear type
system, studied for example in [6], to ensure service uniqueness.

5 Core Xdπ

Our aim is to define when two processes are equivalent in such a way that,
when the processes are put in the same position in a network, the resulting
networks are equivalent. In order to be able to analyze processes directly, we
introduce the Core Xdπ-calculus, in which the location structure is pushed
locally to the data and processes. We translate Xdπ in Core Xdπ, and equate
Xdπ-equivalence with Core Xdπ-equivalence.

Core Xdπ trees, paths and values are defined as for Xdπ, with the exception
that scripted processes are now Core Xdπ processes.

5.1 Located Processes

Core Xdπ processes are based on asynchronous π2-processes [10], extended
with the update and run operations for interacting with trees. The set of pro-
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(Trees) V ≡ V ′ ⇒ a[ V ] ≡ a[ V ′ ]

(Values) v′ ≡ w′ ∧ ṽ ≡ w̃ ⇒ v′, ṽ ≡ w′, w̃ P ≡ Q ⇒ !P ≡ !Q

(Processes) (νc)(νc′)P ≡ (νc′)(νc)P (νc)0 ≡ 0

c %∈ fn(P ) ⇒ P | (νc)Q ≡ (νc)(P |Q)

V ≡ V ′ ∧ P ≡ Q ⇒ l·updatep(χ, V ).P ≡ l·updatep(χ, V ′).Q

(Stores) ∀ l.D(l) ≡ B(l) ⇒ D ≡ B

(Networks) D ≡ B ∧ P ≡ Q ⇒ (D,P ) ≡ (B,Q)

Table 3
Structural congruence for Core Xdπ is the least congruence satisfying alpha-
conversion, the commutative monoidal laws for (0, |) on trees and processes, and
the axioms reported above.

cesses, denoted by P, is given by

P ::= 0 | P |P | (νc)P | l·b〈ṽ〉 | l·b(z̃).P | !l·b(z̃).P

| l·runp | l·updatep(χ, V ).P

The constructs in the first line of the grammar correspond to those found in the
π2-calculus: nil, composition and restriction are standard, the output process
l·b〈ṽ〉 denotes a vector of values ṽ waiting to be sent via channel b at location
l, the input process l·b(z̃).P waits to receive values from an output process
via channel b at l, and the replicated input is standard. The run and update
commands are located versions of the same commands for Xdπ. Structural
congruence is analogous to the one for Xdπ, and is reported in Table 3. We
use the notation l·P if P is 0 or a parallel composition of processes (output,
input, replicated input, run, update) explicitly located at l. If c does not
appear free in P , we will also use the abbreviation

(Tau Action) l·τ.P def= (νc)(l·c | l·c.P )

5.2 Networks and Stores

A network is represented by a pair (D,P ) where the first component (the
store) is a finite partial function from location names to trees, and the second
component is a process. Interaction between processes and data is always local,
as shown by rules (Update) and (Run) in Table 4. We write dom(D) to denote
the domain of store D. We write D1 /D2 for the union of stores D1 and D2
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(Com) ({l -→ T}, l·c〈ṽ〉 | l·c(x̃).P ) → ({l -→ T}, P{ṽ/x̃})

(!Com) ({l -→ T}, l·c〈ṽ〉 | !l·c(x̃).P ) → ({l -→ T}, !l·c(x̃).P |P{ṽ/x̃})

(Update)
p(T )!! p,l,χ,V T ′, {σ1, · · · ,σn}

({l -→ T}, l·updatep(χ, V ).P ) → ({l -→ T ′}, Pσ1 | · · · |Pσn)

(Run)
p(T )!! p,l,!X,!XT, {{!P1/!X}, · · · , {!Pn/!X}}

({l -→ T}, l·runp) → ({l -→ T}, P1 | · · · |Pn)

Table 4
The reduction relation for Core Xdπ is the smallest relation closed with respect to
reduction contexts, structural congruence and the axioms reported above.

with disjoint domains. The network (D,P ) is well-formed if D and P contain
no free variables, and all the scripted processes have no free session names.
Our reduction semantics on networks will be closed with respect to network
contexts (CS , CP):

(Store Contexts) CS ::=− | CS /D

(Process Contexts) CP ::=− | CP |P | (νc) CP

Given a network (D,P ) and a context C = (CS , CP), we write C[(D,P )] for
their composition: for example, if CS = −/B, CP = (νc)− then C[(D,P )] =
(D /B, (νc)P ). A composition involving stores is defined only for stores with
disjoint domains. We will omit the subscripts from contexts when no ambiguity
can arise.

5.3 Reduction Semantics

The reduction relation → (Table 4) depends on the same updating function
"! given in Table 2, and describes process interaction, the interaction between
processes and data, and (implicitly) the movement of processes across loca-
tions. Rules (Com) and (!Com) are basically the standard communication rules
for the π-calculus, except that processes only communicate if they are at the
same location l, and l is present in the store. Rule (Update) provides interaction
between processes and data, and is analogous to that for Xdπ.

5.4 Barbed congruence for Core Xdπ

The definition of barbed congruence for Xdπ can be simply adapted to Core
Xdπ.

Definition 5.1 We define the observation relation N ↓l·p on networks and
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barbs by

N ↓l·p iff ∃C, T,χ, U, P. N ≡ C[({l 1→ T}, l·updatep(χ, U).P )]

that is, N contains a location l with an updatep command. The weak observa-
tion relation, denoted N ⇓ l·p, is defined by

N ⇓l·p iff ∃N ′. N → N ′ ∧N ′ ↓l·p

Definition 5.2 Barbed congruence (2) is the largest symmetric relation R
on Core Xdπ-networks such that N RM implies

• N and M have the same barbs: N ⇓l·p⇒M ⇓l·p;
• R is reduction-closed: N → N ′ ⇒ (∃M ′.M →∗ M ′ ∧ N ′R M ′);
• R is closed under network contexts: ∀C.C[N ]RC[M ].

We will see in the next section how the positive and negative examples of
barbed congruence for Xdπ given in Section 4 can be translated to examples
in Core Xdπ.

6 Separation of Data and Processes

The encoding of Xdπ into Core Xdπ is described in Table 5. We explain it
using the hyperlink example:

N = l [ Link[ To[ @m:q ] | Code[ !P ] ] ‖ Q ] |m [T ‖ R ]

Q =!load(m, q, p).(νc)(gom. get〈q, l, c〉 | c(X).pastep〈X〉)
R =!get(y, x, w).copyy(X).gox.w〈X〉

The translation to Core Xdπ involves pushing the location structure –in this
case the l and m– inside the data and processes. We use ([N ]) to denote the
translation of a network, #T$ to denote the translation of a tree T , and 〈[P ]〉l
for the translation of a process P which depends on a location l. Our hyperlink
example becomes:

([N ]) = ({l 1→ Link[ To[ @m:q ] | Code[ !〈[P ]〉! ] ],m 1→ #T$}, 〈[Q]〉l | 〈[R]〉m)

〈[Q]〉l = !l·load(m, q, p).(νc)(l·τ.m·τ.m·get〈q, l, c〉 | l·c(X).l·pastep〈X〉)
〈[R]〉m = !m·get(y, x, w).m·copyy(X).m·τ.x·τ.x·w〈X〉

There are several points to notice. The network translation ([−]) assigns lo-
cations to translated trees, which remain the same except that the scripted
processes are translated using the self location !. The use of ! is necessary
since the location where the scripted process will run is not pre-determined.
In our hyperlink example, it runs at l. With an HTML form for example, it is
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Network translation:

([0]) = (∅, 0)

([N |M ]) = (D / B,P |Q) where ([N ]) = (D,P ) and ([M ]) = (B,Q)

([(νc)N ]) = (D, (νc)P ) where ([N ]) = (D,P )

([l [T ‖P ]]) = ({l -→ #T$}, 〈[P ]〉l)

Value translation:

#0$ = 0

#T |T ′$ = #T$ | #T ′$
#a[ T ]$ = a[ #T$ ]

#@l:p$ = @l:p

#c$ = c, #l$ = l, #p$ = p

#x$ = x, #χ$ = χ

#v′, ṽ$ = #v′$, #ṽ$
#!P$ = !〈[P ]〉!

Process translation:

〈[0]〉l = 0

〈[P |Q]〉l = 〈[P ]〉l | 〈[Q]〉l
〈[(νc)P ]〉l = (νc)〈[P ]〉l
〈[go m.P ]〉l = l·τ.m·τ.〈[P ]〉m
〈[a〈ṽ〉]〉l = l·a〈#ṽ$〉
〈[a(x̃).P ]〉l = l·a(x̃).〈[P ]〉l
〈[!a(x̃).P ]〉l =!l·a(x̃).〈[P ]〉l
〈[updatep(χ, U).P ]〉l = l·updatep(χ, #U$).〈[P ]〉l
〈[runp]〉l = l·runp

Table 5
Encodings from Xdπ to Core Xdπ.

not known where a form with an embedded scripted process will be required.
The process translation 〈[−]〉− embeds locations in processes. In our example,
it embeds location l in Q and location m in R. The only non-trivial case is
the migration command. For example, the process go x.w〈X〉 translates to
m·τ.x·τ.x·w〈X〉. The two located tau actions test the existence of the source
location m and of the destination location x, and the final located output is
obtained by translating the continuation w〈X〉 at x.

Network equivalence is preserved by the translation from Xdπ to Core Xdπ.

Theorem 6.1 (Full Abstraction) N ∼= M if and only if ([N ]) 2 ([M ]).

Proof. The proof is long and is reported in the Appendix. The idea is that
we split the translation in two steps: a translation from Xdπ to Core Xdπ+, a
hybrid calculus still retaining explicit migration, with the reductions in tight
correspondence with those for Xdπ, and then a translation from Core Xdπ+

to Core Xdπ (the latter is actually a proper subset of the former), where the
migration is translated in terms of tau actions. !
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7 Process Equivalence

We now analyze process equivalence for Core Xdπ. This equivalence depends
on the locations present in the network (network connectivity). Consider re-
placing the definition of a service at location l, which uses only local data,
with an equivalent one depending on data from another location m. If m is
always connected, then the behaviour of the services is the same. On the other
hand, if location m should fail, the behaviour of the services is different. With
network equivalences, the reliable locations are those in the domain of the
store. With process equivalences, it is necessary to state explicitly the min-
imum set of reliable locations. For example, consider oldS

def= l·cut/(X) and

m·newS def= (νc)(m·c〈/〉 |m·c(x).l·cutx(X)). The two processes are equivalent
if m is reliable, otherwise they are not: in the context ({l 1→ T},−) the first
process can delete T , but the second one cannot move to m. As a consequence,
process equivalence is indexed by a given domain of locations.

Definition 7.1 Given a set of location names Λ, we define the induced do-
main barbed congruence on closed processes by

∼Λ= {(P,Q)|∀D . Λ ⊆ dom(D)⇒ (D,P ) 2 (D,Q)}

For example, consider the process xch of Example 4.2. For any Λ and l, we
have that 〈[xch(T1, T2)]〉l ∼Λ 〈[xch(T2, T1)]〉l.

In order to be able to replace a process sub-term by an equivalent one, we
extend process equivalence to open terms (terms with free variables).

Definition 7.2 Full process contexts are defined by

C ::= − | C |P | (νc) C | l·a(x̃).C | !l·a(x̃).C | l·updatep(χ, V ).C

Definition 7.3 A substitution σ is a closing substitution for P iff Pσ is
closed. Given an equivalence ∼ for closed processes, and two open processes P
and Q, we say that P ∼ Q iff Pσ ∼ Qσ for all closing substitutions σ.

From now on our results are implicitly stated for open processes, and therefore
hold trivially also for closed processes, which are a special case.

Theorem 7.1 ([26]) For all Λ, (i) if Λ ⊂ Λ′ then ∼Λ⊂∼Λ′; (ii) ∼Λ is a
congruence over full process contexts.

As an example for the strict inclusion of (i), consider the processes oldS and
m·newS given above. We have oldS ∼l,m m·newS but oldS .∼l m·newS.
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If two equivalent processes are both located in the same location l, then we
can remove l from the assumptions on the location domain.

Lemma 7.2 ([26]) If l·P ∼Λ∪{l} l·Q then l·P ∼Λ l·Q.

The congruence result stated in point (ii) of Theorem 7.1 can be strengthened
to an even larger class of contexts, where the hole can occur inside values in
processes.

Lemma 7.3 ([26]) For any l, ṽ and V , if P ∼∅ Q then

l·a〈ṽ〉 ∼∅ l·a〈ṽ{!Q/!P}〉

l·update/(X,V ) ∼∅ l·update/(X,V {!Q/!P})

This reinforced congruence property on processes allows us to derive an im-
portant property of network equivalence: equivalent scripted processes can be
substituted for each other inside the store.

Proposition 7.4 For all D,R, l, T , if P ∼∅ Q then

(D / {l 1→ T}, R) 2 (D / {l 1→ T{!Q/!P}}, R)

Proof. Let P1 = l·update/(X,T ) and P2 = l·update/(X,T{!Q/!P}). From
Lemma 7.3 we have that P1 ∼∅ P2. By definition of ∼∅, we have that in par-
ticular ({l 1→ T}, P1) 2 ({l 1→ T}, P2). Since ({l 1→ T}, P1) → ({l 1→ T}, 0),
by reduction closure of 2 it must be the case that ({l 1→ T}, P2) → ({l 1→
T{!Q/!P}}, 0) 2 ({l 1→ T}, 0). By contextuality of 2 we conclude with
∀D,R. (D / {l 1→ T}, R) 2 (D / {l 1→ T{!Q/!P}}, R). !

Remark 7.1 Core Xdπ is an extension of the asynchronous π-calculus, and
accordingly the asynchrony law – stating that the presence of a communication
buffer cannot be observed – holds also in Core Xdπ: !l·a(x).l·a〈x〉 ∼Λ 0. On the
other hand, the law for equators does not hold: let

l·E(a, b) def= !l·a(x).l·b〈x〉 | !l·b(x).l·a〈x〉.

We have that

l·E(a, b) | l·c〈a〉 .∼Λ l·E(a, b) | l·c〈b〉,
since a context can read b from c at l, and use it at some fresh location m where
no equator is defined. In the next section we will show how using distributed
equators it is possible regard different names interchangeably only on some
designated locations.
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We conclude this subsection with two bigger examples of the equivalence of
web services.

Example 7.1 Recall the web service example in Example 4.4.

Q1 = 〈[l·Call m·c〈ṽ〉 ret (w̃).Q]〉l
Q2 = 〈[go m.P{ṽ/z̃}.go l.Q]〉l
P0 = 〈[Def c(z̃) as P out 〈w̃〉]〉m

We have that the specification is equivalent to the refinement:

(νc)(Q1 |P0) ∼{l,m} (νc)(Q2 |P0)

Example 7.2 We give now an example of how it is possible to replicate a web
service transparently to the users. Let internal nondeterminism be represented
as P⊕Q def= (νa)(a | a.P | a.Q), where a does not occur free in P,Q. We define
two service calls to two interchangeable services, service R1 on channel c and
R2 on channel d:

Q1 = 〈[l·Call m·c〈ṽ〉 ret (w̃).Q]〉l call c on m

Q2 = 〈[l·Call n·d〈ṽ〉 ret (w̃).Q′]〉l call d on n

Pm = 〈[Def c(z̃) as P1 out 〈w̃〉]〉m define c at m as P1

P1 = 〈[go n.R1 ⊕ d〈z̃, l, x〉]〉m provide R1 or call d on n

Pn = 〈[Def d(z̃) as P2 out 〈w̃〉]〉n define d at n as P2

P2 = 〈[go m.R2 ⊕ c〈z̃, l, x〉]〉n provide R1 or call c on m

We can show that, regardless of which service is invoked, a system built out of
these processes behaves in the same way:

Q1 |Pm |Pn ∼{m,n} Q2 |Pm |Pn

We can also show a result analogous to the single web service given in Exam-
ple 7.1. The nondeterministic specification process

Qs = 〈[go m.R1{ṽ/z̃}.go l.Q⊕ go n.R2{ṽ/z̃}.go l.Q′]〉l

is equivalent to any of the two service calls Q1 or Q2. For example

(νc, d)(Q1 |Pm |Pn) ∼{m,n} (νc, d)(Qs |Pm |Pn)

where the restriction of c and d avoids competing services on the same channel.
Now consider the case when R1 = R2, and R1 does not have any barb at m.
Let Q′

s = 〈[go m.R1{ṽ/z̃}.go l.Q]〉l and let Q = Q′. We have the equivalence

(νc, d)(Q1 |Pm |Pn) ∼{m,n} (νc, d)(Q′
s |Pm |Pn)

which shows that a client cannot be aware that the service has been replicated.
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7.1 Bisimulation-Based Proof Methods

The type of equivalences defined in the previous section are known to be
difficult to use. In particular, the condition of closure under contexts involves
a universal quantification on processes which complicates the proofs. In [18,26],
we have studied proof methods based on labelled bisimulation relations where
congruence is a derived property. In particular, in [26] we have defined a
bisimulation equivalence ≈Λ with the property that, given two processes P,Q,
if P ≈Λ Q then P ∼Λ Q. Although the proof technique is not complete, it
is strong enough to prove all the process equivalences shown in this paper.
The main difficulties involved in defining such equivalences for Core Xdπ are
caused by having scripted processes among values, and by barbed equivalence
being sensitive to the presence of locations.

The technique defined in [18] is based on higher-order bisimulation for concur-
rent processes, which has been studied for example in [36,14]. As noted in [33],
there is a problem inherently connected with the higher-order technique that
we have chosen there: requiring bisimilarity for !P and !Q can be too re-
strictive. In fact, it could be the case that P .≈Λ Q, but !P and !Q are only
run inside some context C such that C[P ] ≈Λ C[Q].

In [26] we define an alternative notion of bisimulation, where we solve the
problem just mentioned by translating messages containing scripts into ones
where each script is replaced by a uniquely named trigger (a placeholder), and
placing in parallel some definitions associating each trigger with the code of
the scripted process. Using this approach, it is possible to analyze the interac-
tion between scripts and their contexts. For a discussion of this technique, see
[24,33] (where it is applied to the higher-order π-calculus). We solve the prob-
lem of location-sensitivity using an adaptation of the bisimulation approach
to families of relations indexed by sets of locations, which we call domain-
dependent bisimilarity.

8 Conclusions and Future Work

This paper introduces Xdπ, a simple calculus for describing the interaction
between data and processes across distributed locations. We use a simple data
model consisting of unordered labelled trees, with embedded processes and
links to other parts of the network, and π-processes extended with an explicit
migration primitive and an update command for interacting with data. An
alternative approach would have been to encode data as π-processes. Instead,
the Xdπ-calculus models data and processes at the same level of abstraction,
enabling us to study how properties of data can be affected by process inter-
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action.

We have studied behavioural equivalences for Xdπ. In future work we plan to
use them to reason formally about many alternative patterns for exchanging
information on the web, for example the ones discussed in [4,32].

Alex Ahern has developed a prototype implementation, adapting the ideas
presented here to XML standards [5]. The implementation embeds processes
in XML documents and uses XPath as a query language. Communication be-
tween peers is provided through SOAP-based web services and the working
space of each location is endowed with a process scheduler based on ideas
from PICT [29]. We aim to continue this implementation work, perhaps incor-
porating ideas from other recent work on languages based on the π-calculus
[12,15].

Active XML [4] is probably the closest system to our Xdπ-calculus. It is based
on web services and service calls embedded in data, rather than π-processes.
There is however a key difference in approach: Active XML focusses on mod-
elling data transformation and delegates the role of distributed process inter-
action to the implementation; in contrast, process interaction is fundamental
to our model. There are many similarities between our model and features of
the Active XML [4,1] implementation, and we are in the process of doing an
in-depth comparison between the two projects.

Security is a central concern for systems sharing dynamic data on the Web.
We are currently studying fine-grained access control for web services and
documents, and type systems for statically guaranteeing the structure of Xdπ
data, extending techniques studied for the distributed π-calculus [21] and semi-
structured data [13].

In summary, this paper provides a first step towards the adaptation of tech-
niques associated with process calculi and semi-structured data to reason
about the dynamic evolution of data on the Web.
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A Full Abstraction

In order to study the formal relation between Xdπ and Core Xdπ we find it
helpful to consider a slightly bigger language (Core Xdπ+) which still retains
explicit migration. In this way it is possible to have a tighter correspondence
between reductions in Xdπ and in Core Xdπ+ than it would be possible directly
for Core Xdπ. After relating network equivalence for the first two languages,
we can relate the one for the latter two by exploiting the fact that Core Xdπ
is a proper subset of Core Xdπ+.

A.1 From Xdπ to Core Xdπ+

Core Xdπ+ is obtained from Core Xdπ by extending the grammar of processes
with the production

P ::= . . . | l·go m.P

and extending the reduction rules with the axioms

(Stay) ({l 1→ T}, l·go l.P ) → ({l 1→ T}, P )

(Go) ({m 1→ T, l 1→ S}, l·go m.P ) → ({m 1→ T, l 1→ S}, P )

The only effect of rule (Go) is to verify the existence of locations l and m, and
rule (Stay) can be seen as the special case where l = m. Structural congruence
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for Core Xdπ+ is analogous to the one for Core Xdπ. All the definitions and
results of Section 5 and Section 7 hold analogously for Core Xdπ+. The most
interesting additional laws holding for Core Xdπ+ state that an initial migra-
tion step from a location in the domain of the store cannot be observed, and
that independently from the store domain, a migration step is equivalent to
two subsequent tau actions located at the source and target of the migration.
This justifies informally the rule for encoding process migration from Xdπ to
Core Xdπ.

Lemma A.1 ([26]) (i) Migration from an existing location cannot be ob-
served: l·go m.m·P ∼{l} m·P . (ii) A migration step is equivalent to checking
the existence of the source and target locations: l·go m.P ∼∅ l·τ.m·τ.P .

The encoding of Xdπ is the same as that for Core Xdπ, except in the case
for migration, which becomes 〈[go m.P ]〉l = l·go m.〈[P ]〉m. With a slight abuse
of notation, in this section we reserve ([−]), 〈[−]〉−, #−$ for the encodings of
networks, processes and trees from Xdπ into Core Xdπ+, and we will denote by
[([−])] the encoding of networks from Xdπ into Core Xdπ, denoted in precedence
simply with ([−]).

In order to establish an operational correspondence between Xdπ and Core
Xdπ+, we need some auxiliary lemmas. The first lemma shows that the en-
codings respect structural congruence.

Lemma A.2 N ≡M if and only if ([N ]) ≡ ([M ]).

Proof. Both cases follow by structural induction on N . !

In order to show that the encodings preserve substitutions, we need to extend
the notion of data translation to substitutions and sets of substitutions, in the
obvious way: #{σ1, · · · ,σn}$ = {#σ1$, · · · , #σn$}, #{ṽ/x̃}$ = {#ṽ$/x̃}.

Lemma A.3 〈[P{ṽ/x̃}]〉l = 〈[P ]〉l{#ṽ$/x̃}.

Proof. Follows by structural induction on P . !

The updating and querying of trees is preserved by the encodings.

Lemma A.4 (i) If p(T ) "! p,l,χ,V T ′, Σ then p(#T$) "! p,l,χ,"V ##T ′$, #Σ$ (ii) If
p(#T$) "! p,l,χ,"V ##T ′$, #Σ$ then p(T ) "! p,l,χ,V T ′, Σ

Proof. Both cases follow by well-founded induction on the nesting depth of
underlinings in p(T ), where the nesting depth d(T ) is defined inductively by

d(0) = d(@l:p) = d(!P ) = 0 d(T |S) = max(d(T ), d(S))

d(a[ T ]) = d(T ) d(a[ U ]) = 1 + d(U)

!
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For clarity, we state explicitly the reduction rules dealing with structural con-
gruence and reduction contexts for Xdπ (the ones for Core Xdπ+ are analo-
gous).

(Ctx)
N ↘ N ′

C[N ] ↘ C[N ′]
(Struct)

N ≡M ↘M ′ ≡ N ′

N ↘ N ′

Lemma A.5 (Strong Operational Correspondence) For any Xdπ net-
work N , (i) if N ↘M then ([N ])→ ([M ]); (ii) if ([N ])→M ′ then there exists
M such that ([M ]) ≡M ′ and N ↘M .

Proof. (i) By rule induction on the derivation of N ↘M . The base cases are
((Stay),(Go),(Com),(Com!),(Update),(Run)), and the inductive cases are ((Struct),(Ctx)).

• (Stay): If N ↘ M by rule (Stay), then N = m [T ‖ Q | go m.P ] and M =
m [T ‖ Q |P ], and by definition of encoding

([N ]) = ({m 1→ #T$}, 〈[Q]〉m |m·go m.〈[P ]〉m) = N ′

We derive N ′ → ({m 1→ #T$}, 〈[Q]〉m | 〈[P ]〉m) = M ′ by using rule (Ctx),
with the instance of axiom (Stay) ({m 1→ #T$},m·go m.〈[P ]〉m) → ({m 1→
#T$}, 〈[P ]〉m) as a premise. We conclude since by definition of encoding,
([M ]) = M ′.

• (Go): Similar to the previous case.
• (Com): Like the previous case, using point (i) of Lemma A.3 to justify that

the results of the communication in the translation equals the encoding of
M : ({l 1→ #T$}, 〈[P ]〉l{#ṽ$/x̃} | 〈[Q]〉l) = ({l 1→ #T$}, 〈[P{ṽ/x̃}]〉l | 〈[Q]〉l).

• (Com!): Similar to the previous case.
• (Update): Similar to the previous cases, using point (i) of Lemma A.4 to relate

the premises p(T ) "! p,l,χ,V T ′, Σ and p(#T$) "! p,l,χ,"V ##T ′$, #Σ$ of the axiom
(Update) in the two calculi.

• (Run): Similar to the previous case.
• (Ctx): Suppose that N ↘ M and ([N ]) → ([M ]). We want to show that

C[N ] ↘ C[M ] implies ([C[N ]]) → ([C[M ]]). By a simple induction on the
structure of C[−], it follows that there exists a Core Xdπ+ context K[−]
such that ([C[N ]]) = K[([N ])] and ([C[M ]]) = K[([M ])]. This allows us to
conclude, by rule (Ctx), that ([C[N ]])→ ([C[M ]]).

• (Struct): Follows using point (i) of Lemma A.2 and rule (Struct) on the Core
Xdπ term.

(ii) By cases on the axioms used to derive ([N ]) → M ′. We show in detail the
case for (Stay). If the axiom used to derive ([N ])→M ′ is (Stay) then it must be
the case that ([N ]) ≡ (νc̃)({m 1→ #T$} / B,m·go m.〈[P ]〉m | 〈[R]〉m |Qdom(B)) =
N1, and M ′ ≡ (νc̃)({m 1→ #T$} / B, 〈[P ]〉m | 〈[R]〉m |Qdom(B)) = M1, where for
some N ′, ([N ′]) = (B,Q). For N2 = (νc̃)(m [T ‖ go m.P |R ] |N ′) we have that
([N2]) = N1, and by definition of ↘, N2 ↘ (νc̃)(m [T ‖ P |R ] |N1) = M2,
with ([M2]) = M1. By point (ii) of Lemma A.2 we have that ([N ]) ≡ N1 implies
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N ≡ N2. We conclude using N2 ↘ M2 and (Struct) to derive N ↘ M where
M = M2, and therefore ([M ]) ≡M ′. The cases for the other axioms are similar,
and use point (ii) of Lemma A.3 and point (ii) of Lemma A.4. !

Lemma A.6 (Weak Operational Correspondence) Given any Xdπ net-
work N , (i) if N ↘∗ M then ([N ]) →∗ ([M ]); (ii) if ([N ]) →∗ M ′ then there
exists M such that ([M ]) ≡M ′ and N ↘∗ M .

Proof. Both cases follow by induction on the number of reduction steps
and Lemma A.5. !

Lemma A.7 (Observational Correspondence) N ⇓l·β ⇔ ([N ]) ⇓l·β.

Proof. (⇒) By definition of ⇓ and Lemma A.6 it is enough to show that if
N ↓l·β then ([N ]) ↓l·β, which follows easily from the definition of the encodings.
(⇐) Analogous to the previous case. !

Note that there are Core Xdπ+ processes which cannot be obtained from the
translation of Xdπ processes, such as for example l·a(x).m·b〈x〉. Consequently
Core Xdπ+ has in some sense more reduction contexts than Xdπ, and in order
to relate contextual equivalence in the two languages we need to relate the
contexts first.

Lemma A.8 For any Core Xdπ+ process P and any l, there exists an Xdπ
process Q such that 〈[Q]〉l ∼{l} P .

Proof. By structural induction on P . We show the inductive case for the
input process. Given a Core Xdπ+ process m·a(x).P ′, we want to show that
for the Xdπ process Q = go m.a(x).R, where R is such that, by hypothesis,
〈[R]〉m ∼{m} P ′, we have m·a(x).P ′ ∼{l} 〈[Q]〉l = l·go m.m·a(x).〈[R]〉m. By
the congruence property of process equivalence we have that m·a(x).P ′ ∼{m}
m·a(x).〈[R]〉m, by the analogous of Lemma 7.2 for Core Xdπ+ we have that
this holds also for ∼∅, and by point (ii) of Theorem 7.1 we get m·a(x).P ′ ∼{l}
m·a(x).〈[R]〉m. By point (i) of Lemma A.1 we obtain

m·a(x).〈[R]〉m ∼{l} l·go m.m·a(x).〈[R]〉m

and we conclude by transitivity of ∼{l}. The other cases are similar. !

Lemma A.9 (Contextual Correspondence) Given any Xdπ network N ,
and any Core Xdπ+ context C[−], if N .≡ 0 then there exists an Xdπ context
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K[−] such that ([K[N ]]) 2 C[([N ])].

Proof. (Sketch). By induction on the structure of C[−]. The inductive case
where C[−] = (C1[−], C2[−] |P ) uses the hypothesis of non-emptiness of N to
build a context K[−] where an Xdπ process R such that 〈[R]〉l equivalent to
P (which exists by Lemma A.8) is placed inside a location l in the domain of
N . !

We now have all the building blocks to show that the encoding preserves
barbed congruence.

Theorem A.10 (Full Abstraction) N ∼= M if and only if ([N ]) ∼= ([M ]).

Proof. (⇒) By showing that the relation R = {(N ′,M ′) |N ′ 2 ([N ]), M ′ 2
([M ]), N ∼= M} on Core Xdπ+ networks is included in 2 3 . Relation R pre-
serves the observables by Lemma A.7, and is reduction closed by Lemma A.6.
We now show that R preserves contexts. Suppose that (N ′,M ′) ∈ R, and
therefore N ′ 2 ([N ]), M ′ 2 ([M ]), and N ∼= M . We need to show that for
an arbitrary C[−], also (C[N ′], C[M ′]) ∈ R. By N ′ 2 ([N ]) and contextuality
of 2, we get C[N ′] 2 C[([N ])]. By Lemma A.9 and transitivity of 2, we get
C[N ′] 2 ([K[N ]]) for a suitable K[−]. Similarly, we derive C[M ′] 2 ([K[M ]]),
and we conclude deriving K[N ] ∼= K[M ], by contextuality of ∼=, from N ∼= M .
(⇐) By showing that the relation S = {(N,M) | ([N ]) 2 ([M ])} on Xdπ net-
works is included in ∼=. The first two cases are similar to the previous point.
Relation S preserves contexts by definition of encoding. !

A.2 From Core Xdπ+ to Core Xdπ

We have formally related Xdπ and Core Xdπ+. In this subsection we relate
Core Xdπ+ and Core Xdπ, in order to justify using Core Xdπ as a core calculus
for the study of behavioural equivalences.

Consider the encoding [[−]] from Core Xdπ+ to Core Xdπ networks which is
homomorphic on all terms except for the case of process migration, where it
is specified as [[l·go m.P ]] = l·τ.m·τ.[[P ]], as informally suggested by point (ii)
of Lemma A.1. The encoding of processes respects process equivalence.

Lemma A.11 For all Core Xdπ+ processes P , P ∼∅ [[P ]].

Proof. By structural induction on P . All the homomorphic cases are trivial.

3 Weak bisimulation up-to weak bisimulation is a valid proof technique because of
the use of the weak observation relation on the first clause of barbed congruence
(see [34]).
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We show the inductive case for the migration process. Given P = l·go m.R
we have that [[P ]] = l·τ.m·τ.[[R]], where by hypothesis [[R]] ∼∅ R, and we want
to show that l·go m.R ∼∅ l·τ.m·τ.[[R]]. By applying the congruence property
of process equivalence on [[R]] ∼∅ R we get l·τ.m·τ.[[R]] ∼∅ l·τ.m·τ.R = P ′. By
point (ii) of Lemma A.1 we get P ∼∅ P ′ and by transitivity of ∼∅ we conclude
with P ∼∅ [[P ]]. !

The substitutivity of process equivalence and the previous lemma tell us that
the encoding of trees preserves equivalence.

Corollary A.12 From the analogous of Proposition 7.4 on Core Xdπ+, and
Lemma A.11, it follows that for all D,R, l, T , (D / {l 1→ T}, R) 2 (D / {l 1→
[[T ]]}, R).

Lemma A.13 For any Core Xdπ+ network N , N 2 [[N ]].

Proof. By structural induction on N . The base case for N = (∅, 0) is trivial.
There are two inductive cases, one for stores and one for processes. For the
inductive case for stores, suppose N1 = (D,P ) 2 [[(D,P )]] = ([[D]], [[P ]]) = M1.
We want to show that N = ({l 1→ T} /D,P ) 2 [[({l 1→ T} /D,P )]] = ({l 1→
[[T ]]} / [[D]], [[P ]]) = M . By contextuality of 2 on N1 2 M1 we have that
({l 1→ [[T ]]} /D,P ) 2 M , and by Corollary A.12 on ({l 1→ [[T ]]} /D,P ) and
N , and by transitivity of 2 we conclude with N 2M . The case for processes
is similar, and goes by induction on the structure of the process context C[−],
using Lemma A.11 instead of Corollary A.12. !

For clarity, below we denote by 2+ the network barbed equivalence for Core
Xdπ+ networks, and by 2 the one for Core Xdπ.

Observation A.14 By definition of encoding, we have that for any Core
Xdπ+ network N , and any Core Xdπ+ context C[−], there exists a Core Xdπ
context K[−] such that [[C[N ]]] = K[[[N ]]].

Theorem A.15 For any Core Xdπ+ networks N,M , N 2+ N if and only if
[[N ]] 2 [[M ]].

Proof. (⇒) Follows easily from Lemma A.13 and the fact that each
Core Xdπ context is also a Core Xdπ+ context. (⇐) Follows again from
Lemma A.13, using Observation A.14 for relating the contexts. !

Corollary A.16 (Theorem 6.1) From Theorem A.10 and Theorem A.15
follows that, for any Xdπ networks N,M , N 2M if and only if [([N ])] 2 [([M ])].
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