
Symbolic Debugging with Gillian

Nat Karmios
Imperial College London

London, UK

Sacha-Élie Ayoun
Imperial College London

London, UK

Philippa Gardner
Imperial College London

London, UK

ABSTRACT

Software debugging for concrete execution enjoys a mature suite
of tools, but debugging symbolic execution is still in its infancy.
It carries unique challenges, as a single state can lead to multiple
branches representing di�erent sets of conditions, and symbolic
states must be ‘matched’ against logical conditions. Some of today’s
otherwise mature symbolic-execution tools still rely on plain-text
log �les for debugging, which provide no good overview of the
execution process and can quickly become overwhelming. We in-
troduce a debugger for Gillian’s veri�cation mode—complete with
a custom interface—and ponder the potential for this interface and
the protocol behind it to be used outside of Gillian.

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging; Formal software veri�cation.

KEYWORDS

debugging, symbolic execution, veri�cation

ACM Reference Format:

Nat Karmios, Sacha-Élie Ayoun, and Philippa Gardner. 2023. Symbolic De-
bugging with Gillian. In Proceedings of the 1st ACM International Workshop

on Future Debugging Techniques (DEBT ’23), July 17, 2023, Seattle, WA, USA.

ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3605155.3605861

PROPOSAL

Gillian [2, 6] is a compositional symbolic execution platform, para-
metric on the memory model of the analysed language. It supports
whole-program symbolic testing, compositional veri�cation, and
automatic compositional testing (ACT) powered by bi-abduction.
Like some other symbolic-execution tools (e.g. Infer Pulse [1, 8],
CBMC [5]), Gillian relies on verbose plain-text logging. Our work
introduces a debugger for veri�cation in Gillian, complete with
a custom interface to ease the navigation of branching execution
paths and state matching (cf. Figure 1); this interface presents the
execution trace as a tree, and allows parts of the trace to be nested
inside other nodes - for example, the body of a while-loop can be
nested inside the loop de�nition’s command node (cf. Figure 2).
While this implementation is Gillian-speci�c, we intend to provide
an intuitive UI for these purposes that could potentially be used
with other tools and implement debugging for Gillian’s ACT.

DEBT ’23, July 17, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0245-7/23/07.
https://doi.org/10.1145/3605155.3605861

Related work on symbolic debugger interfaces includes the Ver-
iFast [4] tool, which also o�ers a visual interface. VeriFast per-
forms veri�cation to completion and presents the trace afterwards,
whereas Gillian’s debugger steps inside the veri�cation process,
allowing for potential performance gains in larger functions by per-
forming each step on request and only exploring the desired path(s).
VeriFast presents the trace as an unlabelled binary tree, whilst the
Gillian debugger shows information about the command, whether it
required state matching and whether the matching succeeded, and
allows parts of a trace—or even the whole trace of another process—
to be nested under any command. This provides a level of �exibility
that other tools could make use of beyond Gillian. The ability to
fold and unfold nests means that arbitrary levels of detail needn’t
unnecessarily pollute the interface or overwhelm a user. A symbolic
execution debugger based on the KeY platform [3] has also been
introduced, featuring an interface with some parallels to ours. Our
work di�ers through its generality (KeY speci�cally veri�es Java,
and in the Eclipse IDE or their standalone UI), and the �exibility of
the interface, with its aforementioned nesting capabilities.

A key part of our approach is the protocol with which the de-
bugger process communicates with the user interface. We extend
the Debug Adapter Protocol (DAP) [7], which is designed by Mi-
crosoft and provides a standard protocol for integrating debuggers
and development environments, with the ability to manage the
unique challenges of symbolic execution, such as tracking multi-
ple execution branches; these extensions could form a “symbolic
DAP” for use with multiple symbolic tools and IDEs. The visual
map of execution is then presented in a web-view using a custom
VSCode extension, though this could be decoupled from VSCode
via a browser client.

Given the novelty of our debugger, we believe that comprehen-
sive user feedback is pivotal for guiding future development. To this
end, we conducted a two-hour lab session in Gardner’s 4th-year
and M.Sc course on Separation Logic at Imperial College London
(cf. Figure 3), where students used the debugger to diagnose and �x
list algorithms in the Gillian tool instantiated with a small while
language. This debugger is the result of a long journey associated
with this course, which started with Ayoun’s M.Sc project in 2018,
and continued with three excellent M.Sc projects by Radu Lacraru
(2020), Matthew Ho (2021) and Nat Karmios (2022), primarily under
the supervision of Ayoun. In November 2022, the debugger reached
a standard where we could present it to the students in a lab session.
The positive feedback and useful suggestions (received via feedback
forms) and overall excitement in the laboratory was inspirational,
with many of the students and demonstrators working far past the
end of the lab. Following this success, we have continued to re�ne
the interface, with the aim to present a formal coursework task
during the course in 2023. We have also presented the debugger in
an informal workshop at Meta, and are now in discussion about
the possibility of adapting the debugger to Infer Pulse.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

1

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3605155.3605861
https://doi.org/10.1145/3605155.3605861
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3605155.3605861&domain=pdf&date_stamp=2023-07-17


DEBT ’23, July 17, 2023, Sea�le, WA, USA Nat Karmios, Sacha-Élie Ayoun, and Philippa Gardner

Figure 1: The debugger interface, including: 1 the symbolic state at the current step; 2 the ‘map’ of symbolic execution

(custom extension); and 3 the source code.

Figure 2: An example of nesting; the body of the while-

loop is nested inside the node for the loops de�nition. Figure 3: The student lab held in November 2022

This project is unusual for our team, whose primary focus is
mathematical theory and well-engineered research tools for compo-
sitional symbolic analysis. The debugger has changed our ambition:
the Gillian tool is now usable by the 4th-year and M.Sc students,
and we hope, in future, code developers with an interest in veri-
�cation. We look forward to attending the DEBT workshop and
gaining valuable insight from the debugger community in order to
further re�ne our priorities in future development.

ACKNOWLEDGMENTS
Thanks go to Radu Lacraru and Matthew Ho for previous work, the 2022
students of the course on Scalable Software Veri�cation at Imperial College
London for lab participation and feedback, and our reviewers for their
comments. We also thank Andreas Lööw and Petar Maksimović for their
invaluable input. This work was supported by funding from Gardner’s
UKRI fellowship ‘Veri�ed Trustworthy Software Speci�cation’, Ayoun’s
Department of Computing PhD Scholarship from Imperial College London,
a faculty gift from Meta and a grant from the UK National Cyber Security
Centre.

REFERENCES
[1] Cristiano Calcagno andDinoDistefano. 2011. Infer: AnAutomatic ProgramVeri�er

for Memory Safety of C Programs. In NASA Formal Methods: Third International

Symposium, NFM 2011, Pasadena, CA, USA, April 18–20, 2011, Proceedings (Lecture
Notes in Computer Science, Vol. 6617), Mihaela Bobaru, Klaus Havelund, Gerard J.
Holzmann, and Rajeev Joshi (Eds.). Springer, 459–465. https://doi.org/10.1007/978-
3-642-20398-5_33

[2] José Fragoso Santos, Petar Maksimović, Sacha-Élie Ayoun, and Philippa Gardner.
2020. Gillian, Part I: A Multi-Language Platform for Symbolic Execution. In
Programming Language Design and Implementation (PLDI). https://doi.org/10.
1145/3385412.3386014

[3] Martin Hentschel, Richard Bubel, and Reiner Hähnle. 2019. The Symbolic Execu-
tion Debugger (SED): a platform for interactive symbolic execution, debugging,
veri�cation and more. International Journal on Software Tools for Technology
Transfer (2019). https://doi.org/10.1007/s10009-018-0490-9

[4] Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx,
and Frank Piessens. 2011. VeriFast: A Powerful, Sound, Predictable, Fast Veri�er
for C and Java. In NASA Formal Methods Symposium. https://doi.org/10.1007/978-
3-642-20398-5_4

[5] Daniel Kroening, Peter Schrammel, and Michael Tautschnig. 2023. CBMC: The C
Bounded Model Checker. arXiv:2302.02384 [cs.SE]

[6] Petar Maksimović, Sacha-Élie Ayoun, José Fragoso Santos, and Philippa Gardner.
2021. Gillian, Part II: Real-World Veri�cation for JavaScript and C. In Computer
Aided Veri�cation (CAV). https://doi.org/10.1007/978-3-030-81688-9_38

[7] Microsoft. [n. d.]. Debug Adapter Protocol - Overview. https://microsoft.github.
io/debug-adapter-protocol/overview [Accessed 2023/06/27].

[8] The Infer Team@Meta. [n. d.]. Infer Pulse. https://fbinfer.com/docs/checker-pulse
[Accessed 2023/06/27].

Received 2023-05-22; accepted 2023-06-20

2

https://doi.org/10.1007/978-3-642-20398-5_33
https://doi.org/10.1007/978-3-642-20398-5_33
https://doi.org/10.1145/3385412.3386014
https://doi.org/10.1145/3385412.3386014
https://doi.org/10.1007/s10009-018-0490-9
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://arxiv.org/abs/2302.02384
https://doi.org/10.1007/978-3-030-81688-9_38
https://microsoft.github.io/debug-adapter-protocol/overview
https://microsoft.github.io/debug-adapter-protocol/overview
https://fbinfer.com/docs/checker-pulse

	Abstract
	References

