
Automatic Parallelization with Separation Logic

Cristiano Calcagno, Philippa Gardner, and Mohammad Raza!

Imperial College London

Abstract. We present a separation logic framework which can express proper-

ties of memory separation between different points in a program. We describe

an algorithm based on this framework for determining independences between

statements in a program which can be used for parallelization.

1 Introduction

Automatic parallelization techniques are generally based on a detection of indepen-

dence between statements in a program, in the sense that two statements accessing

separate resources can be executed in parallel. Such techniques have been extensively

studied and successfully applied for programs with simple data types and arrays, but

there has been limited progress for programs that manipulate pointers and dynamic

data structures [9, 10, 7, 11, 13]. Separation logic is a recent approach to the study of

pointer programs [15] in which the separation of resource is expressed with the logical

connective ‘∗’. This approach has been implemented in many program analysis tools
for the purposes of shape analysis and safety verification [16, 4, 8, 1]. However, these

analyses cannot be used for program parallelization, because the ∗ connective only ex-
presses separation of memory at a single program point and therefore cannot determine

independences between statements in a program. In this paper we present an extended

separation logic framework which can express memory separation properties through-

out a program’s lifetime.

The framework is based on an extension of separation logic formulae with labels,

which are used to keep track of memory regions through an execution. Symbolic ex-

ecution based on separation logic [2, 5] is extended so that occurrences of the same

label, even in different formulae referring to different program points, refer to the same

memory locations throughout the execution. However, the symbolic execution mech-

anism is such that memory locations cannot always be represented by the same label

through an entire execution: fresh labels have to be introduced during the execution to

replace existing labels and the new labels may represent memory regions that overlap

with old ones. For this reason, we keep an intersection logwhich relates labels that may

represent possibly overlappingmemory regions. To keep track of the memory locations

that are accessed by a command, we keep a footprint log which records the labels of

the part of the call-site formula that the command depends on. These labels are clearly

determined for primitive commands. For procedure calls and while loops, the labels are

determined by a frame inference method [2] that keeps track of the labels by using a

form of label respecting entailment between formulae.

! principle author

2 Cristiano Calcagno, Philippa Gardner, and Mohammad Raza

The main issue in demonstrating the soundness of our approach is in the semantic

interpretation of labels. This must be given in the context of an entire execution rather

than on a formula that describes a single state. For this we adapt the action trace seman-

tics of programs introduced in [6] to prove soundness of concurrent separation logic.

We introduce the notion of a symbolic execution trace, and a notion of satisfaction be-

tween an action trace and a symbolic execution trace formalises the relation between

labels in a symbolic execution and locations in a concrete execution.

Our approach fits in the line of work of using static analysis to collect independence

facts between program points. Our departure point is the use of separation logic-based

shape analysis. One of the strengths of our approach is that it does not rely on reacha-

bility properties of data structures to detect independences, as in [10, 7]. The approach

here is more precise in that it finds the footprints of commands: the cells that are actually

accessed rather than the cells that may possibly be accessed.

In this paper we illustrate our method in a restricted setting adapted from [2], work-

ing with simple list and tree formulae. Our proposed method is engineered so that it

can be applied as a post-processing phase starting from the output of an existing shape

analysis based on separation logic, and requires only minor changes to existing sym-

bolic execution engines. We begin in the next section by introducing labelled symbolic

heaps, which are standard symbolic heap formulae extended with labels. In the next

section we describe the programming language we work with and an intermediate lan-

guage which is actually used in the analysis. We then describe the extended symbolic

execution algorithm for determining independences, and discuss examples. In the fol-

lowing section we describe the frame inference method that keeps track of the labels

in the inferred frame axiom. In the final section we demonstrate the soundness of the

method with respect to an action trace semantics of programs.

2 Labelled Symbolic Heaps

The concrete heap model is based on a set of fields Fields, and disjoint sets Loc of

locations and Val of non-addressable values, with nil ∈ Val. We assume a finite set

Var of program variables and an infinite set Var′ of primed variables. Primed variables

will not be used in programs, only within the symbolic heaps where they will be im-

plicitly existentially quantified. We then set Heaps = Loc ⇀f (Fields → Val∪Loc)
and Stacks = (Var ∪ Var′) → Val ∪ Loc. We work with a class of separation logic

formulae called symbolic heaps, as described in [2, 5], except that we introduce labels,

l ∈ Lab, on the simple spatial formulae in symbolic heaps.

x, y, .. ∈ Var program variables

x′, y′, .. ∈ Var′ primed variables

l, k.. ∈ Lab labels

f1, f2, .. ∈ Fields fields

Automatic Parallelization with Separation Logic 3

E, F ::= nil | x | x′ expressions

ρ ::= f1 : E1, ..., fk : Ek record expressions

P ::= E = E | ¬P simple pure formulae

Π ::= true | P | Π ∧ Π pure formulae

S ::= E #→ [ρ] | ls(E, F) | dlls(Ef , Eb, Ff , Fb) | tree(E) simple spatial formulae

Σ ::= emp | 〈S〉l | Σ ∗ Σ spatial formulae with labelled simple conjuncts

SH ::= Π !
!Σ symbolic heaps

We include an empty label • ∈ Lab for situations where the label is unspecified.

Except for the empty label •, we require that every label has at most a unique occurence
in a symbolic heap. We let Lab(Π !

!Σ) denote the set of labels in the symbolic heap
Π !

!Σ. Labels shall be used to keep track of separate portions of resource through the
execution of a program. They are therefore not given an interpretation on a symbolic

heap, but shall be interpreted in the context of a symbolic execution. The interpretation

of symbolic heaps is otherwise standard, given by a forcing relation s, h |= A where

s ∈ Stacks, h ∈ Heaps, and A is a pure assertion, spatial assertion, or symbolic

heap. h = h0 ∗ h1 indicates that the domains of h0 and h1 are disjoint, and h is their
graph union. We assume the fields n, b, l, r ∈ Fields, where n is the next field for list
segments, b is the back field for doubly linked segments, and l and r are the left and
right fields for trees.

!x"s = s(x) !x′"s = s(x′) !nil"s = nil

s, h |= E1 = E2 iff !E1"s = !E2"s

s, h |= ¬P iff s, h (|= P

s, h |= true always

s, h |= Π0 ∧ Π1 iff s, h |= Π0 and s, h |= Π1

s, h |= 〈E0 #→ [f1 : E1, . . . , fk : Ek]〉l iff h = [!E0"s → r] where r(fi) = !Ei"s for i ∈ 1..k

s, h |= 〈ls(E, F)〉l iff there is a linked list segment fromE to F

s, h |= 〈dlls(Ef , Eb, Ff , Fb)〉l iff there is a doubly linked list segment fromEf to Ff

with initial and final back pointers Eb and Fb

s, h |= 〈tree(E)〉l iff there is a tree at E

s, h |= emp iff h = ∅

s, h |= Σ0 ∗ Σ1 iff ∃h0h1. h = h0 ∗ h1 and s, h0 |= Σ0 and s, h1 |= Σ1

s, h |= Π !
!Σ iff ∃v.s(x′ #→v), h |= Π and s(x′ #→v), h |= Σ

where x′ is the collection of primed variables inΠ |Σ

The formal semantics of the data structure formulae is given as the least predicates
satisfying the following inductive definitions:

ls(E, F) ⇐⇒ (E = F ∧ emp) ∨ (E (= F ∧ ∃y.E #→ [n : y] ∗ ls(y, F))

dlls(Ef , Eb, Ff , Fb) ⇐⇒ (Ef = Ff ∧ Eb = Fb ∧ emp)∨

(Ef (= Ff ∧ Eb (= Fb ∧ ∃y.Ef #→ [n : y, b : Eb] ∗ dlls(y,Ef , Ff , Fb))

tree(E) ⇐⇒ (E = nil ∧ emp) ∨ (∃x, y.E #→ [l : x, r : y] ∗ tree(x) ∗ tree(y))

4 Cristiano Calcagno, Philippa Gardner, and Mohammad Raza

3 Programming Language

We consider a standard programming language with procedures.

b ::= E = E | E (= E boolean expressions

A ::= x := E | x := E → f | E1 → f := E2 | new(x) atomic commands

c ::= i : A | i : f(
»

E1;
»

E2) | i : if b c1 c2 | i : while b c | c1; c2 indexed commands (i ∈ I)

p ::= . | f(#»x ; #»y){local #»z ; c}; p programs

A program is given by a number of procedure definitions. We assume that every

command i : c in a procedure body has a unique index i from some set of indices I . We
let I (c) be the set of indices of all command statements in c. In a procedure with header
f(#»x ; #»y), #»x = x1, .., xn are the variables not changed in the body, and

#»y = y1, .., ym

are the variables that are assigned to. We assume that all variables occuring free in

the body are declared in the header. We define free(c) and mod(c) sets as the set of
free and modified variables of c. For atomic commands these are defined as usual. For
procedures we have free(f(#»x ; #»y)) = { #»x, #»y } and mod(f(#»x ; #»y)) = { #»y }.

For a given program, we assume that we have small specifications for all procedures

and loop invariants for while loops in the program. These may be obtained from an

interprocedural shape analysis based on separation logic, such as that described in [4],

or could be given as annotations by hand, such as when doing a safety verification [2].

A specification for a procedure f is given by a spec table T (f) : SH ⇀ P(SH), which is
a partial function from symbolic heaps to sets of symbolic heaps. The intendedmeaning

of T (f) is the set of Hoare triples {P} f(#»x) {
∨

Q∈T (f) Q} for every P ∈ SH on which

T (f) is defined. For a while loop i : while b c, the loop invariant is given as a set of
symbolic heaps, the intended formula being the disjunction of all the symbolic heaps in

this set. We assume that all symbolic heaps in procedure summaries and invariants have

all empty labels.

Given these specifications and invariants for procedures and while loops, for our

analysis we shall consider an intermediate language for commands in which procedure

calls and while loops are replaced by specified commands, com[T], where T is a spec

table.

c ::= i : A | i : com[T] | i : if b c1 c2 | c1; c2

A com[T] command is some command which satisfies the specification given by T . For
a while loop while b c with invariant S, the spec table is obtained as a partial function
that is only defined on symbolic heapsΠ !

!Σ ∈ S, and maps each of these inputs to the
set {¬b ∧ Π !

!Σ | Π !
!Σ ∈ S}. Atomic and specified commands may be referred to as

basic commands, and may be denoted by i : B. For any command c we let Ib(c) be the
set of indices of all basic commands in c.

4 Independence Detection

In this section we describe the algorithm for determiningwhen two statements in a given

program are independent in the sense that they do not access a common heap location

Automatic Parallelization with Separation Logic 5

in any possible execution. The basic idea is to perform a symbolic execution [2] with

labelled symbolic heaps, in which the labels keep track of regions of memory through

the execution. The symbolic footprint of every program statement is recorded as the set

of labels which represent the memory regions that are accessed in the execution of that

statement. In order to determine independences between footprints, an intersection rela-

tion between labels needs to be maintained, which relates any two labels that represent

possibly overlapping regions of memory.

Formally, we define a symbolic state as a triple (Π !
!Σ,F , I), where Π !
!Σ is a

labelled symbolic heap,F is a footprint log, and I is an intersection log. The footprint
log is as a partial function F : I ⇀ P(Lab) which maps indices of commands to
sets of labels which represent their footprint, and is updated for every command index

when the command is encountered during symbolic execution. The intersection log

I ∈ P(P2(Lab)) (where P2(Lab) is the set of all unordered pairs of labels) maintains
a relation between labels that represent possibly overlapping regions of the heap.

4.1 Symbolic Execution Rules

Symbolic execution is based on a set of operational and rearrangement rules which
determine the transformation of the symbolic states through the execution. The rules are
displayed in figure 1, where they should be read from top to bottom, and they employ
some expressions which we define below. The operational rules describe, for each kind
of command, the effect of the command on the symbolic heap on which it executes
safely. The footprint log is updated for the index of the command with the labels of the
accessed portion of the symbolic heap, and the intersection log is updated when fresh
labels are introduced that may possibly intersect with old ones. The first four rules are
those for the atomic commands, where the footprint log is updated with the label of the
accessed cell. The rules for lookup and mutation use the following definitions:

mutate(ρ, f, F) =

{

f : F, ρ′ if ρ = f : E,ρ′

f : F, ρ if f /∈ ρ
lookup(ρ, f) =

{

E if ρ = f : E, ρ′

x fresh if f /∈ ρ

In the case of allocation, a fresh label is introduced for the newly allocated cell, but the

intersection log is unchanged as the new label does not intersect with any old ones.

The last operational rule is for the specified commands. In this case the spec table,

T , determines the transformation of the symbolic heap. However, the assertion at the
call-site may be larger than the pre-condition, since the pre-condition only describes the

part of the heap that is accessed by the command. For this reason, the frame assertion

needs to be discovered, which is the part of the call-site heap that is not in the pre-

condition of the command. We describe the frame inference method in detail in section

6. For now, we use the expression frame(Π !
!Σ, Π1 !
!Σ1) to denote the frame assertion

obtained for call-site assertionΠ !
!Σ and pre-conditionΠ1 !
!Σ1. The transformed sym-

bolic heap is obtained by the conjunction of the frame assertion (which preserves its

labels from the call-site assertion) with a post-condition of the command, the empty la-

bels of which are replaced by fresh non-empty ones: the expression freshlabs(Σ2, Σ
′
2)

means that Σ′
2 is the formulaΣ2 with fresh non-empty labels on all simple conjuncts.

As an example, consider the case where the call-site state is (〈x '→ [l : y, r : z]〉1 ∗
〈tree(y)〉2 ∗ 〈tree(z)〉3,F , I) and the specified command is a call to a procedure

6 Cristiano Calcagno, Philippa Gardner, and Mohammad Raza

which rotates a tree at y, having a spec table with pre- and post- condition 〈tree(y)〉•.
In this case the inferred frame assertion is 〈x '→ [l : y, r : z]〉1 ∗ 〈tree(z)〉3. The fresh
label 4 may be assigned to the post-condition, giving the transformed symbolic heap to

be 〈x '→ [l : y, r : z]〉1 ∗ 〈tree(y)〉4 ∗ 〈tree(z)〉3.
The footprint labels of the specified command are determined by the labels of the

pre-condition and the post-condition heap. In the example, the footprint of the proce-

dure call will be {2, 4}. Since fresh labels are introduced in the post-condition, the
intersection log should be updated with the information of which labels the new labels

may possibly intersect with. In the example, 4 possibly intersects with 2 and everything

that 2 was already possibly intersecting with in I. In the rule, we use the expression
relFresh to relate the fresh labels to all the labels in the pre-condition in this way. For a
set of labels L we define getIntLabels(L, I) = {l′ | {l, l′} ∈ I ∧ l ∈ L}. This is the set
of labels that represent locations that may overlap with locations represented by labels

in L, according to the intersection log I. For sets of labels L1 and L2, we define

relFresh(L1, L2, I) = I ∪ {{l1, l2} | l1 ∈ L1 ∧ l2 ∈ getIntLabels(L2, I)}

This expression is used to update the intersection log I when a fresh set of labels L1 is

introduced in such a way that any label in L1 may intersect with any of the labels in L2.

The rearrangement rules are needed to make an expression E explicit in the sym-

bolic heap so that an operational rule for a command that accesses the heap cell at E
can be applied. Apart from the first simple substitution rule, they are basically unfolding

rules for each of the inductively defined data structure predicates, where fresh labels in

the unfolding are related to the original using relFresh.

4.2 Independence Detection Algorithm

The independence detection algorithm is given in Figure 2. Given a command c with a
set of preconditionsPre , the getInd(c,Pre)method returns a set Ind ⊆ P2(Ib(c)) such
that {i, j} ∈ Ind implies that the basic statements with indices i and j are independent.
For a conditional i : if b c1 c2, we can test independence with a statement j : c by
testing independence between j : c and all the basic statements in the conditional. The
track(S, c) method takes a command c and a set S of initial symbolic states, applies

the execution rules from Figure 1, and returns the set of all possible output symbolic

states. The footprint and intersection logs from all of these states are used by the getInd
method to find the independences. Once we have detected heap independences, we can

use the free and mod sets of commands to determine stack independences, and then

apply standard parallelization techniques such as those discussed in [7, 10].

5 Examples

We begin by illustrating our algorithm on a tree rotation program which is based on

the main example from [10]. We have the procedure rotateTree(x;){local x1, x2; c},
where the body c is shown in figure 3. The procedure takes a tree at x and rotates it
by recursively swapping its left and right subtrees. Given the spec table with a single

Automatic Parallelization with Separation Logic 7

OPERATIONAL RULES

(Π

!
!Σ,F , I)

(x = E[x′/x] ∧ (Π

!
!Σ)[x′/x],F [i → ∅], I)

i : x := E, x′fresh

(Π

!
!Σ ∗ 〈E (→ [ρ]〉l,F ,I)

(x = F [x′/x] ∧ (Π

!
!Σ ∗ 〈E (→ [ρ]〉l)[x

′/x],F [i → {l}], I)
i : x := E → f, x′ fresh, lookup(ρ, f) = F

(Π

!
!Σ ∗ 〈E (→ [ρ]〉l,F , I)

(Π

!
!Σ ∗ 〈E (→ [ρ′]〉l,F [i → {l}], I)

i : E → f := F, mutate(ρ, f, F) = ρ′

(Π

!
!Σ,F , I)

((Π
!
!Σ)[x′/x] ∗ 〈x (→ []〉l,F [i → {l}], I)

i : new(x), x′ fresh , l fresh

(Π

!
!Σ,F ,I)

(Π ∧ Π2

!
!Σ′

2 ∗ ΣF ,F [i → Lab(Σ′
2) ∪ (Lab(Σ)\Lab(ΣF))], relFresh(Lab(Σ′

2), Lab(Σ)\Lab(ΣF), I))
†

† i : com[T], Π2

!
!Σ2 ∈ T (Π1

!
!Σ1), ΣF = frame(Π

!
!Σ, Π1

!
!Σ1), freshlabs(Σ2, Σ′

2)

REARRANGEMENT RULES

(Π

!
!Σ ∗ 〈F (→ [ρ]〉l,F ,I)

(Π

!
!Σ ∗ 〈E (→ [ρ]〉l,F , I)

Π + E = F

(Π

!
!Σ ∗ 〈ls(F, F ′)〉l,F ,I)

(Π

!
!Σ ∗ 〈E (→ [n : x′]〉l1

∗ 〈ls(x′, F ′)〉l2
,F , relFresh({l1, l2}, {l}, I))

†

† Π

!
!Σ ∗ ls(F, F ′) + F ,= F ′ ∧ E = F and x′ fresh and l1, l2 fresh

(Π

!
!Σ ∗ 〈dlls(F, Fb, F ′, F ′

b)〉
l
,F ,I)

(Π

!
!Σ ∗ 〈E (→ [n : x′, b : Fb]〉l1

∗ 〈dlls(x′, E, F ′, F ′
b)〉l2

, F , relFresh({l1, l2}, {l}, I))
†

† Π

!
!Σ ∗ dlls(F, Fb, F ′, F ′

b) + F ,= F ′ ∧ E = F and x′ fresh and l1, l2 fresh

(Π

!
!Σ ∗ 〈dlls(F, Fb, F ′, F ′

b)〉
l
,F ,I)

(Π

!
!Σ ∗ 〈dlls(F, Fb, E, x′)〉l1

∗ 〈E (→ [n : F ′, b : x′]〉l2
,F , relFresh({l1, l2}, {l}, I))

†

† Π

!
!Σ ∗ dlls(F, Fb, F ′, F ′

b) + F ,= F ′ ∧ E = F ′
b and x′ fresh and l1, l2 fresh

(Π

!
!Σ ∗ 〈tree(F)〉l,F ,I)

(Π

!
!Σ ∗ 〈E (→ [l : x′, r : y′]〉l1

∗ 〈tree(x′)〉l2
∗ 〈tree(y′)〉l3

,F , relFresh({l1, l2, l3}, {l}, I))
†

† Π

!
!Σ ∗ tree(F) + F ,= nil ∧ E = F and x′, y′ fresh and l1, l2, l3 fresh

Fig. 1. Rules for symbolic execution with footprint tracking

8 Cristiano Calcagno, Philippa Gardner, and Mohammad Raza

getInd(c, Pre) =

S := ∅

for allΠ

!
!Σ ∈ Pre

assign fresh non-empty labels inΠ

!
!Σ

F := ∅

I := {{l, l} | l ∈ Lab(Σ)}

S := S ∪ track({(Π

!
!Σ,F ,I)}, c)

Ind := {i, j | i, j ∈ Ib(c)}

for all i, j ∈ Ib(c)

for all (Π

!
!Σ,F , I) ∈ S

if there exist l ∈ F(i) and k ∈ F(j) such that

{l, k} ∈ I then remove {(i, j)} from Ind

return Ind

track(S, c) =

if c is empty then return S

else let c = i : c′; c′′

S′ := ∅

for all (Π

!
!Σ,F , I) ∈ S

if c′ is atomic commandA and (Π

!
!Σ,F ,I) matches premise

of operational rule forA then add the conclusion to S′

elseif c′ is atomic commandA accessing heap cell E and (Π

!
!Σ,F ,I)

matches premise of a rearrangment rule forE then add the conclusion to S′

elseif c′ = com[T] then

for all P ∈ T for which frame inference succeeds

for allQ ∈ T (P)

add the conclusions of operational rule for com[T] to S′

elseif c′ = if b c1 c2 then

S1 := track((b ∧ Π

!
!Σ,F , I), c1)

S2 := track((¬b ∧ Π

!
!Σ,F , I), c2)

S′ := S′ ∪ S1 ∪ S2

else return fail

return track(S′, c′′)

Fig. 2. Independence Detection Algorithm

pre-condition 〈tree(x)〉• and single post-condition 〈tree(x)〉•, the execution of the
independence detection algorithm is shown in figure 3. At the end of the execution,

for final footprint log F6, we have F6(i6) = {3, 5} and F6(i7) = {4, 6}. Since these
labels do not intersect according to the final intersection log I3, we have that the two

recursive calls i6 and i7 are independent, and therefore may be executed in parallel.
Similar examples are given by other divide-and-conquer programs, such as a program

for copying a tree and mergesort on linked lists, in which our algorithm determines the

recursive calls to be independent.

Previous approaches such as [7, 10] have been based on reachability properties of

certain pointer data structures to detect independences, e.g., statements referring to the

left and right subtrees of a tree can be determined to be independent since no heap loca-

tion is reachable from both of them. The limitations of this approach can be seen even

on simple list segment programs, where reachability analysis is unable to guarantee in-

dependence since the list segment may in fact be part of a larger cyclic data structure.

Worse is the situation where there is internal sharing within the data structure, such

as in the case of doubly linked lists. In contrast, our approach does not suffer from

these inherent limitations since it is based on detecting the footprints of statements,

that is, the cells that are actually accessed rather than all the ones that may possibly be

accessed. We illustrate this with the example in figure 4. In this case we have the pro-

cedure setBack(x, y, z;){local x1; c}, which transforms a singly linked list segment
from x to y into a doubly linked segment by recursively traversing the segment and
setting the back pointers. The body c is shown in the figure. The parameter z is the back

Automatic Parallelization with Separation Logic 9

(

〈tree(x)〉1, ∅, ∅
)

i1 : if(x ,= nil){
(

x ,= nil

!
!〈tree(x)〉

1
, ∅, ∅

)

(

x ,= nil

!
!〈x (→ [l : x′, r : y′]〉

2
∗ 〈tree(x′)〉

3
∗ 〈tree(y′)〉

4
, ∅, I1

)

i2 : x1 := x → l;
(

x1 = x′ ∧ x ,= nil

!
!〈x (→ [l : x′, r : y′]〉

2
∗ 〈tree(x′)〉

3
∗ 〈tree(y′)〉

4
, F1 = i2 → {2}, I1

)

i3 : x2 := x → r;
(

x2 = y′ ∧ x1 = x′ ∧ x ,= nil

!
!〈x (→ [l : x′, r : y′]〉

2
∗ 〈tree(x′)〉

3
∗ 〈tree(y′)〉

4
, F2 = F1[i3 → {2}], I1

)

i4 : x → l := x2;
(

x2 = y′ ∧ x1 = x′ ∧ x ,= nil

!
!〈x (→ [l : x2, r : y′]〉

2
∗ 〈tree(x′)〉

3
∗ 〈tree(y′)〉

4
, F3 = F2[i4 → {2}], I1

)

i5 : x → r := x1;
(

x2 = y′ ∧ x1 = x′ ∧ x ,= nil

!
!〈x (→ [l : x2, r : x1]〉2 ∗ 〈tree(x′)〉3 ∗ 〈tree(y′)〉4, F4 = F3[i5 → {2}], I1

)

i6 : rotateTree(x1;);
(

x2 = y′ ∧ x1 = x′ ∧ x ,= nil

!
!〈x (→ [l : x2, r : x1]〉2 ∗ 〈tree(x1)〉5 ∗ 〈tree(y′)〉

4
, F5 = F4[i6 → {3, 5}], I2

)

i7 : rotateTree(x2;);
(

x2 = y′ ∧ x1 = x′ ∧ x ,= nil

!
!〈x (→ [l : x2, r : x1]〉2 ∗ 〈tree(x1)〉5 ∗ 〈tree(x2)〉6, F6 = F5[i7 → {4, 6}], I3

)

}

where I1 = {{1, 2}, {1, 3}, {1, 4}}, I2 = I1 ∪ {{5, 3}, {5, 1}}, I3 = I2 ∪ {{6, 4}, {6, 1}}

Fig. 3. Independence detection for rotateTree

pointer to be set for the head element. In this case we have the spec table with a sin-

gle pre-condition 〈ls(x, y)〉• and single post-condition 〈dlls(x, z, y, z′)〉•, where z′

is the existentially quantified pointer to the last element. As can be seen in figure 4, our

algorithm detects the recursive call at i4 to be independent of the statement i3, and they
can hence be executed in parallel. A reachability-based approach will fail to determine

this independence even though the statements are accessing disjoint locations.

6 Frame Inference with Label Respecting Entailment

In the operational rule for specified commands, we described how the frame assertion

needs to be inferred to match the pre-condition to the call-site assertion. For this we

adapt the frame inference method of [2], which uses a proof theory for entailments

between symbolic heaps. However, apart from the formula itself, in this case we also

require that the inferred frame assertion should correctly preserve its labels from the

original call-site assertion, as these are used to determine the footprint labels of the

specified command. For this we require a stronger notion of entailment, which we call

label respecting entailment.

The standard meaning of an entailment Π1 !
!Σ1 * Π2 !
!Σ2 between two symbolic

heaps is given as ∀s, h. s, h |= Π1 !
!Σ1 implies s, h |= Π2 !
!Σ2. For label respecting

entailment, we have the additional constraint that a label appearing on both sides of

the entailment refers to the same locations in the heap. The definition of this form of

entailment is based on the following property of labelled symbolic heaps.

10 Cristiano Calcagno, Philippa Gardner, and Mohammad Raza

(

〈ls(x, y)〉1, ∅, ∅
)

i1 : if(x ,= y){
(

x ,= y

!
!〈ls(x, y)〉

1
, ∅, ∅

)

(

x ,= y

!
!〈x (→ [n : x′]〉

2
∗ 〈ls(x′, y)〉

3
, ∅, {{2, 1}, {3, 1}}

)

i2 : x1 := x → n;
(

x1 = x′ ∧ x ,= y

!
!〈x (→ [n : x′]〉

2
∗ 〈ls(x′, y)〉

3
, F1 = i2 → {2}, {{2, 1}, {3, 1}}

)

i3 : x → b := z;
(

x1 = x′ ∧ x ,= y

!
!〈x (→ [n : x′, b : z]〉

2
∗ 〈ls(x′, y)〉

3
, F2 = F1[i3 → {2}], {{2, 1}, {3, 1}}

)

i4 : setBack(x1, y, x)
(

x1 = x′ ∧ x ,= y

!
!〈x (→ [n : x′, b : z]〉

2
∗ 〈dlls(x1, x, y, z

′)〉
4
, F3 = F2[i4 → {3, 4}], {{2, 1}, {3, 1}, {4, 3}, {4, 1}}

)

}

Fig. 4. Independence detection for setBack

Lemma 1. If s, h |= Π !
!Σ ∗ 〈S〉l and l ,= •, then there is a unique h′ such that h =

h′ ∗ h′′ and s, h′ |= Π !
!〈S〉l. In this case we define subheap(s, h, Π !
!Σ ∗ 〈S〉l, l) = h′,

and it is undefined otherwise.

Proof: The result follows by the fact that every formula is precise [14], that is, for any

heap, there is at most a unique subheap that satisfies the formula.

Definition 1 (Label respecting entailment). The entailment Π1 !
!Σ1 * Π2 !
!Σ2 holds

iff for all s, h, s, h |= Π1 !
!Σ1 implies s, h |= Π2 !
!Σ2, and if l ∈ Lab(Σ1) and l ∈

Lab(Σ2) and l ,= • then subheap(s, h, Π1 !
!Σ1, l) = subheap(s, h, Π2 !
!Σ2, l).

We have adapted the proof theory for entailments from [2] for label respecting en-
tailment in figure 5. We omit the normalization rules and rules for the tree and doubly
linked segment predicates as they adapt in a very similar manner. In the figure, the
expression op(E) is an abbreviation for E '→ [ρ], ls(E, F), dlls(E, Eb, F, Fb) or
tree(E). The guard G(op(E)) asserts that the heap is non-empty, and is defined as

G(E #→ [ρ]) " true G(ls(E, F)) " E (= F

G(dlls(E, Eb, F, Fb)) " E (= F ∧ Eb (= Fb G(tree(E)) " E (= nil

The label respecting aspect of these rules can be best appreciated by considering

the way in which the frame inference method works. Assume we are given a call-site

assertionΠ !
!Σ and procedure pre-conditionΠ1 !
!Σ1. We want to infer a frameΣF such

that Π !
!Σ * Π1 !
!Σ1 ∗ ΣF . This is done by applying the proof rules upwards from the

entailment Π !
!Σ * Π1 !
!Σ1, as instructed by the following theorem which we inherit

from [2] for label-respecting entailment.

Theorem 1. Suppose that we have an incomplete proof:

Π ′

!
!ΣF . true !
!emp

...
Π !

!Σ . Π1 !
!Σ1

Then there is a complete proof ofΠ !
!Σ * Π1 !
!Σ1 ∗ ΣF .

Automatic Parallelization with Separation Logic 11

Π

!
!emp " true

!
!emp

Π

!
!Σ " Π′

!
!Σ′

Π

!
!Σ " Π′ ∧ E = E

!
!Σ′

Π ∧ P

!
!Σ " Π′

!
!Σ′

Π ∧ P

!
!Σ " Π′ ∧ P

!
!Σ′

〈S〉l " 〈S′〉k Π

!
!Σ " Π′

!
!Σ′

Π

!
!〈S〉l ∗ Σ " Π′

!
!〈S′〉k ∗ Σ′

l, k ∈ {•} ∪ Lab\(Lab(Σ) ∪ Lab(Σ′))

〈S〉l " 〈S〉k

Π

!
!Σ " Π′

!
!Σ′

Π

!
!Σ " Π′

!
!〈ls(E, E)〉l ∗ Σ′

l ∈ {•} ∪ Lab\Lab(Σ′)

Π ∧ E1)= E3 !
!〈E1 *→ E2〉l1

∗ Σ " Π′

!
!〈E1 *→ E2〉l2

∗ 〈ls(E2, E3)〉l3
∗ Σ′

Π ∧ E1)= E3 !
!〈E1 *→ E2〉l1

∗ Σ " Π′

!
!〈ls(E1, E3)〉l4

∗ Σ′
l4 ∈ {•} ∪ Lab\(Lab(Σ) ∪ Lab(Σ′) ∪ {l1, l2, l3})

Π

!
!〈ls(E1, E2)〉l1

∗ Σ " Π′

!
!〈ls(E1, E2)〉l2

∗ 〈ls(E2, nil)〉l3
∗ Σ′

Π

!
!〈ls(E1, E2)〉l1

∗ Σ " Π′

!
!〈ls(E1, nil)〉l4

∗ Σ′
l4 ∈ {•} ∪ Lab\(Lab(Σ) ∪ Lab(Σ′) ∪ {l1, l2, l3})

Π ∧ G(op(E3))
!
!〈ls(E1, E2)〉l1

∗ 〈op(E3)〉l2
∗ Σ " Π′

!
!〈ls(E1, E2)〉l3

∗ 〈ls(E2, E3)〉l4
∗ Σ′

Π ∧ G(op(E3))

!
!〈ls(E1, E2)〉l1

∗ 〈op(E3)〉l2
∗ Σ " Π′

!
!〈ls(E1, E3)〉l5

∗ Σ′
†

† l5 ∈ {•} ∪ Lab\(Lab(Σ) ∪ Lab(Σ′) ∪ {l1, l2, l3, l4})

Fig. 5. Rules for label respecting entailment

In our label respecting adaptation of the proof rules, when applying the rules up-

wards, labels can only be removed from the left hand side of an entailment. Hence the

frame assertion ΣF will retain its labels from the call-site assertionΠ !
!Σ. By theorem

1, the entailmentΠ !
!Σ * Π1 !
!Σ1∗ΣF is label respecting, and so we have that the labels

common to the call-site assertion and the frame assertion refer to the same heap loca-

tions. Notice that when applying this method in practice, since we are only concerned

about preserving the labels in the frame assertion, we do not care about the labels on the

right hand side of the entailments as we go up the proof. They can hence all be chosen

to be the empty label when applying the rules upwards. As a simple illustration, in the

case where the call-site assertion is 〈x '→ [l : y, r : z]〉1 ∗ 〈tree(y)〉2 ∗ 〈tree(z)〉3 and
the procedure pre-condition is 〈tree(y)〉•, the following one-step derivation gives us
the correctly labelled frame assertion:

〈x #→ [l : y, r : z]〉1 ∗ 〈tree(z)〉3 . emp

〈x #→ [l : y, r : z]〉1 ∗ 〈tree(y)〉2 ∗ 〈tree(z)〉3 . 〈tree(y)〉
•

7 Soundness

We demonstrate the soundness of our algorithm in detecting independences, a property

which is necessary if we are to use the algorithm to safely parallelize a program. For

this we use a trace semantics of programs which is based on the one described in [6].

12 Cristiano Calcagno, Philippa Gardner, and Mohammad Raza

α !α"(s, h), loc(α, s, h)

x := E {s[x (→!E"s], h}, ∅

x := E → f

{

{s[x (→v], h}, {l} if !E"s = l, l ∈ Loc and h(l)(f) = v

-, ∅ otherwise

E1 → f := E2

{

{s, h[l (→r]}, {l} if !E1"s = l, !E2"s = v, l ∈ Loc and r = h(l)[f → v]

-, ∅ otherwise

newl(x)

{

{s, h ∗ l (→ r}, {l} if l ∈ Loc\dom(h) and r(f) = nil for all f ∈ Fields

∅, ∅ otherwise

assume(b)

{

{s, h}, ∅ if !b"s

∅, ∅ otherwise

Fig. 6. Denotational semantics and location sets of primitive actions

7.1 Action trace semantics

The action traces are made up of primitive actions α,

α ::= x := E | x := E → f | E1 → f := E2 | newl(x) | assume(b) where l ∈ Loc

The assume(b) action is used to implement conditionals, as shown in the trace seman-
tics of commands below. It filters out states which satisfy the boolean b. The newl(x)
command allocates the location l if it is not already allocated. We choose this instead
of a non-deterministic allocation primitive (which is usually used in separation logic

works) as keeping traces deterministic will be useful for our purposes.

Semantically, the primitive actions correspond to total functions that are of the form

Stacks × Heaps → P(Stacks × Heaps)-. The . element represents a faulting ex-

ecution, that is, dereferencing a null pointer or an unallocated region of the heap. For

a primitive action α and a state (s, h) ∈ Stacks× Heaps, we define the location set

loc(α, s, h) as the set of locations that are accessed by α when executed on the state
(s, h). The denotational semantics and location sets of the primitive actions is given in
figure 6.

Definition 2 (Action trace). An action trace τ is a finite sequential composition of

atomic actions, τ ::= α; · · · ; α

Denotational semantics of action traces is given by the sequential composition of
actions, which is defined as

!α1; α2"(s, h) =

⋃

(s′,h′)∈!α1"(s,h)

!α2"(s
′, h′) if !α1"(s, h) (= /

/ otherwise

Note that every trace τ is deterministic in that for any state (s, h), !τ"(s, h) either faults
or has at most a single outcome {(s′, h′)}.

The action trace semantics of commands of our programming language is given

in figure 7. Just as our commands are indexed, we assign unique indices to the primi-

tive actions in every action trace of every command as follows. For each atomic com-

mand i : A, every trace is a single primitive action α, and we index this as (i, 1) : α.

Automatic Parallelization with Separation Logic 13

T (x := E) = {x := E} T (x := [E]) = {x := [E]}

T ([E1] := [E2]) = {[E1] := [E2]} T (new(x)) = {newl(x) | l ∈ Loc}

T (com(T)) ⊆ {τ | ∀P ∈ dom(T).∀(s, h) ∈ !P ".∃Q ∈ T (P). !τ"(s, h) ⊆ !Q"}

T (c1; c2) = {τ1; τ2 | τ1 ∈ T (c1), τ2 ∈ T (c2)}

T (if b c1 c2) = {assume(b); τ1 | τ1 ∈ T (c1)} ∪ {assume(¬b); τ2 | τ2 ∈ T (c2)}

Fig. 7. Action trace semantics of commands

For each specified command i : com(T), every trace α1; ...; αn is indexed as (i, 1) :
α1; ...; (i, n) : αn. For sequential composition the indices are obtained from the com-

ponent commands. For a conditional i : if b c1 c2, we index the assume actions as

(i, 1) : assume(b) and (i, 1) : assume(¬b) and the other indices are obtained from the
component commands. We shall write (i, j) : α ∈ τ to mean that τ = τ ′; (i, j) : α; τ ′′

for some τ ′ and τ ′′.

Definition 3 (Index subtrace). For a trace τ and a command index i, we define τ |i to
be the subtrace of τ containing all the actions of the form (i, j) : α. If there are no such
actions in τ then τ |i is undefined.

Lemma 2. For a command c, every trace τ ∈ T (c) is of the form τ |i1 ; ...; τ |in
, where

i1, ..., in ∈ I (c).

We define the locations accessed by an atomic action in the execution of a trace.

Definition 4 (Location set of an action in a trace). The location set of an action
(i, j) : α in a trace τ from initial state (s, h) is defined as

loc((i, j) : α, τ, s, h) =

{

loc(α, s′, h′) if τ = τ1; (i, j) : α; τ2 and !τ1"(s, h) = {(s′, h′)}

∅ otherwise

We extend the definition of locations accessed by an action to the locations accessed

by a subtrace of τ .

Definition 5 (Location set of a subtrace). The location set of subtrace τ ′ of τ from

initial state (s, h) is defined as loc(τ ′, τ, s, h) =
⋃

(i,j):α∈τ ′

loc((i, j) : α, τ, s, h)

We now give the formal definition of independence between two basic commands

in a progam for a given pre-condition.

Definition 6 (Independence). Given a command c and a pre-condition given by a
set of symbolic heaps Pre, for two basic commands with indices i and i′ in c, we say
that command i is independent of command i′, written indep(i, i′, c,Pre), iff for all
Π !

!Σ ∈ Pre and for all (s, h) ∈ !Π !
!Σ", we have for every τ ∈ T (c) such that τ |i and

τ |i′ are defined, that loc(τ |i, τ, s, h) ∩ loc(τ |i′ , τ, s, h) = ∅.

14 Cristiano Calcagno, Philippa Gardner, and Mohammad Raza

7.2 Proof of soundness

Given the trace model described above, we can now formally state and prove the sound-

ness property of the independence detection algorithm.

Theorem 2. For a command c and a pre-condition set Pre, if for two basic commands
with indices i and i′ in c we have {i, i′} ∈ getInd(c,Pre), then indep(i, i′, c,Pre).

The algorithm of figure 2 works by applying the operational and rearrangement

rules of figure 1 through the program, possibly branching on disjunctive outcomes and

conditionals. We can therefore think of it as determining a set of symbolic execution

traces, which are sequences of symbolic states, each starting with some initial state ψI

given by the pre-condition and ending with some ψF in the final set of symbolic states

that is used to determine independences.

Before we define symbolic execution traces, we formulate the case for conditionals

in terms of an operational rule for assume statements. When the algorithm encounters

a conditional statement with guard b, it branches on the two cases b and ¬b. Given the
semantics of conditionals described in the last section, any action trace of the program

at this point either starts with an assume(b) or an assume(¬b) action. This step can
hence be interpreted with an operational rule for assume statements:

(Π !
!Σ,F , I)

(b ∧ Π !
!Σ,F , I)

i : assume(b)

Definition 7 (Symbolic execution trace).A symbolic execution trace S is a sequence
of symbolic states such that any two consecutive states in the sequence are related by

an application of an operational or a rearrangement rule. The initial state is denoted

S[0, 0], its symbolic heap has all non-empty labels, its fooptrint log is ∅ and its inter-
section log is {{l, l} | l ∈ Lab(Π !

!Σ)}, where Π !
!Σ is the symbolic heap of S[0, 0].

Apart from the initial state, every state is either an operational state (the conclusion

of an operational rule) or a rearrangement state (the conclusion of a rearrangement

rule). The operational states are denoted S[1, 0] to S[N(S), 0] in the order in which
they appear, where N(S) is the number of operational states and N(S) > 0. For
0 ≤ n < N(S), the rearrangement states from S[n, 0] to the next operational state
are denoted S[n, 1], ...,S[n, R(S, n)], where R(S, n) is the number of rearrangement
states in this segment. There are no rearrangement states after the last operational state.

For a symbolic execution trace S and 0 ≤ n ≤ N(S), 0 ≤ r ≤ R(S, n), we shall
denote byHS[n,r], FS[n,r] and IS[n,r] the symbolic heap, footprint log and intersection

log in state S[n, r] respectively. We denote by in,S the index of the command in the nth
operational rule in S, and let I(S) be the set of all command indices. We let Lab(S) be
the set of all labels occuring in all the symbolic heaps in S.

Definition 8 (Trace satisfaction).Given a symbolic execution trace S, we say that an
action trace τ satisfies S, written τ |= S, iff τ = τ |i1,S ; ...; τ |iN(S),S

and for all (s, h) ∈
!HS[0,0]", for all 1 ≤ n ≤ N(S) we have !τ |i1,S ; ...; τ |in,S "(s, h) ⊆ !HS[n,0]".

Automatic Parallelization with Separation Logic 15

Lemma 3. For a command c and pre-condition set Pre , let ψI be a symbolic state

with a symbolic heap from Pre and footprint and intersection logs initialised as in

the getInd(c,Pre) method in figure 2. For every such initial state ψI , the algorithm

generates a collection of symbolic execution traces, each starting with ψI and ending

with some ΨF in the final set of states that is used to test independence. We have that

every τ ∈ T (c) satisfies at least one of these symbolic execution traces.

Proof: Trace satisfaction depends only on the symbolic heap component of the states

in a symbolic trace and not on the footprint or intersection logs. Thus soundness of

standard symbolic execution [2] alone implies that the algorithm overapproximates all

possible executions of the program starting from the given pre-condition.

Proposition 1. Assume we have τ |= S. Let FF and IF be the footprint and intersec-

tion logs of the final state of S. For any two distinct command indices i, i′ ∈ I(S), if
for all labels l ∈ FF (i) and l′ ∈ FF (i′) we have {l, l′} ,∈ IF , then for all (s, h) ∈
!HS[0,0]", we have loc(τ |i, τ, s, h) ∩ loc(τ |i′ , τ, s, h) = ∅.

The proof of this proposition appears in the appendix (section 9). The underlying idea

is that given an action trace τ satisfying a symbolic execution trace S, and a con-
crete initial state (s, h), every label l in the symbolic execution trace represents a fixed
set of heap locations throughout the entire concrete execution of τ , which we denote
labloc(l,S, τ, s, h). This expression is then used to reason about the heap locations rep-
resented by labels in the footprint and intersection logs, and to show that two subtraces

with non-intersecting footprint labels access disjoint heap locations.

Lemma 3 and proposition 1 together give the proof of the soundness theorem 2,

as follows. Assume we are given a program c, a pre-condition set Pre, and indices i
and i′ of two basic commands, and that {i, i′} ∈ getInd(c,Pre). Hence in each of
the final symbolic states generated by the algorithm, the footprint labels of i and i′

do not intersect according to the intersection log. By lemma 3, every trace τ of the
program satisfies some symbolic execution trace generated by the algorithm. Hence, by

proposition 1, if τ |i and τ |i′ are defined then they have disjoint location sets starting
from any state in the pre-condition. Since this is true for all traces of c, by definition of
independence (definition 6), we have indep(i, i′, c,Pre).

8 Conclusion and Future Work

In this work we have focussed on laying the foundations of our extended separation

logic framework for independence detection and program parallelization. We plan to

extend the mechanism we describe to the more complex data structures handled by sep-

aration logic shape analyses, to integrate our method with the existing space invader

tool for shape analysis [16, 4], and conduct practical experiments, conceivably exploit-

ing the scalability of this tool to large programs.

A notable aspect of this integration is that, while our framework relies on the atomic

predicates being precise, sometimes imprecise predicates, e.g. ‘possibly cyclic list’, are

used in shape analyses. However, these predicates are ‘boundedly imprecise’, so that

16 Cristiano Calcagno, Philippa Gardner, and Mohammad Raza

case analysis can be performed to obtain finite disjunctions of precise predicates from

imprecise ones.

Another direction for future work is to improve the precision of label tracking by

incorporating it into the shape analysis phase itself, which would involve taking the

footprint and intersection logs through the abstraction and fixpoint calculations. This

will also allow the detection of read/read independence by tracking the read-only labels

in the specifications of while loops and procedures. Following this, we intend to investi-

gate the application of our method to the various other kinds of program optimizations.

References

1. J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. OHearn, T. Wies and H. Yang. Shape
Analysis for Composite Data Structures. In CAV, 2007.

2. J. Berdine, C. Calcagno, and P.W. O’Hearn. Symbolic Execution with Separation Logic. In
APLAS, 2005.

3. J. Berdine, C. Calcagno, and P.W. O’Hearn. Smallfoot: Automatic modular assertion check-
ing with separation logic. In 4th FMCO, 2006.

4. C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Compositional Shape Analysis. To
appear in POPL, 2009.

5. D. Distefano, P. O’Hearn, and H. Yang. A Local Shape Analysis based on Separation Logic.
In TACAS, 2006.

6. C. Calcagno, P. O’Hearn, and H. Yang. Local Action and Abstract Separation Logic. In
LICS, 2007.

7. R. Ghiya, L. J. Hendren and Y. Zhu. Detecting Parallelism in C programs with recursive data
structures. In CC, 1998.

8. B. Guo, N. Vachharajani, and D. August. Shape Analysis with Inductive Recursion Synthe-
sis. In PLDI, 2007.

9. R. Gupta, S. Pande, K. Psarris and V. Sarkar. Compilation Techniques for Parallel Systems.
In Parallel Computing, 1999.

10. L. J. Hendren and A. Nicolau. Parallelizing programs with recursive data structures. In IEEE
Transactions on Parallel and Distributed Systems, 1990.

11. J. Hummel, L. J. Hendren and A. Nicolau. A general data dependence test for dynamic,
pointer-based data structures. In PLDI, 1994.

12. T. Hoare and P. O’Hearn. Separation Logic Semantics of Communicating Processes. In
FICS, 2008.

13. S. Horwitz, P. Pfeiffer and T. W. Reps. Dependence analysis for poiner variables. In PLDI,
1989.

14. P. OHearn, H. Yang, J. Reynolds. Separation and information hiding. In POPL, 2004.
15. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In 17th LICS,

2002.
16. H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and P. OHearn. Scalable

Shape Analysis for Systems Code. In CAV, 2008.

