
University of London
Imperial College of Science, Technology and Medicine

Department of Computing

Resource Reasoning and Labelled Separation Logic

Mohammad Raza

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy in Computing of the University of London and

the Diploma of Imperial College, October 2010

Abstract

This thesis develops resource reasoning with separation logic in the areas of modular program

specification, program optimization, and concurrency verification for heap-manipulating programs.

In the first part, we investigate the resources that are required for modular and complete program

specifications. Since the safety footprints of a program (the resources required for safe execu-

tion) do not always yield complete specifications, we first characterize the notion of therelevance

footprint. We show that the relevance footprints are the only elementsessential for a complete

specification, and also identify the conditions for sufficiency. We then introduce a novel semantic

model of heaps which establishes the correspondence between safety and relevance footprints, and

we identify a general condition that guarantees this correspondence in arbitrary resource models.

In the second part, we presentlabelled separation logicfor introducing optimizations such as

automatic parallelization in heap manipulating programs.In order to detect dependences between

distant statements in a program, we annotate spatial conjuncts in separation logic formulae with

the labels of accessing commands, and propagate these labels through program proofs. We also

identify the notion of ‘allocation dependences’ which, in addition to standard stack and heap

dependences, are needed to ensure the safety of optimizations.

In the final part, we address the analysis of resource ownership transfers in concurrent programs,

and present an algorithm for automating concurrent separation logic proofs. This is based on a

form of labelled separation logic in which ownership constraints are tracked through a proof and

ownership is inferred from heap accesses at arbitrary program points. Unlike previous methods,

the algorithm presented here does not require user annotations about ownership distribution, and

we demonstrate how it can verify programs that could not be handled by previous methods.

1

2

Declaration of Originality

This thesis is my own work and all related work is appropriately referenced.

Mohammad Raza

3

4

Acknowledgements

I would like to thank God for everything, including logic. Thank you to my parents, my wife and

my family for all of their infinite love and support.

I would like to thank my supervisor, Philippa Gardner, for her invaluable support and friendship,

and my second supervisor, Cristiano Calcagno, for his encouragement and advice. I am also very

grateful to Peter O’Hearn and Byron Cook, for taking interest in my work and making this journey

so much more interesting.

I would also like to thank the following people for very helpful and enjoyable discussions about

this and other work: Josh Berdine, Lars Birkedal, Thomas Dinsdale-Young, Dino Distefano, Mike

Dodds, Alexey Gotsman, Chris Hankin, Laurie Hendren, Suresh Jagannathan, Stephen Magill,

Matthew Parkinson, Simon Peyton-Jones, Jiri Simsa, SatnamSingh, Gareth Smith, Don Syme,

Viktor Vafeiadis, Mark Wheelhouse, Adam Wright and Hongseok Yang. Finally, I would like

to thank the Engineering and Physical Sciences Research Council and the Overseas Research

Studentship scheme for awarding me the funding to undertakethis research.

5

6

for my parents and fatima and sana

7

8

Contents

1 Introduction 13

1.1 Background . 14

1.2 Motivation and Contributions 20

1.2.1 Resources required for modular specifications 20

1.2.2 Resource dependence detection for optimization 23

1.2.3 Resource sharing in concurrent programs 25

2 Footprints and Complete Specifications 27

2.1 Background . 27

2.2 Properties of Specifications 38

2.3 Relevance Footprints 42

2.4 Sufficiency and Small Specifications 47

2.5 Regaining Safety Footprints 52

2.6 Conclusion . 63

3 Dependence Analysis for Optimization 65

3.1 Introduction .. 65

3.2 Labelled Symbolic Heaps 67

9

3.3 Dependence Analysis .. . 71

3.3.1 Executing atomic commands .. 73

3.3.2 Executing specified commands .. . 77

3.4 Allocation dependences 88

3.5 Examples and Experiments 89

3.6 Soundness . 93

3.7 Conclusion . 101

4 Ownership Inference for Concurrent Programs 103

4.1 Background . 104

4.2 Label Tracking for Ownership Inference 111

4.3 Formulae with Ownership constraints 113

4.4 Invariant Synthesis 116

4.4.1 Initialisation .117

4.4.2 Thread execution . 119

4.4.3 Testing of invariants .. 123

4.5 Examples and Comparison with Previous Methods 124

4.6 Extension to Loops .. 131

4.7 Conclusion . 133

5 Conclusion and Future Directions 135

Bibliography 142

10

List of Figures

1.1 Cell-transferring buffer 18

1.2 Linked list traversal program 23

1.3 Address-transferring buffer 26

2.1 Inference rules for local Hoare reasoning 37

2.2 Denotational semantics for the imperative programminglanguage 58

3.1 Standard Symbolic Heaps 68

3.2 Interpretation of Symbolic Heaps 69

3.3 Label tracking symbolic execution rules 76

3.4 Rules for labelled entailment 81

3.5 Dependence detection forlistInit(x, y) . 90

3.6 Dependence detection formergesort(x, y) . 91

3.7 Dependence detection forrotateTree(x) . 92

3.8 Latency and Throughput Measurements 93

3.9 Denotational semantics of primitive actions 95

3.10 Action trace semantics of commands 96

4.1 Replace buffer .. 107

11

4.2 CSL proof of replace buffer 108

4.3 Reachability-based invariant synthesis for replace buffer 109

4.4 Put-get buffer .. 110

4.5 Failed analysis of put-get buffer 111

4.6 Analysis of put-get buffer using label-tracking 113

4.7 Thread execution function 120

4.8 Command Application and Rearrangement Rules 121

4.9 Thread executions for put-get buffer 123

4.10 Address transferring put-get buffer 125

4.11 Two buffer program .. . 126

4.12 Combined buffer and memory manager 129

4.13 Producer-consumer (left) and producer-consumer withmemory manager (right) . 133

12

Chapter 1

Introduction

This thesis is about formal, logic-based approaches for ensuring the quality of computer programs,

in terms of both reliability and performance. In general, software today is unreliable and suscep-

tible to errors and viruses. Standard testing techniques cannot provide guarantees, as testing can

only verify a limited set of possible executions. Performance is also a factor of concern as heavier

demands are made on computer systems. Becoming increasingly important is the exploitation of

software parallelism, as manufacturers turn to developingmulticore architectures which provide

increased concurrency instead of increased clock speed. There is therefore a growing need for

robust and powerful methods for the verification and optimization of computer programs. For-

mal approaches based on the rigour of mathematical logic hold the promise of delivering such

methods.

A central concern in ensuring the quality of computer systems is the correct and efficient man-

agement of the resources that are available to the system. The focus here is especially on heap

manipulation in imperative programs with dynamic memory allocation and pointer data struc-

tures. Such programs have been out of the reach of tractable analyses based on formal logics,

but a significant advance has recently been made withseparation logic, which is a program logic

based on the idea of reasoning spatially about resource. In analogy with temporal logic, in which

statements can describewhena property holds, statements in separation logic can describewhere

a property holds. This approach has led to elegant proofs of program correctness, as well as modu-

lar and scalable automated verification methods. However, deeper properties of how resources are

manipulated in programs have remained out of the reach of existing methods based on separation

13

14 Chapter 1. Introduction

logic:

• what are the resources needed to describe the behaviour of a program, so that we can provide

modular and complete program specifications?

• how can we detect the resources accessed in different parts of a program, so that the program

may be executed more efficiently?

• how can we detect how resources are shared between differentprocesses, so that we can

verify concurrent programs?

In this thesis we develop resource reasoning with separation logic to address these questions. We

first give a background on Hoare logic and separation logic, and then describe the motivation and

contributions of the thesis in more detail.

1.1 Background

Hoare Logic A rigorous approach to program verification is provided by Hoare logic [19, 27],

in which formal proofs of program correctness are constructed using mathematical logic. Such

proofs guarantee the properties for all possible runs rather than a few test cases. In Hoare logic,

program properties are specified as ‘Hoare triples’ of the form {P} C {Q}, whereC is a com-

mand andP andQ are logical formulae that describe the pre- and post-conditions of the command.

A Hoare triple may have a partial or total correctness interpretation. The partial correctness inter-

pretation of the triple{P} C {Q} is that ifP is true before the execution ofC, thenQ is true after

the execution ifC terminates. The total correctness interpretation in addition guarantees the termi-

nation ofC. In his original paper, Hoare provided an axiomatic treatment for a simple imperative

programming language based on partial correctness triplesof this form. He demonstrated how

formal proofs of properties can be expressed as triples, andformally proved by logical inference

using axioms and inference rules such as the following:

1.1. Background 15

Axiom of Assignment: {P [E/x]} x := E {P}

Rule of Consequence:

P ′ ⇒ P {P} C {Q} Q⇒ Q′

{P ′} C {Q′}

Rule of Composition:

{P} C1 {Q} {Q} C2 {R}

{P} C1;C2 {R}

The Hoare logic approach to verification has been extensively studied and extended for a variety

of programming constructs. However, the approach is rarelyused in practice, mainly because the

inference methods do not scale well to realistic programs. The situation is worse in the presence

of pointers and dynamic data structures, since assertions in first-order logic describe the global

state of memory and so intricate aliasing relationships between pointers must be expressed to be

able to prove program properties. This leads to an uncontrollable complexity of specifications and

proofs, and a breakdown in modularity of reasoning.

Separation logic Separation logic was introduced by O’Hearn, Reynolds and Yang [51, 41, 32]

to address the difficulties encountered by Hoare logic in reasoning about pointer programs. The

central idea here is to reason spatially about resources (such as the program’s heap) by introducing

a new connective to first-order logic, which is the spatial separating conjunction∗. This connective

allows properties of separate resources to be specified in isolation from one another. Thus, when

reasoning about heap-manipulating programs for example, aformulaP ∗Q asserts that the memory

heap can be separated into two disjoint parts, one of which satisfiesP and the other satisfiesQ.

The other spatial connective added by separation logic is the adjoint of the separating conjunction,

which is the separating implication−∗ . A formulaP −∗ Q asserts that if the current heap is added

to any heap satisfyingP , then the resulting heap will satisfyQ. Such assertions allow one to easily

and concisely express properties of heap layout and aliasing, which are the cause of the difficulty

of reasoning in classical logic. For example, we may have theformulalist(x) ∗ list(y), which

asserts that the heap consists of two disjoint linked lists at x and y. In contrast, an assertion

list(x) ∧ list(y) in classical logic only describes the presence of two lists in the heap which

may or may not share any number of heap cells.

Furthermore, the spatial assertion language of separationlogic also facilitateslocal reasoning

16 Chapter 1. Introduction

about programs, in which specifications and proofs can focuson the resources that are relevant to

a program, instead of having to describe the global state of the system. Local reasoning is natural

because of the local way in which programs behave: there are certain resources that a program

accesses and are required for safe execution, which is knownas the program’ssafety footprint,

and any other resource is unaffected by the program.

In line with this local behaviour of programs, the interpretation of a Hoare triple{P} C {Q}

in separation logic extends the standard interpretation with the additional constraint that the pre-

conditionP should include the safety footprint of the commandC, so that there are no memory

access faults when executing the command from this pre-condition. Moreover, one can now give

small specificationsfor programs, in which the pre-condition only describes thesafety footprint.

For example, a small specification for the heap deallocationcommand is given as

{l 7→ } dispose(l) {emp}

The pre-condition describes the safety footprint, which inthis case is the single heap cell at loca-

tion l that the command deallocates (the contents of the heap cell are unspecified as they are not

accessed in the command’s execution). Deallocating the cell results in a post-condition which is

the empty heap. To infer the behaviour of commands on arbitrary larger states, one can use the

main inference rule of local reasoning known as theframe rule:

{P} C {Q}

{R ∗ P} C {R ∗Q}

The frame rule encodes the local behaviour of programs: if the commandC executes safely on pre-

conditionP , then it does not access any other resources, and hence the part of the heap described

by formulaR will remain unchanged after the execution (note that there may be additional side

conditions associated with the rule depending on the specific form of the logic being used). For

example, given the small specification for dispose, we may construct the following proof using the

frame rule and the rule for composition:

{l 7→ } dispose(l) {emp}

{l′ 7→ ∗ l 7→ } dispose(l) {l′ 7→ }
Frame {l′ 7→ } dispose(l′) {emp}

{l′ 7→ ∗ l 7→ } dispose(l); dispose(l′) {emp}
Composition

1.1. Background 17

Such local reasoning with separation logic has led to elegant and modular proofs of some difficult

programs [54, 41, 47].

Automated analysis with separation logic Apart from providing simple specifications and by-

hand proofs, separation logic has also made significant advances in automated analysis of heap-

manipulating programs. The foundation for this was laid by Berdine, Calcagno and O’Hearn in

[3, 2], who developed a form of symbolic execution based on the proof rules of separation logic.

The formulation of this symbolic execution method is based on the spatial nature of separation

logic reasoning. For example, consider the axiom for the heap mutation command

{P ∗ x 7→ [f : y]} x→ f := z {P ∗ x 7→ [f : z]}

where the command accesses the heap cell at locationx and updates the value of fieldf to z. The

precondition, which asserts the presence of the cell atx (in which the fieldf initially has value

y), is updatedin-place, in a way that mirrors the imperative update of the actual heap that occurs

during program execution. This in-place update can be done because the separating conjunction

avoids the need for checking the possibility of aliasing in the global heap, because it separates the

cell of interest from the rest of the heap.

To formulate separation logic in terms of this kind of symbolic execution, two restrictions are

imposed on the kind of formulae that can be used. First, formulae are restricted to a format of

the formΠ∧Σ, whereΠ is apure formula(describing properties of variables, independent of the

heap) andΣ is aspatial formuladescribing the heap, which is a *-combination of heap predicates.

The other restriction is that formulae do not describe the detailed contents of data structures, but

only describe the shapes of heap structures (in the sense of shape analysis). For example, apart

from the basic points-to predicatex 7→ , we may have a shape predicatels(x, y) which describes

a heap that is a linked list segment fromx to y, or the predicatetree(x) which describes a binary

tree atx. These kind of formulae are commonly known assymbolic heapsin the literature, as their

restricted format closely resembles the structure of concrete heaps.

For this restricted symbolic heap fragment, Berdine et al. developed a symbolic execution frame-

work which, given user annotations for pre- and post-conditions and loop invariants, is able to

automatically verify safety properties of heap manipulating programs, ensuring the absence of

18 Chapter 1. Introduction

new(x);

with r when f = 0

{

c := x;

f := 1;

}

with r when f = 1

{

y := c;

f := 0;

}

dispose(y);

Figure 1.1: Cell-transferring buffer

memory errors such as dereferences of dangling pointers andmemory leaks. This basic founda-

tion has been developed in many directions since, especially in the area of shape analysis. Firstly,

abstraction (or widening) operators were added to symbolicexecution to infer invariants auto-

matically via a fixed-point calculation, in the usual mannerof abstract interpretation [17, 36].

Advances in various other directions, especially on the issues of scalability, compositionality and

data structures, have led to the first automatic proofs of pointer safety in entire industrial programs,

with verification of Microsoft and Linux device drivers withup to 10,000 lines of code [55, 8, 1].

Concurrent Separation Logic The locality and modularity of reasoning provided by separa-

tion logic has also brought about important advances in the verification of concurrent programs.

Concurrent program analysis is a difficult problem because of the need to consider possible inter-

leavings between concurrent processes, which becomes evenmore complicated in the presence of

aliasing and dynamic data structures in the heap. Concurrent Separation Logic (CSL), introduced

by O’Hearn in [42], made a breakthrough in modular Hoare-style reasoning about concurrent

heap-manipulating programs.

The basic idea behind CSL is the use of formulae calledresource invariantsto describe the heap

that is shared between concurrent processes, and to hide away the interference between pro-

cesses with the use of resource invariants in program proofs. We consider concurrrent programs

in which synchronization is implemented using theconditional critical region (CCR)construct

with r when B do C, wherer is a resource name,B is a boolean condition, andC is a com-

mand. A thread executing this command waits until the boolean conditionB is satisfied and no

other CCR forr is executing, and then it executes the bodyC. Two CCRs for the same resource

name cannot be executed simultaneously, which ensures thatshared resources are accessed in mu-

tual exclusion. For example, consider the program shown in figure 1.1. This program uses a single

heap cell buffer shared between two threads, access to whichis protected by resource namer. The

1.1. Background 19

buffer heap cell is pointed to by variablec and the flag variablef indicates whether the buffer is

full or empty (the initial pre-condition of the program is that f = 0 andc = nil). The left thread

allocates a new cell and places it in the buffer, and the rightthread removes the cell from the buffer

and disposes it.

CSL provides reasoning about such programs by associating each resource namer with a formula

I(r) called the resource invariant, which describes the state ofthe shared resources protected byr

at all times. For the buffer example, the resource invariantspecifies that it is always the case that

either the buffer is empty andf = 0, or there is a single heap cell pointed to byc andf = 1,

which is given by the formula

I(r)
def
= {(emp ∧ f = 0) ∨ (c 7→ ∧ f = 1)}

The idea is that the resource invariant defines a contract between threads about how the shared

state must be maintained: inside critical regions, a threadwill gain ownership of the shared state

and expect it to satisfy the resource invariant. It can then work on the shared state in mutual

exclusion, possibly invalidating the resource invariant,but then it must re-establish the invariant at

the end of the critical region, before giving up ownership ofthe shared state. This is modelled by

the inference rule for critical regions:

{(P ∗ I(r)) ∧B}C {Q ∗ I(r)}

{P} with r when B C {Q}
no other process modifies variables free inP orQ

The body of the CCR has access to the shared state and the thread’s local stateP , and the invariant

is re-established after execution along with some other post-conditionQ. Outside the CCR, the

resource invariant is ‘hidden away’, and reasoning proceeds without knowledge of the shared state.

For example, in the left thread in the buffer program, after thenew(x) command createsx 7→ , the

CCR rule is used as follows

{(x 7→ ∧ f = 0} c := x; f := 1; {x 7→ ∧ c = x ∧ f = 1}

{(x 7→ ∗ I(r)) ∧ f = 0} c := x; f := 1; {emp ∗ I(r)}
rule of consequence

{x 7→ } with r when f = 0 {c := x; f := 1; } {emp}
CCR rule

Hence, ownership of the cell allocated in the thread moves into the buffer after the CCR execution,

and the thread is left with the empty post-conditionemp. We can similarly derive the following

20 Chapter 1. Introduction

specification for the CCR in the second thread

{emp} with r when f = 1 {y := c; f := 0; } {y 7→ }

where ownership of the cell moves from the buffer into the thread, with post-conditiony 7→ ,

which the thread then safely disposes with the dispose command. By hiding away the resource

invariant describing the shared state, the proof of each thread can proceed independently of other

threads, giving the illusion of non-interference. This is modelled by the rule for parallel composi-

tion, which simply combines the local states of each of the threads:

{P1}C1 {Q1} · · · {Pn}Cn {Qn}

{P1 ∗ · · · ∗ Pn}C1 ‖ · · · ‖ Cn {Q1 ∗ · · · ∗Qn}
no variable free inPi orQi is changed inCj whenj 6= i

In the buffer example, using the specifications derived for the CCRs (in which the resource in-

variant is hidden away), we get the specifications{emp}Ti {emp} for each threadTi. Using the

parallel composition rule we get the overall specification{emp}T1 ‖ T2 {emp} for the parallel

composition. Such a proof in CSL shows that there are no memory errors or data races in the

program. The soundness of concurrent separation logic was shown by Brookes in [6].

1.2 Motivation and Contributions

Although resource reasoning with separation logic has madea significant advance in program

verification, there have remained important questions about the nature of resource manipulation in

relation to modular program specification, optimization and concurrency analysis. In this section

we describe these issues and the contributions made in this thesis to address them.

1.2.1 Resources required for modular specifications

Consider again the small specification for the dispose command that we described above:

{l 7→ } dispose(l) {emp}

where the pre-condition is the safety footprint of the command, that is, the minimum resource

required for safe execution. This is a complete specification for the command since we can use the

1.2. Motivation and Contributions 21

frame rule to infer the behaviour of the command on all largerstates. This suggests that the safety

footprint should be enough to specify the complete behaviour of any program. This, however, is

not true in general, as shown by the following program:

AD ::= new(x); dispose(x)

This allocate-deallocateprogram allocates a new cell with address stored in the stackvariablex,

and then deallocates the cell. The smallest heap on which theprogram is safe is the empty heap

emp. The specification of the program on this pre-condition is:

{emp} AD {emp} (1.1)

We can extend our reasoning to larger heaps by applying the frame rule. For example, extending

to a one-cell heap with addressl gives

{l 7→ } AD {l 7→ } (1.2)

However, the specification 1.1 is not a complete specification of theAD program. For example,

the following triple is also valid:

{l 7→ } AD {l → ∧ x 6= l} (1.3)

This is because ifl is already allocated, then the new address stored inx cannot bel. But this

triple is not derivable from 1.1. However, the triples 1.1 and 1.3 together do provide a complete

specification from which all valid triples can be derived.

This example shows that the safety footprint of a program is not always sufficient to describe the

complete behaviour of a program. Firstly, this opens the question of how therelevance footprintof

a program should be defined, that is, the resources that are required for a complete specification of

a program. We need to know if such a notion exists and what the formal definition and properties

of relevance footprints would be, in order to determine how to construct complete specifications

for arbitrary programs. Secondly, it seems unnatural that the safety footprint is not sufficient to de-

scribe all the properties of a program, since the local behaviour of programs indicates that they act

independently of any resources that they do not access. In theAD program, for example, it is not

22 Chapter 1. Introduction

clear why we should need to refer to the single-cell heaps in the pre-condition in order to describe

the program’s complete behaviour, even though these cells are not accessed by the program. The

need to mention these additional resources seems to bring some redundancy to specifications and

makes them more cumbersome and less modular. It poses the question of whether it is possible

to formulate a more natural framework of local reasoning in which complete specifications can be

obtained from the safety footprint.

Contributions In Chapter 2, we investigate relevance footprints in the generic framework of

local reasoning introduced in [11], where programs are modelled as local functions that act on

monoids representing abstract models of resource. We introduce the formal definition of the rel-

evance footprint of a local function, and show how this definition provides the correct footprints

for a complete specification of theAD example discussed earlier. We then prove the central re-

sult characterizing relevance footprints that, for any local function, the relevance footprints are the

only elements which areessentialfor a complete specification of the function.

In section 2.4 we investigate the question ofsufficiency: the conditions under which a smallest

complete specification for a local function can be constructed using only the relevance footprints.

For well-founded resource models such as the standard heap model (where there are no infinite de-

scending chains of smaller resources), we show that the relevance footprints are always sufficient.

In the non-well-founded case, we find that sufficiency depends on the presence of negativity in

the resource model, which is when non-empty elements of resource can be combined to produce

the empty state. For models without negativity, such as heaps with infinitely divisible fractional

permissions [4], we show that either the relevance footprints are sufficient for a complete specifi-

cation or a smallest complete specification does not exist. For models with negativity, such as the

integers under addition, we show that it is possible to construct smallest complete specifications

using non-essential elements.

In the final section, we apply the theory of relevance footprints to investigate the issue of regaining

the correspondence between safety footprints and relevance footprints. We present an alternative

model of heaps, and prove that in this new model the relevancefootprint of everyprogram, in-

cludingAD , corresponds to the safety footprint. Furthermore, we identify a general condition on

the primitive commands of a programming language under which this correspondence holds in

arbitrary resource models.

1.2. Motivation and Contributions 23

listInit(x) {

local x1;

if (x 6= nil) {

l1 : x1 := x→ next;

l2 : x→ f1 := nil;

l3 : x→ f2 := nil;

l4 : listInit(x1);

}

}

Figure 1.2: Linked list traversal program

The results in this chapter were first published in [49]. The journal version containing proofs and

final section on the regaining of safety footprints appearedin [50].

1.2.2 Resource dependence detection for optimization

Optimization techniques are generally based on a detectionof how resources are accessed in dif-

ferent parts of the program, as this information can be used to effect optimizations such as par-

allelizing statements that access separate resources, or reordering statements to improve temporal

locality of reference. Such techniques have been extensively studied and successfully applied for

programs with simple data types and arrays, but there has been very limited progress for pro-

grams that manipulate pointers and dynamic data structures. The difficulty is that dynamically-

allocated heap locations are not named by program variablesor array indexes, and it is therefore

difficult to detect when two distant statements in a program may access the same heap locations.

Even the number of heap locations may not be statically determined when programs operate on

dynamically-allocated pointer data structures, such as linked lists of arbitrary size. For example,

figure 1.2 shows a recursive procedure that traverses a nil-terminated linked list of unknown length.

While the list is non-empty, the procedure first setsx1 to the next element in the list (pointed at

by thenextfield), and sets fieldsf1 andf2 in the current cell tonil, and then makes the recursive

call on the tail of the list.

In this case the statementsl2 andl3 access the heap location which is the head of the linked list and

the recursive call atl4 accesses all locations in the tail of the list, and hence it ispossible to execute

the recursive call in parallel with statementsl2 and l3. Although separation logic has provided

tractable and scalable verification techniques for such programs, these analyses cannot be used for

24 Chapter 1. Introduction

dependence detection such as in the case of this program. Thereason for this is that separation

logic assertions only describe the spatial separation and memory layout at a single program point,

and so a region of memory may be described by different formulae at different program points.

To be able to detect dependences between distant statementsin the program, we need to be able to

relate the heap states at arbitrary points throughout the execution of the program, such as detecting

that statementsl4 andl2 access separate heap locations in the list traversal program.

Contributions In chapter 3 we extend separation logic to address the optimization of heap-

manipulating programs, by detecting dependences between program statements. The main con-

ceptual step is to express memory separation properties throughout a program’s lifetime by anno-

tating separation-logic formulae withlabelsof accessing commands. Symbolic execution based

on separation logic is extended so that the memory region accessed by a command is marked with

the label of the command. This label tracking is directly determined for primitive commands, but

for composite commands such as procedure calls or while loops, the label tracking is determined

by an adaptation of aframe inferencemethod from [3], which allows us to infer the part of a

formula that is not accessed by a command. We discuss examples of the kind of program opti-

mizations we can perform and present experimental results on performance improvement in the

area of hardware synthesis from heap-manipulating programs.

Although our focus is on the use of separation logic to determine heap dependences between

commands, the ultimate aim is to show that any optimization based on the inferred dependences

will produce the same output states as the original program.Program optimizations have often

been proposed based on theassumptionthat if two commands access separate heap and variables

in all possible executions, then they can be parallelized togive an equivalent program. We describe

here how this assumption actually does not hold in the presence of dynamic memory allocation and

deallocation, and optimizations based on the assumption can produce results that are significantly

different from the original program. We discuss example programs to illustrate the problem, and

introduce the notion ofallocation dependences, in addition to heap and stack dependences, in

order to guarantee the safety of optimizations. We formallydemonstrate the soundness of our

optimizations using an action trace semantics of programs.

A preliminary version of the work in this chapter was presented in [48, 14].

1.2. Motivation and Contributions 25

1.2.3 Resource sharing in concurrent programs

The detection of how resources are shared between parallel processes is essential for the successful

analysis of concurrent programs. This is especially difficult for so-calleddaring concurrent pro-

grams, where resources may be accessed by concurrent processes outside of critical regions, and

ownership of shared resources is dynamically transferred during execution. For example, consider

the cell-transferring buffer program from Figure 1.1, in which the single heap cell in the buffer is

shared between two threads. The program illustrates the essence of dynamic ownership transfer:

there is no static separation of the heap into the heap that isowned by the left thread, the heap

owned by the right thread, and the shared resource which is the buffer cell. Instead, there is a

single heap cell whose ownership moves between the threads and the shared state in the course

of the execution: the cell is allocated in the left thread, its ownership is then transferred into the

shared buffer, and it then comes out of the buffer and into theright thread, which finally disposes

it.

Also notice that this notion of ownership transfer is not a construct of the programming language,

or something that is explicitly defined in the program. It is instead an implicit property of the

concurrent program brought about by how threads agree to safely share resources without causing

memory errors or data races. Indeed, only changing the way inwhich the threads access the buffer

cell may bring about a different pattern of ownership transfer. For example, the program in figure

1.3 is obtained by moving the disposal of the heap cell from the right thread to the left thread. In

this case, even though the critical regions are exactly as before, the ownership of the cell remains

in the left thread, since it is now the one that disposes it. Ownership never gets transferred to the

right thread, and this is fine since the right thread never makes a heap access. This program can

therefore be seen as anaddress-transferring bufferprogram, since the right thread is only able to

read the value of the address of the buffer cell and cannot access the cell itself. As an example

of an unsafe ownership policy, if both threads were to dispose the cell, then this would result in a

data race and a double dispose.

Inferring the ownership policy of a program is therefore essential for successful analysis of such

programs and to ensure the absence of memory errors or data races. Concurrent separation logic

provides a good framework for such analysis, where the ownership policy of a program can be

explicitly specified in the resource invariants. For example, the programs in figures 1.1 and 1.3

26 Chapter 1. Introduction

new(x);

with r when f = 0

{

c := x;

f := 1;

}

dispose(x);

with r when f = 1

{

y := c;

f := 0;

}

Figure 1.3: Address-transferring buffer

can each be verified in CSL with a different choice of resourceinvariant describing the appropriate

ownership policy. The cell-transferring program has resource invarant{(f = 0 ∧ emp) ∨ (f =

1 ∧ c 7→ nil)}, which specifies that the cell is owned by the buffer when the flag is set. The

address-transferring program has invariantI(r)
def
= {(f = 0 ∧ emp) ∨ (f = 1 ∧ emp)}, which

specifies that the buffer never obtains ownership of the cell. Given these invariants, correctness

of each program can be verified with the inference rules of CSL. Thus the problem of ownership

inference can be posed as the ability to infer the resource invariants for a concurrent program, so

that a program proof in concurrent separation logic can be automated. Thus far, methods proposed

for automating CSL [23, 9] fail on simple programs due to problems with ownership inference.

Contributions In chapter 4 we present a new method for inferring resource invariants for the

automation of concurrent separation logic proofs. This method addresses the ownership inference

problem using a resource labelling technique that is similar in nature to the one used for the

dependence analysis in chapter 3. It extends the fixpoint method of [23] with a form of labelling

in which ownership constraintsare propagated through a program proof, which allows ownership

of shared resources to be inferred from heap accesses made atpossibly arbitrary program points.

We demonstrate how the algorithm verifies programs which both of the previous approaches

[23, 9] could not handle. Also unlike the previous methods, our algorithm does not require user

annotations about ownership distribution in the pre-condition of the concurrent program, as it is

able to infer this automatically. We also present a generic technique for programs with while loops,

which is parametric in any resource-invariant inference method for loop-free programs.

Chapter 2

Footprints and Complete Specifications

In this chapter, we investigate the resources that are required to construct complete specifications

for programs. For generality, the discussion is based on theabstract separation logic framework

of [11], where programs are modelled as local functions thatact on abstract models of resource

represented by partial commutative monoids. We start by giving a background on abstract separa-

tion logic and then formulate the notion of complete specifications for programs in section 2.2. In

section 2.3, the formal definition of the relevance footprint is introduced, based on the definition

of locality of functions, and we prove the central result that the relevance footprints are the only

essential elements required for a complete specification. In section 2.4, we give results about the

sufficiency of relevance footprints, which depend on properties of the resource models.

In section 2.5, we explore how a correspondence between safety and relevance footprints may

be regained. A new heap model is presented in which the relevance footprint ofeveryprogram

is the safety footprint. We also identify a general condition on the primitive commands of a

programming language under which this correspondence holds in arbitrary resource models.

2.1 Background

We begin with a description of the abstract separation logicframework introduced in [11]. Separa-

tion logic reasoning has been applied to several memory models, including heaps based on pointer

arithmetic [41], heaps with permissions [4], and the combination of heaps with variable stacks

which views variables as resource [5, 46]. In each case, the basic soundness and completeness

27

28 Chapter 2. Footprints and Complete Specifications

results for local Hoare reasoning are similar. For this reason, Calcagno, O’Hearn and Yang [11]

characterised the underlying principles of local reasoning, introducing the notion of local func-

tions that act on abstract resource models called separation algebras. This generalises the specific

examples of local imperative commands and memory models. They introduce abstract separation

logic for local reasoning in this abstract setting, and givegeneral soundness and completeness

results. However, a formal understanding of relevance footprints is missing in this abstract theory,

and we will provide such a formulation in this chapter of the thesis.

Separation Algebras and Local Functions Separation algebras provide a model of resource

which generalises over the specific heap models used in various applications of separation logic.

Informally, a separation algebra models resource as a set ofelements that can be ‘glued’ together to

create larger elements. The ‘glueing’ operator satisfies properties in accordance with this resource

intuition, such as commutativity and associativity, as well as the cancellation property which re-

quires that ‘ungluing’ a certain portion from a resource element gives us a unique element.

Definition 2.1 (Separation Algebra) A separation algebrais a cancellative, partial commuta-

tive monoid(Σ, •, u), whereΣ is a set and• is a partial binary operator with unitu. The operator

satisfies the familiar axioms of associativity, commutativity and unit, using a partial equality onΣ

where either both sides are defined and equal, or both are undefined. It also satisfies the cancella-

tive property stating that, for eachσ ∈ Σ, the partial functionσ • (·) : Σ 7→Σ is injective.

We shall sometimes overload notation, usingΣ to denote the separation algebra(Σ, •, u). Ex-

amples of separation algebras include multisets with unionand unit∅, the natural numbers with

addition and unit0, heaps as finite partial functions from locations to values ([11] and example 1),

heaps with permissions [11, 4], and the combination of heapsand variable stacks enabling us to

model programs with variables as local functions ([11], [46] and example 1). These examples all

have an intuition of resource, withσ1 • σ2 intuitively giving more resource than justσ1 andσ2 for

σ1, σ2 6= u. However, notice that the general notion of a separation algebra also permits examples

which may not have this resource intuition, such as{a, u} with a • a = u. Since our aim is to

investigate general properties of local reasoning, our inclination is to impose minimal restrictions

on what counts as resource and to work with this simple definition of a separation algebra.

2.1. Background 29

Definition 2.2 (Separateness and substate)Given a separation algebra(Σ, •, u), theseparate-

ness(#) relation between two statesσ0, σ1 ∈ Σ is given byσ0#σ1 if and only ifσ0•σ1 is defined.

Thesubstate(�) relation is given byσ0 � σ1 if and only if∃σ2. σ1 = σ0 • σ2. We writeσ0 ≺ σ1

whenσ0 � σ1 andσ0 6= σ1.

Lemma 2.1 (Subtraction) For σ1, σ2 ∈ Σ, if σ1 � σ2 then there exists a unique element denoted

σ2 − σ1 ∈ Σ, such that(σ2 − σ1) • σ1 = σ2.

Proof: Existence follows by definition of�. For uniqueness, assume there existσ′, σ′′ ∈ Σ such

thatσ′ •σ1 = σ2 andσ′′ •σ1 = σ2. Then we haveσ′ •σ1 = σ′′ •σ1, and thus by the cancellation

property we haveσ′ = σ′′.

We consider functions on separation algebras that generalise imperative programs operating on

heaps. Such programs can behave non-deterministically, and can alsofault. To model non-

determinism, we consider functions from a separation algebra Σ to its powersetP(Σ). To model

faulting, we add a special top element⊤ to the powerset. We therefore consider total functions of

the formf : Σ → P(Σ)⊤. On any element ofΣ, the function can either map to a set of elements,

which modelssafeexecution with non-deterministic outcomes, or to⊤, which models a faulting

execution. Mapping to the empty set represents divergence (non-termination).

Definition 2.3 The standard subset relation on the powerset is extended toP(Σ)⊤ by defining

p ⊑ ⊤ for all p ∈ P(Σ)⊤. The binary operator∗ onP(Σ)⊤ is given by

p ∗ q = {σ0 • σ1 | σ0#σ1 ∧ σ0 ∈ p ∧ σ1 ∈ q} if p, q ∈ P(Σ)

= ⊤ otherwise

P(Σ)⊤ is a total commutative monoid under∗ with unit{u}.

Definition 2.4 (Function ordering) For functionsf, g : Σ → P(Σ)⊤, f ⊑ g if and only if

f(σ) ⊑ g(σ) for all σ ∈ Σ.

We shall only consider functions that actlocally with respect to resource. For imperative com-

mands on the heap model, the locality conditions were first characterised in [56], where they were

30 Chapter 2. Footprints and Complete Specifications

used to prove soundness of local reasoning for the specific heap model. The conditions identified

were

• Safety monotonicity: if the command is safe on some heap, then it is safe on any larger heap.

• Frame property: if the command is safe on some heap then, in any outcome of applying

the command on a larger heap, the additional heap portion will remain unchanged by the

command.

In [11], these two properties were amalgamated to provide the following definition of a local

function acting on a separation algebra.

Definition 2.5 (Local Function) A local function on Σ is a total functionf : Σ → P(Σ)⊤ which

satisfies thelocality condition:

σ#σ′ implies f(σ′ • σ) ⊑ {σ′} ∗ f(σ)

We letLocFunc be the set of local functions onΣ.

Intuitively, we think of a command to be local if, whenever the command executes safely on any

resource element, then the command will not ‘touch’ any additional resource that may be added

to the initial state. Safety monotonicity follows from the above definition because, iff is safe on

σ (that is,f(σ) < ⊤), then it is safe on any larger state, sincef(σ′ • σ) ⊑ {σ′} ∗ f(σ) < ⊤.

The frame property follows by the fact that when the additional stateσ′ is added toσ, any output

state is in the set{σ′} ∗ f(σ), and so the additional stateσ′ is unchanged. However, we note that

the⊑ ordering allows for reduced non-determinism on larger states. This, for example, is the case

for theAD command from the introduction which allocates a cell, assigns its address to stack

variablex, and then deallocates the cell. On the empty heap, its resultwould allow all possible

values for variablex. However, on the larger heap where cell 1 is already allocated, its result

would allow all values forx except 1, and we therefore have a more deterministic outcomeon this

larger state.

2.1. Background 31

Lemma 2.2 Locality is preserved under sequential composition, non-deterministic choice and

Kleene-star, which are defined as

(f ; g)(σ) =











⊤ if f(σ) = ⊤

⊔

{g(σ′) | σ′ ∈ f(σ)} otherwise

(f + g)(σ) = f(σ) ⊔ g(σ)

f∗(σ) =
⊔

n

fn(σ)

Example 1 (Separation algebras and local functions)

1. Plain heap model. A simple example is the separation algebra of heaps(H, •, uH), where

H = L ⇀fin V al are finite partial functions from a set of locationsL to a set of values

V al with L ⊆ V al, the partial operator• is the union of partial functions with disjoint

domains, and the unituH is the function with the empty domain. Forh ∈ H, let dom(h)

be the domain ofh. We writel 7→ v for the partial function with domain{l} that mapsl to

v. For h1, h2 ∈ H, if h2 � h1 thenh1 − h2 = h1 |dom(h1)−dom(h2). An example of a local

function is thedispose[l] command that deletes the cell at locationl:

dispose[l](h) =











{h− (l 7→v)} h � (l 7→v)

⊤ otherwise

The function is local: ifh 6� (l 7→v) thendispose[l](h) = ⊤, anddispose[l](h′ • h) ⊑ ⊤.

Otherwise,dispose[l](h′ • h) = {(h′ • h) − (l 7→ v)} ⊑ {h′} ∗ {h − (l 7→ v)} = {h′} ∗

dispose[l](h).

2. Heap and stack. There are two approaches to modelling the stack in the literature. One is

to treat the stack as a total function from variables to values, and only combine two heap and

stack pairs if the stacks are the same. The other approach, which we use here, is to allow the

variable stack to be split, treating it as part of the resource. We can incorporate the variable

stack into the heap model by using the setH = L ∪ V ar ⇀fin V al, whereL and V al

are as before andV ar is the set of stack variables{x, y, z, ...}. The• operator combines

heap and stack portions with disjoint domains, and is undefined otherwise. The unituH

is the function with the empty domain which represents the empty heap and empty stack.

32 Chapter 2. Footprints and Complete Specifications

Although this approach is limited to disjoint reference to stack variables, this constraint can

be lifted by enriching the separation algebra withpermissions[4]. However, this added

complexity using permissions can be avoided for the discussion here. For a stateh ∈ H, we

let loc(h) andvar(h) denote the set of heap locations and stack variables in the domain of

h respectively. In this model we can define the allocation and deallocation commands as

new[x](h) =











{h′ • x 7→ l • l 7→w | w ∈ V al, l ∈ L\loc(h′)} h = h′ • x 7→v

⊤ otherwise

dispose[x](h) =











{h′ • x 7→ l} h = h′ • x 7→ l • l 7→v

⊤ otherwise

Commands for heap mutation and lookup can be defined as

mutate[x, v](h) =











{h′ • x 7→ l • l 7→v} h = h′ • x 7→ l • l 7→w

⊤ otherwise

lookup[x, y](h) =











{h′ • x 7→ l • l 7→v • y 7→v} h = h′ • x 7→ l • l 7→v • y 7→w

⊤ otherwise

TheAD command described in the introduction, which is the compositionnew[x]; dispose[x],

corresponds to the following local function

AD(h) =











{h′ • x 7→ l | l ∈ L\loc(h′)} h = h′ • x 7→v

⊤ otherwise

Note that in all cases, any stack variables that the command refers to should be in the

stack in order for the command to execute safely, otherwise the command will be acting

non-locally.

3. Integers. The integers form a separation algebra under addition withidentity 0. In this case

we have that any ‘adding’ functionf(x) = {x+ c} that adds a constantc is local, while a

function that multiplies by a constantc, f(x) = {cx}, is non-local in general. However, the

integers under multiplication also form a separation algebra with identity 1, and in this case

every multiplying function is local but not every adding function. This illustrates the point

2.1. Background 33

that the notion of locality of commands depends on the notionof separation of resource that

is being used.

Predicates, Specifications and Local Hoare ReasoningWe now present the local reasoning

framework for local functions on separation algebras. Thisis an adaptation of Abstract Separation

Logic [11], with some minor changes in formulation for the purposes of this thesis. Predicates

over separation algebras are treated simply as subsets of the separation algebra.

Definition 2.6 A predicatep overΣ is an element of the powersetP(Σ).

Note that the top element⊤ is not a predicate and that the∗ operator, although defined onP(Σ)⊤×

P(Σ)⊤ → P(Σ)⊤, acts as a binary connective on predicates. We have the distributive law for

union that, for anyX ⊆ P(Σ),

(
⊔

X) ∗ p =
⊔

{x ∗ p | x ∈ X}

The same is not true for intersection in general, but does hold for precise predicates. A predicate

is precise if, for any state, there is at most a single substate that satisfies the predicate.

Definition 2.7 (Precise predicate)A predicatep ∈ P(Σ) is precise if and only if, for everyσ ∈

Σ, there exists at most oneσp ∈ p such thatσp � σ.

With precise predicates, there is at most a unique way to break any state in order to get a substate

that satisfies the predicate. Any singleton predicate{σ} is precise. Another example of a precise

predicate is{l 7→v | v ∈ V al} for somel, while {l 7→v | l ∈ L} for somev is not precise.

Lemma 2.3 (Precision characterization)A predicatep is precise if and only if, for allX ⊆

P(Σ), (
d
X) ∗ p =

d
{x ∗ p | x ∈ X}

Proof: We first show the left to right direction. Assumep is precise. We have to show that, for all

X ⊆ P(Σ), (
d
X) ∗ p =

d
{x ∗ p | x ∈ X}. Assumeσ ∈ (

d
X) ∗ p. Then there existσ1, σ2

such thatσ = σ1 • σ2 andσ1 ∈
d
X andσ2 ∈ p. Thus, for allx ∈ X, σ ∈ x ∗ p, and hence

σ ∈
d
{x ∗ p | x ∈ X}. Now assumeσ ∈

d
{x ∗ p | x ∈ X}. Thenσ ∈ x ∗ p for all x ∈ X.

34 Chapter 2. Footprints and Complete Specifications

Hence there existsσ1 � σ such thatσ1 ∈ p. Sincep is precise,σ1 is unique. Letσ2 = σ − σ1.

Thus, we haveσ2 ∈ x for all x ∈ X, and soσ2 ∈
d
X. Hence, we haveσ ∈ (

d
X) ∗ p.

For the other direction, we assume thatp is not precise and show that there exists anX such that

(
d
X) ∗ p 6=

d
{x ∗ p | x ∈ X}. Sincep is not precise, there existsσ ∈ Σ such that, for two

distinctσ1, σ2 ∈ p, we haveσ1 � σ andσ2 � σ. Letσ′1 = σ−σ1 andσ′2 = σ−σ2. Now letX =

{{σ′1}, {σ
′
2}}. Sinceσ ∈ {σ′1} ∗ p andσ ∈ {σ′2} ∗ p, we haveσ ∈

d
{x ∗ p | x ∈ X}. However,

because of the cancellation property, we also have thatσ′1 6= σ′2, and so(
d
X) ∗ p = ∅ ∗ p = ∅.

Hence,σ 6∈ (
d
X) ∗ p, and we therefore have(

d
X) ∗ p 6=

d
{x ∗ p | x ∈ X}.

Our Hoare reasoning framework is formulated with tuples of pre- and post- conditions, rather than

the usual Hoare triples that include the function as in [11].In our case the standard triple shall be

expressed as a functionf satisfyinga tuple(p, q), written f |= (p, q). The reason for this is that

we shall be examining the properties that a pre- and post- condition tuple may have with respect

to a given function, such as whether a given tuple is completefor a given function. This approach

is very similar to the notion of thespecification statement(a Hoare triple with a ‘hole’) introduced

by Morgan in [39], which is used in refinement calculi, and wasalso used to prove completeness

of a local reasoning system in [56].

Definition 2.8 (Specification) LetΣ be a separation algebra. AstatementonΣ is a tuple(p, q),

wherep, q ∈ P(Σ) are predicates. Aspecificationφ on Σ is a set of statements. We letΦΣ =

P(P(Σ) ×P(Σ)) denote the set of all specifications onΣ. We shall exclude the subscript when it

is clear from the context. Thedomain of a specification is defined asD(φ) =
⊔

{p | (p, q) ∈ φ}.

Domain equivalenceis defined asφ ∼=D ψ if and only ifD(φ) = D(ψ).

The domain is the union of the pre-conditions of all the statements in the specification. It is one

possible measure ofsize: how much ofΣ the specification is referring to.

Definition 2.9 (Satisfaction) A local functionf satisfies a statement(p, q), writtenf |= (p, q), if

and only if, for allσ ∈ p, f(σ) ⊑ q. It satisfies a specificationφ ∈ Φ, writtenf |= φ, if and only

if f |= (p, q) for all (p, q) ∈ φ.

Definition 2.10 (Semantic consequence)Let p, q, r, s ∈ P(Σ) andφ,ψ ∈ Φ. Each judgement

2.1. Background 35

(p, q) |= (r, s), φ |= (p, q), (p, q) |= φ, andφ |= ψ holds if and only if all local functions that

satisfy the left-hand side also satisfy the right-hand side.

Proposition 2.4 (Order Characterization) f ⊑ g if and only if, for allp, q ∈ P(Σ), g |= (p, q)

impliesf |= (p, q).

For every specificationφ, there exists abest local actionsatisfyingφ, which is a local function

such that all statements satisfied by this function are also satisfied by any local function satisfying

φ. For example, in the heap and stack separation algebra of example 1.2, consider the specification

φnew = {({x 7→v}, {x 7→ l • l 7→w | l ∈ L,w ∈ V al}) | v ∈ V al}

There are many local functions that satisfy this specification. Trivially, the local function that

always diverges satisfies it. Another example is the local function that assigns the valuew of the

newly allocated cell to be 0, rather than any non-deterministically chosen value. However, the

best local action for this specification is thenew[x] function described in example 1.2, as it can be

checked that for any local functionf satisfyingφnew, we havef ⊑ new[x]. The notion of the best

local action shall be used when addressing questions about completeness of specifications. It is

adapted from [11], except that we generalise to the best local action of a specification rather than

a single pre- and post-condition pair.

Definition 2.11 (Best local function) For a specificationφ ∈ Φ, the best local action ofφ, writ-

tenbla[φ], is the function of typeΣ → P(Σ)⊤ defined by

bla[φ](σ) =
l

{{σ′} ∗ q | σ = σ′ • σ′′, σ′′ ∈ p, (p, q) ∈ φ}

As an example, it can be checked that the best local actionbla[φnew] of the specificationφnew

given above is indeed the functionnew[x] described in example 1.2. The following lemma

presents the important properties which characterise the best local action.

Lemma 2.5 Letφ ∈ Φ. The following hold:

• bla[φ] is local

36 Chapter 2. Footprints and Complete Specifications

• bla[φ] |= φ

• if f is local andf |= φ thenf ⊑ bla[φ]

Proof: To show thatbla[φ] is local, considerσ1, σ2 such thatσ1#σ2. We then calculate

bla[φ](σ1 • σ2)

=
d
{{σ′} ∗ q | σ1 • σ2 = σ′ • σ′′, σ′′ ∈ p, (p, q) ∈ φ}

⊑
d
{{σ1 • σ

′′′} ∗ q | σ2 = σ′′′ • σ′′, σ′′ ∈ p, (p, q) ∈ φ}

=
d
{{σ1} ∗ {σ

′′′} ∗ q | σ2 = σ′′′ • σ′′, σ′′ ∈ p, (p, q) ∈ φ}

= {σ1} ∗
d
{{σ′′′} ∗ q | σ2 = σ′′′ • σ′′, σ′′ ∈ p, (p, q) ∈ φ}

= {σ1} ∗ bla[φ](σ2)

In the second-last step we used the property that{σ1} is precise (lemma 2.3).

To show thatbla[φ] satisfiesφ, consider any(p, q) ∈ φ andσ ∈ p. Thenbla[φ](σ) ⊑ {u}∗ q = q.

For the last point, supposef is local andf |= φ. Then, for anyσ such thatσ = σ1 • σ2 and

σ2 ∈ p and(p, q) ∈ φ,

f(σ) = f(σ1 • σ2)

⊑ {σ1} ∗ f(σ2)

⊑ {σ1} ∗ q

Thusf(σ) ⊑ bla[φ](σ).

In the case that there do not existσ1, σ2 such thatσ = σ1 • σ2 andσ2 ∈ D(φ), then

bla[φ](σ) =
d

∅

= ⊤

So in this case alsof(σ) ⊑ bla[φ](σ).

Lemma 2.6 For φ ∈ Φ andp, q ∈ P(Σ), bla[φ] |= (p, q) ⇔ φ |= (p, q).

2.1. Background 37

(p, q)

(p ∗ r, q ∗ r)

p′ ⊑ p (p, q) q ⊑ q′

(p′, q′)

(pi, qi), all i ∈ I
(
⊔

i∈I pi,
⊔

i∈I qi
)

(pi, qi), all i ∈ I, I 6= ∅
(d

i∈I pi,
d

i∈I qi
)

Frame Consequence Union Intersection

Figure 2.1: Inference rules for local Hoare reasoning

Proof:

bla[φ] |= (p, q)

⇔ for all local functionsf, f |= φ⇒ f |= (p, q) (by lemma 2.5)

⇔ φ |= (p, q) (by definition 2.10).

The inference rules of the proof system are given in figure 2.1. Consequence, union and inter-

section are adaptations of standard rules of Hoare logic. The frame rule is what permits local

reasoning, as it codifies the fact that, since all functions are local, any assertion about a separate

part of resource will continue to hold for that part after theapplication of the function. We omit

the standard rules for basic constructs such as sequential composition, non-deterministic choice,

and Kleene-star which can be found in [11].

Definition 2.12 (Proof-theoretic consequence)For predicatesp, q, r, s and specificationsφ,ψ,

each of the judgements(p, q) ⊢ (r, s), φ ⊢ (p, q), (p, q) ⊢ φ, andφ ⊢ ψ holds if and only if the

right-hand side is derivable from the left-hand side by the rules in figure 2.1.

The proof system of figure 2.1 is sound and complete with respect to the satisfaction relation.

Theorem 2.7 (Soundness and Completeness)φ ⊢ (p, q) ⇔ φ |= (p, q)

Proof: Soundness can be checked by checking each of the proof rules in figure 2.1. The frame

rule is sound by the locality condition, and the others are easy to check.

For completeness, assume we are givenφ |= (p, q). By lemma 2.6, we havebla[φ] |= (p, q). So

38 Chapter 2. Footprints and Complete Specifications

for all σ ∈ p, bla[φ](σ) ⊑ q, which implies

⊔

σ∈p

bla[φ](σ) ⊑ q (∗)

Now we have the following derivation:

φ

(r, s) for all (r, s) ∈ φ

({σ′}, s) for all σ′ ∈ r, (r, s) ∈ φ

({σ − σ′} ∗ {σ′}, {σ − σ′} ∗ s) for all σ′ ∈ r, (r, s) ∈ φ, σ′ � σ, σ ∈ p

(

l

σ′�σ

σ′∈r
(r,s)∈φ

{σ − σ′} ∗ {σ′},
l

σ′�σ

σ′∈r
(r,s)∈φ

{σ − σ′} ∗ s
)

for all σ ∈ p

({σ}, bla[φ](σ)) for all σ ∈ p

(
⊔

σ∈p

{σ},
⊔

σ∈p

bla[φ](σ))

(p, q)

The last step in the proof is by(∗) and the rule of consequence. Note that the intersection rule

can be safely applied because the argument of the intersection is necessarily non-empty (if it were

empty thenbla[φ](σ) = ⊤, which contradictsbla[φ](σ) ⊑ q).

2.2 Properties of Specifications

We discuss certain properties of specifications as a prerequisite for our main discussion on rele-

vance footprints. We define the notion of acompletespecification for a local function, which is

a specification from which follows every property that holdsfor the function. However, a func-

tion may have many complete specifications, so we introduce acanonical form for specifications.

We show that there exists a unique canonical complete specification for every domain on which a

local function can be completely specified. As discussed in the introduction, an important notion

of local reasoning is thesmall specificationwhich completely describes the behaviour of a local

function by mentioning only the footprint. Thus, as a prerequisite to investigating their existence,

we formalise small specifications as complete specifications with the smallest possible domain.

Similarly, we definebig specifications as complete specifications with the biggest domain.

Definition 2.13 (Complete Specification)A specificationφ ∈ Φ is a complete specificationfor

2.2. Properties of Specifications 39

f , written complete(φ, f), if and only if, for all p, q ∈ P(Σ),f |= (p, q) ⇔ φ |= (p, q). Let

Φcomp(f) be the set of all complete specifications of f.

φ is complete forf whenever the tuples that hold forf areexactlythe tuples that follow fromφ.

This also means that any two complete specificationsφ andψ for a local function are semantically

equivalent (that is,φ �� ψ). The following proposition illustrates how the notions ofbest local

action and complete specification are closely related.

Proposition 2.8 For all φ ∈ Φ and local functionsf , complete(φ, f) ⇔ f = bla[φ].

Proof: Assumef = bla[φ]. Then, by lemma 2.6, we have thatφ is a complete specification forf .

For the converse, assumecomplete(φ, f). We shall show that for anyσ ∈ Σ, f(σ) = bla[φ](σ).

case 1: f(σ) = ⊤. If bla[φ](σ) 6= ⊤, then bla[φ] |= ({σ}, bla [φ](σ)). This means that

φ |= ({σ}, bla [φ](σ)) by lemma 2.6, and sof |= ({σ}, bla [φ](σ)), but this is a contradiction.

Therefore,bla[φ](σ) = ⊤.

case 2:bla[φ](σ) = ⊤. If f(σ) 6= ⊤, thenf |= ({σ}, f(σ)). This means thatφ |= ({σ}, f(σ)),

and sobla[φ] |= ({σ}, f(σ)), but this is a contradiction. Therefore,f(σ) = ⊤.

case 3:bla[φ](σ) 6= ⊤ and f(σ) 6= ⊤. We have

f |= ({σ}, f(σ))

⇒ bla[φ] |= ({σ}, f(σ))

⇒ bla[φ](σ) ⊑ f(σ)

bla[φ] |= ({σ}, bla [φ](σ))

⇒ f |= ({σ}, bla [φ](σ))

⇒ f(σ) ⊑ bla[φ](σ)

Thereforef(σ) = bla[φ](σ)

Any specification is therefore only complete for a unique local function, which is its best local

action. However, a local function may have lots of complete specifications. For example, ifφ is

40 Chapter 2. Footprints and Complete Specifications

a complete specification forf and(p, q) ∈ φ, thenφ ∪ {(p, q′)} is also complete forf if q ⊆ q′.

For this reason it will be useful to have a canonical form for specifications.

Definition 2.14 (Canonicalisation) Thecanonicalisationof a specificationφ is defined asφcan =

{({σ}, bla [φ](σ)) | σ ∈ D(φ)}. A specification is incanonicalform if it is equal to its canonical-

isation. LetΦcan(f) denote the set of all canonical complete specifications off .

Notice that a given local function does not necessarily havea uniquecanonical complete spec-

ification, as there may exist canonical specifications with different domains. For example, both

{({u}, {u})} and{({u}, {u}), ({σ}, {σ})}, for someσ ∈ Σ, are canonical complete specifica-

tions for the identity function.

Proposition 2.9 For any specificationφ, we haveφ �� φcan.

Proof: We first showφ � φcan. For any (p, q) ∈ φcan, we have that(p, q) is of the form

({σ}, bla [φ](σ)) for someσ ∈ D(φ). So we havebla[φ] |= (p, q), and soφ |= (p, q) by lemma

2.6.

We now showφcan � φ. For any (p, q) ∈ φ, we havebla[φ] |= (p, q) by lemma 2.6. So for all

σ ∈ p, bla[φ](σ) ⊑ q, which implies

⊔

σ∈p

bla[φ](σ) ⊑ q (∗)

Now we have the following derivation:

φcan

({σ}, bla [φ](σ)) for all σ ∈ p

(
⊔

σ∈p

{σ},
⊔

σ∈p

bla[φ](σ))

(p, q)

The last step is by(∗) and consequence. So we haveφcan ⊢ φ, and by soundnessφcan |= φ.

Thus, the canonicalisation of a specification is logically equivalent to the specification. The fol-

lowing corollary shows that all complete specifications that have the same domain have a unique

canonical form, and specifications of different domains have different canonical forms.

2.2. Properties of Specifications 41

Corollary 2.10 Φcan(f) is isomorphic to the quotient setΦcomp(f)/ ∼=D, under the isomorphism

that maps[φ]∼=D to φcan, for everyφ ∈ Φcomp(f).

Proof: By proposition 2.8, all complete specifications forf have the same best local action, which

is f itself. So by the definition of canonicalisation, it can be seen that complete specifications

with different domains have different canonicalisations,and complete specifications with the same

domain have the same canonicalisation. This shows that the mapping is well-defined and injective.

Every canonical complete specificationφ is also complete, and[φ]∼=D
maps toφcan = φ, so the

mapping is surjective.

Definition 2.15 (Small and Big specifications)φ is a small specification for f if and only if

φ ∈ Φcomp(f) and there is noψ ∈ Φcomp(f) such thatD(ψ) < D(φ). A big specification is

defined similarly.

Small and big specifications are thus the specifications with the smallestand biggest domains

respectively. The question is if/when small and big specifications exist. The following result

shows that a canonical big specification exists for every local function.

Proposition 2.11 (Big Specification)For any local functionf , the canonical big specification for

f is given byφbig(f) = {({σ}, f(σ)) | f(σ) < ⊤}.

Proof: f |= φbig(f) is trivial to check. To showcomplete(φbig(f), f), assumef |= (p, q) for

somep, q ∈ P(Σ). Note that, for anyσ ∈ p, f(σ) ⊑ q and so
⊔

σ∈p

f(σ) ⊑ q. We then have the

derivation
φbig(f)

({σ}, f(σ)) for all f(σ) < ⊤

(
⊔

σ∈p

{σ},
⊔

σ∈p

f(σ))

(p, q)

By soundness we getφbig(f) |= (p, q). φbig(f) has the biggest domain becausef would fault on

any element not included inφbig(f).

The notion of a small specification has until now been used in an informal sense in local reasoning

papers [41, 4, 10] as specifications that completely specifythe behaviour of an update command

42 Chapter 2. Footprints and Complete Specifications

by only describing the command’s behaviour on the part of theresource that it affects. Although

these papers present examples of such specifications for specific commands, the notion has so

far not received a formal treatment in the general case. The question of the existence of small

specifications is strongly related to the concept of footprints, since finding a small specification is

about finding a complete specification with the smallest possible domain, and therefore enquiring

about which elements ofΣ are essential and sufficient for a complete specification. This requires

a formal characterisation of the footprint notion, which weshall now present.

2.3 Relevance Footprints

In the introduction we discussed how theAD program demonstrates that the safety footprint of a

program (the smallest states for safe execution) do not always yield a complete specification of the

program. To obtain a complete specification, we needed larger states in the pre-condition of the

specification, which may be thought of as therelevance footprintof the program. This raises the

question of how the relevance footprint of an arbitrary local function can be formally defined. We

address this question by first analysing the notion of locality. Recall that the definition of locality

(definition 2.5) states that the action on a certain stateσ1 imposes alimit on the action on a bigger

stateσ2 • σ1. This limit is the set{σ2} ∗ f(σ1), since we havef(σ2 • σ1) ⊑ {σ2} ∗ f(σ1).

Another way of viewing this definition is that for any stateσ, the action of the function on that

state has to be within the limit imposed byeverysubstateσ′ of σ, that is,f(σ) ⊑ {σ−σ′}∗f(σ′).

In the case whereσ′ = σ, this condition is trivially satisfied for any function (local or non-local).

The distinguishing characteristic of local functions is that this condition is also satisfied by every

strict substate ofσ, and thus we have

f(σ) ⊑
l

σ′≺σ

{σ − σ′} ∗ f(σ′)

We define this overall constraint imposed onσ by all of its strict substates as thelocal limit of f

onσ, and show that the locality definition is equivalent to satisfying the local limit constraint.

Definition 2.16 (Local limit) For a local functionf onΣ andσ ∈ Σ, thelocal limit of f onσ is

defined as

Lf (σ) =
l

σ′≺σ

{σ − σ′} ∗ f(σ′)

2.3. Relevance Footprints 43

Proposition 2.12 f is local ⇔ f(σ) ⊑ Lf (σ) for all σ ∈ Σ

Proof: Assumef is local. So for anyσ, for everyσ′ ≺ σ, f(σ) ⊑ {σ − σ′} ∗ f(σ′). f(σ) is

therefore smaller than the intersection of all these sets, which isLf (σ).

For the converse, assume the rhs and thatσ1 • σ2 is defined. Ifσ1 = u then f(σ1 • σ2) ⊑

{σ1}∗f(σ2) and we are done. Otherwise,σ2 ≺ σ1 •σ2 and we havef(σ1 •σ2) ⊑ Lf (σ1 •σ2) ⊑

{σ1} ∗ f(σ2).

Thus for any local functionf acting on a certain stateσ, the local limit determines a upper bound

on the possible outcomes onσ, based on the outcomes on all smaller states. If this upper bound

does correspond exactly to the set of all possible outcomes on σ, thenσ is ‘large enough’ that all

the smaller states determine the behaviour off on σ. In this case we do not think ofσ as being

relevant for a description off , since smaller states are sufficient to determine the actionof f on

σ. With this observation, we define footprints as those stateson which the action off cannot be

determined by the smaller states alone, that is, the set of outcomes is astrict subset of the local

limit.

Definition 2.17 (Relevance Footprint)For a local functionf andσ ∈ Σ, σ is a relevance foot-

print of f , writtenFf (σ), if and only iff(σ) < Lf (σ). We denote the set of relevance footprints

of f byF (f).

Note that an elementσ is therefore not a footprint if and only if the action off onσ is at the local

limit, that isf(σ) = Lf (σ).

Lemma 2.13 For any local functionf , the smallest safe states off are always relevance footprints

of f .

Proof: Letσ be a smallest safe state forf . Then for anyσ′ ≺ σ, f(σ′) = ⊤. ThereforeLf (σ) =

⊤ and sof(σ) < Lf (σ).

Example 2 (Dispose)The footprints of thedispose[l] command in the plain heap model (example

1.1) are the cells at locationl. We check this by considering the following cases

44 Chapter 2. Footprints and Complete Specifications

1. The empty heap,uH , is not a footprint sinceLdispose[l](uH) = ⊤ = dispose[l](uH)

2. Every celll 7→v for somev is a footprint

Ldispose[l](l 7→v) = {l 7→v} ∗ dispose[l](uH) = {l 7→v} ∗ ⊤ = ⊤

dispose[l](l 7→v) = {uH} < Ldispose[l](l 7→v)

3. Every stateσ such thatσ ≻ (l 7→v) for somev is not a footprint

Ldispose[l](σ) ⊑ {σ − (l 7→v)} ∗ dispose[l](l 7→v) = {σ − (l 7→v)} = dispose[l](σ)

By proposition 2.12, we haveLdispose[l](σ) = dispose[l](σ). The intuition is thatσ does

not characterise any ‘new’ behaviour of the function: its action onσ is just a consequence

of its action on the cells at locationl and the locality property of the function.

4. Every stateσ such thatσ 6≻ (l 7→v) for somev is not a footprint

Ldispose[l](σ) ⊑ {σ} ∗ dispose[l](uH) = {σ} ∗ ⊤ = ⊤ = dispose[l](σ)

Again by proposition 2.12,Ldispose[l](σ) = dispose[l](σ).

However, as discussed in the introduction, the smallest safe states are not always the only relevant

states. We now demonstrate how definition 2.17 delivers the correct footprint for theAD program,

which is the empty heap and all the single-cell heaps, as discussed in the introduction.

Example 3 (AD command) The AD (Allocate-Deallocate) command was defined on the heap

and stack model in example 1.2. We have the following cases for σ.

1. σ 6� x 7→v1 for somev1 is not a footprint, sinceLAD(σ) = ⊤ = AD(σ).

2. σ = x 7→v1 for somev1 is a footprint sinceLAD(σ) = ⊤ (by case (1)) andAD(σ) = {x 7→

w | w ∈ L} < LAD(σ).

2.3. Relevance Footprints 45

3. σ = l 7→v1 • x 7→v2 for somel, v1, v2 is a footprint.

LAD(σ) = {l 7→v1} ∗ AD(x 7→v2)

(AD faults on all other elements strictly smaller thanσ)

= {l 7→v1} ∗ {x 7→w | w ∈ L}

= {l 7→v1 • x 7→w | w ∈ L}

AD(σ) = {l 7→v1 • x 7→w | w ∈ L,w 6= l} < LAD(σ)

4. σ = h • x 7→v1 for somev1, and where|loc(h)| > 1, is not a footprint.

LAD(σ) ⊑
l

h≻l 7→v

{h− (l 7→v)} ∗ AD(l 7→v • x 7→v1)

= {h • x 7→w | w 6∈ loc(h)} = AD(σ)

By proposition 2.12, we getLAD(σ) = AD(σ).

Definition 2.17 therefore works correctly for these exampleprograms. We now give the formal

result to show that this definition of relevance footprints is the correct one for arbitrary local

functions.

Theorem 2.14 (Essentiality)The relevance footprints of a local function are the only essential

domain elements for any complete specification of that function, that is,

Ff (σ) ⇔ ∀φ ∈ Φcomp(f). σ ∈ D(φ)

Proof: Assume some fixedf andσ. We establish the following equivalent statement :

¬Ff (σ) ⇔ ∃φ ∈ Φcomp(f). σ 6∈ D(φ)

We first show the right to left implication. So assumeφ is a complete specification off such that

σ 6∈ D(φ). Sincecomplete(φ, f), by proposition 2.8, we havef = bla[φ]. So

f(σ) =
l

σ1�σ,σ1∈p,(p,q)∈φ

{σ − σ1} ∗ q

46 Chapter 2. Footprints and Complete Specifications

Now for any set{σ − σ1} ∗ q in the above intersection, we have thatσ1 ∈ p, and(p, q) ∈ φ for

somep. Sinceσ1 ∈ p, we havef(σ1) ⊑ q, and therefore{σ− σ1} ∗ f(σ1) ⊑ {σ− σ1} ∗ q. Also,

σ1 6= σ, because otherwise we would haveσ ∈ p, which would contradict the assumption that

σ /∈ D(φ). Soσ1 ≺ σ and we have

Lf (σ) ⊑ {σ − σ1} ∗ f(σ1) ⊑ {σ − σ1} ∗ q

So the local limit is smaller than each set{σ−σ1}∗q in the intersection, and therefore it is smaller

than the intersection itself:Lf (σ) ⊑ f(σ). We know from proposition 2.12 thatf(σ) ⊑ Lf (σ),

so we getf(σ) = Lf (σ) and therefore¬Ff (σ).

We now show the left to right implication. Assume thatσ is not a footprint off . We shall use the

big specification,φbig(f), to construct a complete specification off which does not containσ in

its domain. Iff(σ) = ⊤ then the big specification itself is such a specification, andwe are done.

Otherwise assumef(σ) < ⊤. Letφ = φbig(f)/{({σ}, f(σ))}. It can be seen thatσ /∈ D(φ). Now

we need to show thatφ is complete forf . For this it is sufficient to showφ ⊣⊢ φbig(f) because we

know thatφbig(f) is complete forf . The right to left direction,φ ⊣ φbig(f), is trivial.

Forφ ⊢ φbig(f), we just need to showφ ⊢ ({σ}, f(σ)). We have the following derivation:

φ

({σ′}, f(σ′)) for all σ′ ≺ σ, f(σ′) < ⊤

({σ − σ′} ∗ {σ′}, {σ − σ′} ∗ f(σ′)) for all σ′ ≺ σ, f(σ′) < ⊤

({σ},
l

σ′≺σ,f(σ′)<⊤

{σ − σ′} ∗ f(σ′))

({σ}, Lf (σ))

The intersection rule can be safely applied as there is at least oneσ′ ≺ σ such thatf(σ′) < ⊤.

This is becausef(σ) < ⊤, so if there were no suchσ′ thenσ would be a footprint, which is a

contradiction. Note that the last step uses the fact that

l

σ′≺σ,f(σ′)<⊤

{σ − σ′} ∗ f(σ′) =
l

σ′≺σ

{σ − σ′} ∗ f(σ′) = Lf (σ)

because adding the top element to an intersection does not change its value. Sinceσ is not a

footprint,f(σ) = Lf (σ), and soφ ⊢ ({σ}, f(σ)).

2.4. Sufficiency and Small Specifications 47

2.4 Sufficiency and Small Specifications

In the last section it was shown that the relevance footprints are the only elements that areessential

for a complete specification of a local function. We now investigate when a set of elements is

sufficientfor a complete specification of a local function, in the sensethat a complete specification

of the function can be constructed from only these elements.To study this, we first identify the

notion of thebasisof a local function.

Bases The local limit of a functionf on a stateσ was defined in the previous section as the

constraint imposed onf by all the strict substates ofσ. To address the question of which states are

sufficientto determine the behaviour off , we first generalise the local limit definition to consider

the constraint imposed by only the substates taken from a given set.

Definition 2.18 (Local limit imposed by a set)For a subsetA of a separation algebraΣ, the

local limit imposed byA on the action off onσ is defined by

LA,f(σ) =
l

σ′�σ,σ′∈A

{σ − σ′} ∗ f(σ′)

When the local limit imposed by a setA is enough to completely determinef , we callA a basis

for f .

Definition 2.19 (Basis)A ⊑ Σ is a basisfor f , writtenbasis(A, f), if and only ifLA,f = f .

This means that, when given the action off on elements in A alone, we can determine the action

of f on any element inΣ by just using the locality property off . Every local function has at least

one basis, namely the trivial basisΣ itself. We next show the correspondence between the bases

and complete specifications of a local function.

Lemma 2.15 Let φA,f = {({σ}, f(σ)) | σ ∈ A, f(σ) < ⊤}. Then we havebasis(A, f) ⇔

complete(φA,f , f).

Proof: We haveLA,f = bla[φA,f] by definition. The result follows by proposition 2.8 and the

definition of basis.

48 Chapter 2. Footprints and Complete Specifications

For every canonical complete specificationφ ∈ Φcan(f), we haveφ = φD(φ),f . By the previous

lemma it follows thatD(φ) forms a basis forf . The lemma therefore shows that every basis

determines a complete canonical specification, and vice versa. This correspondence also carries

over to all complete specifications forf by the fact that every domain-equivalent class of complete

specifications forf is represented by the canonical complete specification withthat domain (corol-

lary 2.10). By the essentiality of relevance footprints (theorem 2.14), it follows that the relevance

footprints are present in every basis of a local function.

Lemma 2.16 The relevance footprints off are included in every basis of f.

Proof: Every basisA of f determines a complete specification forf the domain of which is a

subset ofA. By the essentiality theorem (2.14), the domain includes the footprints.

The question of sufficiency is about how small the basis can get. Given a local function, we wish

to know if it has a smallest basis. Since every basis must contain the footprints, it follows that if

the relevance footprints alone form a basis then they are sufficient to construct a smallest complete

specification. We find that for well-founded resource models, this is indeed the case.

Theorem 2.17 (Sufficiency I) If a separation algebraΣ is well-founded under the� relation,

then the relevance footprints of any local function form a basis for it: that is,f = LF (f),f .

Proof: Assume thatΣ is well-founded under�. We shall show by induction thatf(σ) =

LF (f),f (σ) for all σ ∈ Σ. The induction hypothesis is that, for allσ′ ≺ σ, f(σ′) = LF (f),f (σ′)

case 1:Assumeσ is a footprint off . We havef(σ) = {u} ∗ f(σ), and so, by definition 2.18, we

haveLF (f),f (σ) ⊑ f(σ). We have by locality thatf(σ) ⊑ LF (f),f (σ), and sof(σ) = LF (f),f (σ).

2.4. Sufficiency and Small Specifications 49

case 2:Assumeσ is not a footprint off . We have

f(σ) = Lf (σ) (becauseσ is not a footprint of f)

=
l

σ′≺σ

{σ − σ′} ∗ f(σ′)

=
l

σ′≺σ

(

{σ − σ′} ∗
l

σ′′�σ′,Ff (σ′′)

{σ′ − σ′′} ∗ f(σ′′)
)

(by the induction hypothesis)

=
l

σ′≺σ,σ′′�σ′,Ff (σ′′)

{σ − σ′} ∗ {σ′ − σ′′} ∗ f(σ′′) (by the precision of{σ − σ′})

=
l

σ′′≺σ,Ff (σ′′)

{σ − σ′′} ∗ f(σ′′)

=
l

σ′′�σ,Ff (σ′′)

{σ − σ′′} ∗ f(σ′′) (becauseσ is not a footprint of f)

= LF (f),f (σ)

In section 2.2, the notions of big and small specifications were introduced (definition 2.15), and

the existence of a big specification was shown (proposition 2.11). We are now in a position to

show the existence of the small specification for well-founded resource. IfΣ is well-founded, then

every local function has a small specification whose domain is the relevance footprints.

Corollary 2.18 (Small specification) For well-founded separation algebras, every local function

has a small specification given byφF (f),f .

Proof: φF (f),f is complete by theorem 2.17 and lemma 2.15. It has the smallest domain by the

essentiality theorem.

Thus, for well-founded resource, the relevance footprintsare always essential and sufficient, and

specifications need not consider any other elements. Note that in practice, small specifications

may not always be in canonical form, even though they always have the same domain as the

canonical form. For example, the heap dispose command can have the specification{({l 7→ v |

v ∈ V al}, {uH})} rather than the canonical one given by{({l 7→v}, {uH}) | v ∈ V al}.

Non-well-founded Resource In most practical situations the resource model is usually well-

founded. A notable exception is the fractional permissionsmodel [4] in which the resource

50 Chapter 2. Footprints and Complete Specifications

includes ‘permissions to access’, which can be indefinitelydivided. If a separation algebra is

non-well-founded under the� relation, then there is some infinite descending chain of elements

σ1 ≻ σ2 ≻ σ3.... From a resource-oriented point of view, there are two distinct ways in which this

could happen. One way is when it is possible to remove non-empty pieces of resource from a state

indefinitely, as in the separation algebra of non-negative real numbers under addition. In this case

any infinite descending chain does not have more than one occurrence of any element. Another

way is when an infinite chain may exist because of repeated occurrences of some elements. This

happens when there isnegativitypresent in the resource: it may be possible to add two non-unit

elements together to produce the unit element. An example isthe separation algebra of integers

under addition, where1+(−1) = 0, so adding -1 to 1 is like adding positive and negative resource

to get nothing. Since1 = 0 + 1, we have that1 ≻ 0 ≻ 1... forms an infinite chain.

Definition 2.20 (Negativity) A separation algebraΣ hasnegativity if and only if there exists a

non-unit elementσ ∈ Σ that has an inverse; that is,σ 6= u andσ • σ′ = u for someσ′ ∈ Σ. We

say thatΣ is non-negativeif no such element exists.

All separation algebras with negativity are non-well-founded, because for elementsσ andσ′ such

thatσ • σ′ = u, the set{σ, u} forms an infinite descending chain as there is no least element. For

the general non-negative case, we find that either the footprints form a basis, or there is no smallest

basis.

Theorem 2.19 (Sufficiceny II) If Σ is non-negative then, for any localf , either the relevance

footprints form a smallest basis or there is no smallest basis for f .

Proof: Let A be a basis forf (we know there is at least one, which is the trivial basisΣ itself).

If A is the set of footprints then we are done. So assumeA contains some non-footprintµ.

We shall show that there exists a smaller basis forf , which isA/{µ}. So it suffices to show

f(σ) = LA/{µ},f (σ) for all σ ∈ Σ. We have

f(σ) = LA,f (σ) =
l

σ′�σ,σ′∈A

{σ − σ′} ∗ f(σ′)

case 1:µ 6� σ. We havef(σ) =
l

σ′�σ,σ′∈A/{µ}

{σ − σ′} ∗ f(σ′) = LA/{µ},f (σ)

2.4. Sufficiency and Small Specifications 51

case 2:µ � σ. In this case

f(σ) =
(

l

σ′�σ,σ′∈A/{µ}

{σ − σ′} ∗ f(σ′)
)

⊓ ({σ − µ} ∗ f(µ)) (1)

To complete the proof, we need to show thatf(σ) is equal to the left-hand side of the above

intersection:

f(σ) =
l

σ′�σ,σ′∈A/{µ}

{σ − σ′} ∗ f(σ′)

To show this, we just need to show that the right-hand side of the intersection in(1) contains the

left-hand side:
l

σ′′�σ,σ′′∈A/{µ}

{σ − σ′′} ∗ f(σ′′) ⊑ {σ − µ} ∗ f(µ)

This is shown as follows:

{σ − µ} ∗ f(µ)

= {σ − µ} ∗ Lf (µ) (becauseµ is not a footprint of f)

= {σ − µ} ∗
l

σ′≺µ

{µ− σ′} ∗ f(σ′)

= {σ − µ} ∗
l

σ′≺µ

(

{µ− σ′} ∗
l

σ′′�σ′,σ′′∈A/{µ}

{σ′ − σ′′} ∗ f(σ′′)
)

(case 1 applies becauseΣ is non-negative, soσ′ ≺ µ⇒ µ 6� σ′)

=
l

σ′≺µ

l

σ′′�σ′,σ′′∈A/{µ}

{σ − µ} ∗ {µ− σ′} ∗ {σ′ − σ′′} ∗ f(σ′′) (by precision)

=
l

σ′≺µ

l

σ′′�σ′,σ′′∈A/{µ}

{σ − σ′′} ∗ f(σ′′)

=
l

σ′′≺µ,σ′′∈A/{µ}

{σ − σ′′} ∗ f(σ′′)

⊒
l

σ′′�σ,σ′′∈A/{µ}

{σ − σ′′} ∗ f(σ′′)

Corollary 2.20 (Small Specification) If Σ is non-negative, then every local function either has a

small specification given byφF (f),f or there is no smallest complete specification for the function.

Example 4 (Permissions)The fractional permissions model [4] is non-well-founded and non-

negative. It can be represented by the separation algebraHPerm = L ⇀fin V al × P whereL

52 Chapter 2. Footprints and Complete Specifications

and V al are as in example 1, andP is the interval (0, 1] of rational numbers. Elements ofP

represent ‘permissions’ to access a heap cell. A permissionof 1 for a cell means both read and

write access, while any permission less than 1 is read-only access. The operator• joins disjoint

heaps and adds the permissions together for any cells that are present in both heaps only if the

resulting permission for each heap cell does not exceed 1; the operation is undefined otherwise.

In this case, the write function that updates the value at a location requires a permission of at

least 1 and faults on any smaller permission. It therefore has a small specification with pre-

condition being the cell with permission 1. The read function, however, can execute safely on any

positive permission, no matter how small. Thus, this function can be completely specified with

a specification that has a pre-condition given by the cell with permissionz, for all 0 < z ≤ 1.

However, this is not asmallestspecification, as a smaller one can be given by further restricting

0 < z ≤ 0.5. We can therefore always find a smaller specification by reducing the value ofz but

keeping it positive.

For resource with negativity, we find that it is possible to have small specifications that include non-

essential elements. These elements are non-essential in the sense that there exist other complete

specifications that do not include these elements.

Example 5 (Integers) An example of a model with negativity is the separation algebra of integers

(Z,+, 0). In this case there can be local functions which can have small specifications that contain

non-footprints. Letf : Z → P(Z)⊤ be defined asf(n) = {n + c} for some constantc, as in

example 1.f is local, but it has no footprints. This is because for anyn, f(n) = 1+f(n−1), and

son is not a footprint off . However,f does have small specifications, for example,{({0}, {c})},

{({5}, {5 + c})}, or indeed{({n}, {n + c})} for any n ∈ Z. So although every element is

non-essential, some element is required to give a complete specification.

2.5 Regaining Safety Footprints

In the introduction we discussed how the notion of footprints as the smallest safe states - the

safety footprint- is inadequate for giving complete specifications, as illustrated by theAD example.

For this reason, so far we have investigated the general notion of relevance footprint of local

functions. Equipped with this general theory, we now investigate how, with different resource

2.5. Regaining Safety Footprints 53

modelling choices, we may refine the reasoning framework to obtain a correspondence between

safety footprints and relevance footprints. We start by presenting an alternative model of heaps,

based on an investigation of why theAD phenomenon occurs in the standard model. We then

demonstrate that the footprints of theAD command in this new model do correspond to the safety

footprints. In the final section we identify, for arbitrary separation algebras, a condition on local

functions which guarantees the equivalence of the safety and relevance footprint. It is shown

that if this condition is met by all the primitive commands ofa programming language then the

correspondence is achieved for every program in the language, and this is indeed the case in our

new heap model.

An alternative model We begin by taking a closer look at why theAD anomaly occurs in the

standard heap and stack model described in example 1.2. Consider an application of the allocation

command in this model:

new [x](42 7→ v • x 7→ w) = {42 7→ v • x 7→ l • l 7→ r | l ∈ L\{42}, r ∈ V al}

The intuition of locality is that the initial state42 7→ v • x 7→ w is only describing a local region

of the heap and the stack, rather than the whole global state.In this case it says that the address

42 is initially allocated, and the definition of the allocation command is that the resulting state

will have a new cell, the address of which can be anything other than 42. However, we notice

that the initial state is in fact not just describing only itslocal region of the heap. It does state

that 42 is allocated, but it also implicitly states a very global property: thatall other addresses are

not allocated. This is why the allocation command can choose to allocate any location that is not

42. Thus in this model, every local state implicitly contains some global allocation information

which is used by the allocation command. In contrast, a command such as mutate does not require

this global ‘knowledge’ of the allocation status of any other cell that it is not affecting. Now the

key point is that this global information about which cells are free in the heapchangesas more

resource is added to the initial state. This can lead to program behaviour being sensitive to the

addition of more resource to the initial state, a sensitivity that can be observed in the case of the

AD program.

Based on this observation, we consider an alternative modelof the heap. As before, a statel 7→ v

54 Chapter 2. Footprints and Complete Specifications

will represent a local allocated region of the heap at address l with value v. However, unlike

before, this state will say nothing about the allocation status of any locations other thanl. This

information about the allocation status of other locationswill be represented explicitly in afree

set, which will contain every location that is not allocatedin theglobal heap. The model can be

interpreted from an ownership point of view, where the free set is to be thought of as a unique,

atomic piece of resource, ownership of which needs to be obtained by a command if it wants to do

allocation or deallocation. An analogy is with the permissions model: a command that wants to

read or write to a cell needs ownership of the appropriate permission on that cell. In the same way,

in our new model, a command that wants to do allocation or deallocation needs to have ownership

of the free set: the ‘permission’ to see which cells are free in the global heap so that it can choose

one of them to allocate, or update the free set with the address that it deallocates. On the other

hand, commands that only read or write to cells shall not require ownership of the free set.

Example 6 (Heap model with free set)Formally, we work with a separation algebra(H, •, uH).

LetL, V ar andV al denote sets of locations, variables and values, as before. Statesh ∈ H are

given by the grammar:

h ::= uH | l 7→v | x 7→v | F | h • h

wherel ∈ L, v ∈ V al, x ∈ V ar andF ∈ P(L). The operator• is undefined for states with

overlapping locations or variables. Letloc(h) and var(h) be the set of allocated locations and

variables in stateh respectively. The setF carries the information of which locations are free.

Thus we allow at most one free set in a state, and the free set must be disjoint from all locations in

the state. Soh • F is only defined whenloc(h) ∩ F = ∅ andh 6= h′ • F ′ for anyh′ andF ′. We

assume• is associative and commutative with unituH .

In this model, the allocation command requires ownership ofthe free set for safe execution, since

it chooses the location to allocate from this set. It removesthe chosen address from the free set as

it allocates the cell. It is defined as

new[x](h) =











{h′ • x 7→ l • l 7→w • F\{l} | w ∈ V al, l ∈ F} h = h′ • x 7→v • F

⊤ otherwise

Note that the output statesh′ •x 7→ l • l 7→w •F\{l} are defined, since we havel 6∈ F\{l} and the

input stateh′ • x 7→v • F implies thatloc(h′) is disjoint fromF\{l}. The deallocation command

2.5. Regaining Safety Footprints 55

also requires the free set, as it updates the set with the address of the cell that it deletes:

dispose[x](h) =











{h′ • x 7→ l • F ∪ {l}} h = h′ • x 7→ l • l 7→v • F

⊤ otherwise

Again, the output states are defined, since the input state implies that loc(h′) ∪ {l} is disjoint

from F , and soloc(h′) is disjoint fromF ∪ {l}. Notice that, in this model, only the allocation

and deallocation commands require ownership of the free set, since commands such as mutation

and lookup are completely independent of the allocation status of other cells, and they are defined

exactly as in example 1.2:

mutate[x, v](h) =











{h′ • x 7→ l • l 7→v} h = h′ • x 7→ l • l 7→w

⊤ otherwise

lookup[x, y](h) =











{h′ • x 7→ l • l 7→v • y 7→v} h = h′ • x 7→ l • l 7→v • y 7→w

⊤ otherwise

Lemma 2.21 The functionsnew[x], dispose[x], mutate[x, v] and lookup[x, y] are all local in

the separation algebra(H, •, uH) from example 6.

Proof: Let f = new[x] and assumeh′#h. We want to showf(h′ • h) ⊑ {h′} ∗ f(h). Assume

h = h′′ • x 7→v • F for someh′′, x, l, v andF , because otherwisef(h) = ⊤ and we are done. So

we have

f(h′ • h) = {h′ • h′′ • x 7→ l • l 7→w • F\{l} | w ∈ V al, l ∈ F}

= {h′} ∗ {h′′ • x 7→ l • l 7→w • F\{l} | w ∈ V al, l ∈ F}

= {h′} ∗ f(h)

The other functions can be checked in a similar way.

As an aside, a very interesting property of the free set modelis that it provides a more robust

treatment of dynamic memory allocation than the standard model. In the standard model, in order

to keep commands local, one is forced to work with a non-deterministic allocation function which

56 Chapter 2. Footprints and Complete Specifications

assumes an infinite amount of memory, which is obviously not the case in the real world. We find

that in the free set model, we can very naturally model deterministic allocation or allocation in

bounded memory as local functions.

Example 7 (Deterministic and bounded memory allocation)In the free set model of example

6, we can define a deterministic allocation function as

newd[x](h) =











{h′ • x 7→ l • l 7→w • F\{l}} h = h′ • x 7→v • F ∧ l = N(F)

⊤ otherwise

whereN(F) : P(L) → L is a function that chooses a specific location fromF to be allocated

next. We can define (non-deterministic) allocation in bounded memory by allowing the set of

locationsL to be finite, and defining

newb[x](h) =











{h′ • x 7→ l • l 7→w • F\{l} | w ∈ V al, l ∈ F} h = h′ • x 7→v • F ∧ F 6= ∅

⊤ otherwise

We can similarly define deterministic allocation in boundedmemory by choosing a specific loca-

tion usingN(F) rather than all possible locations inF . Each of these functions can be checked

to be local in the free set model.

Safety and relevance footprint correspondence forAD We consider the relevance footprint

of theAD command in the new model. The sequential compositionnew[x]; dispose[x] gives the

function

AD(h) =











{h′ • x 7→ l • F | l ∈ F} h = h′ • x 7→v • F

⊤ otherwise

The smallest safe states are given by the set{x 7→v • F | v ∈ V al, F ∈ P(L)}. By lemma 2.13,

these smallest safe states are footprints. However, unlikebefore, in this model these are theonly

relevance footprints of theAD command. To see this, consider a larger stateh • x 7→ v • F for

2.5. Regaining Safety Footprints 57

non-emptyh. We have

AD(h • x 7→v • F) = {h • x 7→ l • F | l ∈ F}

= {h} ∗ {x 7→ l • F | l ∈ F}

= {h} ∗ AD(x 7→v • F)

Since the local limitLAD(h • x 7→ v • F) ⊑ {h} ∗ AD(x 7→ v • F) by definition, we have by

proposition 2.12 thatLAD(h • x 7→ v • F) = AD(h • x 7→ v • F), and soh • x 7→ v • F is not a

footprint ofAD .

Thus the relevance footprints ofAD in this model do not include any non-empty heaps. By

corollary 2.18, in this model theAD command has a smallest complete specification in which the

pre-condition is just the empty heap:

{({x 7→v • F}, {x 7→ l • F}) | v ∈ V al, F ∈ P(L), l ∈ F}

Intuitively, it says that if initially the heap is empty, thevariablex is present in the stack, and we

know which cells are free in the global heap, then after the execution, the heap will still be empty,

exactly the same cells will still be free, andx will point to one of those free cells. This completely

describes the behaviour of the command for all larger statesusing the frame rule. For example,

we get the complete specification on the larger state in which42 is allocated:

{({42 7→w} ∗ {x 7→v • F}, {42 7→w} ∗ {x 7→ l • F}) | v,w ∈ V al, F ∈ P(L), l ∈ F}

In the pre-condition, the presence of location 42 in the heapmeans that 42 is not in the free setF

(by definition of∗). Therefore, in the post-condition,x cannot point to 42. Notice that in order

to check that we have ‘regained’ safety footprints, we only needed to check that the footprint

definition (definition 2.17) corresponds to the smallest safe states. The desired properties such as

essentiality, sufficiency, and small specifications then follow by the results established in previous

sections.

Correspondence for arbitrary programs Now that we have regained the safety footprints for

AD in the new model, we want to know if this is generally the case for any program. We consider

58 Chapter 2. Footprints and Complete Specifications

JcK ∈ LocFunc JskipK(σ) = {σ}

JC1;C2K = JC1K; JC2K JC1 + C2K = JC1K ⊔ JC2K JC⋆K =
⊔

nJC nK

Figure 2.2: Denotational semantics for the imperative programming language

the imperative programming language given in [11]:

C ::= c | skip | C;C | C + C | C⋆

wherec ranges over an arbitrary collection of primitive commands,+ is nondeterministic choice,

; is sequential composition, and(·)⋆ is Kleene-star (iterated;). As discussed in [11], condition-

als and while loops can be encoded using+ and(·)⋆ and assume statements. The denotational

semantics of commands is given in Figure 2.2.

Taking the primitive commands to benew[x], dispose[x], mutate[x, v], and lookup[x, y], our

original aim was to show that, for every commandC, the footprints ofJCK in the new model are

the smallest safe states. However, in attempting to do this,we identified a general condition on

primitive commands under which the result holds for arbitrary separation algebras.

Letf be a local function on a separation algebraΣ. If, for A ∈ P(Σ), we definef(A) =
⊔

σ∈A

f(σ),

then the locality condition (definition 2.5) can be restatedas

∀σ′, σ ∈ Σ. f({σ′} ∗ {σ}) ⊑ {σ′} ∗ f({σ})

The⊑ ordering in this definition allows local functions to be moredeterministic on larger states.

This sensitivity of determinism to larger states is apparent in the AD command in the standard

model from example 1.2. On the empty heap, the command produces an empty heap, and reassigns

variablex to any value, while on the singleton cell 1, it disallows the possibility that x = 1

afterwards. In the new model, theAD command does not have this sensitivity of determinism in

the output states. In this case, the presence or absence of the cell 1 does not affect the outcomes

of theAD command, since the command can only assignx to a value chosen from the free set,

which does not change no matter what additional cells may be framed in. With this observation,

we consider the general class of local functions in which this sensitivity of determinism is not

present.

2.5. Regaining Safety Footprints 59

Definition 2.21 (Determinism Constancy)Letf be a local function andsafe(f) the set of states

on whichf does not fault. The functionf has the determinism constancy property if and only if,

for everyσ ∈ safe(f),

∀σ′ ∈ Σ. f({σ′} ∗ {σ}) = {σ′} ∗ f({σ})

Notice that the determinism constancy property by itself implies that the function is local, and it

can therefore be thought of as a form of ‘strong locality’. Firstly, we find that local functions that

have determinism constancy always have footprints given bythe smallest safe states.

Lemma 2.22 If a local functionf has determinism constancy then its footprints are the smallest

safe states.

Proof: Letmin(f) be the smallest safe states off . These are footprints by lemma 2.13. For any

larger stateσ′ • σ whereσ ∈ min(f), σ′ ∈ Σ andσ is non-empty, we have

f(σ′ • σ) = f({σ′} ∗ {σ}) = {σ′} ∗ f(σ)

SinceLf (σ′ • σ) ⊑ {σ′} ∗ f(σ), by proposition 2.12 we have thatLf (σ′ • σ) = f(σ′ • σ), and so

σ′ • σ is not a footprint off .

We now demonstrate that the determinism constancy propertyis preserved by all the constructs of

our programming language. This implies that if all the primitive commands of the programming

language have determinism constancy, then the footprints of every program are the smallest safe

states.

Theorem 2.23 If all the primitive commands of the programming language have determinism

constancy, then the footprint of every program is given by the smallest safe states.

Proof: Assuming all primitive commands have determinism constancy, we shall show by induc-

tion that every composite command has determinism constancy and the result follows by lemma

2.22. So for commandsC1 andC2, let f = JC1K and g = JC2K and assumef and g have

60 Chapter 2. Footprints and Complete Specifications

determinism constancy. For sequential composition we have, for σ ∈ safe(f ; g) andσ′ ∈ Σ,

(f ; g)({σ′} ∗ {σ})

= g(f({σ′} ∗ {σ}))

= g({σ′} ∗ f({σ}))

(f has determinism constancy andσ ∈ safe(f) sinceσ ∈ safe(f ; g))

= g(
⊔

σ1∈f(σ)

{σ′} ∗ {σ1})

=
⊔

σ1∈f(σ)

g({σ′} ∗ {σ1})

=
⊔

σ1∈f(σ)

{σ′} ∗ g(σ1)

(g has determinism constancy andσ1 ∈ safe(g) sinceσ ∈ safe(f ; g) andσ1 ∈ f(σ))

= {σ′} ∗
⊔

σ1∈f(σ)

g(σ1) (distributivity)

= {σ′} ∗ (f ; g)(σ)

For non-deterministic choice, we have forσ ∈ safe(f + g) andσ′ ∈ Σ,

(f + g)({σ′} ∗ {σ})

= f({σ′} ∗ {σ}) ⊔ g({σ′} ∗ {σ})

= {σ′} ∗ f({σ}) ⊔ {σ′} ∗ g({σ})

(f andg have determinism constancy andσ ∈ safe(f) andσ ∈ safe(g))

= {σ′} ∗ (f({σ}) ⊔ g({σ})) (distributivity)

= {σ′} ∗ (f + g)({σ})

2.5. Regaining Safety Footprints 61

For Kleene-star, we have forσ ∈ safe(f⋆) andσ′ ∈ Σ,

(f⋆)({σ′} ∗ {σ})

=
⊔

n

fn({σ′} ∗ {σ})

=
⊔

n

{σ′} ∗ fn({σ})

(determinism constancy preserved under sequential composition andσ ∈ safe(fn))

= {σ′} ∗
⊔

n

fn({σ}) (distributivity)

= {σ′} ∗ (f⋆)({σ})

Now that we have shown the general result, it remains to checkthat all the primitive commands in

the new model of example 6 do have determinism constancy.

Proposition 2.24 LetH1 be the stack and heap model of example 1.2 andH2 be the alternative

model of example 6. The commandsnew[x], mutate[x, v] and lookup[x, y] all have determinism

constancy in both models. Thedispose[x] command has determinism constancy inH2 but not in

H1.

Proof: We give the proofs for the new and dispose commands in the two models, and the cases

for mutate and lookup can be checked in a similar way. Fordispose[x] in H1, the following

counterexample shows that it does not have determinism constancy.

dispose[x]({l 7→v} ∗ {x 7→ l • l 7→w})

= dispose[x](∅)

= ∅

< {l 7→v • x 7→ l}

= {l 7→v} ∗ dispose[x](x 7→ l • l 7→w)

Fornew[x] in H1, any safe state is of the formh • x 7→v. For anyh′ ∈ H1, we have

{h′} ∗ new[x](h • x 7→v) = {h′} ∗ {h • x 7→ l • l 7→w | w ∈ V al, l ∈ L\loc(h)} (†)

62 Chapter 2. Footprints and Complete Specifications

If h′ • h • x 7→v is undefined thenh′ shares locations withloc(h) or variables withvar(h) ∪ {x}.

This means that the RHS in† is the empty set. We havenew[x]({h′}∗{h•x 7→v}) = new[x](∅) =

∅ = {h′} ∗ new[x](h • x 7→v). If h′ • h • x 7→v is defined, then

new[x]({h′} ∗ {h • x 7→v})

= new[x](h′ • h • x 7→v)

= {h′ • h • x 7→ l • l 7→w | w ∈ V al, l ∈ L\loc(h′ • h)}

= {h′} ∗ {h • x 7→ l • l 7→w | w ∈ V al, l ∈ L\loc(h′ • h)}

= {h′} ∗ {h • x 7→ l • l 7→w | w ∈ V al, l ∈ L\loc(h)}

= {h′} ∗ new[x](h • x 7→v)

Fordispose[x] in H2, any safe state is of the formh • x 7→ l • l 7→v • F . Leth′ ∈ H2. We have

{h′} ∗ dispose[x](h • x 7→ l • l 7→v • F) = {h′} ∗ {h • x 7→ l • F ∪ {l}} (††)

If h′ • h • x 7→ l • l 7→v • F is undefined then eitherh′ contains a free set or it contains locations

in loc(h) ∪ {l} or variables invar(h) ∪ {x}. If h′ contains a free set or it contains locations in

loc(h) or variables invar(h)∪{x}, then the RHS in†† is the empty set. Ifh′ contains the location

l then also the RHS in†† is the empty set since the free setF ∪ {l} also containsl. Thus in both

cases the RHS in†† is the empty set, and we havedispose[x]({h′} ∗ {h • x 7→ l • l 7→ v • F}) =

∅ = {h′} ∗ dispose[x](h • x 7→ l • l 7→v • F).

If h′ • h • x 7→ l • l 7→v • F is defined then we have

dispose[x]({h′} ∗ {h • x 7→ l • l 7→v • F})

= dispose[x](h′ • h • x 7→ l • l 7→v • F)

= {h′ • h • x 7→ l • F ∪ {l}}

= {h′} ∗ {h • x 7→ l • F ∪ {l}}

= {h′} ∗ dispose[x](h • x 7→ l • l 7→v • F)

Fornew[x] in H2, any safe state is of the formh • x 7→v • F . Leth′ ∈ H2. We have

{h′} ∗ new[x](h • x 7→v • F) = {h′} ∗ {h • x 7→ l • l 7→w • F\{l} | w ∈ V al, l ∈ F} (†††)

2.6. Conclusion 63

If h′ •h •x 7→v •F is undefined then eitherh′ contains a free set or it contains locations inloc(h)

or variables invar(h) ∪ {x}. In all these cases the RHS in††† is the empty set, and so we have

new[x]({h′} ∗ {h • x 7→v • F}) = ∅ = {h′} ∗ new[x](h • x 7→v • F).

If h′ • h • x 7→v • F is defined then we have

new[x]({h′} ∗ {h • x 7→v • F})

= new[x](h′ • h • x 7→v • F)

= {h′ • h • x 7→ l • l 7→w • F\{l} | w ∈ V al, l ∈ F}

= {h′} ∗ {h • x 7→ l • l 7→w • F\{l} | w ∈ V al, l ∈ F}

= {h′} ∗ new[x](h • x 7→v • F)

Thus theorem 2.23 and proposition 2.24 tell us that using thealternative model of example 6, the

footprint of every program is given by the smallest safe states, and hence we have regained safety

footprints for all programs. In fact, the same is true for theoriginal model of example 1.2 if we do

not include the dispose command as a primitive command, since all the other primitive commands

have determinism constancy. This, for example, would be thecase when modelling a garbage

collected language [43].

2.6 Conclusion

We have developed a general theory of relevance footprints in the abstract setting of local functions

that act on separation algebras. Based on the definition of locality, we introduced the formal defini-

tion of the relevance footprint of a local function, demonstrated essentiality of relevance footprints

and identified the conditions for sufficiency. The theory of relevance footprints was then used to

characterize the conditions under which the safety footprint provides complete specifications. We

introduced an alternative model of heaps in which the correspondence between safety and rele-

vance footprints is achieved, and identified the general property of determinism constancy which

guarantees the correspondence in arbitrary resource models.

Apart from the natural correspondence between safety and relevance footprints, the new heap

model also provides a more robust treatment of memory allocation, in which deterministic mem-

64 Chapter 2. Footprints and Complete Specifications

ory allocation and allocation in a finite amount of memory maybe modelled as local functions.

This is not true of the standard heap model, where memory allocation must necessarily be non-

deterministic and an unbounded amount of memory is assumed.It is a direction for future work

to explore this stronger treatment of allocation in practical applications, such as the verification of

memory usage in embedded systems.

Finally, we comment on some related work. The discussion here has been based on the static

notion of footprints asstatesof the resource on which a program acts. A different notion offoot-

print has recently been described in [28], where footprintsare viewed astracesof execution of

a computation. O’Hearn has described how theAD problem is avoided in this more elaborate

semantics, as the allocation of cells in an execution prevents the framing of those cells. Interest-

ingly, however, the heap model from example 6 illustrates that it is not essential to move to this

more elaborate setting and incorporate dynamic, execution-specific information into the notion of

footprint in order to resolve theAD problem. Instead, with the explicit representation of freecells

in states, one can remain in an extensional semantics and have a purely resource-based view of

footprints.

Chapter 3

Dependence Analysis for Optimization

3.1 Introduction

In this chapter we investigate how the resource reasoning provided by separation logic can be used

to determine dependences between program statements, which is the key to effecting optimizations

such as automatic parallelization. Optimization techniques are generally based on a detection of

the resources accessed by program statements. Such techniques have been extensively studied and

successfully applied for programs with simple data types and arrays, but there has been limited

progress for programs that manipulate pointers and dynamicdata structures [25, 26, 29]. Sepa-

ration logic has made significant advances in automated verification of such heap-manipulating

programs [55, 8, 1, 24, 22], but these analyses cannot be usedfor program parallelization. This

is because the∗ connective can only express separation of memory at a singleprogram point, and

therefore cannot relate memory regions in different statesin the execution of a program.

We introducelabelled separation logicto analyse memory separation properties throughout a pro-

gram’s lifetime, which involves annotating formulae withlabelsto keep track of memory regions

that are accessed by commands. This label-tracking is implemented in a method of symbolic

execution first presented in [3], which is the basis of automated program analysis with separa-

tion logic. The technique allows us to determine heap-access dependences between commands

in the program, but we find that these dependences alone are not sufficient to safely optimize a

program. The ultimate aim is to ensure that any optimizationshould produce the same output

states as the original program. Program optimizations haveoften been based on the assumption

65

66 Chapter 3. Dependence Analysis for Optimization

that if two commands access separate heap and variables in all possible executions, then they can

be parallelized or reordered to give an equivalent program [21, 31]. We describe here how this

assumption actually does not hold in the presence of dynamicmemory allocation and dealloca-

tion, and that optimizations based on the assumption can produce results that are different from

the original program. We discuss example programs to illustrate the problem, and introduce the

notion ofallocation dependences, in addition to heap and stack dependences, in order to guarantee

the safety of optimizations. We formally demonstrate the soundness of the optimizations based on

these dependences using a trace semantics of programs.

Our approach is part of a wider field of using static analysis to detect dependences in programs that

manipulate dynamic pointer data structures [26, 21, 30, 29,38]. The departure point is the use of

separation logic, which gives our approach the potential for scalablity [55] and compositionality

[8]. Our method of labelling memory regions with labels of the accessing commands is similar to

[29], but the underlying abstract domain there is based on the memory layout approximations of

[33] rather than spatial logic formulae. A logic-based approach is also advocated in [30], where

aliasing axiomsand theorem proving are used to detect independence. However, this method has

difficulty handling structural modifications to the data structure, which do not cause problems in

our case. Our method also does not rely onreachabilityproperties of data structures, as in [26].

Such approaches encounter difficulties with data structure‘segments’, such as non-nil-terminated

list segments, or when there is internal sharing within the data structure as in the case of doubly

linked lists. Our approach does not suffer from these inherent limitations as it is based on detecting

the cells that are actually accessed rather than all the onesthat may possibly be accessed.

Shortly after the conference paper on which this work is based [48], a different approach to using

separation logic for optimization was proposed in [31], based on the idea of proof rewriting. In

this case rewriting rules for transforming a program proof into a proof for an optimized program

are presented. This method encounters complications in comparing non-consecutive statements in

programs, since formulae at distant program points may refer to different memory regions even

if they are syntactically the same. In contrast, the label-tracking mechanism we introduce here

provides a simple method for tracking memory regions through an execution in order to compare

distant statements. Another difference is that the proof rewriting method directly implements

program transformations and does not provide dependence information. In practice, it is better

to supply dependence information to the compiler and leave it the choice of which optimizations

3.2. Labelled Symbolic Heaps 67

to effect, since the practicality of different possible optimizations may depend on a number of

circumstantial factors such as the cost of creating threadsor the context of the program and input

data. Having made these comparisons, we remark that both ourapproach and [31] are based on

the insight that separation logic is a very useful tool not just for verification, but for optimization

as well.

In this chapter we illustrate our method in the standard symbolic execution framework for separa-

tion logic, working with formulae describing linked lists and tree structures as in [3]. The proposed

method is engineered so that it can be applied as a post-processing phase starting from the output

of an existing shape analysis based on separation logic. In the next section we introduce labelled

symbolic heaps, which are separation logic formulae extended with labels. We then describe the

extended symbolic execution algorithm for determining dependences and discuss examples. We

end with a proof of soundness of the method.

3.2 Labelled Symbolic Heaps

Automated analysis based on separation logic is usually implemented in a fragment of the logic

known assymbolic heaps, which were first introduced in [3] and have since become the standard

for such analyses [17, 22, 7, 1, 55, 8, 9]. We first give a brief description of symbolic heaps and

then describe our extension tolabelled symbolic heaps, which shall be used in the analysis for

detecting dependences between program statements.

The concrete heap model is based on a set of fieldsFields, a set of heap locationsLoc, and a

setVal of values that includeLoc and the nil valuenil ∈ Val. We assume a finite setVar of

program variables and an infinite setVar′ of primed variables. Primed variables are logical vari-

ables that will not be used in programs, only in formulae where they will be implicitly existentially

quantified. We then set

Heaps = Loc⇀fin (Fields → Val)

Stacks = (Var ∪ Var′) → Val

The standard symbolic heap fragment is shown in figure 3.1. Welet SH be the set of all symbolic

heaps. The semantic interpretation is shown in figure 3.2, which uses a forcing relations, h |= A

68 Chapter 3. Dependence Analysis for Optimization

x, y, .. ∈ Var program variables

x′, y′, .. ∈ Var′ primed variables

f1, f2, .. ∈ Fields fields

E,F ::= nil | x | x′ expressions

ρ ::= f1 : E1, ..., fk : Ek record expressions

π ::= E = E | E 6= E simple pure formulae

Π ::= true | π | Π ∧ Π pure formulae

S ::= E 7→ [ρ] | ls(E,F) | tree(E) simple spatial formulae

Ψ ::= emp | S | Ψ ∗ Ψ spatial formulae

U ::= Π ∧ Ψ symbolic heaps

Figure 3.1: Standard Symbolic Heaps

wheres ∈ Stacks, h ∈ Heaps, andA is any pure formula, spatial formula, or symbolic heap.

Expressions are program or logical variables, ornil. Pure formulae are a conjunction of equalities

or inequalities of expressions interpreted on the variablestacks, while spatial formulae specify

properties of the heaph.

The simple spatial formulae include the points-to assertion E 7→ [ρ], which describes a single

allocated heap cell with addressE and contents described by record expressionρ, and we have

inductively defined predicates for linked list segments andbinary trees. These data structures use

the fieldsn, l, r ∈ Fields, wheren is the next field for list segments, andl andr are the left and

right subtree fields for binary trees. We have the spatial formulaemp which describes the empty

heap in which there are no allocated cells. The spatial conjunctionΨ1 ∗Ψ2 of two spatial formulae

uses the separating conjunction of separation logic. It holds for a heaph if the heap can be split

into two disjoint partsh1 andh2 such thatΨ1 holds inh1 andΨ2 in h2.

An overall symbolic heapU = Π∧Ψ is the classical conjunction of the the pure formulaΠ and the

spatial formulaΨ describing properties of the stack and heap respectively, with the interpretation

of every primed variable as existentially quantified. The notation s(x′1 7→ v1, . . . , x
′
n 7→ vn) in

figure 3.2 represents the stacks in which the variablesx′1, . . . , x
′
n have valuesv1, . . . , vn.

In order to detect dependences between different parts of the program, our analysis will need to

track regions of the heap during execution, and we do this with a notion oflabelingon the simple

spatial formulae in symbolic heaps. We assume a fixed set of labelsLab, and define alabelled

symbolic heap as symbolic heap in which every simple spatialconjunct is assigned a set of labels

from Lab. Formally, labelled symbolic heaps are given by the grammar:

3.2. Labelled Symbolic Heaps 69

JxKs = s(x) Jx′Ks = s(x′) JnilKs = nil

s, h |= E1 = E2 iff JE1Ks = JE2Ks
s, h |= E1 6= E2 iff JE1Ks 6= JE2Ks
s, h |= true always

s, h |= Π0 ∧ Π1 iff s, h |= Π0 ands, h |= Π1

s, h |= E0 7→ [f1 :E1,...,fk :Ek] iff h = [JE0Ks → r] wherer(fi) = JEiKs for i ∈ 1..k

s, h |= ls(E,F) iff there is a linked list segment fromE toF

s, h |= tree(E) iff there is a binary tree atE

s, h |= emp iff h = ∅

s, h |= Ψ0 ∗ Ψ1 iff ∃h0, h1. h = h0 ∗ h1 ands, h0 |= Ψ0 ands, h1 |= Ψ1

s, h |= Π ∧ Ψ iff ∃v1, . . . , vn. s(x
′
1 7→v1, . . . , x

′
n 7→vn), h |= Π

ands(x′1 7→v1, . . . , x
′
n 7→vn), h |= Ψ

wherex′1, . . . , x
′
n are all the primed variables inΠ ∧ Ψ

The list and tree formulae are formally defined as the least predicates satisfying the inductive definitions:

ls(E,F) ⇔ (E = F ∧ emp) ∨ (E 6= F ∧ ∃y.E 7→ [n : y] ∗ ls(y, F))

tree(E) ⇔ (E = nil ∧ emp) ∨ (∃x, y.E 7→ [l : x, r : y] ∗ tree(x) ∗ tree(y))

Figure 3.2: Interpretation of Symbolic Heaps

l ∈ Lab labels

L ∈ P (Lab) label sets

Σ ::= emp | 〈S〉L | Σ ∗ Σ labelled spatial formulae

H ::= Π ∧ Σ labelled symbolic heaps

We writeLab(H), Var(H) andVar′(H) for the set of all labels, program variables and primed

variables inH respectively. The algorithm will use labels that are indices of program statements

to mark the heap region that is accessed in the execution of a statement. For example, a formula

〈ls(x, nil)〉{19,42} ∗ 〈ls(y, nil)〉{3}

at some point in the symbolic execution expresses that statements 19 and 42 have accessed listx

but not listy, while statement3 accessed listy but not listx.

We letLSH be the set of all labelled symbolic heaps. Labelled symbolicheaps are given a formal

interpretation by extending concrete heaps so that every location maps to a heap cell and a set of

labels, that is,

70 Chapter 3. Dependence Analysis for Optimization

Heaps = Loc⇀fin ((Fields → Val) × P (Lab))

The label set for each heap cell contains the labels of all thecommands that have accessed that

cell. This component will be updated with new labels as the program execution proceeds. Concrete

labelled heaps can satisfy both unlabelled and labelled symbolic heaps. For unlabelled symbolic

heaps, the interpretation ignores the labels in the concrete heap. For labelled symbolic heaps, the

label sets in spatial formulae are an over-approximation ofthe label sets in the concrete heap. The

formal definition is as follows.

Definition 3.1 (Satisfaction) Assume we have a stacks and labelled concrete heaph. For an

unlabelled symbolic heapU , we haves, h |= U as defined in figure 3.2.

s, h |= 〈S〉L iff s, h |= S and for all ℓ ∈ dom(h), if h(ℓ) = (r, L′) thenL′ ⊆ L

s, h |= Σ0 ∗ Σ1 iff ∃h0, h1. h = h0 ∗ h1 ands, h0 |= Σ0 ands, h1 |= Σ1

s, h |= Π ∧ Σ iff ∃v1, . . . , vn. s(x
′
1 7→v1, . . . , x

′
n 7→vn), h |= Π and

s(x′1 7→v1, . . . , x
′
n 7→vn), h |= Σ

wherex′1, . . . , x
′
n are all the primed variables inΠ ∧ Σ

Notice that the symbolic heap only gives an over-approximation of the labels of the concrete heap.

For example, assume we haves, h whereh contains separate lists atx andy, the head of the list

atx has label set{l}, and the label sets of the rest of the heap are all empty. Then we have

s, h |= 〈x 7→ [n : x′]〉{l} ∗ 〈ls(x
′, y)〉∅ ∗ 〈ls(y, nil)〉∅

s, h |= 〈ls(x, y)〉{l} ∗ 〈ls(y, nil)〉{l}

s, h 6|= 〈ls(x, y)〉∅ ∗ 〈ls(y, nil)〉∅

Definition 3.2 (Entailment) An entailmentH ⊢ H ′ between two labelled symbolic heaps holds

if and only if every concrete states, h that satisfiesH also satisfiesH ′.

We define a general formula as a setP ∈ P(LSH) of labelled symbolic heaps, representing the

disjunction of all the heaps inP .

3.3. Dependence Analysis 71

3.3 Dependence Analysis

We now present the analysis for detecting dependences between statements in a program that is

written in an imperative programming language with heap manipulating commands, while loops

and procedures. For such programs, we first perform an inter-procedural shape analysis based

on separation logic, such as the one described in [8], which gives us specifications for procedure

calls and while loops. These specifications are pre- and post-conditions given in terms of standard

(unlabelled) symbolic heaps as shown in figure 3.1. Formally, a specification obtained from the

shape analysis is given as aspec table.

Definition 3.3 (Spec table)A spec tableT : SH ⇀ P(SH) is a partial function from unlabelled

symbolic heaps to sets of unlabelled symbolic heaps. A specification for a command given as a

spec tableT represents the set of Hoare triples for the command in which,for everyU ∈ dom(T),

there is a triple with pre-conditionU and post-condition
∨

U ′∈T (U) U
′.

Given these specifications from the shape analysis, our dependence analysis uses an intermediate

language for commands in which every composite command (a procedure call, conditional or

while loop) is represented by aspecifiedcommand,com[T], whereT is the specification given for

the composite command.

Definition 3.4 (Programming language) The programming language is given by the following

grammar:

b ::= E = E | E 6= E boolean expressions

c ::= x := E | x := E → f | E1 → f := E2 | new(x) | dispose(x) atomic commands

C ::= c | com[T] | C1;C2 programs

Boolean expressions test equality or inequality between variable expressions (defined in figure

3.1). We have atomic commandsc for manipulating the heap and program variables. The as-

signment commandx := E assigns to variablex the value of expressionE. The heap lookup

commandx := E → f assigns tox the value of fieldf in the heap cell at addressE. The heap

mutation commandE1 → f := E2 sets the value of fieldf at heap cellE1 to the valueE2. The

allocation commandnew(x) allocates a new heap cell and setsx to its address, anddispose(x)

72 Chapter 3. Dependence Analysis for Optimization

deallocates the heap cell at addressx. The formal semantics of these commands is given in sec-

tion 3.6 when we demonstrate soundness. A programC is either an atomic command, a specified

command or a sequential composition of commands. We also assume that we are given the sets

RV(C) andMV(C) for the set of variables that are read and modified by commandC respectively

(these variables can be obtained from the syntax of commands).

The dependence analysis will be applied to a sequential block of commands of the forml1 :

C1; . . . ; ln : Cn, where each componentli : Ci of the block is either an atomic command or a

specified command, indexed by labelli ∈ Lab. The aim of the analysis is to detect the dependences

between the component commandsC1, . . . , Cn, so that any parallelization or optimization that

respects these dependences produces the same results as theoriginal program. Notice that although

the bodies of composite commands such as procedures, conditionals and loops are abstracted away

as they are replaced by specified commands, we can apply the analysis separately to different levels

of nesting in the original program in order to optimize the bodies of composite commands.

For a sequential blockC and a given pre-condition formulaP ∈ P(LSH), the dependence analysis

is defined by thegetDeps(C,P) function, which returns adependence setD ∈ P(Lab × Lab)

that relates labels of commands in sequential block betweenwhich there is a dependence. There

are three kinds of dependences that must be determined in order to safely optimize a program.

These are heap-carried dependences, stack-carried dependences and dependences due to dynamic

memory allocation. ThegetDeps function returns the union of all three kinds of dependencesin

the sequential block.

Definition 3.5 getDeps function For a formulaP ∈ P(LSH) and sequential blockC, we have

getDeps(C,P) = getStackDeps(C) ∪ getHeapDeps(C,P) ∪ getAllocDeps(C)

Stack dependences are easily determined from the syntax of programs by observing the variables

accessed by commands, so that

getStackDeps(C) = {(li, lj) | li : Ci andlj : Cj access common stack variables}

The main difficulty is in determining heap-carried dependences, which is the focus of this chapter.

We first describe our method for determining heap-carried dependences, and will then discuss the

3.3. Dependence Analysis 73

Algorithm 1 Exec(C, (P,D))

1: if C = empty then
2: return (P,D) ;
3: else ifC = l : c then
4: return ExecAtm(l : c, (P,D)) ;
5: else ifC = l : com[T] then
6: return ExecSpec(l : com[T], (P,D)) ;
7: else ifC = l : C1;C

′ then
8: return Exec(C ′,Exec(l : C1, (P,D))) ;
9: end if

allocation dependences.

The heap-dependence detection method is based on a symbolicexecution of the program. Given

a sequential blockC, a pre-conditionP ∈ P(LSH), and an initial dependence setD ∈ P(Lab ×

Lab), the symbolic execution is performed by the functionExec(C, (P,D)), which detects heap

dependences by tracking the labels of component commands through the execution, starting from

the given pre-condition. If successful, the function returns a pair(P ′,D′) whereP ′ ∈ P(LSH)

is the post-condition formula andD′ ∈ P(Lab × Lab) contains any heap dependences between

the commands in the sequential block. TheExec function is defined in algorithm 1. It uses the

subroutinesExecAtm andExecSpec in the case of atomic and specified commands respectively.

We describe each of these cases next.

Definition 3.6 (getHeapDeps) For a formulaP ∈ P(LSH) and sequential blockC, we define

getHeapDeps(C,P) = D

whereD is the set of dependences obtained fromExec(C, (P, ∅)) = (P ′,D).

3.3.1 Executing atomic commands

The ExecAtm function symbolically executes atomic commands by transforming the symbolic

states according to a set of inference rules. These rules mirror the imperative update of the concrete

heap state during program execution. They are based on the original symbolic execution rules from

[3] and are extended here for labelled symbolic heaps and dependence detection.

The inference rules for symbolic execution are divided intocommand applicationandrearrange-

mentrules, which are displayed in figure 3.3. Read from top to bottom, each rule transforms a

74 Chapter 3. Dependence Analysis for Optimization

symbolic state in the premise to a symbolic state in the conclusion, where a symbolic state is of

the form(H,D) with H a labelled symbolic heap andD a set of dependences collected so far.

The rules can be understood by appeal to operational intuition. The command application rule

for each atomic command describes the effect of the command on the labelled symbolic heap ac-

cording to the operation of the command on concrete heaps, adds the label of the command to

any heap region that is accessed, and records new dependenceinformation to the dependence set.

For instance, reading from top to bottom, the rule for thel : dispose(x) command states that if

initially the symbolic heap isΠ∧Σ∗〈E 7→ [ρ]〉L and the dependence set isD, then after executing

the command the cell atE is disposed to give the heapΠ ∧ Σ. The dependence set is updated to

D ∪ {(l, l′) | l′ ∈ L} since there is a heap-carried dependence between this command and all the

commands that previously accessed the heap cell atE, the labels of which were collected in the

setL.

The rule for thel : new(x) command creates a new heap cell in the symbolic heap, assignsits

address tox, and uses the new existential variablex′ to keep track of the old value ofx. The new

cell is given label set{l} since this is the only command that has so far accessed the cell. This

is recorded in the label set so that dependences between thiscommand and commands that may

subsequently access this cell can be determined. The dependence set is unchanged in this case

since there are no commands that have previously accessed the new cell.

The rule for the assignment commandl : x := E updates the value ofx and uses the new

existential variablex′ to keep track of the old value ofx. The dependence set is again unchanged

since the command does not make any heap access in this case. The rules for mutation (l : E →

f := F) and lookup (l : x := E → f) use the following definitions:

mutate(ρ, f, F) =











f : F, ρ′ if ρ = f : E, ρ′

f : F, ρ if f /∈ ρ

lookup(ρ, f) =











ρ,E if ρ = f : E, ρ′

(ρ, f : x), x if f /∈ ρ andx fresh

The fresh variable returned in the lookup case corresponds to the idea that if a record expression

does not give a value for a particular field then that value is unknown at that point in the analysis,

and hence a fresh variable is introduced to denote the value.In both the mutate and lookup rules,

the label of the command is placed in the label set of the accessed heap cell in the post-condition,

and the dependence set is updated as in the case of the disposecommand. The soundness of

these symbolic rules is based on an over-approximation of the concrete execution semantics of

commands, which we give in 3.6 when we formally demonstrate soundness.

3.3. Dependence Analysis 75

The command application rules are not sufficient on their own. This is because, when commands

access the heap, the pre-condition is expected to be in a certain form in which the heap cell that is

to be accessed is explicitly present. For instance, if the symbolic heap in the premise is

x = z ∧ 〈y 7→ [f : z]〉L1
∗ 〈z 7→ [f : x′]〉L2

then the rule for the mutation commandl : x → f := y cannot be applied because the symbolic

heap should explicitly havex 7→ [ρ] as a spatial conjunct, for someρ. For this reason, symbolic

execution has a separaterearrangementphase, which attempts to put the precondition in the proper

form for a command application rule to fire. For instance, in the example just given we can observe

that the pre-condition is equivalent to

x = z ∧ 〈y 7→ [f : z]〉L1
∗ 〈x 7→ [f : x′]〉L2

which is in a form that allows the mutate rule to fire. The first rearrangement rule in figure 3.3

makes use of equalities to recognize that a dereferencing step is possible and makes appropriate

variable substitutions. For instance, in the example above, the equalityx = z in the formula is

used to change the conjunct〈z 7→ [f : x′]〉L2
to 〈x 7→ [f : x′]〉L2

. Notice that substituting different

variables in the spatial conjunct does not change the label set of the conjunct, because the conjunct

is still describing the same heap location as before.

The other two rearrangement rules are for list segments and trees, which expose7→ facts by un-

rolling the inductive definitions when there is enough information to conclude that the list segment

or tree is nonempty. A list segment is non-empty when the start and end points are different (side

conditionF = F ′ in the rule) and a tree is non-empty when the root is not nil (side condition

F 6= nil in the rule). Besides unrolling the inductive definition, some matching is also included

using the equalityE = F in the side-conditions. Each spatial conjunct in the unrolling of the date

structure formula is given the label set of the original formula, since the described heap region

remains the same. Notice that every rearrangement rule gives a valid entailment between the la-

belled symbolic heaps in the premise and conclusion (in accordance with definition 3.2), and that

the dependence set remains unchanged in all the rearrangement rules since no new dependence

information is obtained.

Definition 3.7 (ExecAtm) For an atomic commandl : c, a symbolic heapH, and dependence

76 Chapter 3. Dependence Analysis for Optimization

COMMAND APPLICATION RULES

(Π ∧ Σ ∗ 〈E 7→ [ρ]〉L, D)

(Π ∧ Σ, D ∪ {(l, l′) | l′ ∈ L})
l : dispose(x)

(Π ∧ Σ, D)

((Π ∧ Σ)[x′/x] ∗ 〈x 7→ []〉{l}, D)
l : new(x), x′ fresh

(Π ∧ Σ, D)

(x = E[x′/x] ∧ (Π ∧ Σ)[x′/x], D)
l : x := E, x′fresh

(Π ∧ Σ ∗ 〈E 7→ [ρ]〉L, D)

(Π ∧ Σ ∗ 〈E 7→ [ρ′]〉L∪{l}, D ∪ {(l, l′) | l′ ∈ L})
l : E → f := F,mutate(ρ, f, F) = ρ′

(Π ∧ Σ ∗ 〈E 7→ [ρ]〉L, D)

(x = F [x′/x] ∧ (Π ∧ Σ ∗ 〈E 7→ [ρ′]〉L∪{l})[x
′/x], D ∪ {(l, l′) | l′ ∈ L})

l : x := E → f, x′ fresh , lookup(ρ, f) = (ρ′, F)

REARRANGEMENT RULES

(Π ∧ Σ ∗ 〈F 7→ [ρ]〉L, D)

(Π ∧ Σ ∗ 〈E 7→ [ρ]〉L, D)
Π ⊢ E = F

(Π ∧ Σ ∗ 〈ls(F, F ′)〉L, D)

(Π ∧ Σ ∗ 〈E 7→ [n : x′]〉L ∗ 〈ls(x′, F ′)〉L, D)
Π ⊢ F 6= F ′ ∧ E = F andx′ fresh

(Π ∧ Σ ∗ 〈tree(F)〉L, D)

(Π ∧ Σ ∗ 〈E 7→ [l : x′, r : y′]〉L ∗ 〈tree(x′)〉L ∗ 〈tree(y′)〉L, D)
Π ⊢ F 6= nil ∧ E = F andx′, y′ fresh

Figure 3.3: Label tracking symbolic execution rules

3.3. Dependence Analysis 77

setD, theExecAtm(l : c, (H,D)) function symbolically executes the command using the rules

in figure 3.3. Ifc is a command accessing the heap atE (lookup, mutate or dispose), then the

rearrangement rules are first applied to makeE explicit before the command application rule is

applied. The command application rule forl : c is then applied with premise(H,D) and the

function returns the conclusion of the rule(H ′,D′). TheExecAtm function is undefined on an

input state(H,D) if the state is not a valid pre-condition for the symbolic execution rules.

TheExecAtm function is lifted to formulae as follows. For a formulaP ∈ P(LSH), we have

ExecAtm(l : c, (P,D)) is undefined ifExecAtm(l : c, (H,D)) is undefined for anyH ∈ P .

Otherwise we haveExecAtm(l : c, (P,D)) = (P1,D1) where

P1 = {H ′ | (H ′,D′) = ExecAtm(l : c, (H,D)),H ∈ P}

D1 =
⋃

{D′ | (H ′,D′) = ExecAtm(l : c, (H,D)),H ∈ P}

3.3.2 Executing specified commands

The ExecSpec function defines the symbolic execution for specified commands. In the case of

specified commands, the command’s spec table determines thetransformation of the symbolic

heap in the execution. For example, assume we are given the commandl : com[T], which is

a procedure that traverses a tree atx and writes certain values at every tree node. In this case

the spec tableT has the single pre-condition with unlabelled symbolic heaptree(x) and the

post-conditionT (tree(x)) = {tree(x)}. Assume that this command is to be executed on the

symbolic state(H,D), where the call-site assertionH is

z = w ∧ 〈z 7→ []〉L1
∗ 〈tree(x)〉L2

∗ 〈ls(y, nil)〉L3

Matching the pre-condition of the spec table, we know that the command only accesses the heap

described by〈tree(x)〉L2
. Also, because this is the part that is accessed, we know thatthe com-

mand can only have heap-dependences with commands that havelabels inL2. To execute the

command, we can use the spec table to replace the part of the heap that matches the pre-condition

with the post-condition of the command, and the other parts of the formula are unaffected. The

labels assigned to the post-condition formulae are all the labels in the pre-condition as well as the

78 Chapter 3. Dependence Analysis for Optimization

label of l of the command, since these are the only commands that may have accessed this heap

region. Hence, after the execution the symbolic state we getis (H ′,D′), where

H ′ ≡ z = w ∧ 〈z 7→ []〉L1
∗ 〈tree(x)〉L2∪{l}

∗ 〈ls(y, nil)〉L3

D′ ≡ D ∪ {(l, l′) | l′ ∈ L2}

There are three things we need to know about how to use the specification to execute the command.

Firstly, the assertion at the calling site of the command maybe spatially larger than the pre-

condition in the spec table, since the pre-condition only describes the part of the heap that is

accessed by the command, and the calling site of the command may have other allocated regions

which the command does not access. For this reason, we need toinfer thespatial frameassertion,

which is the part of the call-site heap that is not in the pre-condition of the command. In the

above example the spatial frame is〈z 7→ []〉L1
∗ 〈ls(y, nil)〉L3

. Secondly, we need to infer the

pure framewhich describes the variables that have not been modified by the command, which in

the above example is the pure formulaz = w. Lastly, we need to know how labels should be

propagated in the execution of the command. Since the pre- and post-conditions in the spec table

are only given in terms ofunlabelledsymbolic heaps, we need to infer theaccessed labels set,

which are the labels in the part of the call-site assertion that is accessed by the command. In the

above example the accessed labels set isL2.

Given this information, the symbolic state after executionis obtained by combining the frame as-

sertions with the post-conditions given in the spec table. These post-condition formulae are given

the accessed labels set plus the labell of the executing command, as in the example above. De-

pendences are determined between the executing command andall the commands in the accessed

labels set.

Formally, the frame assertions and accessed labels set are generated by a functionFrm(H,U, V),

whereH is a labelled symbolic heap (the call-site assertion),U is an unlabelled symbolic heap

(command pre-condition from the spec table), andV ⊆ Var is the set of program variables that

are modified by the command. In the following, we use the notation that, for any unlabelled

spatial formulaΨ = S1 ∗ · · · ∗ Sn and label setL, we shall writeΨ[L] for the labelled formula

〈S1〉L ∗ . . . 〈Sn〉L.

3.3. Dependence Analysis 79

LetU = Π ∧Ψ. If successful, theFrm(H,U, V) function returns a triple(ΠF ,ΣF , LA) of a pure

formulaΠF (the pure frame), a labelled spatial formulaΣF (the spatial frame), and a label setLA

(the accessed labels set) such that

H ⊢ ΠF ∧ Π ∧ ΣF ∗ Ψ[LA]

where entailment is as defined in definition 3.2, andΠF andΣF do not mention any variables inV .

Given the call-site assertion in this form, we know that executing the command on this state will

not changeΠF (since it does not mention any variables modified by the command) andΣF (since

it is not part of the heap affected by the command). Hence, these frame formulae can be combined

with the given post-conditionT (U) of the command to get the following set of symbolic heaps

after execution:

{

ΠF ∧ Π′ ∧ ΣF ∗ Ψ′[LA ∪ {l}] | Π′ ∧ Ψ′ ∈ T (U)
}

The heap after execution satisfies the spatial frame and the post-condition of the command, and

the variable stack satisfies the pure frame and the post-condition. The spatial formulae in the post-

condition describe the part of the heap affected by the command so they are given the label set

LA ∪ {l} and the spatial frame preserves is labels from the call-siteassertion because it is not

accessed. The dependences
{

(l, l′) | l′ ∈ LA

}

are added to the dependence set since the

commandl may depend on any of the commands in setLA. The formal soundness argument for

this symbolic transformation is given in section 3.6.

Before describing how theFrm function works, we first give the formal definition of theExecSpec

function. For a labelled symbolic heapH and dependence setD, theExecSpec(l : com[T], (H,D))

function, shown in algorithm 2, defines the execution of the specified commandcom[T] on the

state(H,D). The function first tests everyU in the pre-conditiondom(T) of the specification to

see if the call-site assertionH can be matched with it, by calling theFrm(H,U, MV(l : com[T]))

function. If this function is successful and returns a result (ΠF ,ΣF , LA), then the set of symbolic

heaps after the execution of the command are obtained by combining the frame formulae with

every post-condition given inT (U) and the dependence set is updated to show that command

l depends on all commands in setLA. TheExecSpec function fails if none of the heaps in the

pre-condition in the spec table can be matched with the call-site assertion.

80 Chapter 3. Dependence Analysis for Optimization

Algorithm 2 ExecSpec(l : com[T], (H,D))

1: for all U ∈ dom(T) do
2: if Frm(H,U, MV(l : com[T])) = (ΠF ,ΣF , LA) then
3: P :=

{

ΠF ∧ Π ∧ ΣF ∗ Ψ[LA ∪ {l}] | Π ∧ Ψ ∈ T (U)
}

;
4: D′ := D ∪

{

(l, l′) | l′ ∈ LA

}

;
5: return (P,D′) ;
6: end if
7: end for
8: return failure ;

Definition 3.8 (ExecSpec(l : com[T], (P,D))) For a formulaP ∈ P(LSH), we haveExecSpec(l :

com[T], (P,D)) fails if ExecSpec(l : com[T], (H,D)) fails for anyH ∈ P . Otherwise we have

ExecSpec(l : com[T], (P,D)) = (P1,D1) where

P1 =
⋃

{P ′ | (P ′,D′) = ExecAtm(l : c, (H,D)),H ∈ P}

D1 =
⋃

{D′ | (H ′,D′) = ExecAtm(l : c, (H,D)),H ∈ P}

Inferring the frame assertion and accessed labels setWe now describe how theFrm function

infers the pure and spatial frames and the accessed labels set. As we discussed above, when given a

labelled call-site symbolic heapH, an unlabelled pre-conditionU = Π∧Ψ and the set of variables

V that are accessed by the command, theFrm(H,U, V) function computes a triple(ΠF ,ΣF , LA)

such that

H ⊢ ΠF ∧ Π ∧ ΣF ∗ Ψ[LA]

whereΠF andΣF do not contain any variables inV . The function is based on an adaptation of

the frame inference method from [3], but extended for our purposes so that the frame assertion

preserves its labels from the original call-site assertionand the accessed labels set is also inferred.

To do this, we use a set of inference rules for entailments between labelled symbolic heaps, which

are an extension of the rules for standard unlabelled symbolic heaps from [3]. The rules are shown

in figure 3.4, which uses the following notation:

• the expressionop(E) is an abbreviation forE 7→ [ρ], ls(E,F), or tree(E).

• the guardG(op(E)) asserts that the heap is non-empty, and is defined as

G(E 7→ [ρ]) , true G(ls(E,F)) , E 6= F G(tree(E)) , E 6= nil

3.3. Dependence Analysis 81

NORMALISATION RULES

Π[E/E′] ∧ Σ[E/E′] ⊢ Π′[E/E′] ∧ Σ′[E/E′]

Π ∧ E′ = E ∧ Σ ⊢ Π′ ∧ Σ′

Π ∧ Σ ⊢ Π′ ∧ Σ′

Π ∧ E = E ∧ Σ ⊢ Π′ ∧ Σ′

Π ∧ Σ ⊢ Π′ ∧ Σ′

Π ∧ Σ ∗ 〈ls(E, E)〉
L

⊢ Π′ ∧ Σ′

Π ∧ Σ ⊢ Π′ ∧ Σ′

Π ∧ Σ ∗ 〈tree(nil)〉
L

⊢ Π′ ∧ Σ′

Π ∧ G(op(E)) ∧ E 6= nil ∧ 〈op(E)〉
L

∗ Σ ⊢ Π′ ∧ Σ′

Π ∧ G(op(E)) ∧ 〈op(E)〉
L

∗ Σ ⊢ Π′ ∧ Σ′
E 6= nil /∈ Π ∧ G(op(E))

Π ∧ E1 6= E2 ∧ 〈op
1
(E1)〉

L1
∗ 〈op

2
(E2)〉

L2
∗ Σ ⊢ Π′ ∧ Σ′

Π ∧ 〈op
1
(E1)〉

L1
∗ 〈op

2
(E2)〉

L2
∗ Σ ⊢ Π′ ∧ Σ′

G(op
1
(E1)), G(op

2
(E2)) ∈ Π

E1 6= E2 /∈ Π

SUBTRACTION RULES

Π ∧ Σ ⊢ Π′ ∧ Σ′

Π ∧ Σ ⊢ Π′ ∧ E = E ∧ Σ′

Π ∧ π ∧ Σ ⊢ Π′ ∧ Σ′

Π ∧ π ∧ Σ ⊢ Π′ ∧ π ∧ Σ′

Π ∧ Σ ⊢ Π′ ∧ Σ′

Π ∧ Σ ⊢ Π′ ∧ 〈ls(E, E)〉
L

∗ Σ′

Π ∧ Σ ⊢ Π′ ∧ Σ′

Π ∧ Σ ⊢ Π′ ∧ 〈tree(E, nil)〉
L

∗ Σ′

Π ∧ Σ ⊢ Π′ ∧ Σ′

Π ∧ 〈S〉
L

∗ Σ ⊢ Π′ ∧ 〈S′〉
L′ ∗ Σ′

S 4 S′, L ⊆ L′, Var′(S) ∩ Var′(Π ∧ Σ) = ∅, Var′(S′) ∩ Var′(Π′ ∧ Σ′) = ∅

Π ∧ 〈E 7→ [l : E1, r : E2, ρ]〉
L1

∗Σ ⊢ Π′ ∧ 〈E 7→ [l : E1, r : E2, ρ]〉
L2

∗〈tree(E1)〉
L2

∗ 〈tree(E2)〉
L2

∗Σ′

Π ∧ 〈E 7→ [l : E1, r : E2, ρ]〉
L1

∗Σ ⊢ Π′ ∧ 〈tree(E)〉
L2

∗Σ′

〈E 7→ [l : E1, r : E2, ρ]〉
L2

/∈ Σ′

Π∧E1 6=E3 ∧ 〈E1 7→ [n : E2, ρ]〉
L1

∗Σ ⊢ Π′ ∧ 〈E1 7→ [n : E2, ρ]〉
L2

∗〈ls(E2, E3)〉
L2

∗Σ′

Π∧E1 6=E3 ∧ 〈E1 7→ [n : E2, ρ]〉
L1

∗Σ ⊢ Π′ ∧ 〈ls(E1, E3)〉
L2

∗Σ′

〈E1 7→ [n : E2, ρ]〉
L1

/∈ Σ′

Π ∧ 〈ls(E1, E2)〉
L1

∗ Σ ⊢ Π′ ∧ 〈ls(E1, E2)〉
L2

∗ 〈ls(E2, nil)〉
L2

∗ Σ′

Π ∧ 〈ls(E1, E2)〉
L1

∗ Σ ⊢ Π′ ∧ 〈ls(E1, nil)〉
L2

∗ Σ′

Π ∧ G(op(E3)) ∧ 〈ls(E1, E2)〉
L1

∗ 〈op(E3)〉
L2

∗ Σ ⊢ Π′ ∧ 〈ls(E1, E2)〉
L3

∗ 〈ls(E2, E3)〉
L3

∗ Σ′

Π ∧ G(op(E3)) ∧ 〈ls(E1, E2)〉
L1

∗ 〈op(E3)〉
L2

∗ Σ ⊢ Π′ ∧ 〈ls(E1, E3)〉
L3

∗ Σ′

Figure 3.4: Rules for labelled entailment

• we writeS 4 S′ eitherS = S′ or for someE, ρ andρ′, we haveS = E 7→ [ρ, ρ′] and

S′ = E 7→ [ρ].

These rules are sound from top to bottom, in the sense that if the entailment in the premise holds

according to definition 3.2 then so does the entailment in theconclusion. However, in practice the

rules are applied upwards starting from a given entailment,until we arrive at the axiomΠ∧ emp ⊢

true ∧ emp, at which point we have constructed a valid proof of the givenentailment.

The rules are categorized as either normalization or subtraction rules. The normalization rules

simplify the left hand side of entailments and make information explicit for the subtraction rules

to be applied. The first two normalization rules get rid of equalities as soon as possible so that the

forthcoming rules can be formulated using simple pattern matching (i.e., we can use〈E 7→ [ρ]〉L

directly rather than〈F 7→ [ρ]〉L andE = F derivable). The first rule performs variable substitu-

tion after removing the equality and the second removes redundant equalities. The next two rules

82 Chapter 3. Dependence Analysis for Optimization

remove inconsistent data structure formulae from the left hand side of the entailment. The last

two normalization rules make derivable inequalities explicit on the left hand side, based on the

properties of the spatial points-to formula and the data structure formulae.

The second group of rules, the subtraction rules, work by simplifying and explicating information

on the right hand side of entailments in order to eventually reduce to the axiomΠ∧ emp ⊢ true∧

emp. The first two rules eliminate redundant equalities from theright hand side, and the next two

rules eliminate inconsistent data structure formulae fromthe right hand side. The fifth rule, which

we call *-introduction, is the main subtraction rule which helps reach the desired axiom. It matches

and eliminates simple spatial formulae on both sides of the entailment when applied upwards.

SinceS 4 S′ andL ⊆ L′, we have〈S〉L ⊢ 〈S′〉L′ . However, we need to be careful with the

existential interpretation of primed variables, which wasnot the case in [3]. The addditional side

condition that the new spatial conjuncts do not share primedvariables with the existing formulae

ensures the soundness of the rule from top to bottom.

The last four subtraction rules are based on properties of the inductive tree and list segment predi-

cates. The first two rules unfold the predicates on the right hand side according to their inductive

definition. The last two rules are specific for the list segment predicate, since it is possible to

unfold a list segment from the middle to obtain two list segments. We do not have similar rules

for the tree predicate since unfolding a tree in the middle does not give whole trees. In the last

subtraction rule, theG(op(E3))∧ op(E3) part of the left-hand side ensures thatE3 does not occur

within the segments fromE1 toE2, which is necessary for appending list segments, since theyare

required to be acyclic.

As an example of the use of these rules, if we want to check the validity of the entailment

z = y ∧ 〈x 7→ []〉L1
∗ 〈tree(y)〉L2

⊢ 〈x 7→ []〉L1
∗ 〈tree(z)〉L2∪L3

then we can apply the rules upwards to construct the following derivation:

emp ⊢ emp

〈tree(z)〉L2
⊢ 〈tree(z)〉L2∪L3

z=y∧ 〈tree(y)〉L2
⊢ 〈tree(z)〉L2∪L3

z=y∧〈x 7→ []〉L1
∗ 〈tree(y)〉L2

⊢ 〈x 7→ []〉L1
∗ 〈tree(z)〉L2∪L3

3.3. Dependence Analysis 83

where we have applied the *-introduction rule (fifth subtraction rule), the first normalization rule

and the *-introduction rule again to reach the axiom at the top.

This is fine if we only need to check the validity of entailments, but in our case we will use these

rules to infer missing information about the frame assertion and the accessed labels set. We first

state the following definition and results, which we shall use to define theFrm function.

Definition 3.9 For a labelled symbolic heapH = Π∧〈S1〉L1
∗· · · ∗〈Sn〉Ln

, we writelabsets(H)

for themultiset{L1, . . . , Ln} of the label sets of all spatial conjuncts inH.

Lemma 3.1 Suppose we apply the inference rules upwards from an entailmentH ⊢ H ′ and get

the following derivation

H1 ⊢ H ′
1...

H ⊢ H ′

Thenlabsets(H1) ⊆ labsets(H).

Proof: The proof is by induction on the size of the derivation. For the base case where the premise

and conclusion are identical and there are no rule applications, the result follows trivially. For the

inductive case we assume that the result holds for all derivations of sizen− 1 and that the given

derivation is of sizen and of the form

H1 ⊢ H ′
1...

H2 ⊢ H ′
2

H ⊢ H ′

where the number of steps fromH2 ⊢ H ′
2 to the premise isn − 1. Each of the rules in figure

3.4 guarantees thatlabsets(H2) ⊆ labsets(H), and we have by the induction hypothesis that

labsets(H1) ⊆ labsets(H2). Hencelabsets(H1) ⊆ labsets(H).

The following theorem describes how, when given a labelled symbolic heap (the call-site assertion)

and an unlabelled symbolic heap (the command pre-condition), we can use the proof rules to infer

the missing information about the frame assertion and accessed labels set.

Theorem 3.2 Assume we are given a labelled symbolic heapH and an unlabelled symbolic heap

Π∧Ψ such thatH andΠ∧Ψ do not have any common primed variables. Suppose that we apply

84 Chapter 3. Dependence Analysis for Optimization

the inference rules upwards from the entailmentH ⊢ Π ∧ Ψ[Lab] to get the derivation:

Π′ ∧ Σ ⊢ true ∧ emp
...

H ⊢ Π ∧ Ψ[Lab]

LetL be any superset of
⋃

(labsets(H) − labsets(Σ)). Then the entailmentH ⊢ Π ∧ Ψ[L] ∗ Σ

is valid.

Proof: We show that the given derivation implies the existence of a valid proof of the entailment

H ⊢ Π ∧ Ψ[L] ∗ Σ. We first prove the following claim:

claim 1. In the derivation given in the assumption of the theorem, if we replace all the label sets

Lab on the right hand side of entailments withL to get:

Π′ ∧ Σ ⊢ true ∧ emp
...

H ⊢ Π ∧ Ψ[L]

then this is a derivation that can be made using the proof rules in figure 3.4. We prove this claim

by induction on the size of the derivation. For the base case when the premise and conclusion are

identical and there are no rule applications, the result follows trivially since there are no spatial

conjuncts inΨ. For the inductive case we assume that the result holds for all derivations of size

n− 1 and that the given derivation is of sizen and of the form

Π′ ∧ Σ ⊢ true ∧ emp
...

H1 ⊢ H2

H ⊢ Π ∧ Ψ[Lab]

where the number of steps fromH1 ⊢ H2 to the premise isn − 1. The step from the conclusion

H ⊢ Π ∧ Ψ[Lab] toH1 ⊢ H2 is an application of one of the inference rules from figure 3.4. For

each of the inference rules it can be checked thatH2 is of the formΠ2 ∧Ψ2[Lab] for someΠ2 and

Ψ2. We have assumedL is a superset of
⋃

(labsets(H) − labsets(Σ)), so it is also a superset of
⋃

(labsets(H1) − labsets(Σ)) sincelabsets(H1) ⊆ labsets(H) by lemma 3.1. Therefore, by the

induction hypothesis, there exists the valid derivation

Π′ ∧ Σ ⊢ true ∧ emp
...

H1 ⊢ Π2 ∧ Ψ2[L]

3.3. Dependence Analysis 85

Now to complete the proof of claim 1 we have to show that we can make the inference step

H1 ⊢ Π2 ∧ Ψ2[L]

H ⊢ Π ∧ Ψ[L]
(†)

We already know from the assumption of the inductive case that some rule in figure 3.4 can be

applied to make the inference

H1 ⊢ Π2 ∧ Ψ2[Lab]

H ⊢ Π ∧ Ψ[Lab]
(‡)

In every rule in figure 3.4 except the *-introduction rule (which eliminates spatial conjuncts up-

wards), there are no constraints imposed on the value of the label sets on the right hand side of

the entailment, so we can replace every label setLab with L on the right hand side of entailments

in (‡) to achieve the required inference(†). In the case of the *-introduction rule, assume that

in (‡) we haveH = ΠH ∧ 〈S〉L′ ∗ ΣH andH1 = ΠH ∧ ΣH . To achieve the inference(†),

we need to check that it is possible to replace all occurrences of Lab with L on the right hand

side of entailments in(‡). For this it is sufficient to check thatL′ ⊆ L, in accordance with the

side condition of the *-introduction rule. We know thatlabsets(H) = {L′} ⊎ labsets(H1) and

that labsets(Σ) ⊆ labsets(H1) by lemma 3.1. HenceL′ ∈ (labsets(H) − labsets(Σ)), and thus

L′ ⊆ L by definition ofL. This completes the proof of claim 1.

The derivation shown to exist by claim 1 can be transformed into a complete proof of the entail-

mentH ⊢ Π ∧ Ψ[L] ∗ Σ as follows. We first addΣ to the heap on the right hand side of the

entailment at every proof step so that the proof becomes:

Π′ ∧ Σ ⊢ true ∧ Σ
...

H ⊢ Π ∧ Ψ[L] ∗ Σ

One thing to check is that all the *-introduction steps can still be applied after appendingΣ to the

right hand side (because of the side condition about disjointness of primed variables in this rule).

All of these steps are possible because the primed variablesof Σ are disjoint from the primed

variables ofΠ ∧ Ψ[L]. This is becauseΣ only contains primed variables fromH, andVar′(H) is

disjoint fromVar′(Π ∧ Ψ[L]) by assumption of the theorem.

The premise of this proof is the entailmentΠ′ ∧ Σ ⊢ true ∧ Σ, which is a valid entailment, and

86 Chapter 3. Dependence Analysis for Optimization

therefore the conclusion is also valid by soundness of the rules.

Using theorem 3.2, we infer the accessed labels set, the spatial frame and the pure frame as follows.

For a call-site assertionH and unlabelled pre-conditionU = Π ∧ Ψ, we first rename primed

variables inH to ensure that they are disjoint fromU . Then the theorem tells us that if we apply

the inference rules upwards from the entailmentH ⊢ Π ∧ Ψ[Lab] and getΠ′ ∧ Σ ⊢ true ∧ emp,

thenH ⊢ Π ∧ Ψ[L] ∗ Σ holds, whereL =
⋃

(labsets(H) − labsets(Σ)). The setL includes all

the labels from the part of the call-site heap that is in the pre-condition of the command, so this

gives us the accessed labels set. The formulaΣ describes the part of the call-site heap that is not

in the command pre-condition. But before we can use it as a frame assertion, we need to ensure

that it does not mention any variables that are modified by thecommand (so that it can be safely

combined with the post-condition of the command). Hence we existentially quantify any variables

in Σ that are modified by the command. Similarly, the pure frame istaken as the pure part ofH

in which variables that are modified by the command are replaced by the existential ones used for

the spatial frame.

Definition 3.10 (Frm(H,U, V)) Given a labelled call-site symbolic heapH = ΠH ∧ ΣH , an

unlabelled pre-conditionU = Π∧Ψ and the set of variablesV = {x1, . . . , xn}, theFrm(H,U, V)

function first renames primed variables inH to make them disjoint fromU . It then applies the

proof rules from figure 3.4 to search for a derivation of the form:

Π′ ∧ Σ ⊢ true ∧ emp
...

H ⊢ Π ∧ Ψ[Lab]

If it is able to find such a derivation then it returns the triple (ΠF ,ΣF , LA), where, for fresh

primed variablesx′1, . . . , x
′
n,

ΠF = ΠH [x′1/x1, . . . x
′
n/xn]

ΣF = Σ[x′1/x1, . . . x
′
n/xn]

LA =
⋃

(labsets(H) − labsets(Σ))

Corollary 3.3 (Soundness of frame inference)If we haveFrm(H,U, V) = (ΠF ,ΣF , LA) then

H ⊢ ΠF ∧ Π ∧ ΣF ∗ Ψ[LA]

3.3. Dependence Analysis 87

whereΠF andΣF do not mention any variables inV .

Proof: Assume thatH = ΠH ∧ ΣH , U = Π ∧ Ψ and that applying the proof rules upwards from

H ⊢ Π ∧ Ψ[Lab] givesΠ′ ∧ Σ ⊢ true ∧ emp. Then, by theorem 3.2 and definition 3.10, we have

H ⊢ Π ∧ Ψ[LA] ∗ Σ

SinceH ⊢ ΠH , we haveH ⊢ ΠH ∧ Π ∧ Ψ[LA] ∗ Σ. Now, since the function existentially

quantifies variables inΠH andΣ to getΠF andΣF , we have

ΠH ∧ Π ∧ Ψ[LA] ∗ Σ ⊢ ΠF ∧ Π ∧ Ψ[LA] ∗ ΣF

and thereforeH ⊢ ΠH ∧ΠF ∧ Ψ[LA] ∗ΣF . The framesΠF andΣF do not mention variables

in V since they become existentially quantified.

As an example, assume the call-site assertion is

x1 = y ∧ x2 = z ∧ 〈x 7→ []〉L1
∗ 〈tree(y)〉L2

∗ 〈ls(z, nil)〉L3
∗ 〈ls(w, nil)〉L1

the command pre-condition istree(x1) ∗ ls(w, nil) and the set of variables accessed by the

command is{x1, w, z}. TheFrm function first makes the following derivation:

x2 =z ∧ 〈x 7→ []〉L1
∗ 〈ls(z, nil)〉L3

⊢ emp

x2 =z ∧ 〈x 7→ []〉L1
∗ 〈tree(x1)〉L2

∗ 〈ls(z, nil)〉L3
⊢ 〈tree(x1)〉Lab

x1 = y ∧ x2 =z ∧ 〈x 7→ []〉L1
∗ 〈tree(y)〉L2

∗ 〈ls(z, nil)〉L3
⊢ 〈tree(x1)〉Lab

x1 =y∧ x2 =z∧〈x 7→ []〉L1
∗ 〈tree(y)〉L2

∗ 〈ls(z, nil)〉L3
∗ 〈w 7→ []〉L1

⊢ 〈tree(x1)〉Lab ∗ 〈w 7→ []〉
Lab

The function computes the accessed labels setLA =
⋃

({L1, L2, L3, L1}−{L1, L3}) = L2∪L1.

Notice how it is important to consider the multiset of label sets in the call-site formula, since the

label setL1 occurs both in the command pre-condition and outside it. TheFrm function chooses

fresh variablesx′1, x
′
2, x

′
3 for x1, w, z, and computes the pure frame asΠF ≡ x′1 = y ∧ x2 = x′3

and the spatial frame asΣF ≡ 〈x 7→ []〉L1
∗ 〈ls(x′3, nil)〉L3

. Notice how the spatial frame

now has a list at the existential variablex′3 because the frame cannot mention the variablez, as

88 Chapter 3. Dependence Analysis for Optimization

the command may modify this variable. However, the list is still accessible for future commands

because the pure frame retains the equalityx2 = x′3, so the list can still be accessed through the

program variablex2. This demonstrates the importance of inferring both a pure frame and a spatial

frame.

3.4 Allocation dependences

In this section we describe the third kind of dependence thatwe need to take into account, which is

due to dynamic memory allocation. Program optimizations have often been proposed based on the

independence assumptionthat if two commands access separate heap and variables in all possible

executions, then they can be parallelized or reordered to give an equivalent program [21, 31]. We

describe here how the independence assumption actually does not hold in the presence of dynamic

memory allocation, and optimizations based on this assumption can produce results significantly

different from the original program. A simple example is thefollowing program:

l1 : new(x);

l2 : new(y);

l3 : dispose(x);

l4 : if(x = y)then{z := 0}else{z := 1};

At l4, we have thex 6= y becausex andy cannot be allocated the same address, so the original

program never setsz := 0. Now statementsl2 andl3 are independent in that they access separate

heap cells and variables, but reordering them may allowx andy to be equal if the address allocated

in l1 is re-used forl2. So the optimized program will possibly setz := 0, and thus new behaviour

can result. One may note that it is a widely accepted standardthat programs should not read or

test the values of dangling pointers [34], and it may hence beargued that the above program is

somehow not a ‘proper’ program in the first place. But the problem persists even if we disallow

3.5. Examples and Experiments 89

such programs, as in the following example:

l1 : new(x);

l2 : new(y);

l3 : f := x;

l4 : if(f = y)then{z := 0}else{z := 1};

l5 : dispose(x);

l6 : dispose(y);

This program does not perform any reading or testing of dangling pointers. However, it is possible

to optimize such that the statement sequencel1, l3, l5 is executed even beforey is allocated inl2!

Thus again,y may get the same address asx, and so the true branch inl4 can fire in the optimiza-

tion but not in the original program. Such programs are perfectly reasonable as it is often the case

that one checks that certain expected conditions are satisfied (such as whether two variables point

to different allocated objects at a certain point in the program), and performs error handling oth-

erwise. However, the optimized program introduces the possible scenario where the equality inl4

is satisfied because of the allocator’s reuse of the same address for the two intentionally different

objects.

To guard against such incorrect optimizations, we introduce certain dependences between com-

mands due to allocation. For a sequential blockl1 : C1; . . . ; ln : Cn, there is an allocation

dependence between any two commandsli : Ci and lj : Cj if one of them performs allocation

and the other performs deallocation. ThegetAllocDeps function returns the set of all allocation

dependences in the sequential block. Note that we have not required a dependence when both com-

mands perform allocation or when both perform deallocation. The dependences we have required

are sufficient to guarantee safe optimizations, as we shall show in the soundness proof.

3.5 Examples and Experiments

In this section we discuss examples to illustrate the dependence detection algorithm, and present

experimental results on performance improvements. We begin with an example of a list segment

traversal programlistInit(x, y), which traverses a linked list segment fromx to y, setting the

fieldsf1 andf2 in every cell tonil. The specification is given by spec tableT with dom(T) =

90 Chapter 3. Dependence Analysis for Optimization

if(x 6= y){
`

{x 6=y ∧ 〈ls(x, y)〉∅}, ∅
´

`

{x 6=y ∧ 〈x 7→ [n : x′]〉∅ ∗ 〈ls(x′, y)〉∅}, ∅
´

l1 : x1 := x → n;
`

{x1 =x′∧x 6=y ∧ 〈x 7→ [n : x′]〉{l1}
∗ 〈ls(x′, y)〉∅}, ∅

´

l2 : x → f1 := nil;
`

{x1 =x′∧x 6=y ∧ 〈x 7→ [n : x′, f1 : nil]〉{l1,l2}
∗ 〈ls(x′, y)〉∅}, {(l2, l1)}

´

l3 : x → f2 := nil;
`

{x1 =x′∧x 6=y ∧ 〈x 7→ [n : x′, f1 : nil, f2 : nil]〉{l1,l2,l3}
∗ 〈ls(x′, y)〉∅}, {(l2, l1), (l3, l2), (l3, l1)}

´

l4 : listInit(x1, y);
`

{x1 =x′∧x 6=y ∧ 〈x 7→ [n : x′, f1 : nil, f2 : nil]〉{l1,l2,l3}
∗ 〈ls(x1, y)〉{l4}

}, {(l2, l1), (l3, l2), (l3, l1)}
´

}

Figure 3.5: Dependence detection forlistInit(x, y)

{ls(x, y)} andT (ls(x, y)) = {ls(x, y)}, which gives both the pre- and post-condition of the

procedure as a list segment fromx to y. The procedure body and dependence analysis is shown

in figure 3.5. TheExecAtm performs the symbolic execution for the atomic commandl1, first

unfolding the pre-condition using the rearrangement rule for list segments from figure 3.3. It then

executes the next two atomic commandsl2 andl3. At this point theExecSpec function is called,

which finds the spatial frame〈x 7→ [n : x′, f1 : nil, f2 : nil]〉{l1,l2,l3}
, the pure framex1 =x′∧x 6=

y and the accessed labels set∅, since no command has yet accessed the listls(x′, y), which is the

pre-condition of the recursive call. This pre-condition isreplaced by the post-condition from the

spec table, and the label of the command is added to it. The dependence set obtained at the end

does not contain any dependences between the recursive calll4 and the two statementsl3 andl2,

and hence the recursive call can be executed in parallel withthese statements. This program is

representative of the general pattern in list processing programs in which some ‘work’ is done at

every node of a list and then the program is recursively called on the rest of a list. If the work at

each node does not depend on previous nodes then it may be donein parallel with the rest of the

list, as our algorithm has detected in this case.

Previousreachabilitybased approaches such as [26] would be unable to detect this opportunity

for optimization. Such approaches depend on reachability properties of data structures to detect

dependences, e.g., statements referring to the left and right subtrees of a tree can be determined

to be independent since no heap location is reachable from both of them. In the case of the list

segment traversal example, a reachability analysis will beunable to detect the independence found

by our algorithm because the list segment may in fact be part of a larger cyclic data structure.

3.5. Examples and Experiments 91

if (x = nil) {y := nil; }else{
`

{x 6=nil ∧ 〈ls(x, nil)〉∅}, ∅
´

l1 : split(x, x1, x2);
`

{x 6=nil ∧ 〈ls(x1, nil)〉{l1}
∗ 〈ls(x2, nil)〉{l1}

}, ∅
´

l2 : mergesort(x1, y1);
`

{x 6=nil ∧ 〈ls(y1, nil)〉{l1,l2}
∗ 〈ls(x2, nil)〉{l1}

}, {(l2, l1)}
´

l3 : mergesort(x2, y2);
`

{x 6=nil ∧ 〈ls(y1, nil)〉{l1,l2}
∗ 〈ls(y2, nil)〉{l1,l3}

}, {(l2, l1), (l3, l1)}
´

l4 : merge(y, y1, y2);
`

{x 6=nil ∧ 〈ls(y, nil)〉{l1,l2,l3,l4}
}, {(l2, l1), (l3, l1), (l4, l3), (l4, l2), (l4, l1)}

´

}

Figure 3.6: Dependence detection formergesort(x, y)

In contrast, our approach is based on detecting the cells that are actually accessed rather than

those that are reachable by a statement. We also make a comparison with the proof-rewriting

method of [31], where there is difficulty in comparing statements that are not consecutive in a

sequential composition, such as determining that statement l4 is independent ofl2. Not being able

to compare non-consecutive statements significantly limits potential optimizations, especially if

there are numerous statements processing a node in the list,all of which could potentially be

executed in parallel with the recursive call. The dependence detection in figure 3.5 shows how,

in our case, the label-tracking mechanism provides a simpleand natural method for comparing

distant statements.

Next, we give an example of a divide-and-conquer style algorithm. Figure 3.6 shows the analy-

sis for the standard mergesort procedure for linked lists, which breaks the list into two lists, re-

cursively sorts each of them, and then merges the two. Themergesort(x, y) procedure takes

a list at x and a returns a sorted version of the list aty. Its specification is given with pre-

condition {ls(x, nil)} and post-condition{ls(y, nil)}. The split(x, x1, x2) procedure has

pre-condition{ls(x, nil)} and post-condition{ls(x1, nil)∗ls(x2, nil)} andmerge(y, y1, y2)

has pre-condition{ls(y1, nil) ∗ ls(y2, nil)} and post-condition{ls(y, nil)}. Note that these

specifications do not describe the sorting performed by the procedures, but only the shapes of the

lists in the pre- and post-conditions. This shape information is all that is required for our method

to analyse the heap accesses made in the program. The analysis shown in figure 3.6 determines

that the second recursive calll3 does not depend onl2, which allows us to convert the sequential

version of mergesort into the parallel version.

Finally, we give an example with trees, which is the tree rotation programrotateTree(x) based

92 Chapter 3. Dependence Analysis for Optimization

if(x 6= nil){
`

{x 6= nil ∧ 〈tree(x)〉∅}, ∅
´

`

{x 6= nil ∧ 〈x 7→ [l :x′, r :y′]〉∅ ∗ 〈tree(x′)〉∅ ∗ 〈tree(y′)〉∅}, ∅
´

l1 : x1 := x → l;
`

{x1 =x′∧x 6=nil ∧ 〈x 7→ [l :x′, r :y′]〉{l1}
∗ 〈tree(x′)〉∅ ∗ 〈tree(y′)〉∅}, ∅

´

l2 : x2 := x → r;
`

{x2 =y′∧x1 =x′∧x 6=nil ∧ 〈x 7→ [l :x′, r :y′]〉{l1,l2}
∗ 〈tree(x′)〉∅ ∗ 〈tree(y′)〉∅}, D1

´

l3 : x → l := x2;
`

{x2 =y′∧x1 =x′∧x 6=nil ∧ 〈x 7→ [l :x2, r :y′]〉{l1,l2,l3}
∗ 〈tree(x′)〉∅ ∗ 〈tree(y′)〉∅}, D2

´

l4 : x → r := x1;
`

{x2 =y′∧x1 =x′∧x 6=nil ∧ 〈x 7→ [l :x2, r :x1]〉{l1,l2,l3,l4}
∗ 〈tree(x′)〉∅ ∗ 〈tree(y′)〉∅}, D3

´

l5 : rotateTree(x1);
`

{x2 =y′∧x1 =x′∧x 6=nil ∧ 〈x 7→ [l :x2, r :x1]〉{l1,l2,l3,l4}
∗ 〈tree(x1)〉{l5}

∗ 〈tree(y′)〉∅}, D3

´

l6 : rotateTree(x2);
`

{x2 =y′∧x1 =x′∧x 6=nil ∧ 〈x 7→ [l :x2, r :x1]〉{l1,l2,l3,l4}
∗ 〈tree(x1)〉{l5}

∗ 〈tree(x2)〉{l6}
}, D3

´

}

Figure 3.7: Dependence detection forrotateTree(x)

on the main example discussed by Hendrenet al in [26]. The procedure takes a tree atx and

rotates it by recursively swapping its left and right subtrees. The spec table gives the pre-condition

{tree(x)} and post-condition{tree(x)}. The procedure body and dependence detection is

shown in figure 3.7, where we have the dependence setsD1 = {(l2, l1)},D2 = {(l3, l2), (l3, l1)}∪

D1 andD3 = {(l4, l3), (l4, l2), (l4, l1)} ∪ D2. The final dependence setD3 shows that the two

recursive callsl5 andl6 are independent. Similar examples are given by other divide-and-conquer

programs such as thecopyTree anddisposeTree procedures from [3], in which our algorithm

determines the recursive calls to be independent and parallelizable.

Implementation and experimental evaluation We have implemented our dependence analysis

in the THOR analyzer [37, 35], which performs shape analysisof C programs using separation

logic. We experimented with this implementation in the application area ofC-to-gates synthesis,

where the aim is to translate high level programs written in Cinto hardware circuits, bringing the

power of hardware-based acceleration to mainstream programmers. Recent work in this area has

made it possible to handle programs that manipulate dynamically-allocated pointer data structures,

by finding a symbolic bound on the memory usage of the program [13]. However, the efficiency of

the resulting circuits is very poor, because circuit optimizations cannot be performed in the absence

of information about the heap dependences in the high level program. In joint work with Cook,

Magill, Simsa and Singh [14], we used the THOR implementation of the dependence analysis

to develop an optimizing C-to-VHDL compiler for circuit synthesis from programs with heap.

3.6. Soundness 93

Design Latency reduction (%) Throughput increase (%)
Prio 45 110
Merge 65 282
Huffman 45 417

Figure 3.8: Latency and Throughput Measurements

This uses the computed dependences and adapts optimizationtechniques from [15] to synthesize

optimized circuits.

Figure 3.8 shows the performance improvement, in terms of latency reduction and throughput in-

crease, for three sample designs. ThePrio program implements a priority queue, which repeatedly

inputs a number of values from an input stream into a dynamically allocated linked list, sorts the

values in the list, and then outputs them to an output stream.TheMergeprogram repeatedly inputs

values from two different streams, and then combines the twosequences into a single sorted list,

before sending these values to an output stream. TheHuffmanprogram implements a tree data

structure for binary encoding of symbols. It repeatedly inputs symbols and frequencies through

two input streams to build a Huffman encoder tree. It then inputs values from a third input stream,

computes their binary encodings using the encoder tree, andthen outputs the encodings through

an output stream.

The significant improvement in performance shown in Figure 3.8 is largely due to the detection

of heap dependencies. For instance, by detecting the disjointness of list structures in the Merge

program, the reading in of the two input sequences can be executed in parallel with one another,

and a pipeline stage can also be introduced in which the outputting of the sorted list is done in

parallel with the reading in of the next two input sequences.

3.6 Soundness

In this section we demonstrate soundness of the analysis, showing that any optimization based

on the dependences we detect produces the same results as theoriginal program. We do this by

using an action trace semantics of commands. Our semantics is based on the trace semantics

of Calcagno, O’Hearn and Yang presented in [11], where a trace is a sequential composition of

atomic actions, and an atomic action is a function that transforms states. In our case we define a

94 Chapter 3. Dependence Analysis for Optimization

state as a triple of the form(s, h, d) ∈ Stacks× Heaps×D where

Heaps = Loc⇀fin ((Fields → Val) × P (Lab))

Stacks = (Var ∪ Var′) → Val

D = P(Lab× Lab)

States = Stacks× Heaps×D

The stacks and heaph are as defined in the section 3.2, where every heap cell has a label set

containing the labels of commands that have accessed the cell. The elementd ∈ D is a depen-

dence relation between labels that will collect the dependences between commands as execution

proceeds. Note that the label sets of cells and the dependence relation will be used as additional

bookkeeping structures in the states, and without them we will have a standard stack and heap

semantics of commands.

These concrete states will be related to the symbolic statesused in the dependence analysis al-

gorithm described in section 3.3. Recall that these states were of the form(P,D), whereP is a

formula andD is a dependence set computed by the analysis. We will use a notion of satisfac-

tion between concrete and symbolic states, in which the formulaP and dependence setD give an

over-approximation of the concrete state.

Definition 3.11 (satisfaction) For a state(s, h, d) ∈ States, a formulaP ∈ P(LSH) and a

dependence setD ∈ D, we define(s, h, d) |= (P,D) if s, h |= P andd ⊆ D. We writeJ(P,D)K

for the set of all states that satisfy(P,D).

Traces of programs are constructed by a sequential composition of atomic actions of the forml : a,

wherel ∈ Lab is a label associated with the atomic actiona. As in the semantics of commands

described in section 2.1, an atomic action is semantically modelled as a total function of the form

f : States → P(States)⊤, where the⊤ element represents a faulting execution (dereferencing

a null pointer or an unallocated region of the heap), and the function maps to the powerset in order

to account for possible non-determinism. Such functions are lifted to the topped powerset so that

for a functionf andS ∈ P(States) we have

f(S) =
⋃

(s,h,d)∈S

f(s, h, d)

3.6. Soundness 95

l : a Jl : aK(s, h, d)

l : x := E
˘

(s[x 7→JEKs], h, d)
¯

l : x := E→f

(
˘

(s[x 7→v], h[ℓ 7→ (r, L ∪ {l})], d ∪ ({l} × L))
¯

if JEKs = ℓ, h(ℓ) = (r, L), r(f) = v

⊤ otherwise

l :E1→f :=E2

(
˘

(s, h[ℓ 7→ (r′, L ∪ {l})], d ∪ ({l} × L))
¯

if JE1Ks = ℓ, JE2Ks = v, h(ℓ) = (r, L), r′ = r[f → v]

⊤ otherwise

l : new(x)
˘

(s[x 7→ℓ], h ∗ ℓ 7→ (r, {l}), d) | ℓ ∈ Loc
¯

wherer(f) = nil for all f ∈ Fields

l : dispose(x)

(
˘

(s, h′, d ∪ ({l} × L))
¯

if JxKs = ℓ andh = h′ ∗ ℓ 7→ (r, L)

⊤ otherwise

l : assume(b)

(
˘

(s, h, d)
¯

if JbKs

∅ otherwise

Figure 3.9: Denotational semantics of primitive actions

whereS ∪⊤ = ⊤ for anyS ∈ P(States)⊤ andf(⊤) = ⊤.

The denotational semantics of the primitive actions is given in figure 3.9. It is the standard stack

and heap semantics of commands, but with additional dependence information recorded in the

label sets of heap cells and the dependence relation. For heap-accessing commands, the label

of the command is recorded in the label set of the heap cell that it accesses. The dependence

relation accumulates discovered heap-carried dependences between commands. For example,

in the case of the dispose command, although the cell that is accessed by the command is dis-

posed, the dependences between this command and all previous commands that accessed the cell

is recorded in the dependence relation. Theassume(b) action filters out states that do not satisfy

the booleanb. Assume actions are used to model branching executions. Forexample, a conditional

if (b) then a1 else a2 has possible tracesassume(b); a1 andassume(¬b); a2, representing the

two possible execution branches.

Definition 3.12 (Action trace) An action traceτ is a finite sequential composition of atomic ac-

tions

τ ::= (l : a) | τ ; τ

Denotational semantics of action traces is given by the sequential composition of actions, which

is defined inductively using figure 3.9:

J(l : a); τK(s, h) = JτK(Jl : aK(s, h))

96 Chapter 3. Dependence Analysis for Optimization

T (l : a) =
˘

l : a
¯

T (l :com(T)) =
˘

τ | τ = l :a1; · · · ; l :an andRV(τ) ⊆ RV(l :com[T]), MV(τ) ⊆ MV(l :com(T))

and∀U ∈ dom(T). JτK(J(U, D)K) ⊆ J(T (U),D)K
¯

T (C1; C2) =
˘

τ1; τ2 | τ1 ∈ T (C1), τ2 ∈ T (C2)
¯

Figure 3.10: Action trace semantics of commands

.

The action trace sets of programs are shown in Figure 3.10. For atomic commands the trace is the

atomic command itself. For specified commands, any trace that satisfies the specification given

for the command is taken as a possible execution trace of the command. Although this may permit

more traces than the actual command may have, an over-approximation of possible executions is

sufficient to demonstrate soundness. Thus, for a specified commandl : com(T), we first require

that any traceτ only reads/modifies variables that are read/modified by the command. Second,

the trace may only transform the concrete state according tothe spec table. Note that, since the

spec table does not make assertions about dependences, the concrete states may have any possible

dependence relations in the input statesJ(U,D)K and outputJ(T (U),D)K. Every atomic action in

the trace of the specified command is given the labell of the command, since the action forms part

of the execution of the command.

Given this definition of trace sets, for any sequential blockl1 : C1; . . . ; ln : Cn, we have that

every trace is of the form(τ1); . . . ; (τn), whereτk ∈ T (lk : Ck) and every atomic action inτk

has the labellk, since it is part of the execution of the command with labellk. Our aim is to show

that, given the set of dependences computed by our analysis,then for any traceτ of the sequential

block, if we perform a reordering of atomic actions inτ that satisfies the computed dependences,

then the resulting trace will produce the same output statesasτ .

Definition 3.13 (Dependence)The set of heap dependences in a traceτ from an initial state

(s, h, d) is defined as

hDep(τ, (s, h, d)) =
⋃

{d′ | (s′, h′, d′) ∈ JτK(s, h, d)}

There is a stack dependence between labelsl and l′ in τ if there exist actionsl : a and l′ : a′

in τ that access common stack variables. There is an allocation dependence betweenl and l′ if

3.6. Soundness 97

there exist actionsl : a and l′ : a′ in τ such that one isnew and the other isdispose. We write

sDep(τ) andaDep(τ) for the set of all stack and allocation dependences respectively. We write

dep(τ, (s, h, d)) for the set of all stack, heap and allocation dependences inτ from initial state

(s, h, d).

Lifting to a set of statesS, we writedep(τ, S) (or hDep(τ, S)) for the set of all dependences (or

heap dependences) inτ from any state inS.

The next lemma describes a locality property of traces that is similar to the one given in definition

2.5, except that in this case the locality is only with respect to the heap, rather than all components

of the concrete state.

Lemma 3.4 (heap locality) If we haveJτK(s, h, d) = S and S 6= ⊤ then JτK(s, h ∗ hf , d) ⊆

{(s′, h′ ∗ hf , d
′) | (s′, h′, d′) ∈ S}

Proof: The proof is by induction onτ . For the base case whereτ is an atomic action, the result

can be checked for each of the actions in figure 3.9. For the inductive case, assumeτ = τ ′; (l : a).

Let Jτ ′K(s, h, d) = S′ andJl : aK(S′) = S. By induction hypothesis we haveJτ ′K(s, h ∗ hf , d) ⊆

{(s′, h′ ∗ hf , d
′) | (s′, h′, d′) ∈ S′}. Let (s′, h′ ∗ hf , d

′) ∈ Jτ ′K(s, h ∗ hf , d) and(s′, h′, d′) ∈ S′.

By the base case we haveJl : aK(s′, h′ ∗ hf , d
′) ⊆ {(s′′, h′′ ∗ hf , d

′′) | (s′′, h′′, d′′) ∈ S}. Hence

functional composition gives usJτ ′; (l : a)K(s, h∗hf , d) ⊆ {(s′′, h′′ ∗hf , d
′′) | (s′′, h′′, d′′) ∈ S}.

Our next result relates the symbolic execution of the analysis with the concrete trace semantics,

showing that the dependences computed by the analysis are anover-approximation of any possible

dependence relation resulting in any concrete execution ofthe program.

Lemma 3.5 (dependence detection soundness)Given a sequential blockC and pre-condition

P ∈ P(LSH), assume we havegetDeps(C,P) = D (where thegetDeps function is as de-

fined in section 3.3). Then for any traceτ of C and any states, h that satisfiesP , we have

dep(τ, (s, h, ∅)) ⊆ D

Proof: We havesDep(τ) ⊆ getStackDeps(C) andaDep(τ) ⊆ getAllocDeps(C) by definition of

thegetStackDeps andgetAllocDeps functions. The main thing is to show thathDep(τ, (s, h, ∅)) ⊆

getHeapDeps(C,P).

98 Chapter 3. Dependence Analysis for Optimization

For this it is sufficient to show that, ifExec(C, (P1,D1)) = (P2,D2), thenJτK(J(P1,D1)K) ⊆

J(P2,D2)K. This is shown by induction onC, where the base cases are whenC is an atomic

command or a specified command. For atomic commands, the result follows by checking the

soundness of each of the symbolic execution rules in figure 3.3.

For a specified commandl : com[T], assumeH ∈ P1 and s1, h1 |= H and d1 ⊆ D1. As

defined in algorithm 2, theExecSpec function finds someU ∈ dom(T) such thatFrm(H,U, V) =

(ΠF ,ΣF , LA) and returns the result(P2,D2) where

P2 =
{

ΠF ∧ Π ∧ ΣF ∗ Ψ[LA ∪ {l}] | Π ∧ Ψ ∈ T (U)
}

D2 = D ∪ ({l} × LA)

Our aim is to show thatJτK(s1, h1, d1) ⊆ J(P2,D2)K. Let U = ΠU ∧ ΨU . By soundness of

frame inference (Corollary 3.3) we know thatH ⊢ ΠF ∧ ΠU ∧ ΣF ∗ ΨU [LA] and therefore

s1, h1 |= ΣF ∗ ΨU [LA]. Leth1 = hf ∗ ha such thats1, hf |= ΣF ands1, ha |= ΨU [LA].

By definition of the trace set of specified commands in figure 3.10, we haveJτK(s1, ha, d1) ⊆

J(T (U),D)K. Assume we have some output state(s′, h′, d′) ∈ JτK(s1, ha, d1). Since every heap

cell in ha has labels contained inLA and every action inτ has labell, we know that the resulting

heaph′ can only have labels inLA ∪ {l} and the resulting dependence setd′ can only accumulate

dependences betweenl and labels inLA. We therefore haved′ ⊆ d1 ∪ ({l} × LA). This gives us

JτK(s1, ha, d1) ⊆ J({Π ∧ Ψ[LA ∪ {l}] | Π ∧ Ψ ∈ T (U)},D1 ∪ ({l} × LA)K (†)

3.6. Soundness 99

We then have

JτK(s1, h1, d1)

= JτK(s1, hf ∗ ha, d1)

⊆ {(s′, hf ∗ h′, d′) | (s′, h′, d′) ∈ JτK(s1, ha, d1)} (by heap locality lemma 3.4)

⊆ {(s′, hf ∗ h′, d′) | (s′, hf) |= ΠF ∧ ΣF and(s′, h′, d′) ∈ JτK(s1, ha, d1)}

(since(s1, hf) |= ΠF ∧ ΣF andτ does not modify variables appearing inΠF ∧ ΣF (by soundness

of frame inference and trace semantics of specified commandsin figure 3.10))

⊆ {(s′, h′f ∗ h′, d′) | (s′, h′f) |= ΠF ∧ ΣF and(s′, h′, d′) ∈ JτK(s1, ha, d1)}

= J
(

{ ΠF ∧ Π ∧ ΣF ∗ Ψ[LA ∪ {l}] | Π ∧ Ψ ∈ T (U) }, D1 ∪ ({l} × LA)
)

K (by †)

= JP2, D2)K

For the inductive case, let the induction hypothesis hold for C1 andC2 and letτ = τ1; τ2 be a trace

of C1;C2 such thatτi is a trace ofCi. Let Exec(C1;C2, (P1,D1)) = (P2,D2). We have by def-

inition of theExec function that(P2,D2) = Exec(C2,Exec(C1, (P1,D1))). By the induction hy-

pothesis, we haveJτ1K(J(P1,D1)K) ⊆ JExec(C1, (P1,D1))K andJτ2K(JExec(C1, (P1,D1))K) ⊆

J(P2,D2)K. Hence by functional composition of traces we getJτ1; τ2K(J(P1,D1)K) ⊆ J(P2,D2)K

So far we have related the symbolic execution semantics withthe concrete semantics. However,

the notion of dependence given in definition 3.13 has been formulated with respect to the de-

pendence relation that is accumulated by the concrete semantics. It remains for us to show that

these accumulated dependences indeed satisfy the propertythat reordering actions with respect

to these dependences will produce the same behaviour as the original trace. This final result will

use the next lemma, which shows that if there are no dependences between an action and all the

actions before it, then the action can be commuted above those actions to give an (extensionally)

equivalent trace.

Lemma 3.6 (Reordering) Let τ = τ ′; (l : a) andJτK(s, h, d) 6= ∅. If for all actions(l′ : a′) in τ ′

we have(l, l′) 6∈ dep(τ, (s, h, d)), thenJ(l : a); τ ′K(s, h, d) = JτK(s, h, d).

Proof: The proof is by induction onτ ′. For the base case we assume thatτ is an atomic action

(l′ : a′). It can then be checked for all combinations of atomic actions in figure 3.9 that ifJ(l′ :

100 Chapter 3. Dependence Analysis for Optimization

a′) : (l : a)K(s, h, d) = S, S 6= ∅ and(l, l′) 6∈ dep((l′ : a′); (l : a), (s, h, d)) thenJ(l : a) : (l′ :

a′)K(s, h, d) = S.

For the inductive case, we assume thatτ ′ = τ ′′; (l′ : a′) and thatJτ ′′; (l′ : a′); (l : a)K(s, h, d) = S

andS 6= ∅. Let Jτ ′′K(s, h, d) = S′. We haveJ(l′ : a′); (l : a)K(S′) = S. We know that

(l, l′) 6∈ dep(τ, (s, h, d)), which means that(l, l′) 6∈ sDep((l′ : a′); (l : a)) and(l, l′) 6∈ aDep((l′ :

a′); (l : a)). Also, by definition of heap dependence, we have(l, l′) 6∈
⋃

{d′ | (s′, h′, d′) ∈ S}.

SinceJ(l′ : a′); (l : a)K(S′) = S, by definition of heap dependence we have(l, l′) 6∈ hDep((l′ :

a′); (l : a), S′). Therefore(l, l′) 6∈ dep((l′ : a′)(l : a), S′) and by the base case we haveJ(l :

a); (l′ : a′)K(S′) = S. This gives usJτ ′′; (l : a); (l′ : a′)K(s, h, d) = S.

In order to show thatJ(l : a); τ ′′; (l′ : a′)K(s, h, d) = S, it is sufficient to showJτ ′′; (l :

a)K(s, h, d) = J(l : a); τ ′′K(s, h, d). Let (l′′ : a′′) be an action inτ ′′. We know that(l, l′′) 6∈

dep(τ, (s, h, d)), which means that(l, l′′) 6∈ sDep(τ ′′; (l : a)) and(l, l′′) 6∈ aDep(τ ′′; (l : a)).

By definition of heap dependence, we have(l, l′′) 6∈
⋃

{d′ | (s′, h′, d′) ∈ S}. SinceJτ ′′; (l :

a); (l′ : a′)K(s, h, d) = S, by definition of heap dependence we have(l, l′′) 6∈ hDep(τ ′′; (l :

a); (l′ : a′), (s, h, d)). This means that(l, l′′) 6∈ hDep(τ ′′; (l : a), (s, h, d)). So we have

(l, l′′) 6∈ dep(τ ′′; (l : a), (s, h, d)), which by the induction hypothesis implies thatJτ ′′; (l :

a)K(s, h, d) = J(l : a); τ ′′K(s, h, d)

Theorem 3.7 (Soundness)Given a sequential blockC and pre-conditionP ∈ P(LSH), assume

we havegetDeps(C,P) = D. Let τ be any trace ofC and τ ′ be any reordering of actions inτ

that respects all the dependences inD. Then for any(s, h) |= P such thatJτK(s, h, ∅) 6= ∅, we

haveJτK(s, h, ∅) = Jτ ′K(s, h, ∅).

Proof: Let s, h be a state satisfying the pre-conditionP and letJτK(s, h, ∅) = S whereS 6= ∅.

By Lemma 3.5 we havedep(τ, (s, h, ∅)) ⊆ D. So we letτ ′ be any reordering of actions inτ

respecting dependences indep(τ, (s, h, ∅)), and it is sufficient to showJτ ′K(s, h, ∅) = S. We

show this by induction onτ . The base case is whenτ is an atomic action, in which caseτ = τ ′

and we are done.

For the inductive case, assume thatτ = τ1; (l : a) and thatJτ1K(s, h, ∅) = S1. We know that

S1 6= ∅ sinceS 6= ∅. Now let τ ′ = τ ′′; (l : a); τ ′′′ be the dependency respecting reordering of

3.7. Conclusion 101

τ where, for all actions(l′ : a′) in τ ′′′, we have(l, l′) 6∈ dep(τ, (s, h, ∅)). We have thatτ ′′; τ ′′′

is a reordering ofτ1. We also havedep(τ1, (s, h, ∅)) ⊆ dep(τ, (s, h, ∅)) because the dependence

relation can only get bigger if another action is added to thetrace. Therefore, sinceτ ′′; τ ′′′ respects

all dependences indep(τ, (s, h, ∅)), it also respects all dependences indep(τ1, (s, h, ∅)). Hence

by the induction hypothesis we haveJτ ′′; τ ′′′K(s, h, ∅) = S1.

Now let Jτ ′′K(s, h, ∅) = S′. We haveJτ ′′′K(S′) = S1 and Jl : aK(S1) = S, which gives us

Jτ ′′′; (l : a)K(S′) = S. To complete the proof, we just need to show thatJ(l : a); τ ′′′K(S′) = S,

since that will give usJτ ′′; (l : a); τ ′′′K(s, h, ∅) = S.

Claim: J(l : a); τ ′′′K(S′) = S. To prove this claim, let(l′ : a′) be an action inτ ′′′. We know that

(l, l′) 6∈ dep(τ, (s, h, ∅)), which means that(l, l′) 6∈ sDep(τ ′′′; (l : a)) and(l, l′) 6∈ aDep(τ ′′′; (l :

a)). Also, by definition of heap dependence, we have(l, l′) 6∈
⋃

{d′ | (s′, h′, d′) ∈ S}. Since

Jτ ′′′; (l : a)K(S′) = S, by definition of heap dependence we have(l, l′) 6∈ hDep(τ ′′′; (l : a), S′).

So there are no stack, allocation or heap dependences between any action inτ ′′′ and l : a when

executed from any state inS′. Hence by the reordering lemma 3.6 we haveJ(l : a); τ ′′′K(S′) = S.

3.7 Conclusion

In this chapter we have introduced labelled separation logic and demonstrated its application to the

optimization of programs. By annotating formulae with labels to keep track of memory regions

that are accessed by commands, labelled separation logic permits the analysis of memory separa-

tion properties throughout a program’s lifetime. Apart from the ability to detect heap dependences

in this way, we have also identified the notion of dependencesdue to dynamic memory allocation

and how it is important to account for such dependences to ensure the safety of optimizations,

which we have formally demonstrated. Although we presentedexamples and initial experiments,

there is much more to explore in terms of practical applications.

Much progress has been made in automated analysis with separation logic, which provides our

dependence detection method with many potential advantages over traditional methods. For ex-

ample, the important issue of scalability of the shape analysis, which has been an obstacle for

heap detection methods in general, may be addressed with theuse of join operators such as the

102 Chapter 3. Dependence Analysis for Optimization

ones described in [55]. Compositionality of the shape analysis has also been achieved with the Bi-

abduction method of [8]. This permits procedures to be analysed independently of their callers,

which would allow dependence detection and optimization for program components with unknown

calling contexts. We would also like to extend the dependence detection method to handle more

arbitrary data structures, such as composite heap-structures (e.g. nested lists) [1] which com-

monly appear in industrial programs, and to use AI techniques to infer data structure definitions

automatically, as in [24].

We have briefly described the application of our method to theautomated synthesis of hardware

circuits, but so far we have only conducted preliminary experiments to demonstrate the potential

benefits. With the extensions described above, we hope to explore applications to a greater class

of industrial software that stands to benefit from fast execution, or execution with reduced energy

consumption.

Chapter 4

Ownership Inference for Concurrent

Programs

In this chapter we turn our attention to the sharing of resources in concurrent programs. The

analysis of concurrent programs is receiving much interestin the multi-core age, but is a difficult

problem because of the need to consider possible interleavings between concurrent processes,

which becomes even more complicated in the presence of aliasing in the heap. This is especially

true in the case of ‘daring’ concurrent programs, where resources may be accessed by concurrent

processes outside of critical regions, andownershipof resources is dynamically transferred during

program execution. Inferring how this ownership transfer occurs is the key to the successful

analysis and verification of such programs. Concurrent separation logic (CSL) [42], which we

described in the introduction, achieves modular reasoningabout dynamic ownership transfer with

the use ofresource invariantsthat describe the ownership of shared resources. The problem of

ownership inference can then be posed as the ability to automatically infer the resource invariants

so that a program proof in CSL can be automated.

Existing approaches for automating CSL include the reachability-based fixpoint method of Gots-

man et al. [23] and the more recent bi-abduction method of Calcagno et al. [9]. Both of these

approaches fail on some simple programs due to problems withownership inference. The dif-

ficulty is that, as observed in [9], ownership is a global property of the program based on how

resources are accessed at arbitrary points in the program, and hence cannot be determined by

analysing the critical regions in isolation.

103

104 Chapter 4. Ownership Inference for Concurrent Programs

In this chapter we present an algorithm which addresses the ownership inference problem using la-

belled separation logic. We extend the method of [23] to track ownership of heap state through the

program proof, and infer transfers of ownership based on heap accesses that may be made at possi-

bly arbitrary program points. Such tracking is done using a labelling technique similar in nature to

the one we used for the dependence analysis in chapter 3. However, inferring ownership is differ-

ent from detecting command footprints, because there is nota static distinction between the part

of the heap that is shared and the part that belongs to each thread. Instead, ownership is adynamic

property in the sense that heap cells may move in and out of theshared state and the local states of

different threads at different points in program execution. O’Hearn refers to this phenomenon as

“ownership is in the eye of the asserter” since the asserter has to choose the right resource invariant

in order to construct a proof in CSL. However, our algorithm shows that the ownership policy can

be inferred by tracking how resources are accessed in the program. We demonstrate how the al-

gorithm verifies programs which both of the previous approaches (reachability-based fixpoint and

bi-abduction) cannot handle. Also unlike the previous methods, our algorithm does not require

user annotations about ownership distribution in the pre-condition of the concurrent program, as it

infers this automatically.

We start in the next section with a description of the background on the programming language,

CSL reasoning and the reachability-based fixpoint method of[23] for inferring resource invariants.

In the following section we give an informal description of our label-tracking approach to owner-

ship inference. In section 4.3 we describe the formulae thatare used in our analysis, and in section

4.4 we present the algorithm in detail. In section 4.5 we demonstrate the algorithm on examples

that could not be handled by previous methods, and illustrate how our method handles different

aspects of dynamic ownership transfer. Finally, we addressownership inference for programs with

while loops in section 4.6.

4.1 Background

The parallel programming language we use is adapted from [42, 9], where a concurrent program

consists of an initialization phase, a resource declaration, and a single parallel composition of

4.1. Background 105

sequential commands

Prg ::= init ;

resource r1(variable list), . . . , rm(variable list)

C1 ‖ · · · ‖ CN

The initialisation phase is some sequential code to set values of variables or create data structures.

The resource declarationr1(variable list), . . . , rm(variable list) introduces a finite number of re-

source names that will be used in the program. We letRes = {r1, . . . , rm} be the set of resource

names used in the program, andVar a set of program variables ranged over byx, y, z, Every

resource name is associated with a set of program variables,and we writeVar(r) for the set of

variables of resourcer, andVar(Res) for the set of variables that are associated with any resource.

The resource declaration is followed by a single parallel composition of the threadsC1, . . . , CN

with thread identifiers1, . . . , N respectively. Both the initialisation code and the threadsare con-

structed with standard sequential commands, and threads also use a synchronization construct.

The grammar for these commands is given as

E ∈ Var ∪ {nil} expressions

B ::= E = E | E 6= E boolean expressions

C ::= x := E | x := [y] | [x] := E | new(x) | dispose(x) | assume(B) commands

| C;C | C + C | with r when B do C

For the discussion in this chapter, we assume a single field inheap cells for simplicity, although

multiple fields may also be permitted. The heap look-up command (x := [y]) setsx to the value

of the field in the cell aty, and the mutation command ([x] := E) updates the field in the cell

at x to the expressionE. We also have primitive commands for variable assignment (x:=E),

dynamic allocation (new(x)), deallocation (dispose(x)) andassume(B) commands, which block

if condition B is not satisfied. We shall sometimes writec for primitive commands that do not

access the heap, andc[E] for any command that accesses the heap atE (look-up, mutation or

dispose).

For simplicity, the only sequential constructs are sequential composition and non-deterministic

choice. Conditionalsif B then C1 else C2 can then be implemented asassume(B);C1 +

assume(¬B);C2. For the moment, we shall illustrate the concepts on loop-free programs, and

will describe the extension of our method to while loops in section 4.6. Synchronization between

106 Chapter 4. Ownership Inference for Concurrent Programs

threads is implemented with the conditional critical region (CCR) commandwith r whenB doC,

which we discussed in the introduction. It waits until condition B is true and no other CCR forr

is currently executing, and then executes the bodyC in mutual exclusion with all other CCRs for

r.

Programs in this language have well-formedness constraints that a variable belongs to at most one

resource, a variable belonging to a resource can only appearin a critical region for that resource,

and if a variable is modified in one thread, then it cannot appear in another unless it belongs to a

resource. We writeMV(Ci) for the set of variables that are modified in threadCi.

CSL reasoning We now give the formulation of CSL reasoning for our programming language.

Firstly, each resource namer is associated a formulaI(r) which is the resource invariant. The

invariant should satisfy the condition that any variable occurring free in the formula must belong

to resourcer. When reasoning about each individual threadCi, the inference rule for critical

regions is given as:

{(P ∗ I(r)) ∧B}C {Q ∗ I(r)}

{P}with r when B do C {Q}
free(P,Q) ∩ MV(Cj) = ∅ for all j 6= i

The invariant is assumed to hold separately from the local stateP when a thread enters a critical

region, and at the end of the CCR body, the thread must re-establish the resource invariant, along

with some other post-conditionQ. When the thread exits the CCR, it gives up ownership of the

shared resources, and so the resource invariant is hidden inthe inferred specification for the CCR.

The side condition requires that no other thread modifies thefree variables in the thread’s local

pre- and post-conditions. In this way, outside the CCR the reasoning can proceed independently

of shared resources, so the parallel composition rule simply combines the pre- and post-conditions

for each thread:

{P1}C1 {Q1} · · · {Pn}Cn {Qn}

{P1 ∗ · · · ∗ Pn}C1 ‖ · · · ‖ Cn {Q1 ∗ · · · ∗Qn}
free(Pi, Qi) ∩ MV(Cj) = ∅ whenj 6= i

To infer an overall specification of the program, we have the rule for complete programs:

{P} init {I(r1) ∗ · · · ∗ I(rm) ∗ P ′} {P ′}C1 ‖ · · · ‖ CN {Q}

{P}Prg {Q ∗ I(r1) ∗ · · · ∗ I(rm)}

4.1. Background 107

c := nil;

resource r(c)

with r when true do {

if c 6= nil then dispose(c);

new(c);

}

with r when true do {

if c 6= nil then dispose(c);

new(c);

}

Figure 4.1: Replace buffer

In a complete program the resource invariants must be separately established by the initialization

code, along with a separate pre-conditionP ′ for the parallel composition of threads. As the parallel

composition is specified independently of the shared resources, the rule for complete programs

brings back the resource invariants in the overall post-condition of the program. The soundness of

CSL has been shown in [6], where it is also shown that a programproof in CSL guarantees that

the program is memory safe and data race free. We illustrate reasoning with CSL on the example

program shown in figure 4.1, which illustrates dynamic ownership transfer. In this program there

is a one-place buffer at the heap cellc, and access to the buffer is synchronized with resource

namer. There are two identical threads, and each thread has a single CCR in which the thread

first gains ownership of the cell atc when it enters the critical region. It then disposes the celland

allocates a new cell for the buffer, and then gives up ownership of this cell when it exits the critical

region. This is a simplification of concurrent programs where different processes may compute

some value and place it in a shared buffer, so that other processes may then use the value and then

replace it with a new one. To reason about this program, the resource invariant we can use for

resourcer is

I(r)
def
= {(emp ∧ c = nil) ∨ (c 7→nil)}

which states the buffer is either empty andc is nil, or c points to a single cell in the buffer. The

CSL proof of the program is shown in figure 4.2, where application of the proof rules is displayed

in a linear fashion through the structure of the program. Theinitial pre-condition of the program

is the empty heap{emp}, and after executing the initialisation code we have the post-condition

{emp ∧ c = nil}. In accordance with the rule for complete programs, we splitthis formula

into a pre-condition for each of the threads and the resourceinvariant, so that each thread gets

pre-conditionemp.

Each thread is then proven independently with its own pre-condition, and in this case the proofs are

108 Chapter 4. Ownership Inference for Concurrent Programs

{emp∧ c = nil}

{emp ∗ emp ∗ (emp ∧ c = nil)}

{emp ∗ emp ∗ I(r)}

{emp}

with r when true do {

{emp ∗ I(r)}

{(emp ∧ c = nil) ∨ (c 7→nil)}

if c 6= nil then dispose(c);

{emp}

new(c);

{c 7→nil}

{emp ∗ I(r)}

}

{emp}

{emp}

with r when true do {

{emp ∗ I(r)}

{(emp ∧ c = nil) ∨ (c 7→nil)}

if c 6= nil then dispose(c);

{emp}

new(c);

{c 7→nil}

{emp ∗ I(r)}

}

{emp}

{emp ∗ emp ∗ I(r)}

Figure 4.2: CSL proof of replace buffer

identical for the two threads. When we enter the CCR, we add the resource invariant in accordance

with the CCR rule, and then apply the standard rules of separation logic to get to the end of the

CCR body. At this point, we re-establish the resource invariant as required by the CCR rule: the

new cell allocated by the thread becomes part of the resourceinvariant and the remaining post-

condition is empty. This post-condition is retained outside the CCR in the thread’s local state, and

the resource invariant disappears with application of the CCR rule. Having proven each thread, the

parallel composition rule allows us to combine the specifications of the threads to get the empty

pre- and post-condition for the parallel composition, and the rule for complete programs adds the

resource invariant back to the overall post-condition of the whole program. This is an example of

a program proof in CSL, with which we have shown that there areno memory errors or data races

in the program.

The Reachability Method for Resource Invariant Synthesis We now outline the first method

for automatically synthesizing resource invariants, which was introduced by Gotsman et al. in

[23]. The approach requires the user to provide the post-condition of the initialisation phase,

and also to specify how this is separated into the pre-condition of each thread and the initial

resource invariants for each resource name. Thus in the caseof the buffer program in figure 4.1,

the user would provide the pre-condition{emp} for each of the two threads, and the initial resource

4.1. Background 109

{emp}

with r when true do {

{emp ∗ I0(r)}

{emp∧ c = nil}

if c 6= nil then dispose(c);

{emp}

new(c);

{c 7→nil}

{emp ∗ c 7→nil} //new RI disjunct{c 7→nil}

}

{emp}

{emp}

with r when true do {

{emp ∗ I1(r)}

{(emp ∧ c = nil) ∨ (c 7→nil)}

if c 6= nil then dispose(c);

{emp}

new(c);

{c 7→nil}

{emp ∗ c 7→nil} //new RI disjunct{c 7→nil}

}

{emp}

Figure 4.3: Reachability-based invariant synthesis for replace buffer

invariantI0(r) = {emp∧c = nil}. Given this information, the method proceeds by attemptingto

construct a CSL proof of each thread, using the existing approximation for the resource invariant.

When the proof reaches a CCR, the current resource invariantis added to the state, in accordance

with the CCR rule. When the proof reaches the end of the CCR body, the formula needs to be split

into the thread local state and the shared state, which is thepoint at which the question of own-

ership transfer comes in. At this point, the method uses the heuristic that the part of the formula

that isreachablefrom the resource variables is assumed to be part of the resource invariant. This

part is added as a new disjunction to the current approximation of the resource invariant, and the

remaining part is kept as the thread’s local state, and the proof continues. This process continues

until enough disjunctions are gathered that a true resourceinvariant for the program is found.

In the case of the buffer program from figure 4.1, the first iteration of the method is shown in figure

4.3. Starting with the left thread, when we enter the CCR the initial approximationI0(r) is added.

At the end of the CCR body the formula is{c 7→nil}. Now we apply the reachability heuristic to

obtain the part reachable from resource variablec, which gives us the formula{c 7→ nil} as the

new disjunct for the resource invariant andemp as the thread’s local state. We refine the resource

invariant approximation to getI1 = I0 ∨ {c 7→ nil} and the thread local stateemp is obtained

outside the CCR. When we analyse the next thread, the CCR yields the same disjunct for the

resource invariant, so the new approximation isI2 = {(emp ∧ c = nil) ∨ (c 7→nil)}. We have

therefore reached the valid resource invariant for the program which was used in the CSL proof in

figure 4.2.

110 Chapter 4. Ownership Inference for Concurrent Programs

f := 0;

resource r(c, f)

new(x);

with r when f = 0 do {

c := x;

f := 1;

}

with r when f = 1 do {

y := c;

f := 0;

}

dispose(y);

Figure 4.4: Put-get buffer

This method provides an elegant way of synthesizing resource invariants, by collecting disjuncts

based on the program’s execution. However, it is missing a method for inferring how ownership

transfers occur in the program. Firstly, one may have noted the initial annotation burden for the

user, since the initialsplitting for the pre-conditions and resource invariants must be given. This

involves some kind of ownership inference on the part of the user in order to determine how the

splitting must be done. For example, consider the case wherethe initialisation code for the buffer

is:

new(x); c = x;

So the buffer is initialised with some heap cell atc rather than the empty heap. In this case the

post-condition of the initialisation code is{c = x ∧ x 7→nil}. This can be spatially split to either

yield c 7→ nil or emp as the initial resource invariantI0, and it is up to the user to give us the

correct one (which is the first).

A more significant problem is the use of a heuristic to decide ownership transfers occurring during

program execution. We illustrate this with the put-get buffer example shown in figure 4.4. In this

case, instead of each thread replacing the buffer cell, we have one thread which puts the cell in and

another which takes it out of the buffer. The variablec points to the buffer cell and flag variablef

indicates whether the buffer is full or empty, and is initialised to false. The left thread first creates

a new cell atx. It then waits until the buffer is empty, then enters the CCR and setsc to point to

the cell and setsf to true. Ownership of the cell has now moved into the buffer (the shared state).

The right thread waits until the buffer is full, and then setsthe variabley to c andf to false. After

exiting the CCR, the thread has obtained ownership of the heap cell, and it then disposes the cell.

To do a CSL proof of this program, the correct resource invariant is given by:

{(f = 0 ∧ emp) ∨ (f = 1 ∧ c 7→nil)}

4.2. Label Tracking for Ownership Inference 111

{emp}

new(x);

{x 7→nil}

with r when f = 0 do {

{f = 0 ∧ x 7→nil ∗ (f = 0 ∧ emp)}

c := x;

f := 1;

{f = 1 ∧ c = x ∧ x 7→nil}

} // new RI disjunct{f = 1 ∧ c 7→nil}

{emp}

{emp}

with r when f = 1 do {

{f = 1 ∧ emp ∗ ((f = 0 ∧ emp) ∨ (f = 1 ∧ c 7→nil))}

y := c;

f := 0;

{f = 0 ∧ y = c ∧ c 7→nil}

} // new RI disjunct{f = 0 ∧ c 7→nil}

{emp}

dispose(y);

{?} // analysis fails

Figure 4.5: Failed analysis of put-get buffer

which states that either the buffer is empty andf is false, or the buffer has a single cell atc andf

is true.

We now describe how the reachability method would proceed inthis example. Initially there is

no heap allocated so the initial resource invariant isf = 0 ∧ emp and the the thread pre-condition

is emp. The analysis proceeds as shown in figure 4.5. When the first thread enters the CCR, the

initial resource invariant is added. When it reaches the endof the CCR, we have the formula

{f = 1 ∧ c = x ∧ x 7→ nil}. At this point, since the cell is reachable from resource variable c,

the resource invariant gets ownership of the cell with the new disjunct{f = 1 ∧ c 7→nil} and the

thread getsemp in its local state. We then analyse the right thread and add the resource invariant

at the beginning of the CCR. At the end of the CCR, we again apply the reachability heuristic,

which now gives the disjunct{f = 0 ∧ c 7→ nil} for the resource invariant. This says that the

buffer is not full, and yet there is a cell in it. Because of this splitting, the thread’s local state

becomes{emp}. The algorithm then fails when it attempts to dispose the cell, as the thread does

not have the required ownership. Hence, the reachability heuristic caused the resource invariant to

incorrectly keep ownership of resource which belonged to the thread.

4.2 Label Tracking for Ownership Inference

We now give an informal introduction to our label-tracking approach to address the ownership

inference problem, which both alleviates the need for initial user annotations about ownership

and also infers ownership transfers during execution without using heuristics. The difficulty in

112 Chapter 4. Ownership Inference for Concurrent Programs

ownership inference is that when a decision has to be made about how to spatially split a formula

to distribute ownership, this choice cannot be based solelyon the existing information about the

formula. It actually depends on how resources may be accessed in the future, at arbitrary program

points in any thread in the program. For example, in the analysis of the put-get buffer shown in

figure 4.5, at the end of the second CCR there is no way of knowing whether the cell should go

to the shared state or be kept in the local state, until one considers the point at which the cell is

actually accessed when the thread attempts to dispose it.

Since ownership is a global property of the program, our approachdelaysownership decisions

until heap accesses are actually made. We do this by associating anownership constraintwith

each spatial conjunct, which represents the condition under which ownership of the conjunct may

be assumed. An ownership constraint is a relation that relates labels to owners, where a label

represents a spatial conjunct and an owner is a resource nameor a thread identifier. So at the end

of a CCR, for example, we do not immediately decide for each spatial conjunct whether we should

send it to the resource invariant or keep in the thread local state. Instead, we create a fresh label for

the conjunct, and then send the conjunct to the invariant, but add a constraint relating its label to

the resource, and also keep the conjunct in the local state, but with a constraint relating its label to

the thread ID. But a label can only have a single owner, and it is when heap accesses are actually

made that the ownership questions are resolved: when a heap cell is accessed, it is discovered that

the ownership constraints it carries must be satisfied for the program to execute safely.

We illustrate the intuition behind our approach with the put-get buffer example on which the

reachability method fails. The analysis is shown in figure 4.6. The user only provides the pre-

condition of the whole program, which is{emp} in this case. In this example, since the post-

condition of the initialization phase is also empty, each ofthe thread pre-conditions is empty and

the initial resource invariant is also empty withf false. We will discuss examples with non-empty

pre-conditions later on.

In the first thread, the cell that is allocated atx is given an empty ownership constraint as there is

no question about the thread having ownership of this cell. When we enter the CCR, as before we

add the initial approximation of the invariant. At the end ofthe CCR we come to the ownership

decision, where it is not known whether the cell should go to the resource invariant or stay in the

local state, and so we introduce the labell1 to represent this choice. The cell is then sent as a new

disjunct for the resource invariant with a new ownership constraint relatingl1 to the resourcer,

4.3. Formulae with Ownership constraints 113

{emp}

new(x);

{〈x 7→nil〉∅}

with r when f = 0 do {

{f = 0 ∧ 〈x 7→nil〉∅ ∗ (f = 0 ∧ emp)}

c := x;

f := 1;

{f = 1 ∧ c = x ∧ 〈x 7→nil〉∅}

} //new RI disjunct{f = 1 ∧ 〈c 7→nil〉{(l1,r)}}

{〈x 7→nil〉{(l1,1)}}

{emp}

with r when f = 1 do {

{f = 1 ∧ emp ∗ (f = 1 ∧ 〈c 7→nil〉{(l1,r)})}

y := c;

f := 0;

{f = 0 ∧ y = c ∧ 〈c 7→nil〉{(l1,r)}}

} //new RI disjunct{f = 0 ∧ 〈c 7→nil〉{(l1,r),(l2,r)}}

{〈y 7→nil〉{(l1,r),(l2,2)}}

{〈y 7→nil〉∅} //discover constraint{(l1, r), (l2, 2)}

dispose(y);

{emp}

Figure 4.6: Analysis of put-get buffer using label-tracking

and the cell is also kept in the local state with a constraint relatingl1 to the thread identifier1. The

question of which ownerl1 actually relates to is resolved when we analyse the second thread.

When we enter the CCR in the second thread we add the new disjunct {f = 1∧〈c 7→nil〉{(l1,r)}},

and when we reach the end of the CCR, we have another ownershipdecision. As before we send

the cell to both the invariant and the local state, but add newconstraints with fresh labell2. Now

when we come outside the CCR, we encounter the dispose command, which is making a heap

access. At this point, in order to get concrete ownership of the cell, the constraint associated

with the cell must hold. So we infer that the constraint{(l1, r), (l2, 2)} relating l1 to r andl2 to

thread2 is valid, which gives concrete ownership of the cell. Havingdiscovered this constraint,

we also apply it to refine our existing resource invariant approximation. Thus the disjunct{f =

1∧〈c 7→nil〉{(l1,r)}} refines to{f = 1∧〈c 7→nil〉∅} since we have discovered thatl1 does relate

to r. In the case of the other disjunct{f = 0 ∧ 〈c 7→nil〉{(l1,r),(l2,r)}}, the constraint associated

with the spatial conjunct relatesl2 to r. Since the discovered constraint relatesl2 to thread2, this

disjunct cannot have ownership of the cell, and so the disjunct refines to{f = 0 ∧ emp}. In this

way, the ownership constraint we discover at the heap accessgives us the correct resource invariant

for the program.

4.3 Formulae with Ownership constraints

In this section we describe the formulae that are used in the ownership inference algorithm. The

formulae are based on symbolic heaps extended with a notion of labelling on the spatial conjuncts,

114 Chapter 4. Ownership Inference for Concurrent Programs

which is similar to the labelling method used in the previouschapter to detect dependences. How-

ever, instead of recording the labels of accessing commands, in this case the spatial conjuncts

recordownership constraintsthat describe conditional ownership of parts of the formula. The

algorithm marks spatial conjuncts with such constraints inorder to track ownership of heap state

between threads and resources.

We use the termowner to refer in general to either a thread identifier or a resourcename: in the

context of CSL, an owner is anything that can have ownership of some heap state at some point in

program execution.

Definition 4.1 (Ownership constraint) The set of owners, ranged over byω, ω′, . . . , is defined

asΩ
def
= Res∪{1, . . . , N}, whereN is the number of threads in the parallel composition. LetLab

be an infinite set of labels ranged over byl, l′, An ownership constraintL ∈ P(Lab × Ω) is

a relation relating labels with owners.

An ownership constraint is said to be consistent when it doesnot associate more than one owner

with any label.

Definition 4.2 (Consistent constraint) An ownership constraintL is consistent, which is written

consistent(L), if it is not that case that(l, ω) ∈ L and(l, ω′) ∈ L for ω′ 6= ω and l ∈ Lab.

The formulae we use are from the standard symbolic heap fragment defined in figure 3.1 in the

last chapter. However, since we are assuming a single field for heap cells, the only simple spatial

formulae we consider here are:

S ::= E 7→F | ls(E,F)

whereE 7→F describes the heap cell atE in which the field has valueF , andls(E,F) is a linked

list from E to F . We extend these formulae by associating an ownership constraint with every

simple spatial conjunct, as follows:

Σ ::= emp | 〈S〉L | Σ ∗ Σ labelled spatial formulae

H ::= Π ∧ Σ labelled symbolic heaps

We may sometimes write〈S〉L ∈ H to mean that〈S〉L is a conjunct inH. We letVar(H) be the

set of all program variables inH and letLSH be the set of all labelled symbolic heaps. A general

formulaP ∈ LSH is a set of labelled symbolic heaps.

4.3. Formulae with Ownership constraints 115

The ownership constraint for every simple spatial conjunctin a labelled symbolic heap describes

the condition under which ownership of the heap state described by the conjunct can be assumed.

For example, in the labelled symbolic heapΣ ∗ 〈S〉L, the heap described byS is only owned if

the constraintL is satisfied, and otherwise the formula is equivalent toΣ. We refer to a formula as

concrete if we have unconditional ownership over all parts of the formula.

Definition 4.3 (Concrete formula) A labelled symbolic heapH is concrete, written isConc(H),

if every spatial conjunct inH has an empty ownership constraint. We defineconc(H) as the

concrete portion ofH, which is the heapH without any spatial conjuncts that have non-empty

ownership constraints. Similarly, for a formulaP we defineconc(P)
def
= {conc(H) | H ∈ P} and

isConc(P) if everyH ∈ P is concrete.

Because ownership constraints introduce conditional information about ownership, a formula with

ownership constraints is interpreted with respect to a specific valuation of the labels in its con-

straints. This is formalised by theUpd(P,L) function, which resolves the constraints inP with

respect to the valuation given by the constraintL ∈ P(Lab × Ω). The update function does two

things. First, it removes any conjuncts inP whose ownership constraint is inconsistent withL.

For the remaining conjuncts, which all have ownership constraints consistent withL, the labels

that are in common withL are removed from the conjunct, as these labels are now redundant.

Definition 4.4 (Upd function) Assume we are given a labelled symbolic heapH and a label con-

straintL. LetH = Π ∧ 〈S1〉L1
∗ · · · ∗ 〈Sn〉Ln

∗ Σ, whereΣ contains all the〈S〉L′ ∈ H such that

¬consistent(L′ ∪ L). We then have

Upd(H,L)
def
= Π ∧ 〈S1〉L′

1
∗ · · · ∗ 〈Sn〉L′

n

whereL′
i = Li \ L. For a formulaP , we defineUpd(P,L)

def
= {Upd(H,L) | H ∈ P}.

For example, a formulaP = {〈x 7→ nil〉{(l1,2)}} can be updated to the following concrete for-

mulae depending on the valuation of labels:

Upd(P, {(l1, r)}) = {emp}

Upd(P, {(l1, 2)}) = {〈x 7→ nil〉∅}

116 Chapter 4. Ownership Inference for Concurrent Programs

Algorithm 3 InvSynth(Prg , Pin)

1: Pcmp := SeqExec(init , Pin) ;
2: φ := Split(Pcmp,Ω) ;
3: Pre := φ|{1...N} ;
4: I0 := φ|Res ;
5: I := {(I0, ∅)} ;
6: while true do
7: for i = 1 toN do
8: T := {(Upd(Pre(i), L), I, L) | (I, L) ∈ I} ;
9: I := {(I, L) | (P, I, L) ∈ Exec(i, Ci, T)} ;

10: end for
11: if I = ∅ then
12: return failure ;
13: end if
14: I := {(abs(I), L) | (I, L) ∈ T} ;
15: for all (I, L) ∈ T do
16: Ic := {H ∈ I | isConc(H)} ;
17: if Test(Prg , Pin, Ic) then
18: return Ic ;
19: end if
20: end for
21: end while

A formula with non-empty ownership constraints therefore represents a collection of possible

concrete formulae depending on the specific valuation of labels that we use to interpret it. Concrete

formulae have the standard interpretation of unlabelled formulae given in figure 3.2 in the last

chapter.

4.4 Invariant Synthesis

We now describe the resource invariant synthesis procedure, which is shown in Algorithm 3. The

InvSynth procedure takes as arguments the programPrg (consisting of the initialisation code,

resource declaration and parallel composition), and a concrete formulaPin which is the given

pre-condition of the whole program. If successful, the procedure returns a resource invariant for

every resource in the program, such that a proof of the program exists in CSL using these resource

invariants. The resource invariants are returned as a function I : Res → P(LSH), which maps

every resource name used in the program to a concrete formula.

We now explain how theInvSynth procedure works, using the running example of the put-get

buffer program from figure 4.4, which we discussed informally in section 4.2. Given this program

and the overall pre-condition{emp}, theInvSynth procedure returns the correct resource invariant

4.4. Invariant Synthesis 117

{(f = 0∧emp)∨(f = 1∧c 7→nil)} for the resourcer. TheInvSynth procedure can be described

in three phases: initialisation, thread execution, and testing of invariants.

4.4.1 Initialisation

In the first line in Algorithm 3, theSeqExec function performs a standard symbolic execution of

the initialisation code on the given pre-condition to get the post-conditionPcmp. For our running

example we havePcmp = {f = 0 ∧ emp}.

At this point in a CSL proof, the formulaPcmp is spatially separated as a pre-condition for each

of the threads and the resource invariant, in accordance with the rule for complete programs. But

since it is not known how this splitting should be done, the algorithm gives all possible owners as

much resource as possible, but introduces new ownership constraints. The constraints use fresh

labels such that any possible valuation of the new labels to the owners represents a specific choice

of ownership distribution. These constraints will be resolved later on when the heap is accessed

by the right owners. The algorithm calls theSplit(Pcmp,Ω) function to determine the formula

assigned to each owner at line 2, which returns a mappingφ : Ω → P(LSH) that maps each owner

to its assigned formula.

For a given formula and a set of owners, theSplit function first creates a fresh label for every spatial

conjunct. It then creates a copy of the formula for every owner, but adds ownership constraints

associating the new labels to that owner. The part of the formula that is reachable from the owner’s

variables is then returned as the heap assigned to that owner, with variables not belonging to

the owner becoming existential (as required by the variableconditions of CSL). In the following

definition, for a symbolic heapH and a set of variablesV , we writerestrict(H,V) for the heapH

in which every variable not inV is replaced by a fresh primed variable. We also writenonjunk(H)

to be the part ofH that is reachable from some program variable.

Definition 4.5 (Split function) Assume we are given a set of ownersO ⊆ Ω and a labelled sym-

bolic heapH = Π ∧ 〈S1〉L1
∗ · · · ∗ 〈Sn〉Ln

. We assume fresh labelsl1, . . . , ln. For eachω ∈ O,

let

Hω = Π ∧ 〈S1〉L1∪{(l1,ω)} ∗ · · · ∗ 〈Sn〉Ln∪{(ln,ω)}

If ω ∈ {1, . . . , N} then letVar(ω) = Var \
(

Var(Res)∪
⋃

i6=ω

MV(Ci)
)

. The functionSplit(H,O) :

118 Chapter 4. Ownership Inference for Concurrent Programs

O → LSH is defined as

Split(H,O)(ω) = nonjunk(restrict(Hω, Var(ω)))

For a formulaP , the functionSplit(P,O) : O → P(LSH) is defined as

Split(P,O)(ω) = {Split(H,O)(ω) | H ∈ P}

In our running example, the formulaPcmp is spatially empty, soSplit(Pcmp, {r, 1, 2}) = φ, where

φ(r) = {f = 0 ∧ emp}

φ(1) = {f ′1 = 0 ∧ emp} = {emp}

φ(2) = {f ′2 = 0 ∧ emp} = {emp}

where the resource variablef becomes existential in the thread pre-conditions. As another exam-

ple, if the pre-condition of the program was given as{c = x∧〈x 7→ nil〉∅} then theSplit function

would give us

φ(r) = {f = 0 ∧ c = x′1 ∧ 〈c 7→ nil〉{(l1,r)}} = {f = 0 ∧ 〈c 7→ nil〉{(l1,r)}}

φ(1) = {f ′1 = 0 ∧ c′1 = x ∧ 〈x 7→ nil〉{(l1,1)}} = {〈x 7→ nil〉{(l1,1)}}

φ(2) = {f ′2 = 0 ∧ c′2 = x ∧ 〈x 7→ nil〉{(l1,2)}} = {〈x 7→ nil〉{(l1,1)}}

where the resource variables become existential in the thread pre-conditions and non-resource

variablex becomes existential in the resource invariant.

At lines 3 and 4 in the algorithm, the mapping of formulae returned by theSplit function is sepa-

rated into the thread pre-conditionsPre : {1 . . . N} → P(LSH), and the initial approximation of

the resource invariantsI0 : Res → P(LSH). In our example this givesPre(1) = Pre(2) = {emp}

andI0(r) = {f=0 ∧ emp}.

Next, at line 5 the algorithm initializes the candidate resource invariants and ownership constraints

that will be discovered by the algorithm. The setI is a set of tuples of the form(I, L), where

I : Res → P(LSH) is a possible candidate for the resource invariant, andL ∈ P(Lab × Ω)

contains all the ownership constraints that have been discovered by the algorithm. The reason

that we maintain asetof tuples is that the algorithm may sometimes encounter a choice on how to

4.4. Invariant Synthesis 119

make an ownership inference, which leads to different candidate resource invariants and associated

ownership constraints, as we shall discuss in examples. ThesetI is initialised at line 5 in the

algorithm with the single tuple in which the resource invariant candidate isI0 and the ownership

constraint is empty, as nothing has been discovered yet.

4.4.2 Thread execution

We enter the main loop of the algorithm at line 6. At every iteration, the first thing is to refine the

existing resource invariant candidates in the setI, by executing each thread on its pre-condition

using the existing invariants. This is done in the for loop (line 7 to 10). For each threadi, before

executing the thread, the thread pre-condition is first updated with respect to each of the candidate

ownership constraints that have been determined so far (line 8). In our running example, each

thread has the empty pre-condition, so it does not change with the update. The set of triplesT is

the input to the thread execution functionExec, which is called at line 9.

TheExec function symbolically executes a thread in order to discover new ownership constraints

and to improve the resource invariant approximation. The function takes as parameters a thread

identifier i where1 ≤ i ≤ N , the thread bodyCi, and a set of triples of the form(P, I, L).

The formulaP ∈ P(LSH) is the pre-condition of the thread,I : Res → P(LSH) is the current

approximation of the resource invariants, andL ∈ P(Lab × Ω) is the accumulation of discovered

ownership constraints. We letT be the set of all triples of the form(P, I, L).

The function returns a set of triples fromT , the non-determinism in the output of the function

being due to possible branching on ownership decisions. Thedefinition of theExec function is

given in figure 4.7, and we now discuss each of the cases shown in the figure.

Primitive commands The first two cases in figure 4.7 are for primitive commands, which use

the application and rearrangement functionsApp andRng for transforming symbolic heaps. These

functions are defined using the symbolic execution rules forcommand application and rearrange-

ment shown in figure 4.8, which define the symbolic heap transformations and the propagation of

label constraints. The symbolic heap transformations are standard, as in the previous chapter. The

label constraints are propagated such that under any valuation of labels to concretize the symbolic

heaps, each rule is a sound inference from premise to conclusion.

120 Chapter 4. Ownership Inference for Concurrent Programs

Exec(i, c, {(P, I, L)})
def
=

n

(App(c, P), I, L)
o

Exec(i, c[E],{(P, I, L)})
def
=

n

(App(c[E],Upd(P ′, L′)), Upd(I, L′), L ∪ L′) | P ′=Rng(P, E), L′ ∈ GetCons(P ′, E)
o

Exec(i, C1; C2, {(P, I, L)})
def
= Exec(i, C2, Exec(i, C1, (P, I, L)))

Exec(i, C1 + C2, {(P, I, L)})
def
=

n

((Upd(P ′, L′′) ∪ P ′′), I′′, L′′) | (P ′, I′, L′) ∈ Exec(i, C1, (P, I, L)), (P ′′, I′′, L′′) ∈ Exec(i, C2, (Upd(P, L′), I′, L′))
o

Exec(i, with r when B do C, {(P, I, L)})
def
=

n

(φ(i), I′[r 7→I′(r) ∪ φ(r)], L′) | (P ′, I′, L′) ∈ Exec(i, C, (B ∧ P ∗ I(r), I, L)), φ=Split(P ′, {i, r})
o

Exec(i, C, T1 ∪ T2) = Exec(i, C, T1 ∪ T2) ∪ Exec(i, C, T1 ∪ T2)

Figure 4.7: Thread execution function

Definition 4.6 (Application and Rearrangement Functions)For a non-heap-accessing primi-

tive commandc and formulaP , the functionApp(c, P) applies the command application rule for

commandc from figure 4.8 to every symbolic heapH ∈ P that is consistent1 and returns the

resulting set of symbolic heaps that are consistent.

For a heap-accessing commandc[E], the functionApp(c[E], P) is undefined if there existsH ∈ P

such that there is no〈E 7→F 〉∅ ∈ H. Otherwise,App(c[E], P) applies the command application

rule for c[E] to all consistent symbolic heapsH ∈ P , and returns the resulting set of heaps that

are consistent.

The rearrangement functionRng(P,E) applies the rearrangement rules from figure 4.8 to every

symbolic heapH ∈ P , to all conjuncts inH to which the rules apply, and returns the resulting set

of heaps.

The first case in figure 4.7 is that of non-heap accessing command primitive commandc. In

this case the thread state is simply transformed according to the command application rule, and

everything else stays the same. The second case is that of a primitive commandc[E] accessing

the heap cell atE. This is the point at which ownership decisions are made, because the heap is

actually accessed. In this case, every symbolic heap in the pre-conditonP needs to be brought

1a symbolic heap is inconsistent if its concrete portion is not satisfiable and equivalent to false (e.g. it contains
E = F ∧ E 6= F , or it contains〈E 7→F 〉∅ ∗ 〈E 7→G〉∅). Inconsistent heaps do not represent concrete state and are
therefore ignored. Consistency of concrete heaps can be checked using methods such as the one described in [17].

4.4. Invariant Synthesis 121

COMMAND APPLICATION RULES

Π ∧ Σ

x = E[x′/x] ∧ (Π ∧ Σ)[x′/x]
x := E, x′fresh

Π ∧ Σ ∗ 〈E 7→ F ′〉∅

Π ∧ Σ ∗ 〈E 7→ F 〉∅
[E] := F

Π ∧ Σ

(Π ∧ Σ)[x′/x] ∗ 〈x 7→ nil〉∅
new(x), x′ fresh

Π ∧ Σ ∗ 〈E 7→ F 〉∅
Π ∧ Σ

dispose(E)

Π ∧ Σ ∗ 〈E 7→ F 〉∅

x = F [x′/x] ∧ (Π ∧ Σ ∗ 〈E 7→ F 〉∅)[x
′/x]

x := [E], x′ fresh
Π ∧ Σ

B ∧ Π ∧ Σ
assume(B)

REARRANGEMENTRULES

Π ∧ Σ ∗ 〈F 7→ F ′〉L

Π ∧ Σ ∗ 〈E 7→ F ′〉L
Π ⊢ E = F

Π ∧ Σ ∗ 〈ls(F, F ′)〉L

Π ∧ Σ ∗ 〈E 7→ x′〉L ∗ 〈ls(x′, F ′)〉L
Π ⊢ F 6= F ′ ∧ E = F andx′ fresh

Figure 4.8: Command Application and Rearrangement Rules

into a form where it contains concrete ownership of the heap cell atE: that is, it contains a spatial

conjunct of the form〈E 7→ F 〉∅ so that the appropriate command application rule from figure4.8

can be applied.

This is done by first applying the rearrangement function to getP ′ = Rng(P,E). Then the func-

tion GetCons(P ′, E) returns the set of all possible label constraints under which every heap inP ′

contains concrete ownership of a heap cell atE. Each element of this set of constraints represents

a different choice of ownership. We will discuss a program where such choice is encountered in

example 9.

Definition 4.7 (GetCons) LetE be an expression,H a symbolic heap, andP ′ = {H1, . . . ,Hn}

a formula withn symbolic heaps. We define

GetCons(H,E)
def
= {L | 〈E 7→F 〉L ∈ H}

GetCons(P ′, E)
def
= {L1 ∪ · · · ∪ Ln | Li ∈ GetCons(Hi, E), consistent(L1 ∪ · · · ∪ Ln)}

Note that if there is a symbolic heap inP ′ that does not contain a conjunct of the form〈E 7→ F 〉L,

thenGetCons(P ′, E) = ∅, and henceExec(i, c[E], {(P, I, L)}) = ∅. This means thatI is elimi-

nated as a possible resource invariant for the program because execution could not proceed further.

122 Chapter 4. Ownership Inference for Concurrent Programs

Sequential and choice composition The next two cases in figure 4.7 are for sequential composi-

tion and non-deterministic choice, which are handled in thestandard way. Sequential composition

applies the second command to the output of the first command.For non-deterministic choice,

both commands are executed on the pre-condition and the post-conditions are disjunctively com-

bined, but the resource invariants and ownership constraints refined by the execution of the first

command are used in the execution of the second. In Example 9 we describe the analysis of a

program with non-deterministic choice.

Critical regions The final case in figure 4.7 is that of the conditional criticalregion command

with r whenB doC, which is where new questions about ownership arise. Given the input state

(P, I, L), the bodyC of the CCR is first executed with pre-conditionB ∧P ∗ I(r), in accordance

with the CSL rule for critical regions. For every output state (P ′, I ′, L′) that this returns, we need

to split the post-conditionP ′ into the part that goes into the resource invariant and the part that

stays in the thread local state outside the CCR. This is done by calling theSplit function with

two possible owners: the resourcer and the thread identifieri. The part going to the resource

invariant is added as a new disjunct to the resource invariant, and the part going to the thread is the

post-condition of the CCR execution.

We now illustrate the thread execution function on our running example of the put-get buffer.

Recall from the end of section 4.4.1 that the thread pre-conditions arePre(1) = Pre(2) = {emp}

and the initial resource invariant isI0(r) = {f = 0 ∧ emp}. The execution of the two threads

in the first iteration of the algorithm is shown in figure 4.9. In the left thread, the command

application rule is first applied to allocate the new cell. The CCR is then executed, which again

involves applying the command application rules for the twocommands. At the end of the CCR a

new disjunct for the resource invariant is obtained using theSplit function, which introduces fresh

labell1. Execution of the right thread starts with the CCR, in which the command application rules

are applied for the two commands in the body. At the end of the CCR, another resource invariant

disjunct is obtained with new labell2. At this point, the heap accessing dispose command is

executed, in which theGetCons function returns the set with single constraint{(l1, r), (l2, 2)}.

Applying this constraint gives concrete ownership of the heap cell, which allows the command

application rule for dispose to be applied. The resource invariant is also updated with respect to

the discovered constraint, as defined by the execution of primitive heap-accessing commands.

4.4. Invariant Synthesis 123

{({emp}, I0, ∅)}

new(x);

{({〈x 7→nil〉∅}, I0, ∅)}

with r when f = 0 do {

{({f = 0 ∧ 〈x 7→nil〉∅ ∗ I0}, I0, ∅)}

c := x; f := 1;

{({f = 1 ∧ c = x ∧ 〈x 7→nil〉∅}, I0, ∅)}

}

{({〈x 7→nil〉{(l1,1)}}, I1, ∅)}

{({emp}, I1, ∅)}

with r when f = 1 do {

{({f = 1 ∧ emp ∗ I1}, I1, ∅)}

{({f = 1 ∧ 〈c 7→nil〉{(l1,r)}}, I1, ∅)}

y := c; f := 0;

{({f = 0 ∧ y = c ∧ 〈c 7→nil〉{(l1,r)}}, I1, ∅)}

}

{({〈y 7→nil〉{(l1,r),(l2,2)}}, I2, ∅)}

dispose(y);

{(∅, I3, {(l1, r), (l2, 2)})}

I1(r) = I0(r) ∪ {f = 1 ∧ 〈c 7→nil〉{(l1,r)}}

I2(r) = I1(r) ∪ {f = 0 ∧ 〈c 7→nil〉{(l1,r),(l2,r)}}

I3(r) = Upd(I2(r), {(l1, r), (l2, 2)}) = {f = 0 ∧ emp, f = 1 ∧ 〈c 7→nil〉∅}

Figure 4.9: Thread executions for put-get buffer

4.4.3 Testing of invariants

After executing all of the threads, at line 11 the algorithm tests if the setI of candidate resource

invariants is empty. This set can be empty because, as we discussed in the previous section, the

Exec function eliminates candidate resource invariants if execution of heap-accessing commands

cannot proceed. IfI is empty then there are no more resource invariant candidates left, and so the

algorithm fails at this point.

At line 14, the algorithm applies some standard abstractionheuristics to the resource invariant

candidates in order to generalize the formulae to help reachan invariant. This is done with the

abs(I) function, which applies the abstraction heuristics for symbolic heaps presented in [17] to

the concrete parts of all the formulae inI. These heuristics make generalizations such as remov-

ing existential variables from the middle of list segments:for example, a formula〈ls(x, x′)〉∅ ∗

〈ls(x′, y)〉∅ will be abstracted to〈ls(x, y)〉∅. We give an example of where this kind of general-

ization is required in Example 10 in the next section.

The for loop at line 15 tests each of the candidates to see if enough ownership decisions have

been resolved that a resource invariant has been found. The formulaIc at line 16 consists only of

the concrete disjuncts inI. At line 17, the algorithm checks if these concrete formulaeprovide

a resource invariant with which a CSL proof can be constructed. TheTest function is a standard

CSL specification checker, such as the one described in [2], which takes a concurrent program, a

124 Chapter 4. Ownership Inference for Concurrent Programs

concrete pre-condition and a concrete resource invariant,and checks if a CSL proof of the program

can be constructed with the given resource invariant. If thetest succeeds on any of the candidates,

then the algorithm returns the resource invariant and we aredone. If the test does not succeed on

any of the candidates, then we exit the for loop and go to the next iteration to further refine the

candidate resource invariants. Since the algorithm constructs a CSL proof using the synthesized

resource invariants, soundness follows from the soundnessof CSL.

In the case of our running example of the put-get buffer, at the end of the thread executions in the

first iteration (shown in figure 4.9), we have the single candidate resource invariantI3 such that

I3(r) = {f = 0 ∧ emp, f = 1 ∧ 〈c 7→nil〉∅}

We therefore haveI = {I3}, and since both formulae are concrete, we haveIc = I3 at line 16.

This is a valid resource invariant for the put-get buffer program, and so our algorithm successfully

completes in one iteration.

4.5 Examples and Comparison with Previous Methods

In this section we discuss some more examples to illustrate different aspects of the invariant syn-

thesis algorithm. For our first example, we discuss the phenomenon which O’Hearn describes as

“ownership is in the eye of the asserter”. Consider the program in figure 4.10, which is an address-

transferring put-get buffer, as opposed to the cell-transferring buffer from figure 4.4. We briefly

discussed the contrast between these two programs in section 1.2.3 in the introduction. While the

initialisation phase and theput andgetCCRs are exactly the same in both cases, the difference is

that in the address-transferring case, the left thread keeps ownership of the heap cell rather than

transferring it into the buffer. This is because the left thread disposes the cell outside the CCR

and, in agreement with this ownership policy, the right thread does not access the cell and only

reads its address. The ownership policy for the address-transferring buffer can be formalised with

a different choice of resource invariant, which is the formula (f = 1 ∧ emp) ∨ (f = 0 ∧ emp).

O’Hearn refers to this as ownership being in the “eye of the asserter” [42], since one can verify

the two programs with a different choice of resource invariant. However, our algorithm illustrates

how this choice can actually be inferred from how threads access the heap, as shown in the next

example.

4.5. Examples and Comparison with Previous Methods 125

c := nil;

f := 0;

resource r(c, f)

new(x);

with r when f = 0 do {

c := x; f := 1;

}

dispose(x);

with r when f = 1 do {

y := c; f := 0;

}

Figure 4.10: Address transferring put-get buffer

Example 8 (Address transferring put-get buffer) For the program in figure 4.10, we are given

the overall pre-condition{emp}. The initialisation phase is identical to the cell-transferring buffer

described in section 4.4, and so we havePre(1) = Pre(2) = {emp} andI0(r) = {f=0∧emp}.

The first iteration proceeds as follows:

({emp}, I0, ∅)

new(x);

({〈x 7→nil〉∅}, I0, ∅)

with r when f = 0 do {

({f = 0 ∧ 〈x 7→nil〉∅ ∗ I0}, I0, ∅)

c := x; f := 1;

({f = 1 ∧ c = x ∧ 〈x 7→nil〉∅}, I0, ∅)

}

({〈x 7→nil〉{(l1,1)}}, I1, ∅)

dispose(x);

({emp}, I2, L)

({emp}, I2, L)

with r when f = 1 do {

({f = 1 ∧ emp ∗ I2}, I2, L)

({f = 1 ∧ emp}, I2, L)

y := c; f := 0;

({f = 0 ∧ y = c ∧ emp}, I2, L)

}

({emp}, I2, L)

The new disjunct obtained at the end of the first CCR is added tothe invariant to getI1(r) =

I0(r) ∪ {f = 1 ∧ 〈c 7→nil〉{(l1,r)}}. When the dispose command is encountered, the constraint

L = {(l1, 1)} is discovered, which causes an update ofI1 to getI2(r) = {f = 0 ∧ emp, f =

1 ∧ emp}. In the second thread, the new invariant is added when we enter the CCR, and at the

end of the CCR the heap is empty. Hence the disjunct{f = 0 ∧ emp} is added to the invariant

but it already contains this disjunct and so it remains unchanged. At the end of the iteration, the

invariant I2 is checked to be the valid resource invariant for the program.

We next discuss an example where the algorithm encounters a choice about how to make an own-

ership inference. The program is shown in figure 4.11, where this time there are two buffers

126 Chapter 4. Ownership Inference for Concurrent Programs

c1 := nil; c2 := nil;

f1 := 0; f2 := 0;

resource r1(c1, f1), r2(c2, f2)

new(x);

put1(x);

put2(x);

get1(y);

get2(z);

if (z = y) then {[z] := w ; }

dispose(y);

Figure 4.11: Two buffer program

represented by resource namesr1 andr2. For resourceri, theputi andgeti commands are the

put and get CCRs using cell and flag variablesci andfi. The left thread creates a single new cell

and puts it into both buffers. But ownership of the cell can only move into one of them, and in

this program the bufferr1 acts as a cell-transferring buffer whiler2 acts as an address-transferring

buffer. This can be seen in the right thread, where ownershipof the cell comes out from the

get1(y) command because the thread disposes the cell aty in the last line. Hence theget2(z)

command only obtains the address of the cell and not the cell itself. In the following example

we show how the algorithm encounters a choice at a certain point about how to make the correct

ownership inference, which it then resolves later on.

Example 9 (Ownership choice in two buffer program) The algorithm analyses the program in

figure 4.11 in one iteration. Firstly, note that, as described previously, we implement the condi-

tional in the right thread as the non-deterministic composition (assume(z = y); [z] := w;) +

(assume(z 6= y); skip;). For the initial stage, theSplit function gives usI0(r1) = {f1 =

0 ∧ emp} and I0(r2) = {f2 = 0 ∧ emp} as the initial resource invariants and{emp} as pre-

condition of each thread. For the left thread we have the execution:

({emp}, I0, ∅)

new(x);

({〈x 7→nil〉∅}, I0, ∅)

put1(x);

({〈x 7→nil〉{(l1,1)}}, I1, ∅)

put2(x);

({〈x 7→nil〉{(l1,1),(l2,1)}}, I2, ∅)

After executing the first CCR we haveI1(r1) = I0(r1) ∪ {f1 = 1 ∧ 〈c1 7→nil〉{(l1,r1)}
} and

4.5. Examples and Comparison with Previous Methods 127

I1(r2) = I0(r2). After the second CCR we haveI2(r1) = I1(r1) and I2(r2) = {f2 = 1 ∧

〈c2 7→nil〉{(l1,1),(l2,r2)}
}. Then for the right thread we have the following execution:

({emp}, I2, ∅)

get1(y);

({〈y 7→nil〉{(l1,r1),(l3,2)}}, I3, ∅)

get2(z);

({〈y 7→nil〉{(l1,r1),(l3,2)} ∗ 〈z 7→nil〉{(l1,1),(l2,r2),(l4,2)}}, I4, ∅)





























({〈y 7→nil〉{(l1,r1),(l3,2)} ∗ 〈z 7→nil〉{(l1,1),(l2,r2),(l4,2)}}, I4, ∅)

assume(z = y);

({z = y ∧ 〈y 7→nil〉{(l1,r1),(l3,2)} ∗ 〈z 7→nil〉{(l1,1),(l2,r2),(l4,2)}}, I4, ∅)

[z] := w;

({z = y ∧ 〈y 7→w〉∅}, I5, L1) ({z = y ∧ 〈z 7→w〉∅}, I6, L2)





























+




























({〈y 7→nil〉∅}, I5, L1) ({〈z 7→nil〉∅}, I6, L2)

assume(z 6= y);

({z 6= y ∧ 〈y 7→nil〉∅}, I5, L1) ({z 6= y ∧ 〈z 7→nil〉∅}, I6, L2)

skip;

({z 6= y ∧ 〈y 7→nil〉∅}, I5, L1) ({z 6= y ∧ 〈z 7→nil〉∅}, I6, L2)





























({z = y ∧ 〈y 7→w〉∅, z 6= y ∧ 〈y 7→nil〉∅}, I5, L1) ({z = y ∧ 〈z 7→w〉∅, z 6= y ∧ 〈z 7→nil〉∅}, I6, L2)

dispose(y);

({z = y ∧ emp, z 6= y ∧ emp}, I5, L1)

The first CCR givesI3(r1) = I2(r1) ∪ {f1 = 0 ∧ 〈c 7→nil〉{(l1,r1),(l3,r1)}
} andI3(r2) = I2(r2).

The next CCR givesI4(r1) = I3(r1) andI4(r2) = I3(r2)∪{f2 = 0∧〈c 7→nil〉{(l1,1),(l2,r2),(l4,r2)}
}.

We then enter the first part of the non-deterministic composition, and after executing the assume

statement we encounter the heap access on the cell atz. Because of the equalityz = y, after

applying the rearrangement function both conjuncts can possibly give the heap cell required to

execute the command. We therefore obtain two possible constraints after executing the heap mu-

tation, which areL1 = {(l1, r1), (l3, 2)} andL2 = {(l1, 1), (l2, r2), (l4, 2)}. We branch on these

two constraints with the two triples in the output of theExec command, one updated with respect

toL1 and the other with respect toL2.

128 Chapter 4. Ownership Inference for Concurrent Programs

We then execute the second part of the non-deterministic composition, where the initial pre-

condition of the non-deterministic composition is updatedin the left and the right triple with

the newly discovered constraintsL1 and L2 respectively. When we exit the non-deterministic

composition, for each triple, the post-condition of the composition is obtained as the union of

the post-conditions of the two parts of the composition. Finally, with these two triples we then

encounter thedispose(y) command. At this point we find that the triple with theL2 con-

straint cannot provide the heap cell aty in the disjunct wherez 6= y, and so theL2 branch

fails and disappears. TheL1 branch is able to proceed safely, and this resolves the owner-

ship decision. ConstraintL1 gives us the updated resource invariantI5 = Upd(I4, L1), where

I5(r1) = {f1 = 0 ∧ emp, f1 = 1 ∧ 〈c1 7→nil〉∅} andI5(r2) = {f2 = 0 ∧ emp, f2 = 1 ∧ emp},

which is the correct resource invariant for the program.

We also remark that the two-buffer program in figure 4.11 is anexample which cannot be analysed

by the bi-abduction method of [9]. In this method, resource invariants are built up spatially by

inferring missing pieces of state using bi-abduction [8]. For example, in the put-get buffer program

in figure 4.4, the resource invariant is initialised to the spatially smallest formula{(f = 1∧emp)∨

(f = 0 ∧ emp)}, and a proof is attempted. The proof fails in the second thread when the dispose

command requires ownership of the heap cell. At this point, the last CCR, which is the get CCR,

is checked to see if the cell could have come from the resourceinvariant if the formula had more

state. The answer is yes, and the spatially bigger invariant{(f = 1 ∧ c 7→nil) ∨ (f = 0 ∧ emp)}

is obtained through bi-abduction, which allows the proof tosucceed.

However, this method does not address the ownership inference problem in full. Although bi-

abduction is useful in finding out what state is required, it does not answer the other part of the

question, which iswherethe ownership is coming from. It addresses this with the heuristic of

checking thelast CCR from the point at which the proof fails. This heuristic works in the simple

put-get buffer where there is only one previous CCR in the thread, but does not work in general.

An example where the method would fail is the two-buffer program in figure 4.11. In this case the

method will initialise the resource invariants forr1 andr2 to {(f1 = 1 ∧ emp) ∨ (f1 = 0 ∧ emp)}

and{(f2 = 1 ∧ emp) ∨ (f2 = 0 ∧ emp)} respectively. The proof will then fail when the heap

access is made in the conditional in the left thread. In this case the last CCRget2(z) would be

able to provide the required heap cell, but the cell should actually come from theget1(y) CCR

before that, becauser1 is the cell-transferring buffer. This way the method generates the incorrect

4.5. Examples and Comparison with Previous Methods 129

c := nil;

f := 0;

list := nil;

resource r(c, f), r′(list)

alloc(x1);

alloc(x2);

put(x1);

dealloc(x2);

get(y);

dealloc(y);

alloc(x)
def
= with r′ when true do {

if (list = 0) then {new(x); }

else{x := list ; list := [x]; }

}

dealloc(y)
def
= with r′ when true do {

[y] := list ;

list := y;

}

Figure 4.12: Combined buffer and memory manager

resource invariants{(f1 = 1∧emp)∨(f1 = 0∧emp)} and{(f2 = 1∧c 7→nil)∨(f2 = 0∧emp)}

for r1 andr2 respectively. In contrast, our method avoids this problem as it uses label-tracking to

keep track of where ownership is coming from.

As our final example, we choose a complex program that combines the use of two different re-

sources: the put-get buffer and a memory manager. The example shows how our algorithm de-

termines the resource invariants for both resources, and also shows how the abstraction function

helps to reach a valid resource invariant for memory manager. This is also an example where the

algorithm requires more than one iteration to reach the correct resource invariants.

The program is shown in figure 4.12. The buffer is representedby resource namer and the

memory manager by resource namer′. The memory manager internally maintains a linked list of

all the free cells, where the head of the list is maintained inthe resource variablelist . This list

is initialised to the empty list in the initialisation phase. The manager has two CCRs:alloc(x)

which removes an element from the head of the list or calls thesystem allocator if the list is empty,

anddealloc(y) which moves the cell aty to the head of the free list and back into the resource.

The main program has two threads. The left one allocates two cells and puts one in the buffer and

disposes the other. The other thread gets the cell from the buffer and then disposes it. For this

program the algorithm determines that the resource invariant for the memory manager is a singly

linked list at variablelist , and determines the standard invariant for the buffer.

130 Chapter 4. Ownership Inference for Concurrent Programs

Example 10 (Combined buffer and memory manager)We are given the program in figure 4.12

and the precondition{emp}. TheSplit function gives usI0(r) = {f = 0 ∧ emp} and I0(r′) =

{list = nil ∧ emp} as the initial resource invariants and{emp} as pre-condition of each thread.

The first iteration proceeds as follows:

({emp}, I0, ∅)

alloc(x1);

({〈x1 7→nil〉∅}, I0, ∅)

alloc(x2);

({〈x1 7→nil〉∅} ∗ 〈x2 7→nil〉∅}, I0, ∅)

put(x1);

({〈x 7→nil〉{(l1,1)} ∗ 〈x2 7→nil〉∅}, I1, ∅)

dealloc(x2);

({〈x7→nil〉{(l1,1)}∗〈x2 7→nil〉{(l2,2)}},I2,∅)

({emp}, I2, ∅)

get(y);

({〈y 7→nil〉{(l1,r),(l3,2)}}, I3, ∅)

dealloc(y);

({〈y7→x′〉{(l4,2)}∗〈x
′7→nil〉{(l2,r′),(l5,2)},〈y7→nil〉{(l6,2)}},I4,L1)

After the first two allocations, there are no new disjuncts for the r′ resource invariant because

the system allocator is used. Then the put CCR gives usI1 = I0[r → I0(r) ∪ {f = 1 ∧

〈c 7→nil〉{(l1,r)}}], and thedealloc(y) CCR givesI2 = I1[r
′ → I1(r

′)∪{〈list 7→nil〉{(l2,r′)}}].

In the second thread, the get CCR givesI3 = I2[r → I2(r) ∪ {f = 0 ∧ 〈c 7→nil〉{(l1,r),(l3,r)}}].

Then inside thedealloc(y) CCR, the cell aty is accessed, and hence we discover the constraint

L1 = {(l1, r), (l3, 2)}, which updates the invariant to give usI4(r) = {f = 0 ∧ emp, f =

1 ∧ 〈c 7→nil〉∅}. The new disjunct added to the invariant forr′ gives us

I4(r
′) = I3(r

′) ∪ {〈list 7→x′〉{(l4,r′)} ∗ 〈x
′ 7→nil〉{(l2,r′),(l5,r′)}, 〈list 7→nil〉{(l6,r′)}}

At the end of this iteration, all the concrete disjuncts for the buffer give the correct resource

invariant. However, the concrete disjuncts for the memory manager collected so far do not give a

valid resource invariant for the memory manager, and so we goto the next iteration. This starts

as follows:

({emp}, I4, L1)

alloc(x1);

({〈x1 7→nil〉∅}, I5, L2)

alloc(x2);

({〈x1 7→nil〉∅} ∗ 〈x2 7→nil〉∅}, I6, L3)

In the first CCR, the head of the free list is accessed, and so wediscover the constraintL2 =

4.6. Extension to Loops 131

L1 ∪ {(l2, r
′), (l4, r

′), (l6, r
′)}. Updating with respect to this constraint gives us

Upd(I4(r
′), L2) = {list = nil ∧ emp, 〈list 7→nil〉∅, 〈list 7→x′〉∅ ∗ 〈x

′ 7→nil〉{(l5,r′)}}

When we exit the CCR, we getI5(r′) = I4(r
′) ∪ {〈list 7→nil〉{(l5,r′),(l7,r′)}}. In the next CCR,

again the head of the list is accessed and so the latest disjunct gives us the constraintL3 =

L2 ∪ {(l5, r
′), (l7, r

′)}. Updating with respect to this constraint and adding the newdisjunct we

get

I6(r
′) = {list = nil ∧ emp, 〈list 7→nil〉∅, 〈list 7→x′〉∅ ∗ 〈x

′ 7→nil〉∅, 〈list 7→nil〉{(l8,r′)}}

Now the third disjunct in this set is concrete, and so at the end of this iteration when the abstraction

heuristics are applied, the existential variablex′ in the third disjunct is thrown away to give the

general formulals(list , nil). This is a list segment fromlist to nil, which is the valid resource

invariant for the memory manager.

4.6 Extension to Loops

So far we have not discussed how to handle programs with whileloops. Programs with loops

usually require abstraction on the symbolic states in orderto generalise the states so that a loop

invariant can be reached. This causes a complication when tracking ownership transfer between

loop iterations, since it is not known how to perform abstraction without knowing the distribution

of ownership. This is a general problem for resource invariant synthesis methods that attempt

to infer ownership, such as in the case of the bi-abduction method [9] where the problem is not

addressed. In the case of the reachability method of [23], loops do not present a complication since

there is no ownership inference being performed, as it assumed that the reachability heuristic

provides the correct ownership distribution. This method can therefore proceed with standard

abstraction techniques to reach loop invariants.

In this section we present a general technique for ownershipinference in the presence of loops,

which is parametric in an invariant synthesis method for loop free programs. The technique is

based on analysing finite loop-freeunfoldingsof the concurrent program. We extend the program-

ming language with the while loop commandwhile B C which executes the bodyC until the

132 Chapter 4. Ownership Inference for Concurrent Programs

Algorithm 4 ExtInvSynth(Prg , Pin)

1: i := 1;
2: while true do
3: I := InvSynth(Prg<i>, Pin);
4: if TestInv(Prg , Pin, I) then
5: return I;
6: end if
7: i := i+ 1;
8: end while

conditionB is false. Note that the loop body may contain CCRs and ownership transfers may oc-

cur between iterations of the loop. Given a programC = while B C ′ we define theith unfolding

C<i> of C as

C<0>
def
= assume(¬B)

C<i+1>
def
= assume(B);C ′;C<i> + C<i>

For a given concurrent programPrg containing while loops, we definePrg<i> to be Prg in

which every while loopC is replaced byC<i>. We show the extended method for handling

concurrent programs with while loops in algorithm 4. The algorithm progressively unfolds all the

loops in the program and infers a resource invariant for the unfolded program using theInvSynth

procedure from Algorithm 3. The abstraction function applied in theInvSynth procedure help to

reach a generalised resource invariant formula which is applicable to anarbitrary number of loop

unfoldings. The algorithm uses theTestInv function to check if such a formula has been reached

after every iteration.

Note is that this is a generic method for ownership inferencein the presence of loops, in that our

technique can be used with any invariant inference method that works for loop-free programs. For

example, instead of using theInvSynth procedure in algorithm 4, we may use some other invariant

synthesis method such as the bi-abduction method of [9].

Examples 4.1The program on the left in figure 4.13 shows the producer-consumer pattern in

which a producer thread continuously creates a new cell and waits for the buffer to empty before

placing the cell in the buffer, and the consumer thread waitsuntil the buffer is full and then takes

the cell out of the buffer and disposes it. In this case, one unfolding of the program is the put-get

buffer program from figure 4.4, for which theInvSynth procedure generates the resource invariant

{f = 0 ∧ emp, f = 1 ∧ c 7→nil}. This is the valid resource invariant for the producer-consumer

program and so theExtInvSynth procedure finds the correct invariant in one unfolding.

4.7. Conclusion 133

c := nil;

f := 0;

resource r(c, f)

while (true) {

new(x);

put(x);

}

while (true) {

get(y);

dispose(y);

}

c := nil;

f := 0;

list := nil;

resource r(c, f) r′(list)

while (true) {

alloc(x);

put(x);

}

while (true) {

get(y);

dealloc(y);

}

Figure 4.13: Producer-consumer (left) and producer-consumer with memory manager (right)

The program on the right in figure 4.13 shows the producer-consumer pattern that uses the memory

manager we described in example 10. In this case again, for one unfolding of the program, the

InvSynth procedure discovers the resource invariantls(list , nil) for the memory manager and

the standard one for the buffer, which are the correct resource invariants for the actual program

with loops.

4.7 Conclusion

We have presented an algorithm that synthesizes resource invariants for automating CSL proofs.

The method is based on a form of label tracking in which ownership constraints are propagated

through a program proof, and ownership transfers are determined from heap accesses at arbitrary

points in the execution. We have demonstrated how the methodis able to analyse programs which

could not be handled previously, and also does not require user annotations about ownership dis-

tribution.

Although the approach that we have presented intuitively does not rely on any heuristic decisions

about ownership inference (as was the case in previous methods), this property has not yet been

demonstrated in a formal sense. It remains for us to explore some kind ofcompletenessresult

about our algorithm, perhaps in a restricted setting which avoids the other standard sources of

imprecision such as the abstraction functions.

Another next step is to investigate ownership inference forfine-grained concurrent programs,

which use synchronization methods that avoid mutually exclusive access to entire data structures,

and therefore achieve greater parallelism. Such programs require more advanced analyses than

134 Chapter 4. Ownership Inference for Concurrent Programs

CSL, such as the recent rely-guarantee based methods of [53,12]. In these analyses the state

of shared resources may change under specifiedactionsrather than always satisfying an invari-

ant. However, as with the inference of resource invariants,existing methods for inferring actions

[52] resort to heuristic ownership inference techniques, which may possibly be avoided with the

incorporation of label tracking.

Chapter 5

Conclusion and Future Directions

This thesis has extended resource reasoning with separation logic in the areas of modular pro-

gram specification, program optimization, and concurrencyverification. The general theory of

relevance footprints developed in the setting of abstract separation logic has formalised the essen-

tiality and sufficiency properties of footprints in local reasoning. We have also introduced a new

semantic model of heaps which reestablishes the correspondence between safety and relevance

footprints, and we identified the general property of determinism constancy which guarantees this

correspondence in arbitrary resource models. We have yet toexplore practical applications of the

new semantic heap model which, apart from resolving the footprint problems, also permits the

modelling of deterministic and bounded-memory allocation, unlike the standard model.

The second part of the thesis introduced labelled separation logic, which is based on the idea

that, while spatial separation delivers local reasoning and tractable verification of programs, the

stronger notion oflabelled separationallows us to track deeper properties of program executions.

We first described the use of labelled separation logic for detecting dependences between program

statements, which is needed for program optimizations suchas parallelization. The method has

yielded promising initial results in the area of hardware synthesis, and with the incorporation of

various recent techniques to improve the underlying shape analysis, we aim to explore its applica-

tion to a wider class of industrial programs.

In the third part of the thesis we applied the notion of resource labelling to the problem of inferring

ownership of shared resources in concurrent programs. We presented a new ownership inference

algorithm based on label-tracking which can verify concurrent programs that could not be handled

135

136 Chapter 5. Conclusion and Future Directions

by previous methods. As part of next steps, we would like to formally demonstrate the non-

heuristic nature of the ownership inference method, as wellas to extend it to the verification of

fine-grained concurrent programs.

We end with a discussion of some further directions in which the resource reasoning techniques

presented in this thesis may be developed and applied in the longer term.

Dependence analysis at higher levels of abstractionTraditional analyses only test dependence

based on actual memory accesses, but sometimes commands mayaccess the same memory yet still

be ‘independent’ with respect to the abstract specificationrequired of a program. For example, the

W3C DOM library for updating web pages is specified in terms ofoperations that act locally on

an abstract tree structure, so that two updates to disjoint nodes in the DOM tree would be consid-

ered to be independent at the abstract level. However, depending on the specific implementation,

these operations may interfere on the underlying heap structure that represents the abstract struc-

ture, such as performing global traversals to reach the relevant nodes. It will be interesting to

explore recent approaches such as context logic [10, 20] or abstract predicates [44] to adapt la-

belled resource reasoning to higher levels of abstraction,which may lead to more powerful forms

of optimizations.

Object-oriented programming Due to a range of difficulties, such as the extensive presenceof

aliasing, higher-order features and inheritance, the analysis of object-oriented programs presents

many challenges. In this thesis we have focused on simple imperative programming languages

with heap-manipulating commands, but significant advanceshave also been made in using sepa-

ration logic for the verification of object-oriented programs [44, 45, 18]. Exploring the possible

combination of these techniques with the methods presentedin this thesis may be a first step

toward addressing optimization and concurrency analysis for object-oriented programs.

Futures-annotated programs Another area that we are currently exploring are programs with

futuresannotations [40]. Futures are synchronization constructsthat permit the result of a compu-

tation to be computed in parallel with the rest of the execution. We aim to use the resource track-

ing provided by labelled separation logic to verify the important safety property that resources

are shared correctly between the future computation and thecontinuation, so that the annotated

137

program can be guaranteed to produce the same results as its sequential counterpart. This is unlike

memory-safety checking for concurrent programs, where theaim is only to show the absence of

memory errors, rather than to show equivalence with some sequential program.

Concurrency optimizations Since concurrent programs are difficult to write, programmers of-

ten make over-conservative choices to ensure safety, such as unneeded synchronization or larger

than needed critical regions. The ownership inference method of chapter 4 provides information

about how resources are being used and shared in a concurrentprogram. Apart from verifying

safety properties, this information may also help in using resources more efficiently in concurrent

programs. For example, together with a dependence analysislike the one described in chapter 3, it

may enable various synchronization optimizations in concurrent programs [16], such as synchro-

nization elimination, critical region expansion (to minimize overhead of acquires and releases),

critical region reduction (to increase concurrency), and data replication to reduce synchronized

access to shared data.

Bibliography

[1] J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. O’Hearn, T. Wies, and H. Yang. Shape

analysis for composite data structures. InComputer Aided Verification, pages 178–192.

Springer-Verlag, 2007.

[2] J. Berdine, C. Calcagno, and P. O’Hearn. Smallfoot: Modular automatic assertion checking

with separation logic. InInternational Symposium on Formal Methods for Components and

Objects, pages 115–137. Springer-Verlag, 2005.

[3] J. Berdine, C. Calcagno, and P. O’Hearn. Symbolic execution with separation logic. InAsian

Symposium on Programming Languages and Systems, pages 52–68. Springer-Verlag, 2005.

[4] R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Permission accounting in separation

logic. InSymposium on Principles of Programming Languages, pages 259–270. ACM, 2005.

[5] R. Bornat, C. Calcagno, and H. Yang. Variables as resource in separation logic. InConfer-

ence on the Mathematical Foundations of Programming Semantics, pages 247–276. Elsevier

ENTCS, 2005.

[6] Stephen Brookes. A semantics for concurrent separationlogic. Theoretical Computer Sci-

ence, 375:227–270, 2007.

[7] C. Calcagno, D. Distefano, P. OHearn, and H. Yang. Footprint analysis: A shape analysis

that discovers preconditions. InStatic Analysis Symposium, pages 402–418. Springer-Verlag,

2007.

[8] C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Compositional shape analysis by means

of Bi-abduction. InSymposium on Principles of Programming Languages, pages 289–300.

ACM, 2009.

138

BIBLIOGRAPHY 139

[9] C. Calcagno, D. Distefano, and Viktor Vafeiadis. Bi-abductive resource invariant synthesis.

In Asian Symposium on Programming Languages and Systems, pages 259–274. Springer-

Verlag, 2009.

[10] C. Calcagno, P. Gardner, and U. Zarfaty. Context logic and tree update. InSymposium on

Principles of Programming Languages, pages 271–282. ACM, 2005.

[11] C. Calcagno, P. O’Hearn, and H. Yang. Local action and abstract separation logic. InSym-

posium on Logic in Computer Science, pages 366–378. IEEE Computer Society, 2007.

[12] C. Calcagno, M. Parkinson, and V. Vafeiadis. Modular safety checking for fine-grained

concurrency. InStatic Analysis Symposium, pages 233–248. Springer-Verlag, 2007.

[13] B. Cook, Ashutosh Gupta, S. Magill, Andrey Rybalchenko, Jiri Simsa, Satnam Singh, and

Viktor Vafeiadis. Finding heap-bounds for hardware synthesis. In Formal Methods in

Computer-Aided Design, pages 205–212. IEEE, 2010.

[14] B. Cook, S. Magill, M. Raza, J. Simsa, and S. Singh. Making fast hardware with separation

logic. In preparation, 2010.

[15] J. B. Dennis. First version of a data flow procedure language. InProgramming Symposium,

Proceedings Colloque sur la Programmation, pages 362–376, London, UK, 1974. Springer-

Verlag.

[16] P. Diniz and M. Rinard. Synchronization transformations for parallel computing. InPrinci-

ples of Programming Languages, pages 187–200. ACM, 1997.

[17] D. Distefano, P. O’Hearn, and H. Yang. A local shape analysis based on separation logic. In

TACAS: Tools and Algorithms for the Construction and Analysis of Systems, pages 287–302.

Springer-Verlag, 2006.

[18] D. Distefano and M. Parkinson. jstar: Towards practical verification for java. InObject

Oriented Programming Systems Languages and Applications, pages 213–226. ACM, 2008.

[19] Robert W. Floyd. Assigning meanings to programs. InSymposium on Applied Mathematics,

pages 19–32. American Mathematical Society, 1967.

[20] P. Gardner, G. Smith, M. Wheelhouse, and U. Zarfaty. Local hoare reasoning about DOM.

In Principles of Database Systems, pages 261–270. ACM, 2008.

140 BIBLIOGRAPHY

[21] R. Ghiya, L. Hendren, and Y. Zhu. Detecting parallelismin C programs with recursive data

structures. InConference of Compiler Construction, pages 159–173. Springer-Verlag, 1998.

[22] A. Gotsman, J. Berdine, and B. Cook. Interprocedural shape analysis with separated heap

abstractions. InStatic Analysis Symposium, pages 240–260. Springer-Verlag, 2006.

[23] A. Gotsman, J. Berdine, B. Cook, and M. Sagiv. Thread-modular shape analysis. InPro-

gramming Language Design and Implementation, pages 266–277. ACM, 2007.

[24] B. Guo, N. Vachharajani, and D. August. Shape analysis with inductive recursion synthesis.

In Programming Language Design and Implementation, pages 256–265. ACM, 2007.

[25] R. Gupta, S. Pande, K. Psarris, and V. Sarkar. Compilation techniques for parallel systems.

In Parallel Computing, pages 1741–1783. Elsevier Science Publishers, 1999.

[26] L. J. Hendren and A. Nicolau. Parallelizing programs with recursive data structures. InIEEE

Transactions on Parallel and Distributed Systems, pages 35–47. IEEE Press, 1990.

[27] C. A. R Hoare. An axiomatic basis for computer programming. Communications of the

ACM, 12:576–580, 1969.

[28] T. Hoare and P. O’ Hearn. Separation logic semantics of communicating processes. In

Foundations of Informatics, pages 3–25. Elsevier ENTCS, 2008.

[29] S. Horwitz, P. Pfeiffer, and T. Reps. Dependence analysis for pointer variables. InProgram-

ming Language Design and Implementation, pages 28–40. ACM, 1989.

[30] J. Hummel, L. Hendren, and A. Nicolau. A general data dependence test for dynamic,

pointer-based data structures. InProgramming Language Design and Implementation, pages

218–229. ACM, 1994.

[31] C. Hurlin. Automatic parallelization and optimization of programs by proof rewriting. In

Static Analysis Symposium, pages 52–68. Springer-Verlag, 2009.

[32] S. Isthiaq and P. O’ Hearn. BI as an assertion language for mutable data structures. InPrin-

ciples of Programming Languages, pages 14–26. ACM, 2001.

[33] N.D. Jones. and S.S Muchnick. Flow analysis and optimization of Lisp-like structures. In

Principles of Programming Languages, pages 244 – 256. ACM, 1979.

BIBLIOGRAPHY 141

[34] B. Kernighan and D. Ritchie.The C programming language. Prentice Hall, 1988.

[35] S. Magill, J. Berdine, E. Clarke, and B. Cook. Arithmetic strengthening for shape analysis.

In Static Analysis Symposium, pages 419–436. Springer-Verlag, 2007.

[36] S. Magill, A. Nanevski, E. Clarke, and P. Lee. Inferringinvariants in separation logic for

imperative list-processing programs. InWorkshop on Semantics, Program Analysis, and

Computing Environments for Memory Management, 2006.

[37] S. Magill, M. Tsai, P. Lee, and Y. Tsay. THOR: A tool for reasoning about shape and

arithmetic. InComputer Aided Verification, pages 428–432. Springer-Verlag, 2008.

[38] M. Marron, D. Stefanovic, D. Kapur, and M. Hermenegildo. Identification of heap-carried

data dependence via explicit store heap models. InLanguages and Compilers for Parallel

Computing, pages 94–108. Springer-Verlag, 2008.

[39] C. Morgan. The specification statement. InACM Transactions on Programming Languages

and Systems, pages 403–419. ACM, 1988.

[40] A. Navabi and S. Jagannathan. Exceptionally safe futures. InCoordination Models and

Languages, pages 47–65. Springer-Verlag, 2009.

[41] P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about programs that alter data struc-

tures. InComputer Science Logic, pages 1–19. Springer-Verlag, 2001.

[42] P. W. O’Hearn. Resources, concurrency and local reasoning. Theoretical Computer Science,

375:271–307, 2007.

[43] M. Parkinson.Local Reasoning for Java. University of Cambridge (Ph.D. Thesis), 2005.

[44] M. Parkinson and G. Bierman. Separation logic and abstraction. InPrinciples of Program-

ming Languages, pages 247–258. ACM, 2005.

[45] M. Parkinson and G. Bierman. Separation logic, abstraction and inheritance. InPrinciples

of Programming Languages, pages 75–86. ACM, 2008.

[46] M. Parkinson, R. Bornat, and C. Calcagno. Variables as resource in Hoare logics. InLogic

in Computer Science, pages 137–146. IEEE Computer Society, 2006.

142 BIBLIOGRAPHY

[47] M. Parkinson, R. Bornat, and P. O’Hearn. Modular verification of a non-blocking stack. In

Principles of Programming Languages, pages 297–302, 2007.

[48] M. Raza, C. Calcagno, and P. Gardner. Automatic parallelization with separation logic. In

European Symposium on Programming, pages 348–362, 2009.

[49] M. Raza and P. Gardner. Footprints in local reasoning. In Foundations of Software Science

and Computation Structures, pages 201–215. Springer-Verlag, 2008.

[50] M. Raza and P. Gardner. Footprints in local reasoning (with regaining of safety footprints).

Logical Methods in Computer Science, 5(2), 2009.

[51] J. C. Reynolds. Separation logic: A logic for shared mutable data structures. InLICS:

Symposium on Logic in Computer Science, pages 55–74. IEEE Computer Society, 2002.

[52] V. Vafeiadis. RGSep action inference. InVerification, Model Checking, and Abstract Inter-

pretation, pages 345–361. Springer-Verlag, 2010.

[53] V. Vafeiadis and M. Parkinson. A marriage of rely/guarantee and separation logic. InCon-

ference on Concurrency Theory, pages 256–271. Springer-Verlag, 2007.

[54] H. Yang. An example of local reasoning in BI pointer logic: the Schorr-Waite graph marking

algorithm. InSPACE, 2001.

[55] H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and P. OHearn. Scalable

shape analysis for systems code. InComputer Aided Verification, pages 385–398. ACM,

2008.

[56] H. Yang and P. O’Hearn. A semantic basis for local reasoning. In Foundations of Software

Science and Computational Structures, pages 402–416. Springer-Verlag, 2002.

	Introduction
	Background
	Motivation and Contributions
	Resources required for modular specifications
	Resource dependence detection for optimization
	Resource sharing in concurrent programs

	Footprints and Complete Specifications
	Background
	Properties of Specifications
	Relevance Footprints
	Sufficiency and Small Specifications
	Regaining Safety Footprints
	Conclusion

	Dependence Analysis for Optimization
	Introduction
	Labelled Symbolic Heaps
	Dependence Analysis
	Executing atomic commands
	Executing specified commands

	Allocation dependences
	Examples and Experiments
	Soundness
	Conclusion

	Ownership Inference for Concurrent Programs
	Background
	Label Tracking for Ownership Inference
	Formulae with Ownership constraints
	Invariant Synthesis
	Initialisation
	Thread execution
	Testing of invariants

	Examples and Comparison with Previous Methods
	Extension to Loops
	Conclusion

	Conclusion and Future Directions
	Bibliography

