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Abstract

This thesis develops resource reasoning with separatiin io the areas of modular program

specification, program optimization, and concurrencyfigation for heap-manipulating programs.

In the first part, we investigate the resources that are redjdior modular and complete program
specifications. Since the safety footprints of a programe (#sources required for safe execu-
tion) do not always yield complete specifications, we firgrelsterize the notion of thelevance
footprint We show that the relevance footprints are the only elemesgential for a complete
specification, and also identify the conditions for sufiicg We then introduce a novel semantic
model of heaps which establishes the correspondence bresaésy and relevance footprints, and

we identify a general condition that guarantees this cpmedence in arbitrary resource models.

In the second part, we preselabelled separation logidor introducing optimizations such as
automatic parallelization in heap manipulating programsrder to detect dependences between
distant statements in a program, we annotate spatial cctsjim separation logic formulae with
the labels of accessing commands, and propagate these tabmigh program proofs. We also
identify the notion of ‘allocation dependences’ which, iddd@ion to standard stack and heap

dependences, are needed to ensure the safety of optimiatio

In the final part, we address the analysis of resource owipetgtnsfers in concurrent programs,
and present an algorithm for automating concurrent sdparédgic proofs. This is based on a
form of labelled separation logic in which ownership coastts are tracked through a proof and
ownership is inferred from heap accesses at arbitrary grogroints. Unlike previous methods,
the algorithm presented here does not require user armutagbout ownership distribution, and

we demonstrate how it can verify programs that could not Inellea by previous methods.
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Chapter 1

Introduction

This thesis is about formal, logic-based approaches far@mgsthe quality of computer programs,
in terms of both reliability and performance. In generaff\gare today is unreliable and suscep-
tible to errors and viruses. Standard testing techniquesatgrovide guarantees, as testing can
only verify a limited set of possible executions. Perforigairs also a factor of concern as heavier
demands are made on computer systems. Becoming incrgasimgbrtant is the exploitation of
software parallelism, as manufacturers turn to developindticore architectures which provide
increased concurrency instead of increased clock speedreTé therefore a growing need for
robust and powerful methods for the verification and optation of computer programs. For-
mal approaches based on the rigour of mathematical logit tie promise of delivering such

methods.

A central concern in ensuring the quality of computer systésthe correct and efficient man-
agement of the resources that are available to the system foths here is especially on heap
manipulation in imperative programs with dynamic memonpadtion and pointer data struc-
tures. Such programs have been out of the reach of tractablgsas based on formal logics,
but a significant advance has recently been made seifaration logic which is a program logic
based on the idea of reasoning spatially about resourcanalogy with temporal logic, in which
statements can descrilbdena property holds, statements in separation logic can desetiere

a property holds. This approach has led to elegant proofsogiam correctness, as well as modu-
lar and scalable automated verification methods. Howeeeper properties of how resources are

manipulated in programs have remained out of the reach sfiegimethods based on separation

13



14 Chapter 1. Introduction

logic:

e what are the resources needed to describe the behaviouraj@m, so that we can provide

modular and complete program specifications?

e how can we detect the resources accessed in different parfgogram, so that the program

may be executed more efficiently?

e how can we detect how resources are shared between diffrerdsses, so that we can

verify concurrent programs?

In this thesis we develop resource reasoning with separédgic to address these questions. We
first give a background on Hoare logic and separation logid,then describe the motivation and

contributions of the thesis in more detail.

1.1 Background

Hoare Logic A rigorous approach to program verification is provided byakéologic [19]217],
in which formal proofs of program correctness are constdietsing mathematical logic. Such
proofs guarantee the properties for all possible runs rdttem a few test cases. In Hoare logic,
program properties are specified as ‘Hoare triples’ of tienfP} C' {Q}, whereC' is a com-
mand andP and( are logical formulae that describe the pre- and post-comditof the command.
A Hoare triple may have a partial or total correctness intgiion. The partial correctness inter-
pretation of the tripld P} C {Q} is that if P is true before the execution 6f, thenq is true after
the execution i terminates. The total correctness interpretation in amdguarantees the termi-
nation ofC'. In his original paper, Hoare provided an axiomatic treatnfer a simple imperative
programming language based on partial correctness trgflésis form. He demonstrated how
formal proofs of properties can be expressed as triplesfanuhlly proved by logical inference

using axioms and inference rules such as the following:
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Axiom of Assignment:  {P[E/z]} z := E {P}

P=PrP {P}C{Q} Q=Q
Rule of Consequence: {P'} C{Q'}

{P}C1{Q} {Q}C2{R}
Rule of Composition: {P} C1;C2 {R}

The Hoare logic approach to verification has been exteryssteldied and extended for a variety
of programming constructs. However, the approach is raredd in practice, mainly because the
inference methods do not scale well to realistic progrante Situation is worse in the presence
of pointers and dynamic data structures, since assertiofisst-order logic describe the global
state of memory and so intricate aliasing relationshipsvbeh pointers must be expressed to be
able to prove program properties. This leads to an uncdaitiel complexity of specifications and

proofs, and a breakdown in modularity of reasoning.

Separation logic Separation logic was introduced by O’Hearn, Reynolds anmdy Y& 41 32]

to address the difficulties encountered by Hoare logic isgemg about pointer programs. The
central idea here is to reason spatially about resourceh ésithe program’s heap) by introducing
a new connective to first-order logic, which is the spatigbsating conjunctior. This connective
allows properties of separate resources to be specifiedlatizn from one another. Thus, when
reasoning about heap-manipulating programs for exampderraula P+ () asserts that the memory
heap can be separated into two disjoint parts, one of whitsfisa P and the other satisfigs.
The other spatial connective added by separation logi®iadijoint of the separating conjunction,
which is the separating implicatior= . AformulaP — () asserts that if the current heap is added
to any heap satisfying, then the resulting heap will satisfy. Such assertions allow one to easily
and concisely express properties of heap layout and aljiagihich are the cause of the difficulty
of reasoning in classical logic. For example, we may havddimulalist(z) * 1ist(y), which
asserts that the heap consists of two disjoint linked lists andy. In contrast, an assertion
list(z) A list(y) in classical logic only describes the presence of two list$e heap which

may or may not share any number of heap cells.

Furthermore, the spatial assertion language of separki@go also facilitatedocal reasoning
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about programs, in which specifications and proofs can foaube resources that are relevant to
a program, instead of having to describe the global statlkeo$ystem. Local reasoning is natural
because of the local way in which programs behave: thereeatairw resources that a program
accesses and are required for safe execution, which is kiaswhe program’safety footprint

and any other resource is unaffected by the program.

In line with this local behaviour of programs, the interptéin of a Hoare triple{ P} C {Q}
in separation logic extends the standard interpretatidgh thie additional constraint that the pre-
condition P should include the safety footprint of the commatigdso that there are no memory
access faults when executing the command from this preibmmdMoreover, one can now give
small specificationgor programs, in which the pre-condition only describesshtety footprint.

For example, a small specification for the heap deallocatonmand is given as

{l — _} dispose(l) {emp}

The pre-condition describes the safety footprint, whickthis case is the single heap cell at loca-
tion [ that the command deallocates (the contents of the heaprealinspecified as they are not
accessed in the command’s execution). Deallocating theeslits in a post-condition which is
the empty heap. To infer the behaviour of commands on arpitesger states, one can use the
main inference rule of local reasoning known asftaee rule

{P} Cc{Q}
{R+P} C{R*xQ}

The frame rule encodes the local behaviour of programsei€ttimmand” executes safely on pre-
condition P, then it does not access any other resources, and hencertlo the heap described
by formula R will remain unchanged after the execution (note that theag be additional side
conditions associated with the rule depending on the spdoifin of the logic being used). For
example, given the small specification for dispose, we magtroct the following proof using the
frame rule and the rule for composition:

{l — _} dispose(l) {emp}
{l''>_ % l— _} dispose(l) {I'—_}

Frame {lI' — _} dispose(l’) {emp}

Composition
{I'™_ % | +— _} dispose(l);dispose(l’) {emp} P
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Such local reasoning with separation logic has led to eteggashmodular proofs of some difficult

programsli54, 41, 47].

Automated analysis with separation logic Apart from providing simple specifications and by-
hand proofs, separation logic has also made significantnadgain automated analysis of heap-
manipulating programs. The foundation for this was laid leydine, Calcagno and O’Hearn in
[3, 2], who developed a form of symbolic execution based enpttoof rules of separation logic.
The formulation of this symbolic execution method is basadh®e spatial nature of separation

logic reasoning. For example, consider the axiom for thg meatation command

{Pxx—|[f:yl} v— f=2 {Pxxr—[f:2]}

where the command accesses the heap cell at locatiod updates the value of fiefdto z. The
precondition, which asserts the presence of the cell @ which the fieldf initially has value

y), is updatedn-place in a way that mirrors the imperative update of the actuaptibat occurs
during program execution. This in-place update can be dewause the separating conjunction
avoids the need for checking the possibility of aliasinghia tjlobal heap, because it separates the

cell of interest from the rest of the heap.

To formulate separation logic in terms of this kind of symbaxecution, two restrictions are
imposed on the kind of formulae that can be used. First, ftaeare restricted to a format of
the formII A 32, wherell is apure formula(describing properties of variables, independent of the
heap) and is aspatial formuladescribing the heap, which is a *-combination of heap pegdi
The other restriction is that formulae do not describe thaildel contents of data structures, but
only describe the shapes of heap structures (in the sensmpé snalysis). For example, apart
from the basic points-to predicate— _, we may have a shape predicatgz, y) which describes

a heap that is a linked list segment franto y, or the predicateree(x) which describes a binary
tree atr. These kind of formulae are commonly knownsgsbolic heapi the literature, as their

restricted format closely resembles the structure of czirdneaps.

For this restricted symbolic heap fragment, Berdine et edetbped a symbolic execution frame-
work which, given user annotations for pre- and post-camut and loop invariants, is able to

automatically verify safety properties of heap manipualgtprograms, ensuring the absence of
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new(:z:); with » when f =1
with 7 when £f =0 {
{ yi=c
C:=1x, f:=0;
f=1 }
} dispose(y);

Figure 1.1: Cell-transferring buffer

memory errors such as dereferences of dangling pointersnanaory leaks. This basic founda-
tion has been developed in many directions since, espeaiaihe area of shape analysis. Firstly,
abstraction (or widening) operators were added to symhdacution to infer invariants auto-
matically via a fixed-point calculation, in the usual manonémbstract interpretatiori [ILY, 136].
Advances in various other directions, especially on thedsof scalability, compositionality and
data structures, have led to the first automatic proofs aftposafety in entire industrial programs,

with verification of Microsoft and Linux device drivers witkp to 10,000 lines of cod& |56l (8, 1].

Concurrent Separation Logic The locality and modularity of reasoning provided by separa
tion logic has also brought about important advances in #néieation of concurrent programs.
Concurrent program analysis is a difficult problem becadiskeoneed to consider possible inter-
leavings between concurrent processes, which becomesrarencomplicated in the presence of
aliasing and dynamic data structures in the heap. ConduBegparation Logic (CSL), introduced
by O’Hearn in [42], made a breakthrough in modular Hoardéestgasoning about concurrent

heap-manipulating programs.

The basic idea behind CSL is the use of formulae catsdurce invariantdo describe the heap
that is shared between concurrent processes, and to hide taednterference between pro-
cesses with the use of resource invariants in program préésconsider concurrrent programs
in which synchronization is implemented using ttenditional critical region (CCRonstruct

wi t h » when B do C, wherer is a resource namé3 is a boolean condition, and is a com-
mand. A thread executing this command waits until the baokEndition B is satisfied and no
other CCR forr is executing, and then it executes the badyTwo CCRs for the same resource
name cannot be executed simultaneously, which ensurestthad resources are accessed in mu-
tual exclusion. For example, consider the program showgyind[T.1. This program uses a single

heap cell buffer shared between two threads, access to vghichtected by resource nameThe
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buffer heap cell is pointed to by variabieand the flag variablg indicates whether the buffer is
full or empty (the initial pre-condition of the program isathy = 0 andc = nil). The left thread
allocates a new cell and places it in the buffer, and the thyletad removes the cell from the buffer

and disposes it.

CSL provides reasoning about such programs by associaitigresource namewith a formula
I(r) called the resource invariant, which describes the stateec$hared resources protected-by
at all times. For the buffer example, the resource invaipecifies that it is always the case that
either the buffer is empty anfl = 0, or there is a single heap cell pointed to bgnd f = 1,

which is given by the formula

The idea is that the resource invariant defines a contravteleet threads about how the shared
state must be maintained: inside critical regions, a threildjain ownership of the shared state
and expect it to satisfy the resource invariant. It can thenkvon the shared state in mutual
exclusion, possibly invalidating the resource invaridot, then it must re-establish the invariant at
the end of the critical region, before giving up ownershiphaf shared state. This is modelled by
the inference rule for critical regions:

{(P+1(r)) NB}C{Q = I(r)}
{P}with r when B C {Q}

no other process modifies variables freéior @

The body of the CCR has access to the shared state and thd'sHoeal stateP”, and the invariant
is re-established after execution along with some othergaradition Q. Outside the CCR, the
resource invariant is ‘hidden away’, and reasoning pros@gthout knowledge of the shared state.
For example, in the left thread in the buffer program, attemtew(z) command creates— _, the
CCR rule is used as follows

{(z—=_Nf=0} c:=a; f:=1; {x—_ANc=xANf=1}

{(x—_xI(r)ANf=0} ci=x; f:=1; {empxI(r)}
{r—_} with r when £ =0{c:=ux; f:=1;} {emp}

rule of consequence
CCRrule

Hence, ownership of the cell allocated in the thread mowvesie buffer after the CCR execution,

and the thread is left with the empty post-conditiamp. We can similarly derive the following
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specification for the CCR in the second thread

{emp} with r when f=1{y:=¢; f:=0;} {y—_}

where ownership of the cell moves from the buffer into theddr, with post-conditiony — _ ,
which the thread then safely disposes with the dispose cardmBy hiding away the resource
invariant describing the shared state, the proof of eadathcan proceed independently of other
threads, giving the illusion of non-interference. This iedalled by the rule for parallel composi-
tion, which simply combines the local states of each of thedatis:

{Pros- s Py Oy [ Cu{Qux - % Qn}

no variable free inP; or Q); is changed irC; whenj # i

In the buffer example, using the specifications derived lier CCRs (in which the resource in-
variant is hidden away), we get the specificatigeap} 7; {emp} for each thread’;. Using the
parallel composition rule we get the overall specificatiemp} 7} || 7> {emp} for the parallel
composition. Such a proof in CSL shows that there are no mgmors or data races in the

program. The soundness of concurrent separation logic lnawgrsby Brookes in([6].

1.2 Motivation and Contributions

Although resource reasoning with separation logic has naadignificant advance in program
verification, there have remained important questions theunature of resource manipulation in
relation to modular program specification, optimization @oncurrency analysis. In this section

we describe these issues and the contributions made irh#sstto address them.

1.2.1 Resources required for modular specifications

Consider again the small specification for the dispose camdrttzat we described above:

{l — _} dispose(l) {emp}

where the pre-condition is the safety footprint of the comdhahat is, the minimum resource

required for safe execution. This is a complete specifindtiothe command since we can use the
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frame rule to infer the behaviour of the command on all lasjates. This suggests that the safety
footprint should be enough to specify the complete behavibany program. This, however, is

not true in general, as shown by the following program:

AD ::= new(x);dispose(x)

This allocate-deallocatgrogram allocates a new cell with address stored in the stagablez,
and then deallocates the cell. The smallest heap on whicprtggam is safe is the empty heap

emp. The specification of the program on this pre-condition is:

{emp} AD {emp} (1.1)

We can extend our reasoning to larger heaps by applying énesfirule. For example, extending

to a one-cell heap with addrekgives

{il—_ AD {l—} (1.2)

However, the specificatidnl.1 is not a complete specifinatiothe AD program. For example,

the following triple is also valid:

{l—_} AD {l— _ANz#l} (1.3)

This is because if is already allocated, then the new address storedéannot be. But this
triple is not derivable frori_Il1. However, the trip[es]1. W BR3 together do provide a complete

specification from which all valid triples can be derived.

This example shows that the safety footprint of a progranotsaiways sufficient to describe the
complete behaviour of a program. Firstly, this opens thetipre of how therelevance footprinof

a program should be defined, that is, the resources thatquized for a complete specification of
a program. We need to know if such a notion exists and whatatmedl definition and properties
of relevance footprints would be, in order to determine howdnstruct complete specifications
for arbitrary programs. Secondly, it seems unnatural tiesafety footprint is not sufficient to de-
scribe all the properties of a program, since the local biebawf programs indicates that they act

independently of any resources that they do not accesse la thprogram, for example, it is not
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clear why we should need to refer to the single-cell heapsdmpte-condition in order to describe
the program’s complete behaviour, even though these aellaat accessed by the program. The
need to mention these additional resources seems to bning medundancy to specifications and
makes them more cumbersome and less modular. It poses thgoguef whether it is possible
to formulate a more natural framework of local reasoning Imioly complete specifications can be

obtained from the safety footprint.

Contributions In Chaptel R, we investigate relevance footprints in theegerframework of
local reasoning introduced in_]lL1], where programs are hedi@s local functions that act on
monoids representing abstract models of resource. Wedinteothe formal definition of the rel-
evance footprint of a local function, and show how this dé&bni provides the correct footprints
for a complete specification of th&D example discussed earlier. We then prove the central re-
sult characterizing relevance footprints that, for anyaldanction, the relevance footprints are the

only elements which aressentiafor a complete specification of the function.

In sectionZ# we investigate the questionsafficiency the conditions under which a smallest
complete specification for a local function can be consedietsing only the relevance footprints.
For well-founded resource models such as the standard hedgl favhere there are no infinite de-
scending chains of smaller resources), we show that thearate footprints are always sufficient.
In the non-well-founded case, we find that sufficiency depemn the presence of negativity in
the resource model, which is when non-empty elements ofiresacan be combined to produce
the empty state. For models without negativity, such as $i@ath infinitely divisible fractional

permissionsi[4], we show that either the relevance fodtpmne sufficient for a complete specifi-
cation or a smallest complete specification does not exatnfodels with negativity, such as the
integers under addition, we show that it is possible to canstsmallest complete specifications

using non-essential elements.

In the final section, we apply the theory of relevance footgrto investigate the issue of regaining
the correspondence between safety footprints and relevaotprints. We present an alternative
model of heaps, and prove that in this new model the relevéouterint of everyprogram, in-
cluding A D, corresponds to the safety footprint. Furthermore, wetiflea general condition on
the primitive commands of a programming language under lwthits correspondence holds in

arbitrary resource models.
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listInit(z) {

local zy;

if (z #nil) {
lq: T1 = x — next;
lo: r — f1:=nil;
I3 : T — fo:=mnil;
ly: listInit(zy);

}

Figure 1.2: Linked list traversal program

The results in this chapter were first published in [49]. Tdwefpal version containing proofs and

final section on the regaining of safety footprints appeand8Q].

1.2.2 Resource dependence detection for optimization

Optimization techniques are generally based on a deteofibow resources are accessed in dif-
ferent parts of the program, as this information can be usezfféct optimizations such as par-
allelizing statements that access separate resourcesyrdering statements to improve temporal
locality of reference. Such techniques have been extdpstedied and successfully applied for
programs with simple data types and arrays, but there has \mg limited progress for pro-
grams that manipulate pointers and dynamic data structuiidge difficulty is that dynamically-
allocated heap locations are not named by program variablagay indexes, and it is therefore
difficult to detect when two distant statements in a prograay mccess the same heap locations.
Even the number of heap locations may not be statically abeid when programs operate on
dynamically-allocated pointer data structures, suchrded lists of arbitrary size. For example,
figure[1.2 shows a recursive procedure that traverses erniiftated linked list of unknown length.
While the list is non-empty, the procedure first sefsto the next element in the list (pointed at
by thenextfield), and sets fieldg; and f5 in the current cell tmil, and then makes the recursive

call on the tail of the list.

In this case the statemerisandis access the heap location which is the head of the linkedrit a
the recursive call dt; accesses all locations in the tail of the list, and hencepivssible to execute
the recursive call in parallel with statememtsand/s. Although separation logic has provided

tractable and scalable verification techniques for sucpnaros, these analyses cannot be used for
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dependence detection such as in the case of this programre@ben for this is that separation
logic assertions only describe the spatial separation ardary layout at a single program point,
and so a region of memory may be described by different fammalk different program points.
To be able to detect dependences between distant statemérggprogram, we need to be able to
relate the heap states at arbitrary points throughout theutdon of the program, such as detecting

that statements, andi; access separate heap locations in the list traversal pnogra

Contributions In chapte B we extend separation logic to address the gtion of heap-
manipulating programs, by detecting dependences betwegngm statements. The main con-
ceptual step is to express memory separation propertiesghout a program’s lifetime by anno-
tating separation-logic formulae withbels of accessing commands. Symbolic execution based
on separation logic is extended so that the memory regioesaed by a command is marked with
the label of the command. This label tracking is directlyedetined for primitive commands, but
for composite commands such as procedure calls or whiles|dbp label tracking is determined
by an adaptation of rame inferencemethod from [[8], which allows us to infer the part of a
formula that is not accessed by a command. We discuss examipthe kind of program opti-
mizations we can perform and present experimental resol{gedformance improvement in the

area of hardware synthesis from heap-manipulating program

Although our focus is on the use of separation logic to deiteentieap dependences between
commands, the ultimate aim is to show that any optimizatiaseld on the inferred dependences
will produce the same output states as the original progrBmegram optimizations have often
been proposed based on tmsumptiorthat if two commands access separate heap and variables
in all possible executions, then they can be parallelizegM®man equivalent program. We describe
here how this assumption actually does not hold in the poeseidynamic memory allocation and
deallocation, and optimizations based on the assumptiopicaiuce results that are significantly
different from the original program. We discuss examplegpams to illustrate the problem, and
introduce the notion oéillocation dependencedn addition to heap and stack dependences, in
order to guarantee the safety of optimizations. We formdéiynonstrate the soundness of our

optimizations using an action trace semantics of programs.

A preliminary version of the work in this chapter was preserin [4814].
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1.2.3 Resource sharing in concurrent programs

The detection of how resources are shared between panaltagses is essential for the successful
analysis of concurrent programs. This is especially diffifar so-calleddaring concurrent pro-
grams, where resources may be accessed by concurrentggeargside of critical regions, and
ownership of shared resources is dynamically transferueithgl execution. For example, consider
the cell-transferring buffer program from Figurell.1, inigthe single heap cell in the buffer is
shared between two threads. The program illustrates tlmes®f dynamic ownership transfer:
there is no static separation of the heap into the heap ttatred by the left thread, the heap
owned by the right thread, and the shared resource whickeiduffer cell. Instead, there is a
single heap cell whose ownership moves between the thremtthe shared state in the course
of the execution: the cell is allocated in the left threas otvnership is then transferred into the
shared buffer, and it then comes out of the buffer and intaititd thread, which finally disposes

it.

Also notice that this notion of ownership transfer is not astauct of the programming language,
or something that is explicitly defined in the program. Itrnstead an implicit property of the
concurrent program brought about by how threads agree étysafare resources without causing
memory errors or data races. Indeed, only changing the watiich the threads access the buffer
cell may bring about a different pattern of ownership transiFor example, the program in figure
[[.3 is obtained by moving the disposal of the heap cell froeritpht thread to the left thread. In
this case, even though the critical regions are exactly fmdyghe ownership of the cell remains
in the left thread, since it is now the one that disposes itn€ship never gets transferred to the
right thread, and this is fine since the right thread neveramakheap access. This program can
therefore be seen as address-transferring buffgsrogram, since the right thread is only able to
read the value of the address of the buffer cell and canna&sadtbe cell itself. As an example
of an unsafe ownership policy, if both threads were to disgbs cell, then this would result in a

data race and a double dispose.

Inferring the ownership policy of a program is thereforeessigl for successful analysis of such
programs and to ensure the absence of memory errors or dat r@oncurrent separation logic
provides a good framework for such analysis, where the cstigtpolicy of a program can be

explicitly specified in the resource invariants. For exaephe programs in figurés_.1 andl1.3
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new(x);
with r when £=0 with r when f =1
{ {
ci=2; Yi=c
f=1 f=0;
} }
dispose(z);

Figure 1.3: Address-transferring buffer

can each be verified in CSL with a different choice of resoimeariant describing the appropriate
ownership policy. The cell-transferring program has reseunvarant{(f = 0 A emp) V (f =

1 A ¢ — nil)}, which specifies that the cell is owned by the buffer when thg f set. The
address-transferring program has invariat) £ {(f = 0 A emp) V (f = 1 A emp)}, which
specifies that the buffer never obtains ownership of the ¢iVen these invariants, correctness
of each program can be verified with the inference rules of O3lus the problem of ownership
inference can be posed as the ability to infer the resoukagiants for a concurrent program, so
that a program proof in concurrent separation logic can benaated. Thus far, methods proposed

for automating CSLI[23.19] fail on simple programs due to peats with ownership inference.

Contributions In chapteil we present a new method for inferring resourearients for the
automation of concurrent separation logic proofs. Thishoetaddresses the ownership inference
problem using a resource labelling technique that is smiilanature to the one used for the
dependence analysis in chafdier 3. It extends the fixpoirtodedf [23] with a form of labelling

in which ownership constraintare propagated through a program proof, which allows ovhiyers

of shared resources to be inferred from heap accesses mpaotesdily arbitrary program points.

We demonstrate how the algorithm verifies programs whictn lodtthe previous approaches
[23,[9] could not handle. Also unlike the previous methods, algorithm does not require user
annotations about ownership distribution in the pre-cihmdiof the concurrent program, as it is
able to infer this automatically. We also present a genedhbrtique for programs with while loops,

which is parametric in any resource-invariant inferenceéhoa for loop-free programs.
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Footprints and Complete Specifications

In this chapter, we investigate the resources that arenesjto construct complete specifications
for programs. For generality, the discussion is based omlbis&ract separation logic framework
of [L1], where programs are modelled as local functions #itaton abstract models of resource
represented by partial commutative monoids. We start bpgia background on abstract separa-
tion logic and then formulate the notion of complete speaifans for programs in secti@n2.2. In

sectionZB, the formal definition of the relevance footpisnintroduced, based on the definition

of locality of functions, and we prove the central resulttttiee relevance footprints are the only
essential elements required for a complete specificatiosettio 214, we give results about the

sufficiency of relevance footprints, which depend on proesrof the resource models.

In section[Zb, we explore how a correspondence betweety safie relevance footprints may
be regained. A new heap model is presented in which the redeviootprint ofeveryprogram
is the safety footprint. We also identify a general condition the primitive commands of a

programming language under which this correspondences lilarbitrary resource models.

2.1 Background

We begin with a description of the abstract separation lfsgimework introduced iri [11]. Separa-
tion logic reasoning has been applied to several memory lmddeluding heaps based on pointer
arithmetic [41], heaps with permissiorid [4], and the coration of heaps with variable stacks

which views variables as resource [5] 46]. In each case, db& Isoundness and completeness

27
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results for local Hoare reasoning are similar. For thissea€alcagno, O’Hearn and Yarig [11]
characterised the underlying principles of local reaspnintroducing the notion of local func-
tions that act on abstract resource models called sepai@tiebras. This generalises the specific
examples of local imperative commands and memory modelsy Trttroduce abstract separation
logic for local reasoning in this abstract setting, and giemeral soundness and completeness
results. However, a formal understanding of relevancepfirs is missing in this abstract theory,

and we will provide such a formulation in this chapter of thedis.

Separation Algebras and Local Functions Separation algebras provide a model of resource
which generalises over the specific heap models used inugapplications of separation logic.
Informally, a separation algebra models resource as a sttonts that can be ‘glued’ together to
create larger elements. The ‘glueing’ operator satisfiepgaties in accordance with this resource
intuition, such as commutativity and associativity, ashaelthe cancellation property which re-

quires that ‘ungluing’ a certain portion from a resourceradat gives us a unique element.

Definition 2.1 (Separation Algebra) A separation algebrais a cancellative, partial commuta-
tive monoid(X, e, u), whereX is a set anc is a partial binary operator with unit.. The operator
satisfies the familiar axioms of associativity, commuiigtiand unit, using a partial equality oR
where either both sides are defined and equal, or both arefimatk It also satisfies the cancella-

tive property stating that, for each € ¥, the partial functions e (-) : 3+ 3 is injective.

We shall sometimes overload notation, usiido denote the separation algelipa, e, u). Ex-
amples of separation algebras include multisets with uaiwh unit(), the natural numbers with
addition and unif, heaps as finite partial functions from locations to valU@d] and examplgl1),
heaps with permissiong_[i1], 4], and the combination of heapisvariable stacks enabling us to
model programs with variables as local functions { [1 L[] [@6d exampl€&ll). These examples all
have an intuition of resource, with, e o5 intuitively giving more resource than just ando for
01,09 # u. However, notice that the general notion of a separatioabatgalso permits examples
which may not have this resource intuition, such{asu} with a ¢ a = w. Since our aim is to
investigate general properties of local reasoning, odiriation is to impose minimal restrictions

on what counts as resource and to work with this simple defindf a separation algebra.
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Definition 2.2 (Separateness and substatefiven a separation algebré, e, u), theseparate-
nesg(#) relation between two statesg, 01 € X is given byg#0; if and only ifoyeo is defined.
Thesubstate(=) relation is given byrg < o1 if and only if 3o5. 01 = 0 @ 09. We writeoy < o1

WhenO'o <01 andO'o 7é o1.

Lemma 2.1 (Subtraction) For 01,09 € %, if 01 < o9 then there exists a unique element denoted

o9 — 01 € X, such tha‘(UQ — 0'1) e 01 = 09.

Proof: Existence follows by definition ef. For uniqueness, assume there exist-” € ¥ such
thato’ e o1 = 09 ando” e 0y = 0. Then we have’ e o1 = ¢ @ o, and thus by the cancellation

property we have’ = ¢”.

We consider functions on separation algebras that geseraliperative programs operating on
heaps. Such programs can behave non-deterministicalty,can alsofault. To model non-
determinism, we consider functions from a separation afgelto its powerse(X). To model
faulting, we add a special top elemento the powerset. We therefore consider total functions of
the formf : ¥ — P(X)". On any element of}, the function can either map to a set of elements,
which modelssafeexecution with non-deterministic outcomes, orftpwhich models a faulting

execution. Mapping to the empty set represents divergaraetermination).

Definition 2.3 The standard subset relation on the powerset is extendgd( X " by defining

pC T forallpc P(X)". The binary operatok onP(X)" is given by

p*q:{o’ooo'l’00#01/\006p/\01€Q} ifP?QGP(E)

=T otherwise

P(¥)T is a total commutative monoid undemith unit {u}.

Definition 2.4 (Function ordering) For functionsf,g : ¥ — P(X)T, f C ¢ if and only if

flo) Eg(o) forall o € X.

We shall only consider functions that dotally with respect to resource. For imperative com-

mands on the heap model, the locality conditions were firgtadterised in156], where they were
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used to prove soundness of local reasoning for the speciie m®del. The conditions identified

were

e Safety monotonicityif the command is safe on some heap, then it is safe on argrlhaap.

e Frame property if the command is safe on some heap then, in any outcome dfiagp
the command on a larger heap, the additional heap portidrremilain unchanged by the

command.

In [AL1], these two properties were amalgamated to provigefolowing definition of a local

function acting on a separation algebra.

Definition 2.5 (Local Function) Alocal function on ¥ is a total functionf : ¥ — P(X) T which

satisfies théocality condition:

o#c’ implies f(o’ e o) C {0’} * f(0)

We letLocFunc be the set of local functions an.

Intuitively, we think of a command to be local if, whenevee tommand executes safely on any
resource element, then the command will not ‘touch’ any tamthl resource that may be added
to the initial state. Safety monotonicity follows from thieaae definition because, ffis safe on

o (thatis,f(c) = T), then it is safe on any larger state, sinde’ e o) C {0’} * f(o) C T.

The frame property follows by the fact that when the adddlastates’ is added tar, any output
state is in the sefo’} * f(o), and so the additional staté is unchanged. However, we note that
theC ordering allows for reduced non-determinism on largeestat his, for example, is the case
for the AD command from the introduction which allocates a cell, assigs address to stack
variablex, and then deallocates the cell. On the empty heap, its resuild allow all possible
values for variabler. However, on the larger heap where cell 1 is already alldgate result
would allow all values for: except 1, and we therefore have a more deterministic outcontleis

larger state.
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Lemma 2.2 Locality is preserved under sequential composition, netewhinistic choice and

Kleene-star, which are defined as

T if flo) =T
(fi9)(0) =
| {g(¢") | o’ € f(o)}  otherwise

(f+9)(o) = f(o)Ug(o)

fo)=]"0)
Example 1 (Separation algebras and local functions)

1. Plain heap model A simple example is the separation algebra of hedpse, u ), where
H = L —5, Val are finite partial functions from a set of locatiodsto a set of values
Val with L C Val, the partial operatore is the union of partial functions with disjoint
domains, and the unity is the function with the empty domain. Fore H, let dom(h)
be the domain of. We writel — v for the partial function with domaigl} that mapd to
v. For hy,he € H, if hg < hy thenhy — ha = 1 |gom(h, )—dom(ns)- AN €xample of a local

function is thelisposell] command that deletes the cell at locatibn

h— (I h = (l—v)
disposell](h) = th = )}
T otherwise

The function is local: ifv % (I+— v) thendisposell|(h) = T, anddispose[l](h' e h) C T.
Otherwise dispose[l](h' e h) = {(W e h) — (I—v)} C {h'} x{h — (I—v)} = {h'} %
disposell](h).

2. Heap and stack There are two approaches to modelling the stack in theditege. One is
to treat the stack as a total function from variables to valuend only combine two heap and
stack pairs if the stacks are the same. The other approacichwie use here, is to allow the
variable stack to be split, treating it as part of the resairiVe can incorporate the variable
stack into the heap model by using the &ét= L U Var —pg, Val, whereL and Val
are as before and’ar is the set of stack variablee, y, z, ...}. Thee operator combines
heap and stack portions with disjoint domains, and is unddfiotherwise. The unity

is the function with the empty domain which represents thgteimeap and empty stack.



32

Chapter 2. Footprints and Complete Specifications

Although this approach is limited to disjoint reference tack variables, this constraint can
be lifted by enriching the separation algebra wijtkrmissiond#]. However, this added
complexity using permissions can be avoided for the dismu$ere. For a staté € H, we
let loc(h) andvar(h) denote the set of heap locations and stack variables in theattoof

h respectively. In this model we can define the allocation azadldcation commands as

{W ex—lel—w|weValle L\loc(h')} h=hex—uv
new|z](h) =

T otherwise

{Wex—l} h=hNNex—lel—uv
dispose|x|(h) =

T otherwise

Commands for heap mutation and lookup can be defined as

{W ex—lel—v} h=h"Ner—lel—w
mutate[z,v](h) =
T otherwise
{Wexr—lel—vey—vt h=hex—lel—vey—uw
lookupl, y](h) =
T otherwise

TheAD command described in the introduction, which is the contjposiew|x|; dispose[x],
corresponds to the following local function

h ex—l|1le L\loc(h' h="h ex—v
apgy | 11 Pt

T otherwise

Note that in all cases, any stack variables that the commafieks to should be in the
stack in order for the command to execute safely, othenisecommand will be acting

non-locally.

3. Integers. The integers form a separation algebra under addition wd#ntity 0. In this case
we have that any ‘adding’ functiofi(z) = {z + ¢} that adds a constantis local, while a
function that multiplies by a constant f (x) = {cz}, is non-local in general. However, the
integers under multiplication also form a separation alggetyith identity 1, and in this case

every multiplying function is local but not every addingdtion. This illustrates the point
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that the notion of locality of commands depends on the nati@eparation of resource that

is being used.

Predicates, Specifications and Local Hoare ReasoningWe now present the local reasoning
framework for local functions on separation algebras. T adaptation of Abstract Separation
Logic [11], with some minor changes in formulation for therposes of this thesis. Predicates

over separation algebras are treated simply as subsets sétfaration algebra.
Definition 2.6 A predicate p overX. is an element of the powerse(X).

Note that the top elemefit is not a predicate and that th@perator, although defined (%) " x
P(X)T — P(X)T, acts as a binary connective on predicates. We have thébdtate law for

union that, for anyX C P(X),

(|_|X)>kp:|_|{x>kp|x€X}

The same is not true for intersection in general, but does twolprecise predicates. A predicate

is precise if, for any state, there is at most a single sub st satisfies the predicate.

Definition 2.7 (Precise predicate)A predicatep € P(X) is preciseif and only if, for every €

¥, there exists at most ong, € p such thaio, < o.

With precise predicates, there is at most a unique way tdklaeg state in order to get a substate
that satisfies the predicate. Any singleton predidat is precise. Another example of a precise

predicate ifl—uv | v € Val} for somel, while {{+—v | [ € L} for somew is not precise.

Lemma 2.3 (Precision characterization) A predicatep is precise if and only if, for allX C

PE),[M1X)*p=[Hz*p|rec X}

Proof: We first show the left to right direction. Assumis precise. We have to show that, for all
XCPE),(1X)*sp=[Hx=*p |z e X}. Assumer € ([|X) x p. Then there exist;, o2
such thatc = 01 e 0y ando; € [| X andoy € p. Thus, for allz € X, o € z * p, and hence

oce[{x*xp|x e X}. Nowassume € [[{z*p | x € X}. Thenoc € x xpforall z € X.
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Hence there exists; < o such thato; € p. Sincep is precise,o is unique. Letbs = o — o7.

Thus, we have; € z for all z € X, and sooy € [ | X. Hence, we have € ([]X) * p.

For the other direction, we assume thais not precise and show that there existsXarsuch that
(MX)*p #[{z*p | = € X}. Sincep is not precise, there exists € ¥ such that, for two
distinctoy, 02 € p, we haver; < o andoy < 0. Leto] = 0 — 01 ando), = 0 — 09. Now letX =
{{o},{0o%}}. Sinceo € {0}} *pando € {0o}} xp, we haver € [|{z xp | z € X }. However,
because of the cancellation property, we also have #jag o}, and so([ ] X) «xp = 0 *p = 0.

Henceo ¢ ([ ]X) * p, and we therefore havg | X) «p #[ {z *p |z € X}. W

Our Hoare reasoning framework is formulated with tuplesref pnd post- conditions, rather than
the usual Hoare triples that include the function a$.in [IiJour case the standard triple shall be
expressed as a functighsatisfyinga tuple(p, ¢), written f = (p, ¢). The reason for this is that
we shall be examining the properties that a pre- and postition tuple may have with respect
to a given function, such as whether a given tuple is compteta given function. This approach
is very similar to the notion of thepecification statemef Hoare triple with a ‘hole”) introduced
by Morgan in [39], which is used in refinement calculi, and \&afs® used to prove completeness

of a local reasoning system in_|56].

Definition 2.8 (Specification) LetY be a separation algebra. statementon X is a tuple(p, q),
wherep, g € P(X) are predicates. Apecification¢ on X is a set of statements. We fef =
P(P(X) x P(X)) denote the set of all specifications BnWe shall exclude the subscript when it
is clear from the context. Th#omain of a specification is defined d3(¢) = | {p | (p,q) € ¢}-

Domain equivalenceis defined a® = v if and only if D(¢) = D(v)).

The domain is the union of the pre-conditions of all the stegits in the specification. It is one

possible measure afze how much ofX the specification is referring to.

Definition 2.9 (Satisfaction) A local functionf satisfies a statemefi, ¢), written f = (p, q), if

and only if, for allo € p, f(0) C q. It satisfies a specification € ®, written f = ¢, if and only

if f = (p,q) forall (p,q) € ¢.

Definition 2.10 (Semantic consequenceletp,q,r, s € P(X) and¢,v» € ®. Each judgement
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(p,q) = (r,8),¢0 = (p,q9), (p,q9) E ¢, and¢ = ¢ holds if and only if all local functions that
satisfy the left-hand side also satisfy the right-hand .side

Proposition 2.4 (Order Characterization) f C g if and only if, for allp,q € P(X), g = (p,q)

implies f = (p, q).

For every specificatior, there exists dest local actionsatisfying ¢, which is a local function
such that all statements satisfied by this function are assfied by any local function satisfying

¢. For example, in the heap and stack separation algebra wipgeid .2, consider the specification
new = {{z—v}, {z—lel—w|l e Liwe Val}) |v € Val}

There are many local functions that satisfy this specificati Trivially, the local function that
always diverges satisfies it. Another example is the locattion that assigns the value of the
newly allocated cell to be 0, rather than any non-deterridaily chosen value. However, the
best local action for this specification is thew[z] function described in examdg 1.2, as it can be
checked that for any local functighsatisfyinge,.,, we havef C new[z]. The notion of the best
local action shall be used when addressing questions aboypleteness of specifications. It is
adapted from[[11], except that we generalise to the best émt@n of a specification rather than

a single pre- and post-condition pair.

Definition 2.11 (Best local function) For a specificationy € ®, the best local action af, writ-

tenbla[¢], is the function of typ& — P(X)" defined by

bla[d)(0) = [ [{{o'} xq |0 =0" 00", 0" € p,(p,q) € ¢}

As an example, it can be checked that the best local adioib,,..,] of the specificationp,,c.,
given above is indeed the functiorew[z] described in examplEl 1.2. The following lemma

presents the important properties which characterisedltlbcal action.

Lemma 2.5 Let¢ € ®. The following hold:

e bla|g] is local
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e bla[¢] = ¢

e if fislocal andf |= ¢ thenf C bla[g)

Proof: To show thabla[¢] is local, considew, o5 such thatr; #02. We then calculate

bla[p](o1 ® 02)
= [{{o'}xq|o1e02=0"00",0" €p,(p,q) € ¢}
C [H{o1e0"}xq|or2=0"e0",0" €p,(p.q) € ¢}
= Mo}« {o"}*q|o2=0" 00", 0" €p,(p,q) € ¢}
= {o}*[H{{o"}*xq|o2=0" 00", 0" €p,(p,q) € ¢}

= {01} * bla[¢](02)

In the second-last step we used the property {laat is precise (lemmBg32.3).
To show thabla|¢] satisfiesp, consider any(p, q) € ¢ ando € p. Thenbla[¢](c) C {u} *q = q.

For the last point, supposg is local andf = ¢. Then, for anyr such thato = o1 e 0, and

o2 € pand(p,q) € ¢,
flo) = f(ore02)

C {o1}* f(o2)
C {o1}*q

Thusf (o) C bla[¢](o).

In the case that there do not exist, o2 such thatr = o, e o2 andoy € D(¢), then

bla[gl(o) = T10
-

Soin this case als@ (o) C bla[¢](c). R

Lemma 2.6 For ¢ € ® andp,q € P(X), bla[¢] = (p,q) < ¢ E (p,q).
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(p,9) PCp (phg qE¢ (pi, i), alli € 1 (pi,q@i), allie I,I#0
(p*rqxr) ', 4q) (Wier s Licr @) (MicrpisMicr @)
Frame Consequence Union Intersection

Figure 2.1: Inference rules for local Hoare reasoning

Proof:
blal¢] = (p,q)
< for all local functionsf, f =¢ = f = (p,q) (by lemmdZl5)
& o () (by definitior 210)
|

The inference rules of the proof system are given in fiurk Zansequence, union and inter-
section are adaptations of standard rules of Hoare logie fildme rule is what permits local
reasoning, as it codifies the fact that, since all functiaiesl@cal, any assertion about a separate
part of resource will continue to hold for that part after #plication of the function. We omit
the standard rules for basic constructs such as sequeotiglasition, non-deterministic choice,

and Kleene-star which can be foundinl[11].

Definition 2.12 (Proof-theoretic consequence}or predicatesp, ¢, r, s and specifications, v,
each of the judgement®,q) - (r,s),¢ - (p,q), (p,q) F ¢, and¢ + ¢ holds if and only if the
right-hand side is derivable from the left-hand side by thies in figurdZ11.

The proof system of figuled.1 is sound and complete with @dpehe satisfaction relation.

Theorem 2.7 (Soundness and Completenesg)-- (p,q) < ¢ = (p,q)

Proof: Soundness can be checked by checking each of the proof nufegiie[2.1. The frame

rule is sound by the locality condition, and the others asy ¢@ check.

For completeness, assume we are giwes (p, ¢). By lemmdZB, we havéla[¢] = (p,q). So
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forall o € p, bla]¢p](o) C g, which implies

|| blalél(o) Cq (+)

oEp

Now we have the following derivation:

¢

(rys) forall(r,s) € ¢

({o'},8) forale’ er(r,5) €9

({o—0d'}x{0'},{oc—0'} *5) forale’ €r,(r,s) 6,0’ <0,0€p

( |_| {o —0o'} x {0}, |_| {oc—0'}xs) foralacop

o' <o o' <o
o'er o'er
(r,s)€d (r,s)€d

({o}, blalp](0)) foraie ep
(L {o}. [ ] blalgl(0))

oEp gEp
(p,q)

The last step in the proof is bi«) and the rule of consequence. Note that the intersection rule
can be safely applied because the argument of the inteysdsthecessarily non-empty (if it were

empty thenbla[¢](c) = T, which contradictdla[¢](o) C ¢). B

2.2 Properties of Specifications

We discuss certain properties of specifications as a prisitafor our main discussion on rele-
vance footprints. We define the notion otampletespecification for a local function, which is
a specification from which follows every property that holdsthe function. However, a func-
tion may have many complete specifications, so we introduamnanical form for specifications.
We show that there exists a unique canonical complete sgeg@iiin for every domain on which a
local function can be completely specified. As discussetidgriritroduction, an important notion
of local reasoning is themall specificatiorwhich completely describes the behaviour of a local
function by mentioning only the footprint. Thus, as a presisie to investigating their existence,
we formalise small specifications as complete specificatiith the smallest possible domain.

Similarly, we definebig specifications as complete specifications with the biggestain.

Definition 2.13 (Complete Specification)A specificationy € ® is acomplete specificatiorfor
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f, written complete(¢, f), if and only if, for allp,q € P(2),f = (p,q) < ¢ E (p,q). Let

i) be the set of all complete specifications of f.

comp(f)

¢ is complete forf whenever the tuples that hold fgrareexactlythe tuples that follow fromp.
This also means that any two complete specificatibaadq for a local function are semantically
equivalent (that is¢ =F 1). The following proposition illustrates how the notionstadst local

action and complete specification are closely related.

Proposition 2.8 For all ¢ € ® and local functionsf, complete(o, ) < f = bla[¢].

Proof: Assumef = bla[¢]. Then, by lemm@a3.6, we have tltsis a complete specification fgf.
For the converse, assumemplete(¢, f). We shall show that for any € 3, f (o) = bla[¢](o).

case 1: f(o) = T. If bla[p](c) # T, thenbla[¢] = ({o},bla[p](c)). This means that
¢ E ({o},bla[¢](0)) by lemmdZI6, and s¢ = ({o}, bla[p](0)), but this is a contradiction.
Thereforepla|p|(c) = T.

case 2:bla[¢](c) = T. If f(o) # T,thenf = ({o}, f(0)). This means thap = ({c}, f(0)),
and sobla[¢] = ({o}, f(0)), but this is a contradiction. Therefor¢(o) = T.

case 3:bla[¢](0) # T and f(o) # T. We have
f = {o}, (o))

blal¢] = ({0}, f(09))
bla[¢](o) E f(o)

bla[¢] = ({0}, bla¢] ()
= [ ({o}, bla[¢l(0))
f(o) T bla[g](0)

Thereforef (o) = bla[¢|(c) M

Any specification is therefore only complete for a uniquealdanction, which is its best local

action. However, a local function may have lots of complgtectfications. For example, i is
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a complete specification fof and(p, q) € ¢, then¢ U {(p,¢’)} is also complete forf if ¢ C ¢'.

For this reason it will be useful to have a canonical form fudfications.

Definition 2.14 (Canonicalisation) Thecanonicalisationof a specificatior is defined ag.., =
{({o}, bla[@](0)) | o € D(¢)}. A specification is itanonicalform if it is equal to its canonical-

isation. Let®,,, s denote the set of all canonical complete specifications. of

Notice that a given local function does not necessarily fauaique canonical complete spec-
ification, as there may exist canonical specifications witfeidnt domains. For example, both
{{u},{u})} and{({u},{u}), {c},{c})}, for somes € ¥, are canonical complete specifica-

tions for the identity function.
Proposition 2.9 For any specificationy, we havep 35 ¢ean.

Proof: We first showp F ¢ean. FOr any (p,q) € éean, We have thatp, q) is of the form
({c}, bla[¢](c)) for somes € D(¢). So we havéla[¢] = (p,q), and sop = (p,q) by lemma
2.

We now show..,, E ¢. For any(p,q) € ¢, we havebla|p] = (p,q) by lemmdZ}6. So for all

o € p, bla[¢](o) C ¢, which implies

| | blalél(e) S q (+)

gEp

Now we have the following derivation:

¢can
({o}, bla[¢](0)) foralloep

(| |{e}. | ]| blalgl(o))

oEp oEp
(p,q)

The last step is byk) and consequence. So we havg, - ¢, and by soundness..,, = ¢. B

Thus, the canonicalisation of a specification is logicaljyigalent to the specification. The fol-
lowing corollary shows that all complete specificationd tieve the same domain have a unique

canonical form, and specifications of different domainsehdifferent canonical forms.
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Corollary 2.10 @,y is isomorphic to the quotient sét,,,,,,;)/ =p, under the isomorphism

that mapg@l=, 10 Gean, for everyg € @y, ().

Proof: By propositior.ZB, all complete specifications fdnave the same best local action, which
is f itself. So by the definition of canonicalisation, it can bers¢hat complete specifications
with different domains have different canonicalisatiomsd complete specifications with the same
domain have the same canonicalisation. This shows that dppimg is well-defined and injective.
Every canonical complete specificatigns also complete, anf]~, maps t0p.., = ¢, so the

mapping is surjectivell

Definition 2.15 (Small and Big specifications)¢ is a small specificationfor f if and only if
¢ € Poomp(s) and there is nap € P, (p) SUch thatD(y) © D(¢). A big specificationis

defined similarly.

Small and big specifications are thus the specifications with the smadledt biggest domains
respectively. The question is ifiwhen small and big spediitbims exist. The following result

shows that a canonical big specification exists for evergllmnction.

Proposition 2.11 (Big Specification)For any local functionf, the canonical big specification for

[is given bygyigs) = {({o}, f(0)) | (o) © T}

Proof: f = ¢uig(s) is trivial to check. To showomplete(pyiq(s), f), assumef = (p,q) for

somep, q € P(X). Note that, for any € p, f(o) C ¢ and so|_| f(o) C ¢q. We then have the

oEp
derivation
¢big(f)

({o}, f(o)) forall f(o) =T
(| [{o}, [ ] £
(,9)

By soundness we gé},r) = (p,q). duig(s) has the biggest domain becaugevould fault on

any element not included ipy; (). B

The notion of a small specification has until now been usediimfarmal sense in local reasoning

papers(l4l, 14, 10] as specifications that completely spéladybehaviour of an update command
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by only describing the command’s behaviour on the part of¢iseurce that it affects. Although
these papers present examples of such specifications fofisgmmmands, the notion has so
far not received a formal treatment in the general case. Tiestipn of the existence of small
specifications is strongly related to the concept of foatgtisince finding a small specification is
about finding a complete specification with the smallestiptesslomain, and therefore enquiring
about which elements af are essential and sufficient for a complete specifications fdguires

a formal characterisation of the footprint notion, which stell now present.

2.3 Relevance Footprints

In the introduction we discussed how tA® program demonstrates that the safety footprint of a
program (the smallest states for safe execution) do notyalyiald a complete specification of the
program. To obtain a complete specification, we neededriatgées in the pre-condition of the
specification, which may be thought of as teéevance footprinof the program. This raises the
guestion of how the relevance footprint of an arbitrary Idaaction can be formally defined. We
address this question by first analysing the notion of IbcaRecall that the definition of locality
(definition[Zh) states that the action on a certain statienposes dimit on the action on a bigger

statecs @ 0. This limitis the sef oy} x f(01), since we havef (oo @ 1) T {02} * f(07).

Another way of viewing this definition is that for any statethe action of the function on that
state has to be within the limit imposed byerysubstater’ of o, that is,f (o) C {oc — o'} * f (/).
In the case where’ = o, this condition is trivially satisfied for any function (lacor non-local).
The distinguishing characteristic of local functions iattthis condition is also satisfied by every

strict substate of, and thus we have

f0)C [NH{o =o'} + f(o)

o' <o

We define this overall constraint imposed @iy all of its strict substates as thacal limit of f

ono, and show that the locality definition is equivalent to Sgiigy the local limit constraint.

Definition 2.16 (Local limit) For a local functionf onX ando € X, thelocal limit of f ono is

defined as

Li(o) = [ {o =o'} * f(o)

o' <o
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Proposition 2.12 fislocal < f(0) C L¢(o) forallo € X

Proof: Assumef is local. So for any, for everyo’ < o, f(o) C {o — o'} x f(o'). f(o) s

therefore smaller than the intersection of all these setdchvis L (o).

1M

For the converse, assume the rhs and thate o5 is defined. Ifo; = u then f(o; e 02)
{o1} * f(02) and we are done. Otherwise; < o ® 02 and we havef (o, e02) C Ly(oje02) T

{o1} * f(02). W

Thus for any local functiorf acting on a certain state the local limit determines a upper bound
on the possible outcomes on based on the outcomes on all smaller states. If this uppando
does correspond exactly to the set of all possible outcomes theno is ‘large enough’ that all
the smaller states determine the behaviouf @in o. In this case we do not think ef as being
relevant for a description of, since smaller states are sufficient to determine the acfighon

o. With this observation, we define footprints as those stateshich the action of cannot be
determined by the smaller states alone, that is, the settobmes is astrict subset of the local

limit.

Definition 2.17 (Relevance Footprint) For a local functionf ando € 3, o is a relevance foot-

print of f, written F (o), if and only if f (o) T Ly (o). We denote the set of relevance footprints

of f by F(f).

Note that an element is therefore not a footprint if and only if the action fon o is at the local

limit, thatis f(0) = L¢(0).

Lemma 2.13 For any local functionf, the smallest safe states p&re always relevance footprints

of f.

Proof: Leto be a smallest safe state fgr Then for anys’ < o, f(o’) = T. ThereforeL (o) =

Tandsof(o) = Ly(o). R

Example 2 (Dispose)The footprints of théispose[l] command in the plain heap model (example

[0.1) are the cells at locatioh We check this by considering the following cases
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1. The empty heap,y, is not a footprint SiNCe. g;spose(un) = T = dispose[l](up)

2. Every cell— v for somev is a footprint

Ldispose[l}(lHU) = {l'_”}} * dispose[l] (U’H) = {l'_”)} T =T

dispose[l](l—v) = {un} T Laisposefr) (1)

3. Every stater such thatr > (I~ v) for somev is not a footprint

Laispose)(0) E {0 — (I=v)} * disposell](l—v) = {o — (I>v)} = disposel[l|(o)

By propositionTZIR2, we havB;spescp () = dispose[l](o). The intuition is thatr does
not characterise any ‘new’ behaviour of the function: it¢iac ono is just a consequence

of its action on the cells at locatiohand the locality property of the function.
4. Every stater such thatr * (I— wv) for somev is not a footprint
Ldispose[l](a) C {U} * diSpOSG[l](UH) = {U} * T =1T= dispose[l](a)
Again by propositioh 22 4;sposer (o) = dispose(l] (o).
However, as discussed in the introduction, the smalleststates are not always the only relevant

states. We now demonstrate how definifion P.17 deliversdhect footprint for theAD program,

which is the empty heap and all the single-cell heaps, asisigd in the introduction.

Example 3 (AD command) The AD (Allocate-Deallocate) command was defined on the heap

and stack model in examfdle 1.2. We have the following cases fo

1. o % x+— vy for somev; is not a footprint, sincd.op(c) = T = AD(0).

2. 0 = z+— vy for somew; is a footprint sincel. 4p (o) = T (by case (1)) andiD(o) = {x—

w|wée L} T Lap(o).
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3. 0 = l—uwv1 e z— vy fOr somel, vy, vy is a footprint.

Lap(o) ={l—v1}*x AD(z+—1v9)
(AD faults on all other elements strictly smaller thaj
={l—v}*x{z—w|welL}

={l—vier—w|weL}
AD(o) ={l—viex—w|we Lw#I1}C Lap(o)

4. 0 = h e z+—v; for somev;, and whergloc(h)| > 1, is not a footprint.

Lap(@) T[] {h—(—v)}x AD(l—v e z—11)

h-l—v

={hezxz—w|w¢loc(h)} = AD(0)

By propositior 212, we gétap(c) = AD(0).

Definition 21T therefore works correctly for these exammiegrams. We now give the formal
result to show that this definition of relevance footprirdsthe correct one for arbitrary local

functions.

Theorem 2.14 (Essentiality) The relevance footprints of a local function are the onlyeessl

domain elements for any complete specification of that iomcthat is,
Ff(O') & Vo e (I)comp(f)' (S D(gb)
Proof: Assume some fixed ando. We establish the following equivalent statement :

~Fp(0) & 36 € Pppmp(p)- 0 & D(9)

We first show the right to left implication. So assugé a complete specification gfsuch that

o & D(¢). Sincecomplete(o, f), by propositior 218, we havg = bla[¢]. So

flo) = [ {o—o1}xq

o01=0,01€p,(p,q)EP
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Now for any sef{o — o1} * ¢ in the above intersection, we have tlate p, and(p, q) € ¢ for
somep. Sinceo; € p, we havef(o1) C ¢, and therefordo — o1} * f(01) £ {0 — 01} * ¢q. Als0,
o1 # o, because otherwise we would have= p, which would contradict the assumption that

o ¢ D(¢). Soo; < o and we have
Li(o) E{o —o1} x f(o1) E{o —o1} *¢q

So the local limit is smaller than each get— o4 } x¢ in the intersection, and therefore it is smaller
than the intersection itseli. s (o) C f(o). We know from propositiol 212 thai(o) C L¢(0),

so we getf(o) = Ly(o) and therefore-F (o).

We now show the left to right implication. Assume thais not a footprint off. We shall use the
big specificationgy,(r), to construct a complete specification pfvhich does not contain in
its domain. If f(o) = T then the big specification itself is such a specification, @adare done.
Otherwise assumg(c) C T. Leto = duig(p)/{({c}, f(0))}. Itcan be seen that ¢ D(¢). Now
we need to show thatis complete forf. For this it is sufficient to show -t ¢y, () because we

know thatey, () is complete forf. The right to left directiong — ¢y, is trivial.

FOr ¢ = ¢pigr), We just need to show I- ({o}, f(o)). We have the following derivation:

¢
({c'}, f(0))) foralle’ <o, f(c') T
({o =o'} x{o'},{oc— '} x f(0!)) foralle’ <o, f(o')C T
({o}, 1 {o-0}xf(0))
o' <o, f(a")CT

(o}, Lg(0))

The intersection rule can be safely applied as there is at #@®c’ < o such thatf(¢’) = T.
This is becausg (o) = T, so if there were no suchk’ thens would be a footprint, which is a

contradiction. Note that the last step uses the fact that

M {00}y =i0) = [{o— o'} * £(0") = Ly(o)

o' <o, f(c")CT o' <o

because adding the top element to an intersection does angehts value. Since is not a

footprint, f(o) = Ly(0), and sop k- ({c}, f(0)). A
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2.4 Sufficiency and Small Specifications

In the last section it was shown that the relevance footpant the only elements that assential
for a complete specification of a local function. We now itigege when a set of elements is
sufficientfor a complete specification of a local function, in the sethe¢ a complete specification
of the function can be constructed from only these elemeFasstudy this, we first identify the

notion of thebasisof a local function.

Bases The local limit of a functionf on a stater was defined in the previous section as the
constraint imposed ofi by all the strict substates of To address the question of which states are
sufficientto determine the behaviour g¢f we first generalise the local limit definition to consider

the constraint imposed by only the substates taken fromemgget.

Definition 2.18 (Local limit imposed by a set) For a subsetA of a separation algebr&:, the

local limit imposed byA on the action off on o is defined by

Lay(o) = |_| {o—0d'} x f(o!)

o/ <0,0'€A

When the local limit imposed by a sdtis enough to completely determirfe we call A a basis

for f.
Definition 2.19 (Basis) A C X is abasisfor f, writtenbasis(A, f), ifand only if L4 s = f.

This means that, when given the actionfodn elements in A alone, we can determine the action
of f on any element ifX by just using the locality property gf. Every local function has at least
one basis, namely the trivial basisitself. We next show the correspondence between the bases

and complete specifications of a local function.

Lemma2.15Let g, 5 = {({c},f(0)) | ¢ € A, f(0) C T}. Then we havéasis(A, f) <

complete(¢a,f, f).

Proof: We haveL 4 ; = bla[¢ 4 ] by definition. The result follows by propositibnl2.8 and the

definition of basisll
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For every canonical complete specificatiore @), we havep = ¢p ) s By the previous
lemma it follows thatD(¢) forms a basis forf. The lemma therefore shows that every basis
determines a complete canonical specification, and vicgaverhis correspondence also carries
over to all complete specifications féiby the fact that every domain-equivalent class of complete
specifications forf is represented by the canonical complete specificationthghdomain (corol-
lary[Z10). By the essentiality of relevance footprintse@tenT2.14), it follows that the relevance

footprints are present in every basis of a local function.

Lemma 2.16 The relevance footprints gfare included in every basis of f.

Proof: Every basisA of f determines a complete specification fothe domain of which is a

subset ofd. By the essentiality theoreiln{2114), the domain includegdbtprints. |

The question of sufficiency is about how small the basis can@een a local function, we wish
to know if it has a smallest basis. Since every basis mustaoitte footprints, it follows that if
the relevance footprints alone form a basis then they afieigmt to construct a smallest complete

specification. We find that for well-founded resource modis is indeed the case.

Theorem 2.17 (Sufficiency 1) If a separation algebra® is well-founded under the relation,

then the relevance footprints of any local function form aibdor it: thatis, f = Lg(y) -

Proof: Assume that® is well-founded under<. We shall show by induction thaf(c) =

Lp(y),f(o) forall o € ¥. The induction hypothesis is that, for afl < o, f(0') = Ly, (o)

case 1:Assumer is a footprint of f. We havef (o) = {u} * f(o), and so, by definitioh 218, we
haveLr ) (o) C f(o). We have by locality thaf (o) T Ly s(0), and sof (o) = Lg(y) (o).
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case 2:Assumeo is not a footprint off. We have

f(o) = L¢(0) (becauses is not a footprint of f)

= [ {0 o'} = (o)

o' <o
= |_| ({o =o'} = |_| {o' — "} f(c")) (by the induction hypothesis)
o' <o o' 20’ Fy(a')

= |—| {o — o'} x {0’ — "} * f(c") (by the precision ofo — ¢'})

o'<0,0" 20’ ,Fr(c’)

= 1 fo-o"tss")

U”-<U,Ff(a”)

= [| {o—0"}xf(o") (becauseris not a footprint of f)
0.//50.7Ff(0.//)

= Lp(p),f(0)

In sectionZ.R, the notions of big and small specificationsevistroduced (definitioh 2.15), and
the existence of a big specification was shown (proposliidd)2 We are now in a position to
show the existence of the small specification for well-foeshdesource. IE is well-founded, then

every local function has a small specification whose donsatheé relevance footprints.

Corollary 2.18 (Small specification) For well-founded separation algebras, every local funetio

has a small specification given by ) .

Proof: ¢p(y ¢ is complete by theorem 2117 and lemma€P.15. It has the smeltbesain by the

essentiality theoren®

Thus, for well-founded resource, the relevance footpramesalways essential and sufficient, and
specifications need not consider any other elements. Natdrttpractice, small specifications

may not always be in canonical form, even though they alwaye the same domain as the
canonical form. For example, the heap dispose command aentha specificatiod ({I — v |

v € Val},{ug})} rather than the canonical one givenfgfl— v}, {ug}) | v € Val}.

Non-well-founded Resource In most practical situations the resource model is usuatjl-w

founded. A notable exception is the fractional permissiorsel [4] in which the resource
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includes ‘permissions to access’, which can be indefinitilyjded. If a separation algebra is
non-well-founded under th& relation, then there is some infinite descending chain aohetds

o1 = 09 = 03.... From a resource-oriented point of view, there are tworistivays in which this
could happen. One way is when it is possible to remove nortyepigeces of resource from a state
indefinitely, as in the separation algebra of non-negathat mumbers under addition. In this case
any infinite descending chain does not have more than onareocce of any element. Another
way is when an infinite chain may exist because of repeatedrastces of some elements. This
happens when there igegativitypresent in the resource: it may be possible to add two nan-uni
elements together to produce the unit element. An exampleiseparation algebra of integers
under addition, wheré+ (—1) = 0, so adding -1 to 1 is like adding positive and negative resour

to get nothing. Sincé = 0 + 1, we have that >~ 0 > 1... forms an infinite chain.

Definition 2.20 (Negativity) A separation algebr& hasnegativity if and only if there exists a
non-unit element € ¥ that has an inverse; that i; # v ando e ¢/ = u for somes’ € . We

say that® is non-negativeif no such element exists.

All separation algebras with negativity are non-well-fdad, because for elementsands’ such
thato e o/ = u, the sef{o, u} forms an infinite descending chain as there is no least eferfien
the general non-negative case, we find that either the fiotédorm a basis, or there is no smallest

basis.

Theorem 2.19 (Sufficiceny II) If ¥ is non-negative then, for any locdl, either the relevance

footprints form a smallest basis or there is no smallestbési f.

Proof: Let A be a basis forf (we know there is at least one, which is the trivial basigself).
If A is the set of footprints then we are done. So assulmeontains some non-footprini.
We shall show that there exists a smaller basisffowhich is A/{u}. So it suffices to show

f(o) = Lajuy,¢(o) forallo € 3. We have

flo)y=Laglo)= [] {o—0o'}=f(0)

o/<o,0'€A

case 1:u £ 0. We havef (o) = [1  {o—0'}f(0)) = Lajuys(0)
o' Zo,0'€A/{u}
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case 2:u = o. In this case

foy=( T[] Ho=atxf(0)) 1 {o—ptxf(w) (1)
o' 20,0’ €A/{p}
To complete the proof, we need to show thfdt) is equal to the left-hand side of the above

intersection:

flo) = [l {o-d'}+f(0)

o' =o,0'cA/{u}
To show this, we just need to show that the right-hand sideefritersection ir{1) contains the

left-hand side:
[ ] {o 0"} f(0") T {o —p} = f(u)

o200 €A/{p}

This is shown as follows:

{o—pn}= f(u)

= {0 —pu}*Ls(p) (because:is not a footprint of f)

={o—upx [ [ {u—0"}xf(o)

o' <p
—fo—wp [T U=y« ]  {o'=o"}+£(0")
o' <p o' <0’ ,0"cA/{n}

(case 1 applies becauggis non-negative, s6’ < u = u A o')

=[] [ {o—p}ts{u—oc'}«{o' ="}« f(c") (by precision)

o' <po’" =0, 0"€A/{n}

- 1 Ae=d"befe

o'<po’" =<0’ ,0"cA/{n}

= [T fo—0"}xf(o")

o <p,0" €A/{u}

[ fo—o"} = fo")

o' <o,0"€A/{u}

L

Corollary 2.20 (Small Specification) If X is non-negative, then every local function either has a

small specification given by ()  or there is no smallest complete specification for the famcti

Example 4 (Permissions)The fractional permissions modéll [4] is non-well-foundetd anon-

negative. It can be represented by the separation algébfarm = L —g, Val x P whereL
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and Val are as in exampl€l1, ané is the interval (0, 1] of rational numbers. Elements @f
represent ‘permissions’ to access a heap cell. A permissidhfor a cell means both read and
write access, while any permission less than 1 is read-ootgss. The operatar joins disjoint
heaps and adds the permissions together for any cells tleaprasent in both heaps only if the
resulting permission for each heap cell does not exceedelpfieration is undefined otherwise.
In this case, the write function that updates the value atcation requires a permission of at
least 1 and faults on any smaller permission. It therefore hasmall specification with pre-
condition being the cell with permission 1. The read functiwowever, can execute safely on any
positive permission, no matter how small. Thus, this fomctian be completely specified with
a specification that has a pre-condition given by the celhvpiermissionz, forall 0 < z < 1.
However, this is not amallestspecification, as a smaller one can be given by further retig

0 < z < 0.5. We can therefore always find a smaller specification by reduthe value o but

keeping it positive.

For resource with negativity, we find that it is possible tadhamall specifications that include non-
essential elements. These elements are non-essentia §emise that there exist other complete

specifications that do not include these elements.

Example 5 (Integers) An example of a model with negativity is the separation algebintegers
(Z,+,0). Inthis case there can be local functions which can havelspatifications that contain
non-footprints. Letf : Z — P(Z)" be defined ag'(n) = {n + ¢} for some constant, as in
examplélL f is local, but it has no footprints. This is because for any (n) = 1+ f(n—1), and
son is not a footprint off. However,f does have small specifications, for exampld}, {c})},
{({5},{5 + ¢})}, or indeed{({n},{n + c})} for anyn € Z. So although every element is

non-essential, some element is required to give a comppetefcation.

2.5 Regaining Safety Footprints

In the introduction we discussed how the notion of footmriat the smallest safe states - the
safety footprintis inadequate for giving complete specifications, astilated by theAD example.
For this reason, so far we have investigated the generabmaii relevance footprint of local

functions. Equipped with this general theory, we now ingede how, with different resource
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modelling choices, we may refine the reasoning frameworkbtaio a correspondence between
safety footprints and relevance footprints. We start bys@néing an alternative model of heaps,
based on an investigation of why th&eD phenomenon occurs in the standard model. We then
demonstrate that the footprints of tAd) command in this new model do correspond to the safety
footprints. In the final section we identify, for arbitrargmaration algebras, a condition on local
functions which guarantees the equivalence of the safetyrelevance footprint. It is shown
that if this condition is met by all the primitive commandsaprogramming language then the
correspondence is achieved for every program in the larguayl this is indeed the case in our

new heap model.

An alternative model We begin by taking a closer look at why thé anomaly occurs in the
standard heap and stack model described in exdhple 1.2idéoas application of the allocation

command in this model:

new[z](42 —vex— w)={42—vex—lel—r|lc L\{42},r € Val}

The intuition of locality is that the initial stat#2 — v e 2 — w is only describing a local region
of the heap and the stack, rather than the whole global stathis case it says that the address
42 is initially allocated, and the definition of the allocaticommand is that the resulting state
will have a new cell, the address of which can be anythingratien 42. However, we notice
that the initial state is in fact not just describing only lidsal region of the heap. It does state
that 42 is allocated, but it also implicitly states a verytglbproperty: thaall other addresses are
not allocated This is why the allocation command can choose to allocagdaation that is not
42. Thus in this model, every local state implicitly contagsome global allocation information
which is used by the allocation command. In contrast, a conansach as mutate does not require
this global ‘knowledge’ of the allocation status of any atbell that it is not affecting. Now the
key point is that this global information about which celte &ee in the heapghangesas more
resource is added to the initial state. This can lead to progsehaviour being sensitive to the
addition of more resource to the initial state, a sensjtitlitat can be observed in the case of the

AD program.

Based on this observation, we consider an alternative naddbe heap. As before, a stdte- v
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will represent a local allocated region of the heap at addraegith valuev. However, unlike
before, this state will say nothing about the allocatioriustaf any locations other thdn This
information about the allocation status of other locatiaril be represented explicitly in fee
set, which will contain every location that is not allocatedhe global heap The model can be
interpreted from an ownership point of view, where the frekis to be thought of as a unique,
atomic piece of resource, ownership of which needs to beraatdoy a command if it wants to do
allocation or deallocation. An analogy is with the pernassi model: a command that wants to
read or write to a cell needs ownership of the appropriatmission on that cell. In the same way,
in our new model, a command that wants to do allocation olaestion needs to have ownership
of the free set: the ‘permission’ to see which cells are frethé global heap so that it can choose
one of them to allocate, or update the free set with the addhes it deallocates. On the other

hand, commands that only read or write to cells shall notirequwnership of the free set.

Example 6 (Heap model with free set)Formally, we work with a separation algeb(&, e, u ;).
Let L, Var and Val denote sets of locations, variables and values, as befdtegesh ¢ H are
given by the grammar:

hi=ug|l—v|z—v|F|heh

wherel € L,v € Val, z € Var and F € P(L). The operatore is undefined for states with
overlapping locations or variables. Lébc(h) andvar(h) be the set of allocated locations and
variables in stateh respectively. The st carries the information of which locations are free.
Thus we allow at most one free set in a state, and the free sdthawlisjoint from all locations in
the state. Sa e F' is only defined whetvc(h) N F = () andh # h' ¢ F' for anyh’ and F'. We

assume is associative and commutative with uaj.

In this model, the allocation command requires ownershifheffree set for safe execution, since
it chooses the location to allocate from this set. It remdheschosen address from the free set as

it allocates the cell. It is defined as

{Wer—lel—weF\{l} |/ weVal,lc F} h=hex—veF
new[z](h) =

T otherwise

Note that the output statése x— [ el+—we F\{l} are defined, since we haveZ F'\{/} and the

input stateh’ e z+— v o F implies thatloc(h') is disjoint fromF\{/}. The deallocation command
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also requires the free set, as it updates the set with theesddof the cell that it deletes:

{Wex—leFU{l}} h=hex—lelveF
dispose[z]|(h) =

T otherwise
Again, the output states are defined, since the input stagpéiamthatioc(h’) U {i} is disjoint
from F, and soloc(h') is disjoint fromF' U {/}. Notice that, in this model, only the allocation
and deallocation commands require ownership of the freesiste commands such as mutation
and lookup are completely independent of the allocatiotustaf other cells, and they are defined

exactly as in exampld 1.2:

{Wex—lel—v} h=her—lel—w
mutatelz,v](h) =
T otherwise
{Wexr—lel—vey—uv}t h=~hex—lel—vey—w
lookup|z,y](h) =
T otherwise

Lemma 2.21 The functionsiew|z|, dispose[z], mutate[x,v] and lookup[z,y] are all local in

the separation algebréH, e, u ) from examplé&l6.

Proof: Let f = new|x] and assume’#h. We want to showf (b’ e h) C {h'} x f(h). Assume
h =h" ex+—uv e F for someh”, z, 1, v and F', because otherwisg(h) = T and we are done. So

we have
f(heh) = {Weh"exr—lel—weF\{l}|weValleF}
= {W}x{h ex—lel—we F\{l} |weValleF}

= {W'}=f(h)
The other functions can be checked in a similar vily.
As an aside, a very interesting property of the free set mizd#iat it provides a more robust

treatment of dynamic memory allocation than the standardaian the standard model, in order

to keep commands local, one is forced to work with a non-d@téstic allocation function which
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assumes an infinite amount of memory, which is obviously metase in the real world. We find
that in the free set model, we can very naturally model detéstic allocation or allocation in

bounded memory as local functions.

Example 7 (Deterministic and bounded memory allocation)In the free set model of example

B, we can define a deterministic allocation function as

hWexrslel—we F\{l h=hezx—vel Al=N(F
newgfa] () = { \{i}} (F)

T otherwise

where N (F') : P(L) — L is a function that chooses a specific location fréihto be allocated
next. We can define (non-deterministic) allocation in bathdhemory by allowing the set of

locations L to be finite, and defining

{Wex—lel—weF\{l} | weVal,lec F} h=hex—veF NF#(
newy[z|(h) =

T otherwise

We can similarly define deterministic allocation in boundeemory by choosing a specific loca-
tion using N (F) rather than all possible locations if. Each of these functions can be checked

to be local in the free set model.

Safety and relevance footprint correspondence foAD We consider the relevance footprint
of the AD command in the new model. The sequential compositien|z|; dispose|[x] gives the

function

{Wex—leF|leF} h=heoxr—veF
AD(h) =

T otherwise
The smallest safe states are given by the{setv e F' | v € Val, F € P(L)}. By lemmdZ1RB,
these smallest safe states are footprints. However, ubékare, in this model these are tbhely

relevance footprints of thd D command. To see this, consider a larger staser — v o F' for
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non-emptyh. We have

AD(hez—veF) = {hez—leF |lc I}
= {h}x{x—leF|leF}

= {h}x AD(z—veF)

Since the local limitL4p(h e x +— v e F) C {h} * AD(x — v e F) by definition, we have by
proposition 2P that yp(h e z+—v e F) = AD(hexzr—ve F), and soh e z—v e F isnot a
footprint of AD.

Thus the relevance footprints of D in this model do not include any non-empty heaps. By
corollary[ZI8, in this model thd D command has a smallest complete specification in which the

pre-condition is just the empty heap:

{{z—veF} {x—leF})|veVal,FeP(L)leF}

Intuitively, it says that if initially the heap is empty, thariablez is present in the stack, and we
know which cells are free in the global heap, then after tleeation, the heap will still be empty,

exactly the same cells will still be free, amdwill point to one of those free cells. This completely
describes the behaviour of the command for all larger staew) the frame rule. For example,

we get the complete specification on the larger state in wiiicis allocated:

{{422—w} x {x—ve F} {42—w} «{x—le F})|v,w e Val,F € P(L),l € F}

In the pre-condition, the presence of location 42 in the hreapns that 42 is not in the free dét
(by definition of«). Therefore, in the post-condition, cannot point to 42. Notice that in order
to check that we have ‘regained’ safety footprints, we ordyded to check that the footprint
definition (definitioZZ1l7) corresponds to the smallest saéfites. The desired properties such as
essentiality, sufficiency, and small specifications thdlofoby the results established in previous

sections.

Correspondence for arbitrary programs Now that we have regained the safety footprints for

AD in the new model, we want to know if this is generally the caseahy program. We consider
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[c] € LocFunc [skip](c) = {o}

[Ci; Co] = [Ch];[C2]  [Cr+Co] =[Ci]u[C]  [C*]=Ll,[C"]

Figure 2.2: Denotational semantics for the imperative @ogning language

the imperative programming language giveriin [11]:
C == c|skip|C;C|C+C|C*

wherec ranges over an arbitrary collection of primitive commangss nondeterministic choice,
; is sequential composition, arid* is Kleene-star (iterateg. As discussed in_[11], condition-
als and while loops can be encoded usin@nd (-)* and assume statements. The denotational

semantics of commands is given in Figlrd 2.2.

Taking the primitive commands to becw(z], dispose|z]|, mutate[x,v], andlookup|z,y], our
original aim was to show that, for every commagidthe footprints offC] in the new model are
the smallest safe states. However, in attempting to dowesidentified a general condition on
primitive commands under which the result holds for arbjtiseparation algebras.

Let f be alocal function on a separation algebrdf, for A € P(X), we definef(A) = |_| f(o),

o€A
then the locality condition (definitidnd.5) can be restaisd

Vo',o € %. f({o'} x {o}) C {0’} * f({o})

TheC ordering in this definition allows local functions to be maleterministic on larger states.
This sensitivity of determinism to larger states is appanerthe AD command in the standard
model from examplEl1.2. On the empty heap, the command pesdutempty heap, and reassigns
variable z to any value, while on the singleton cell 1, it disallows the po#jbthat x = 1
afterwards. In the new model, theD command does not have this sensitivity of determinism in
the output states. In this case, the presence or absence oflttl does not affect the outcomes
of the AD command, since the command can only assigo a value chosen from the free set,
which does not change no matter what additional cells mayamdd in. With this observation,
we consider the general class of local functions in whick #a@nsitivity of determinism is not

present.
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Definition 2.21 (Determinism Constancy)Let f be alocal function andafe( f) the set of states
on which f does not fault. The functiofi has the determinism constancy property if and only if,

for everyo € safe(f),

Vo' € 8. f({o'} +{o}) = {0’} = f({c})

Notice that the determinism constancy property by itselflies that the function is local, and it
can therefore be thought of as a form of ‘strong localitytsHy, we find that local functions that

have determinism constancy always have footprints givethégmallest safe states.

Lemma 2.22 If a local function f has determinism constancy then its footprints are the ssiall

safe states.

Proof: Letmin(f) be the smallest safe statesfofThese are footprints by lemrha=.13. For any

larger statec’ e o whereo € min(f), o’ € ¥ ando is non-empty, we have

flo'eo) = f({o"} x{c}) ={o"} » f(0)

SinceLs (o’ e o) C {0’} * f(o), by propositior.ZTI2 we have that (o’ e o) = f(o’' o), and so

o’ e o is not a footprint off. W

We now demonstrate that the determinism constancy projseptgserved by all the constructs of
our programming language. This implies that if all the ptineéi commands of the programming
language have determinism constancy, then the footprfregasy program are the smallest safe

states.

Theorem 2.23 If all the primitive commands of the programming languageéhaeterminism

constancy, then the footprint of every program is given lpystinallest safe states.

Proof: Assuming all primitive commands have determinism constawe shall show by induc-
tion that every composite command has determinism congstamd the result follows by lemma

223. So for command€’; and Cs, let f = [C;] andg = [C3] and assumeg and g have
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determinism constancy. For sequential composition we,Have € safe(f;g) ando’ € %,

(f:9){o'} x{o})
= g(f({o'} x{a}))
= g({o'} = f({o}))
(f has determinism constancy amce safe(f) sinceo € safe(f; g))

= g |] {0} #{owp)

o1€f(0)

= | 9o’y = {ou})

ag1€f(0)

= || {0} *glon)

a1€f(0)
(g has determinism constancy amd € safe(g) sinceo € safe(f;g) andoy € f(0))

= {o'}+ || g(o1) (distributivity)

o1€f(0)

= {o'}x(f;9)(0)

For non-deterministic choice, we have foEe safe(f + g) ando’ € %,

(f +9)({o'} = {o})
= f{o'} = {o}) Ug({o'} +{o})
= {o'} = f({o}) U0’} = 9({o})

(f andg have determinism constancy amde safe(f) ando € safe(g))
= {o'}«(f({e})Ug({c})) (distributivity)

= {o't+ (F+9)({o})
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For Kleene-star, we have for e safe(f*) ando’ € ¥,

(f*){o'} +{a})
= /o'y #{o})
= | [{o'y+ /(o))

(Zeterminism constancy preserved under sequential cdtigoando € safe(f™))
= {0’} x| |/"({o}) (distributivity)

= {o't = (M({})

Now that we have shown the general result, it remains to ctielall the primitive commands in

the new model of examplé 6 do have determinism constancy.

Proposition 2.24 Let H; be the stack and heap model of exaniple 1.2 Apde the alternative
model of examplg 6. The commandsv|x], mutate[z, v] andlookup[z, y] all have determinism
constancy in both models. THéspose[x] command has determinism constancyHisnbut not in

H;.

Proof: We give the proofs for the new and dispose commands in the tedels, and the cases
for mutate and lookup can be checked in a similar way. &epose|[x] in Hy, the following

counterexample shows that it does not have determinisntaiurys

dispose|z]({l—v} = {x—1 e l—w})
= dispose[z]()

=0

C {l—vex—l}

= {l—v} xdispose[z](x—1 ol w)

Fornew(z] in Hy, any safe state is of the forme z+— v. For anyh’ € H;, we have

{W'} x new[z](h e x+—v) = {W'} x {hexr—lel—w|w e Val,l € L\loc(h)} ()
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If ' e h e x— v is undefined theh’ shares locations wittvc(h) or variables withwar(h) U {z}.
This means that the RHS iris the empty set. We haveew|[z]({}' }x{hex—v}) = new|[z](}) =

0 = {h'} * new[x](h @ z—wv). If k' @ h @ z+— v is defined, then

new(z|({h'} * {h e z+—v})
= newlz|(h' e hex—v)
= {Wehexr—lel—w|weValle L\loc(h' eh)}
= {W}x{hex—lel—w|weValle L\loc(h' eh)}
= {W}x{hex—lel—w|weValle L\loc(h)}

= {W'} xnewlz](h e x—v)

Fordispose[z] in Hy, any safe state is of the forme x+— /[ e [+—v e F. Leth’ € H,. We have

{W'} x dispose[z|(hexrlel—veF)={h}x{hex—le FU{l}} (i)

If W’ e hex—1el—veF isundefined then eithér contains a free set or it contains locations
in loc(h) U {l} or variables invar(h) U {z}. If i’ contains a free set or it contains locations in
loc(h) or variables irvar(h) U{z}, then the RHS irf} is the empty set. I’ contains the location

[ then also the RHS it is the empty set since the free gétU {l} also containg. Thus in both
cases the RHS iif is the empty set, and we hadéspose[z]|({h'} * {he x—lel—v e F}) =

0 ={h'} « dispose[x](he xr—lel—veF).

If Y e hex—lel—uve Fisdefined then we have

dispose|z]({W'} x {h e z—1 e l—v e F})
= dispose[z](W ehexz—lelsveF)
= {WehexleFU{l}}
= {W}s{hex—le FU{l}}

= {h'} xdispose[z]|(hex—lelveF)

Fornew[z] in Hy, any safe state is of the forie z+—v e F. Leth' € H,. We have

{W'} *new[z](hex—veF)={h'}x {hex—lel—we F\{l} |we Val,l € F} ({11)
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If W' e hez+— v e Fisundefined then eithér contains a free set or it contains locationgdn(h)
or variables invar(h) U {z}. In all these cases the RHSn{ is the empty set, and so we have

newlz]({h'} * {hexr—ve F}) =0 = {h'} xnewlz|(hexr—ve F).

If ' @ h @ z— v e F is defined then we have

newlz]({W'} = {h e x+>v e F})
= new[z](W ehezsveF)
— {Wehex—lel—weF\{I}|we Val,le F}
= {W}+{hex—lel—weF\{I}|we Val,lec F}

= {W}xnew[z](hexr—veF)

Thus theoreri 223 and proposition 2.24 tell us that usingltieenative model of examplé 6, the
footprint of every program is given by the smallest safeestadnd hence we have regained safety
footprints for all programs. In fact, the same is true for dhiginal model of examplgl 1.2 if we do
not include the dispose command as a primitive commande siththe other primitive commands
have determinism constancy. This, for example, would bectts® when modelling a garbage

collected languagé [43].

2.6 Conclusion

We have developed a general theory of relevance footpnirteeiabstract setting of local functions
that act on separation algebras. Based on the definitiortalitg we introduced the formal defini-

tion of the relevance footprint of a local function, demeat#td essentiality of relevance footprints
and identified the conditions for sufficiency. The theoryefvance footprints was then used to
characterize the conditions under which the safety footgmiovides complete specifications. We
introduced an alternative model of heaps in which the cpmadence between safety and rele-
vance footprints is achieved, and identified the genergignty of determinism constancy which

guarantees the correspondence in arbitrary resource saodel

Apart from the natural correspondence between safety dadaree footprints, the new heap

model also provides a more robust treatment of memory ditatan which deterministic mem-
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ory allocation and allocation in a finite amount of memory nib@ymodelled as local functions.
This is not true of the standard heap model, where memorgatltn must necessarily be non-
deterministic and an unbounded amount of memory is assuthéda direction for future work

to explore this stronger treatment of allocation in pradtapplications, such as the verification of

memory usage in embedded systems.

Finally, we comment on some related work. The discussioe hes been based on the static
notion of footprints astatesof the resource on which a program acts. A different notiofoof-
print has recently been described inl[28], where footprants viewed agracesof execution of

a computation. O’Hearn has described how the problem is avoided in this more elaborate
semantics, as the allocation of cells in an execution ptevilie framing of those cells. Interest-
ingly, however, the heap model from examfle 6 illustrated this not essential to move to this
more elaborate setting and incorporate dynamic, execgfecific information into the notion of
footprint in order to resolve thd D problem. Instead, with the explicit representation of tebs

in states, one can remain in an extensional semantics amdahpurely resource-based view of

footprints.



Chapter 3

Dependence Analysis for Optimization

3.1 Introduction

In this chapter we investigate how the resource reasoniogjged by separation logic can be used
to determine dependences between program statements, igittie key to effecting optimizations
such as automatic parallelization. Optimization techegjare generally based on a detection of
the resources accessed by program statements. Such tehhimye been extensively studied and
successfully applied for programs with simple data types amays, but there has been limited
progress for programs that manipulate pointers and dyndati structured [25, 25, 129]. Sepa-
ration logic has made significant advances in automatedicagion of such heap-manipulating
programs|[[55, 18,11, 24, 22], but these analyses cannot befaspdogram parallelization. This
is because the connective can only express separation of memory at a smmgtgam point, and

therefore cannot relate memory regions in different statése execution of a program.

We introducdabelled separation logito analyse memory separation properties throughout a pro-
gram’s lifetime, which involves annotating formulae wittbelsto keep track of memory regions
that are accessed by commands. This label-tracking is mggiéed in a method of symbolic
execution first presented ihl[3], which is the basis of auteshgrogram analysis with separa-
tion logic. The technique allows us to determine heap-acdependences between commands
in the program, but we find that these dependences alone tgifficient to safely optimize a
program. The ultimate aim is to ensure that any optimizatibauld produce the same output

states as the original program. Program optimizations bées been based on the assumption

65
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that if two commands access separate heap and variabldposaible executions, then they can
be parallelized or reordered to give an equivalent progi2fn[B1]. We describe here how this
assumption actually does not hold in the presence of dynamimory allocation and dealloca-
tion, and that optimizations based on the assumption cattupeoresults that are different from
the original program. We discuss example programs to ilitestthe problem, and introduce the
notion ofallocation dependencem addition to heap and stack dependences, in order tomgfeara
the safety of optimizations. We formally demonstrate thensimess of the optimizations based on

these dependences using a trace semantics of programs.

Our approach is part of a wider field of using static analysidatect dependences in programs that
manipulate dynamic pointer data structuilles [26] 21 3032P, The departure point is the use of
separation logic, which gives our approach the potentiatéalablity [5%] and compositionality
[8]. Our method of labelling memory regions with labels of #ccessing commands is similar to
[29], but the underlying abstract domain there is based emtemory layout approximations of
[33] rather than spatial logic formulae. A logic-based aggh is also advocated in[30], where
aliasing axiomsand theorem proving are used to detect independence. Howleigemethod has
difficulty handling structural modifications to the datausture, which do not cause problems in
our case. Our method also does not relyreachability properties of data structures, aslinl[26].
Such approaches encounter difficulties with data stru¢segments’, such as non-nil-terminated
list segments, or when there is internal sharing within thiadtructure as in the case of doubly
linked lists. Our approach does not suffer from these infitdimitations as it is based on detecting

the cells that are actually accessed rather than all thetbaemay possibly be accessed.

Shortly after the conference paper on which this work is $44€)], a different approach to using
separation logic for optimization was proposed(in| [31],dshen the idea of proof rewriting. In
this case rewriting rules for transforming a program pramd ia proof for an optimized program
are presented. This method encounters complications ipaang non-consecutive statements in
programs, since formulae at distant program points may tefdifferent memory regions even
if they are syntactically the same. In contrast, the latsdking mechanism we introduce here
provides a simple method for tracking memory regions thinoaig execution in order to compare
distant statements. Another difference is that the proafiteag method directly implements
program transformations and does not provide dependef@emiation. In practice, it is better

to supply dependence information to the compiler and letheichoice of which optimizations
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to effect, since the practicality of different possible inpzations may depend on a number of
circumstantial factors such as the cost of creating threatise context of the program and input
data. Having made these comparisons, we remark that bothppuoach and [31] are based on
the insight that separation logic is a very useful tool net for verification, but for optimization

as well.

In this chapter we illustrate our method in the standard sfimlexecution framework for separa-
tion logic, working with formulae describing linked listadtree structures as in[3]. The proposed
method is engineered so that it can be applied as a postgsingephase starting from the output
of an existing shape analysis based on separation logitielndxt section we introduce labelled
symbolic heaps, which are separation logic formulae exérwith labels. We then describe the
extended symbolic execution algorithm for determiningedefences and discuss examples. We

end with a proof of soundness of the method.

3.2 Labelled Symbolic Heaps

Automated analysis based on separation logic is usuallyeimgnted in a fragment of the logic
known assymbolic heapswhich were first introduced it [3] and have since become thedard

for such analyses$ [17, 2P [4,[1.1%55]8, 9]. We first give a brésfcdiption of symbolic heaps and
then describe our extension kabelled symbolic heapsvhich shall be used in the analysis for

detecting dependences between program statements.

The concrete heap model is based on a set of fielddds, a set of heap locatiorisoc, and a
setval of values that includé.oc and the nil valuenil € Val. We assume a finite s&tar of
program variables and an infinite $etr’ of primed variables. Primed variables are logical vari-
ables that will not be used in programs, only in formulae \etibey will be implicitly existentially
quantified. We then set

Heaps = Loc —¢;,, (Fields — Val)

Stacks = (Var U Var’) — Val

The standard symbolic heap fragment is shown in fifurde 3.1le¥\&3 be the set of all symbolic

heaps. The semantic interpretation is shown in figure 3.&wises a forcing relation, h = A
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z,y,.. € Var program variables
y',.. € Var primed variables
f1,f2,.. € Fields fields

E,F := nil|z |4 expressions
p == fi:E, . fr: Ey record expressions
7 = E=FE|E#E simple pure formulae
II == true|nw|IIAII pure formulae
S = Ewr|p]|1s(E,F) | tree(E) simple spatial formulae
U = emp|S|UxV spatial formulae
U IIAw symbolic heaps

Figure 3.1: Standard Symbolic Heaps

wheres € Stacks, h € Heaps, and A is any pure formula, spatial formula, or symbolic heap.
Expressions are program or logical variableg;or. Pure formulae are a conjunction of equalities
or inequalities of expressions interpreted on the variabdek s, while spatial formulae specify

properties of the heaj.

The simple spatial formulae include the points-to asserfio— [p], which describes a single
allocated heap cell with addregsand contents described by record expresgioand we have
inductively defined predicates for linked list segments limdry trees. These data structures use
the fieldsn, [, r € Fields, wheren is the next field for list segments, ahdndr are the left and
right subtree fields for binary trees. We have the spatiahéda emp which describes the empty
heap in which there are no allocated cells. The spatial oatippn ¥, « ¥, of two spatial formulae
uses the separating conjunction of separation logic. Whédr a heagh if the heap can be split

into two disjoint partsh; andhs such that¥’; holds ink; and¥, in hs.

An overall symbolic heafy = IIA ¥ is the classical conjunction of the the pure formilland the
spatial formulal describing properties of the stack and heap respectivélly,tie interpretation
of every primed variable as existentially quantified. Théation s(z} — vy,..., 2}, — v,) in

figure[32 represents the stackn which the variables, ..., 2/, have values., ..., v,.

In order to detect dependences between different partsegbriigram, our analysis will need to
track regions of the heap during execution, and we do this avitotion oflabelingon the simple
spatial formulae in symbolic heaps. We assume a fixed sebefdaab, and define dabelled
symbolic heap as symbolic heap in which every simple spatiajunct is assigned a set of labels

from Lab. Formally, labelled symbolic heaps are given by the grammar
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[z]s = s(z) [z']s = s(z') [nil]s = nil

s,h EE =E, iff [E1]s = [E2]s
s,h EE1 # E,y iff [E1]s # [E2]s
s,h | true always
s,h ETg AT iff s,hETands,h 1L
s,h E Ey—|[fi:Er....fr:Ex] iff h=[[Eo]s — r] wherer(f;) = [E;]sfori e 1..k
s,h E1s(E,F) iff  thereis a linked list segment fromito F’
s,h [ tree(E) iff thereis a binary tree at/
s,h = emp iff h=0
s,h E Y0y iff  3ho,h1.h = ho*hyands, hg E ¥ ands, hy = ¥4
s,h EIIAD iff  Jup,...,on. s(zi—0r, .20, ETT
ands(z) —uv1,...,z, —v,),h ET
wherez’, ...,z are all the primed variables il A ¥

The list and tree formulae are formally defined as the leastljpates satisfying the inductive definitions:
1s(E\F) & (E=FAemp)V(E#FAJyE—n:y]xls(y, F))
tree(E) < (E=nilAemp)V (Iz,y.E—[l:xz,r:y]*tree(z)*tree(y))

Figure 3.2: Interpretation of Symbolic Heaps

I € Lab labels

L € P(Lab) label sets
Y == emp|(S), |XxX labelled spatial formulae
H ImAX labelled symbolic heaps

We write Lab(H ), Var(H) andVar’(H) for the set of all labels, program variables and primed
variables inH respectively. The algorithm will use labels that are indioé program statements

to mark the heap region that is accessed in the executiontafearsent. For example, a formula

(Is(2,nil)) (19 40y * (18(y,nil)) 5

at some point in the symbolic execution expresses thatnséatts 19 and 42 have accessedalist

but not listy, while statemens accessed ligy but not listz.

We letLSH be the set of all labelled symbolic heaps. Labelled symbwigps are given a formal
interpretation by extending concrete heaps so that evestitm maps to a heap cell and a set of

labels, that is,



70 Chapter 3. Dependence Analysis for Optimization

Heaps = Loc —f;,, ((Fields — Val) x P(Lab))

The label set for each heap cell contains the labels of alttimemands that have accessed that
cell. This component will be updated with new labels as tloggam execution proceeds. Concrete
labelled heaps can satisfy both unlabelled and labelledslimheaps. For unlabelled symbolic

heaps, the interpretation ignores the labels in the coméreap. For labelled symbolic heaps, the
label sets in spatial formulae are an over-approximatich@fabel sets in the concrete heap. The

formal definition is as follows.

Definition 3.1 (Satisfaction) Assume we have a stagkand labelled concrete heajp. For an

unlabelled symbolic heafs, we haves, h |= U as defined in figure=3.2.

s,h =(S), iff s,h = Sandforalll e dom(h), if h(¢) = (r,L') thenL’ C L

s,hlEYo*xXy iff  Jhg,h1.h =ho*xhyands, hy = X ands, hy = ¥

s,hETIAY  iff Jog,.. o, s(2)—woy,. .. 2, —vy,),h =TT and
s(x—uvy, .., 2h =), h EX

wherez/, ..., z] are all the primed variables ifil A X

Notice that the symbolic heap only gives an over-approxinatf the labels of the concrete heap.
For example, assume we hawygh whereh contains separate lists atandy, the head of the list

atx has label sefi}, and the label sets of the rest of the heap are all empty. Tlecmewe

s,hlE (z—1n: x’]>{l} * (1s(2',y))g * (Is(y,nil)),
s, b f= (1s(z,y)) gy * (Is(y,nil)) gy

s,h = (Is(z,y))g * (1s(y,nil)),

Definition 3.2 (Entailment) An entailment” - H’ between two labelled symbolic heaps holds

if and only if every concrete state h that satisfies also satisfied’.

We define a general formula as a getc P(LSH) of labelled symbolic heaps, representing the

disjunction of all the heaps iF.
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3.3 Dependence Analysis

We now present the analysis for detecting dependences éetstatements in a program that is
written in an imperative programming language with heapimdating commands, while loops
and procedures. For such programs, we first perform an mteredural shape analysis based
on separation logic, such as the one described in [8], whigsgis specifications for procedure
calls and while loops. These specifications are pre- andquugtitions given in terms of standard
(unlabelled) symbolic heaps as shown in figurd 3.1. Formallspecification obtained from the

shape analysis is given aspec table

Definition 3.3 (Spec table) A spec tableZ : SH — P(SH) is a partial function from unlabelled
symbolic heaps to sets of unlabelled symbolic heaps. Afgicin for a command given as a
spec tableZ represents the set of Hoare triples for the command in whateveryU € dom(7),

there is a triple with pre-conditio/ and post-conditiorVU,eT(U) U’

Given these specifications from the shape analysis, oumdepee analysis uses an intermediate
language for commands in which every composite commanddeedure call, conditional or
while loop) is represented byspecifiedccommandgcon|7 |, where7 is the specification given for

the composite command.

Definition 3.4 (Programming language) The programming language is given by the following

grammar:
b == E=FE|E#E boolean expressions
¢c w= z:=F|xz:=E— f|E — f:=FEy|new(x) | dispose(z) atomic commands
C == c|com[T]]|Cy;Cs programs

Boolean expressions test equality or inequality betweerabie expressions (defined in figure
B). We have atomic commandsfor manipulating the heap and program variables. The as-
signment command := F assigns to variable the value of expressiof’. The heap lookup
commandr := E — f assigns tac the value of fieldf in the heap cell at addreds. The heap
mutation commandr; — f := E, sets the value of field at heap cellE; to the valueE,. The

allocation commandew(x) allocates a new heap cell and sett its address, andispose(z)
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deallocates the heap cell at addressThe formal semantics of these commands is given in sec-
tion[3.8 when we demonstrate soundness. A progfaisieither an atomic command, a specified
command or a sequential composition of commands. We alsorasthat we are given the sets
RV(C) andMv(C) for the set of variables that are read and modified by comndanespectively

(these variables can be obtained from the syntax of comnands

The dependence analysis will be applied to a sequentiaklddcommands of the fornd, :
Ci;...;l, : C,, where each componeit: C; of the block is either an atomic command or a
specified command, indexed by labek Lab. The aim of the analysis is to detect the dependences
between the component commards, .. ., C,,, so that any parallelization or optimization that
respects these dependences produces the same resultsragitiaéprogram. Notice that although
the bodies of composite commands such as procedures, icoatitand loops are abstracted away
as they are replaced by specified commands, we can applydhsiarseparately to different levels

of nesting in the original program in order to optimize thelies of composite commands.

For a sequential block' and a given pre-condition formuld € P(LSH), the dependence analysis
is defined by thegetDeps(C, P) function, which returns @ependence sdd € P(Lab x Lab)

that relates labels of commands in sequential block betwdsch there is a dependence. There
are three kinds of dependences that must be determined én trdafely optimize a program.
These are heap-carried dependences, stack-carried @gmgesdand dependences due to dynamic
memory allocation. ThgetDeps function returns the union of all three kinds of dependenges

the sequential block.

Definition 3.5 getDeps function For a formulaP € P(LSH) and sequential block’, we have

getDeps(C, P) = getStackDeps(C') U getHeapDeps(C, P) U getAllocDeps(C')

Stack dependences are easily determined from the syntaw@fgms by observing the variables

accessed by commands, so that

getStackDeps(C') = {(l;,1;) | ; : C; andl; : C; access common stack variabjes

The main difficulty is in determining heap-carried deperwdan which is the focus of this chapter.

We first describe our method for determining heap-carrigeeddences, and will then discuss the
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Algorithm 1 Exec(C, (P, D))
1: if C' = empty then
2:  return (P,D);
3: elseifC =1: cthen
4. return ExecAtm(l: ¢, (P, D)) ;
5: else ifC =1 : com[7] then
6
.
8
9

. return ExecSpec(l : com[T], (P, D)) ;
:elseifC =1:Cy;C" then

. return Exec(C’,Exec(l: C1, (P, D))) ;
: end if

allocation dependences.

The heap-dependence detection method is based on a syreketiction of the program. Given

a sequential block’, a pre-condition” € P(LSH), and an initial dependence sBtc P(Lab x
Lab), the symbolic execution is performed by the functierec(C, (P, D)), which detects heap
dependences by tracking the labels of component commaraiggtithe execution, starting from
the given pre-condition. If successful, the function retua pair(P’, D’) where P’ € P(LSH)

is the post-condition formula anB’ € P(Lab x Lab) contains any heap dependences between
the commands in the sequential block. Thec function is defined in algorithfll 1. It uses the
subroutinesExecAtm and ExecSpec in the case of atomic and specified commands respectively.

We describe each of these cases next.

Definition 3.6 (getHeapDeps) For a formulaP € P(LSH) and sequential block’, we define

getHeapDeps(C, P) = D

whereD is the set of dependences obtained fiexac(C, (P,0)) = (P', D).

3.3.1 Executing atomic commands

The ExecAtm function symbolically executes atomic commands by tramsiiog the symbolic
states according to a set of inference rules. These rulesnttie imperative update of the concrete
heap state during program execution. They are based onitfieabsymbolic execution rules from

[3] and are extended here for labelled symbolic heaps anendimce detection.

The inference rules for symbolic execution are divided caomand applicatiomndrearrange-

mentrules, which are displayed in figuie B.3. Read from top todmotteach rule transforms a
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symbolic state in the premise to a symbolic state in the emnah, where a symbolic state is of
the form (H, D) with H a labelled symbolic heap and a set of dependences collected so far.
The rules can be understood by appeal to operational mtuitThe command application rule
for each atomic command describes the effect of the commankleolabelled symbolic heap ac-
cording to the operation of the command on concrete heaypts, the label of the command to
any heap region that is accessed, and records new deperndfarogation to the dependence set.
For instance, reading from top to bottom, the rule forthelispose(z) command states that if
initially the symbolic heap iSIA X% (E — [p]),; and the dependence sefisthen after executing
the command the cell & is disposed to give the hedpA 3. The dependence set is updated to
DuU{(l,I") | I" € L} since there is a heap-carried dependence between this cairand all the
commands that previously accessed the heap céll #te labels of which were collected in the

setL.

The rule for thel : new(z) command creates a new heap cell in the symbolic heap, astsigns
address ta;, and uses the new existential variableo keep track of the old value of. The new
cell is given label se{l} since this is the only command that has so far accessed theToés
is recorded in the label set so that dependences betweetothimand and commands that may
subsequently access this cell can be determined. The depmndet is unchanged in this case

since there are no commands that have previously accessaduhcell.

The rule for the assignment commahd x := E updates the value of and uses the new
existential variable:’ to keep track of the old value af. The dependence set is again unchanged
since the command does not make any heap access in this ¢eseulds for mutationl(: £ —

f:=F)andlookup {: z := E — f) use the following definitions:

fiFp  ifp=f:E)p P E ifo=f:E/p
mutate(p, f, F) = lookup(p, f) =

f:Fp if f&p (p,f:x),x if f¢p andx fresh
The fresh variable returned in the lookup case correspanttetidea that if a record expression
does not give a value for a particular field then that valuelshown at that point in the analysis,
and hence a fresh variable is introduced to denote the vhilmth the mutate and lookup rules,
the label of the command is placed in the label set of the aeddseap cell in the post-condition,
and the dependence set is updated as in the case of the digsposeand. The soundness of
these symbolic rules is based on an over-approximationettincrete execution semantics of

commands, which we give [0-3.6 when we formally demonstratmdness.
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The command application rules are not sufficient on their.olims is because, when commands
access the heap, the pre-condition is expected to be inarcéstm in which the heap cell that is

to be accessed is explicitly present. For instance, if the®jic heap in the premise is

z=2 Ay [f ), * (2o [f )y,

then the rule for the mutation commahdz — f := y cannot be applied because the symbolic
heap should explicitly have — [p] as a spatial conjunct, for some For this reason, symbolic
execution has a separaearrangemenphase, which attempts to put the precondition in the proper
form for a command application rule to fire. For instancehmaxample just given we can observe

that the pre-condition is equivalent to

x=zAN{y—|f: Z]>L1 *(x=[f 90,]>L2

which is in a form that allows the mutate rule to fire. The fiestrangement rule in figufe~B.3
makes use of equalities to recognize that a dereferencamistpossible and makes appropriate
variable substitutions. For instance, in the example abinveequalityr = z in the formula is
used to change the conjungt— [f : z']); to (z—[f : 2]); . Notice that substituting different
variables in the spatial conjunct does not change the labeffshe conjunct, because the conjunct

is still describing the same heap location as before.

The other two rearrangement rules are for list segmentsraed,twhich expose- facts by un-
rolling the inductive definitions when there is enough infiation to conclude that the list segment
or tree is nonempty. A list segment is non-empty when the atat end points are different (side
condition F = F” in the rule) and a tree is non-empty when the root is not nilgsiondition

F # nil in the rule). Besides unrolling the inductive definitionjrematching is also included
using the equalityy = F' in the side-conditions. Each spatial conjunct in the uirglbf the date
structure formula is given the label set of the original fatay since the described heap region
remains the same. Notice that every rearrangement ruls givalid entailment between the la-
belled symbolic heaps in the premise and conclusion (inrdecee with definitiod=3]12), and that
the dependence set remains unchanged in all the rearrangemes since no new dependence

information is obtained.

Definition 3.7 (ExecAtm) For an atomic command : ¢, a symbolic heapd, and dependence
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COMMAND APPLICATION RULES

(IIAS =« (E — [p])r, D)
A, DU{LI)|V eL})

l : dispose(x)

(IIAX, D)
(ATA D)2 /2]« (z = [)) (43, D)

l : new(x), =’ fresh

(IIA S, D)
(z = E[2' /2] A (I A Z) [z’ /2], D)

l:x:=E,x'fresh

(ITAS* (B []) . D)
MAS (B = [0]) o0y DULGLT) [ € LY)

l: E— f:=F, mutate(p, f, F) =p’

(LA * (E — [o)), D)
(@ = Fla' /el AMAS # (B [ o)l /al, DU ) | U € LY)

l:z:=FE — f,a' fresh, lookup(p, f) = (o', F)

REARRANGEMENT RULES

(ITAS s+ (F = [pl), D)
(IIAZ+(E = [pl) 1, D)

II-E=F

(ILA X * (1s(F, F")), D)
(IIANE*(E — [n: '), * (1s(z’,F")),D)

I+ F # F' A E = F andz’ fresh

(IIA X * (tree(F)) , D)
(IIANES*(E—[l:2,7:y']), * (tree(z’)) * (tree(y’)) , D)

I+ F #1nil A E = F andz’,y’ fresh

Figure 3.3: Label tracking symbolic execution rules
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setD, the ExecAtm(l : ¢, (H, D)) function symbolically executes the command using the rules
in figure[33B. Ifc is a command accessing the heapFa{lookup, mutate or dispose), then the
rearrangement rules are first applied to makieexplicit before the command application rule is
applied. The command application rule for. ¢ is then applied with premiséH, D) and the
function returns the conclusion of the rulél’, D’). TheExecAtm function is undefined on an

input state( H, D) if the state is not a valid pre-condition for the symbolic@x@n rules.

The ExecAtm function is lifted to formulae as follows. For a formufla € P(LSH), we have
ExecAtm(l : ¢, (P, D)) is undefined ifExecAtm(l : ¢, (H, D)) is undefined for anyd € P.
Otherwise we havExecAtm(( : ¢, (P, D)) = (P, D1) where

P, ={H'|(H',D') = ExecAtm(l : ¢, (H, D)), H € P}

Dy =| J{D'| (H',D') = ExecAtm(l : ¢, (H, D)), H € P}

3.3.2 Executing specified commands

The ExecSpec function defines the symbolic execution for specified conuisarin the case of
specified commands, the command’s spec table determindsatigformation of the symbolic
heap in the execution. For example, assume we are given thenand! : com[7], which is

a procedure that traverses a treecand writes certain values at every tree node. In this case
the spec table has the single pre-condition with unlabelled symbolic heape(z) and the
post-condition7 (tree(x)) = {tree(x)}. Assume that this command is to be executed on the

symbolic statd H, D), where the call-site assertidd is

z=w A (2 [])p, * (tree(z)),, * (Is(y,nil)),,

Matching the pre-condition of the spec table, we know thatdbmmand only accesses the heap
described bytree(x));,. Also, because this is the part that is accessed, we knowtthaom-
mand can only have heap-dependences with commands thatdieale inL,. To execute the
command, we can use the spec table to replace the part ofdpeliet matches the pre-condition
with the post-condition of the command, and the other pdrteeformula are unaffected. The

labels assigned to the post-condition formulae are allabel§ in the pre-condition as well as the



78 Chapter 3. Dependence Analysis for Optimization

label of of the command, since these are the only commands that mayataessed this heap

region. Hence, after the execution the symbolic state wesdét’, D’), where
H = z=wA (z+— Dr, * <tree(:v)>L2U{l} * (1s(y,nil)),,

D= DU{LV)|I e Ly)

There are three things we need to know about how to use thidisption to execute the command.
Firstly, the assertion at the calling site of the command rbayspatially larger than the pre-
condition in the spec table, since the pre-condition onlgcdbes the part of the heap that is
accessed by the command, and the calling site of the commampdhave other allocated regions
which the command does not access. For this reason, we naddrtthespatial frameassertion,
which is the part of the call-site heap that is not in the pyadition of the command. In the
above example the spatial frame(is— []), * (1s(y,nil)); . Secondly, we need to infer the
pure framewhich describes the variables that have not been modifieldogammand, which in
the above example is the pure formula= w. Lastly, we need to know how labels should be
propagated in the execution of the command. Since the ptepast-conditions in the spec table
are only given in terms ofinlabelledsymbolic heaps, we need to infer thecessed labels set
which are the labels in the part of the call-site assertiat ihaccessed by the command. In the

above example the accessed labels s&tis

Given this information, the symbolic state after execuimaobtained by combining the frame as-
sertions with the post-conditions given in the spec tablest post-condition formulae are given
the accessed labels set plus the ldbafl the executing command, as in the example above. De-
pendences are determined between the executing commaradl #relcommands in the accessed

labels set.

Formally, the frame assertions and accessed labels se¢aeeated by a functiohrm(H, U, V),
where H is a labelled symbolic heap (the call-site asserti@hjs an unlabelled symbolic heap
(command pre-condition from the spec table), &\d_ Var is the set of program variables that
are modified by the command. In the following, we use the imtathat, for any unlabelled

spatial formulal = S; * --- x S, and label sef., we shall write¥[L] for the labelled formula

(S1)p *...(Sn)p-
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LetU = II A . If successful, th&rm(H, U, V') function returns a tripléllz, ¥, L 4) of a pure
formulallz (the pure frame), a labelled spatial formila (the spatial frame), and a label def

(the accessed labels set) such that
H b IIp AN A Xp x U[Ly|

where entailment is as defined in definitfon] 3.2, &hdandX » do not mention any variables In.
Given the call-site assertion in this form, we know that exieg the command on this state will
not changdl (since it does not mention any variables modified by the contthand i (since

it is not part of the heap affected by the command). Hencegthame formulae can be combined
with the given post-conditio? (U) of the command to get the following set of symbolic heaps

after execution:
{TIp AU ASp« W [Lau{l}] | WAV € T(U) }

The heap after execution satisfies the spatial frame andastecpndition of the command, and
the variable stack satisfies the pure frame and the postitemndThe spatial formulae in the post-
condition describe the part of the heap affected by the caminsa they are given the label set
L4 U {l} and the spatial frame preserves is labels from the callesigertion because it is not
accessed. The dependendesl,l’) | I’ € L4 } are added to the dependence set since the
command may depend on any of the commands inBgt The formal soundness argument for

this symbolic transformation is given in sectionl3.6.

Before describing how therm function works, we first give the formal definition of theecSpec
function. For a labelled symbolic he&pand dependence sB, theExecSpec(l : com[T ], (H, D))
function, shown in algorithnll2, defines the execution of thecffied commandon|[7] on the
state(H, D). The function first tests every in the pre-conditiordom (7") of the specification to

see if the call-site assertiol can be matched with it, by calling them(H, U, MV({ : com[T]))
function. If this function is successful and returns a reélll-, ¥, L 4), then the set of symbolic
heaps after the execution of the command are obtained byinomgkhe frame formulae with
every post-condition given if (U) and the dependence set is updated to show that command
[ depends on all commands in skel. The ExecSpec function fails if none of the heaps in the

pre-condition in the spec table can be matched with thesitallassertion.
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Algorithm 2 ExecSpec(!l : com[7 |, (H, D))

1: forall U € dom(7) do
if Frm(H,U,MV({ : com[T])) = (Ilp, XF, L4) then
3 P = {TIp ATIANSp*VU[LyU{l}] | IAV € T(U) };
4: D' :=DuU{(l)|leLa};
5
6

return (P, D');
end if
7: end for
8: return failure ;

Definition 3.8 (ExecSpec(l : com[7 ], (P, D))) ForaformulaP € P(LSH), we haveExecSpec(! :
com[T], (P, D)) fails if ExecSpec(l : com[T], (H, D)) fails for any H € P. Otherwise we have
ExecSpec(l : com[7], (P, D)) = (P1, D1) where

Py = J{P'| (P',D') = ExecAtm(l : ¢, (H, D)), H € P}

Dy =| J{D'| (H',D') = ExecAtm(l : ¢, (H, D)), H € P}

Inferring the frame assertion and accessed labels setWe now describe how thierm function
infers the pure and spatial frames and the accessed lahefssee discussed above, when given a
labelled call-site symbolic heafd, an unlabelled pre-conditioli = ITA W and the set of variables
V that are accessed by the command,Rive( H, U, V') function computes a triplfllz, X, L4)
such that

H + Tlp AN A Xp x U[L4|

wherellr andX. do not contain any variables ¥. The function is based on an adaptation of
the frame inference method froml [3], but extended for ouppses so that the frame assertion
preserves its labels from the original call-site assersiod the accessed labels set is also inferred.
To do this, we use a set of inference rules for entailmentsdmt labelled symbolic heaps, which
are an extension of the rules for standard unlabelled syimbeaps from([3]. The rules are shown

in figure 3.4, which uses the following notation:

e the expressionp(F) is an abbreviation foE — [p], 1s(E, F'), or tree(E).

e the guardi(op(F)) asserts that the heap is non-empty, and is defined as

G(E — [p]) £ true G(1s(E,F) 2 E#F G(tree(E)) = FE # nil
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NORMALISATION RULES

N[E/E'|ASIE/E'|FT[E/E'| NS [E/E'] OASFIU AT
OAE =EASFI AY MAE=EASFI AY
IASEFII A NASEFI AY
DAY+ (1s(E,E)), I’ A S/ IIAY * (tree(nil)), F II' A2/

I AGop(E)) A E #nil A (op(E))p * = FII' A S/

T A 6(op(E)) A (op(B))y # 5 - T A5 B 7t @ A sler(s)

LA Ey # Bz A(opy (E1)) g, * (opa(E2))p, * ST A X (opy (E1)), G(opy (Ea)) € 11

LA {opy (B1))p,, * (opp(B2))p, * S F I/ A% E1# Ex ¢ 11

SUBTRACTION RULES

OASFIVAY OATASEFIUAY OASFIUAY OASEFIVAY
OASHFIUAE=EAY OATASFI'ATAY TASEFI AQAs(E, E)) *Y IIAS I A (tree(E,nil)) ; * 5/

NASEFI AY
IA(S), *S I A(S" )+ %

S<x 8, LCL' var'(S)NVar/ (I AX) = 0, Var'(S') Nvar' (II' AZ) =0
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Figure 3.4: Rules for labelled entailment

e we write S < S’ eitherS = S’ or for someE, p andp’, we haveS = F — [p, ] and

S' = Ew~—|p].

These rules are sound from top to bottom, in the sense thad émtailment in the premise holds
according to definitiof-3]2 then so does the entailment ircdmelusion. However, in practice the
rules are applied upwards starting from a given entailmentt| we arrive at the axionil A emp +

true A emp, at which point we have constructed a valid proof of the gieatailment.

The rules are categorized as either normalization or sttimrarules. The normalization rules
simplify the left hand side of entailments and make infolioraexplicit for the subtraction rules
to be applied. The first two normalization rules get rid of @dies as soon as possible so that the
forthcoming rules can be formulated using simple pattertchiag (i.e., we can uséf — [pl)
directly rather tha(F" — [p]); and E = F' derivable). The first rule performs variable substitu-

tion after removing the equality and the second removesndght equalities. The next two rules
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remove inconsistent data structure formulae from the leftchside of the entailment. The last
two normalization rules make derivable inequalities eiplbn the left hand side, based on the

properties of the spatial points-to formula and the datzctire formulae.

The second group of rules, the subtraction rules, work bykipng and explicating information
on the right hand side of entailments in order to eventuatiuce to the axioml A emp - true A
emp. The first two rules eliminate redundant equalities fromrigat hand side, and the next two
rules eliminate inconsistent data structure formulae ftoeright hand side. The fifth rule, which
we call *-introduction, is the main subtraction rule whiakiphs reach the desired axiom. It matches
and eliminates simple spatial formulae on both sides of titailmment when applied upwards.
SinceS < S’ andL C L', we have(S), F (S’),,. However, we need to be careful with the
existential interpretation of primed variables, which was the case il |3]. The addditional side
condition that the new spatial conjuncts do not share prigaei@dbles with the existing formulae

ensures the soundness of the rule from top to bottom.

The last four subtraction rules are based on propertiesedghtiuctive tree and list segment predi-
cates. The first two rules unfold the predicates on the rightlrside according to their inductive
definition. The last two rules are specific for the list seghmmedicate, since it is possible to
unfold a list segment from the middle to obtain two list segiae We do not have similar rules
for the tree predicate since unfolding a tree in the middlesdaot give whole trees. In the last
subtraction rule, th@(op(E3)) A op(Es) part of the left-hand side ensures tti&atdoes not occur

within the segments fromi;, to E5, which is necessary for appending list segments, sinceatey

required to be acyclic.

As an example of the use of these rules, if we want to checkadheity of the entailment

z=yA{x— []>L1 * (tree(y)>L2 F(z — []>L1 * (1:ree(z)>L2uL3

then we can apply the rules upwards to construct the follgwlierivation:

emp - emp
(tree(2)),, I (tree(2))p,uL,
z=yA (tree(y)), - {tree(2))p, L,
z=yN(x — H>L1 * (tree(y)>L2 F{r— H>L1 * (tree(z)}LQULs
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where we have applied the *-introduction rule (fifth subti@e rule), the first normalization rule

and the *-introduction rule again to reach the axiom at tipe to

This is fine if we only need to check the validity of entailmeriut in our case we will use these
rules to infer missing information about the frame asseréiad the accessed labels set. We first

state the following definition and results, which we sha# tsdefine thérm function.

Definition 3.9 For a labelled symbolic heafl = ITA(S1)p *---*(Sh)y , wWe writelabsets(H)

for themultiset{L4, ..., L, } of the label sets of all spatial conjuncts k.

Lemma 3.1 Suppose we apply the inference rules upwards from an emtailfid - H’ and get

the following derivation
H, - H
H+ H

Thenlabsets(H;) C labsets(H ).

Proof: The proof is by induction on the size of the derivation. Ferlthse case where the premise
and conclusion are identical and there are no rule applicati, the result follows trivially. For the
inductive case we assume that the result holds for all dédma of sizen — 1 and that the given
derivation is of sizen and of the form

H, - H]

Hy & H}
H+H

where the number of steps frof, + H) to the premise is: — 1. Each of the rules in figure
3.4 guarantees thalubsets(Hy) C labsets(H ), and we have by the induction hypothesis that

labsets(H1) C labsets(Hs). Hencelabsets(Hy) C labsets(H). R

The following theorem describes how, when given a label@dlmlic heap (the call-site assertion)
and an unlabelled symbolic heap (the command pre-conjlitree can use the proof rules to infer

the missing information about the frame assertion and aeddsbels set.

Theorem 3.2 Assume we are given a labelled symbolic héapnd an unlabelled symbolic heap

IT A ¥ such thatH andII A ¥ do not have any common primed variables. Suppose that wg appl
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the inference rules upwards from the entailméht- II A ¥[Lab] to get the derivation:

II' A X F true A emp

H +TI A ¥[Lab]

Let L be any superset ¢f|(labsets(H) — labsets(X)). Then the entailmentl - IT A W[L] x X

is valid.

Proof: We show that the given derivation implies the existence ddla\proof of the entailment

H T A W[L] x 3. We first prove the following claim:

claim 1. In the derivation given in the assumption of the theorem,gfreplace all the label sets

Lab on the right hand side of entailments withto get:

II' A X F true A emp
HFIA L]

then this is a derivation that can be made using the proo$ inlégure 3.4. We prove this claim
by induction on the size of the derivation. For the base cdsenvthe premise and conclusion are
identical and there are no rule applications, the resulibvicd trivially since there are no spatial
conjuncts in¥. For the inductive case we assume that the result holdslfdeaVvations of size

n — 1 and that the given derivation is of sizeand of the form

II' A X F true A emp

Hy - H,
H + 11 A U[Lab]

where the number of steps froff, - H to the premise is — 1. The step from the conclusion
H +II A W[Lab] to H; F Hs is an application of one of the inference rules from figure &dr
each of the inference rules it can be checked Hais of the formIl; A W,[Lab] for somell, and
Uy, We have assumed is a superset dfJ(labsets(H) — labsets(X)), so it is also a superset of

U(labsets(Hy) — labsets(X)) sincelabsets(H1) C labsets(H ) by lemmée3ll. Therefore, by the

induction hypothesis, there exists the valid derivation

II' A X F true A emp

Hy Ty A Uy[L)]
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Now to complete the proof of claim 1 we have to show that we cakethe inference step

H{F1IIx A \IIQ[L]
HF A VL]

()

We already know from the assumption of the inductive casedbae rule in figure 3.4 can be

applied to make the inference

Hy F1Is A \Ifg[Lab]
HF 1A U[Lab)

(1)

In every rule in figure 3.4 except the *-introduction rule §aHneliminates spatial conjuncts up-
wards), there are no constraints imposed on the value ofathed kets on the right hand side of
the entailment, so we can replace every labeLsgtwith L on the right hand side of entailments
in (1) to achieve the required inferen¢g). In the case of the *-introduction rule, assume that
in (1) we haveH = IIg A (S);, * ¥y and H; = IIg A Xy. To achieve the inference),

we need to check that it is possible to replace all occureinéd.ab with L on the right hand
side of entailments irff). For this it is sufficient to check thd’ C L, in accordance with the
side condition of the *-introduction rule. We know thabsets(H) = {L'} W labsets(H;) and
that labsets(X) C labsets(Hy) by lemmd3lL. Hencé' € (labsets(H) — labsets(X)), and thus

L' C L by definition of L. This completes the proof of claim 1.

The derivation shown to exist by claim 1 can be transforméal éncomplete proof of the entail-
mentH + II A ¥[L] x ¥ as follows. We first add to the heap on the right hand side of the

entailment at every proof step so that the proof becomes:

IAXFtrueA Y
HFTIAU[L+3

One thing to check is that all the *-introduction steps cdlhtst applied after appending to the
right hand side (because of the side condition about disjess of primed variables in this rule).
All of these steps are possible because the primed variabl&sare disjoint from the primed
variables oflI A W[L]. This is becaus& only contains primed variables frofd, andvar’(H) is

disjoint fromvar’(IT A W[L]) by assumption of the theorem.

The premise of this proof is the entailmdit A X - true A X, which is a valid entailment, and
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therefore the conclusion is also valid by soundness of tles.ml

Using theoreri 312, we infer the accessed labels set, thaldpaine and the pure frame as follows.
For a call-site assertio/ and unlabelled pre-conditiof = II A ¥, we first rename primed
variables inH to ensure that they are disjoint frobh. Then the theorem tells us that if we apply
the inference rules upwards from the entailmént- II A ¥[Lab] and getll’ A 3 I true A emp,
thenH + II A W[L] « X holds, wherel, = | J(labsets(H) — labsets(X)). The setl includes all
the labels from the part of the call-site heap that is in theqondition of the command, so this
gives us the accessed labels set. The formudescribes the part of the call-site heap that is not
in the command pre-condition. But before we can use it asradrassertion, we need to ensure
that it does not mention any variables that are modified bycdmemand (so that it can be safely
combined with the post-condition of the command). Hencexigentially quantify any variables
in ¥ that are modified by the command. Similarly, the pure frantaken as the pure part éf

in which variables that are modified by the command are repldy the existential ones used for

the spatial frame.

Definition 3.10 (Frm(H, U, V)) Given a labelled call-site symbolic hedd = Iy A Xp, an
unlabelled pre-conditio/ = IIA ¥ and the set of variable® = {z1,...,z,}, theFrm(H,U,V)
function first renames primed variables ki to make them disjoint frorfy. It then applies the

proof rules from figure 3.4 to search for a derivation of thenfo

I' AX F true A emp

H +TI A U[Lab)

If it is able to find such a derivation then it returns the t8llly, X, L4), where, for fresh

primed variablest), ..., z/,,
/ /
Ip =gyxy/z1, ... 2, /2]

Yp =3/, .. 2 ]

Ly= U(labsets(H) — labsets(X))

Corollary 3.3 (Soundness of frame inference)lf we haveFrm(H,U, V) = (Ilp, X, L4) then

H + Tlp AN A Xp x U[L4|
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wherell and X do not mention any variables .

Proof: Assume thatf =11z A X, U = IT A ¥ and that applying the proof rules upwards from
H F1II A U[Lab| givesI’ A X I true A emp. Then, by theorein 3.2 and definition3.10, we have

H b TAU[Ls %Y

SinceH + Iy, we haveH + IIxy AIIA W[L4] * 3. Now, since the function existentially

quantifies variables ihl y and X to getlly and X, we have

HH/\H/\\II[LA]*E H HF/\H/\\II[LA]*EF

and thereforeH + IIyg Allp A W[L4] * X p. The framedlyp andXr do not mention variables

in V since they become existentially quantifimd.

As an example, assume the call-site assertion is

1 =yAxy=2A (2 []), *(tree(y)), * (1s(z,nil)) * (Is(w,nil))

the command pre-condition isree(x;) * 1s(w,nil) and the set of variables accessed by the

command i z1, w, z}. TheFrm function first makes the following derivation:

=2 A (z — []>L * (1s(z, nll)) F emp
tree(w1)), * (1s(z, n11)> - (tree(z1))

£E2—Z/\<£E'—> []) L

*
1 =yAra=zA(x— []),, *(tree(y)),, * (1s(z, nll)) F (tree(z1))
Jp, ¥ (1

wi=yNwy=zN\ (2 = [l),, * (tree(y)), * (1s(z,011))  * (w = (1), F (tree(z1))y * (W = (1w

The function computes the accessed labeld.set | J({L1, Lo, L3, L1} —{L1,Ls}) = LoUL;.
Notice how it is important to consider the multiset of labelssin the call-site formula, since the
label setl; occurs both in the command pre-condition and outside it. Arhefunction chooses
fresh variables?|, 2, 2 for z1,w, z, and computes the pure framelds = 2} = y A xo = 24
and the spatial frame ap = (z~ []);, * (1s(z%,nil)), . Notice how the spatial frame

now has a list at the existential variabté because the frame cannot mention the variablas
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the command may modify this variable. However, the listiis atcessible for future commands
because the pure frame retains the equality= =%, so the list can still be accessed through the
program variable:s. This demonstrates the importance of inferring both a pamé and a spatial

frame.

3.4 Allocation dependences

In this section we describe the third kind of dependenceviieateed to take into account, which is
due to dynamic memory allocation. Program optimizationgtadten been proposed based on the
independence assumptitimat if two commands access separate heap and variablégposaible
executions, then they can be parallelized or reorderedveagi equivalent prograrn [21,131]. We
describe here how the independence assumption actuakyndd@old in the presence of dynamic
memory allocation, and optimizations based on this assompan produce results significantly

different from the original program. A simple example is tbikowing program:

Iy : new(x);
Iy : new(y);
l3 : dispose(z);

ly : if(x = y)then{z := 0}else{z := 1};

At l4, we have ther # y becauser andy cannot be allocated the same address, so the original
program never sets:= 0. Now statement$, andl; are independent in that they access separate
heap cells and variables, but reordering them may all@andy to be equal if the address allocated
in [1 is re-used fol;. So the optimized program will possibly set= 0, and thus new behaviour
can result. One may note that it is a widely accepted stantiatdorograms should not read or
test the values of dangling pointefs34], and it may hencargaed that the above program is

somehow not a ‘proper’ program in the first place. But the fgwobpersists even if we disallow
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such programs, as in the following example:

Iy : new(x);

I : neu(y);

Iy : =

ly: if(f = y)then{z := 0}else{z :=1};
l5 : dispose(x);

lg : dispose(y);

This program does not perform any reading or testing of dagglointers. However, it is possible
to optimize such that the statement sequdnck, I5 is executed even beforgeis allocated irnls!
Thus againy may get the same addresszasind so the true branch in can fire in the optimiza-
tion but not in the original program. Such programs are pdsfeeasonable as it is often the case
that one checks that certain expected conditions are sdtigiich as whether two variables point
to different allocated objects at a certain point in the paag), and performs error handling oth-
erwise. However, the optimized program introduces theiplesscenario where the equality in

is satisfied because of the allocator’s reuse of the samessltbr the two intentionally different

objects.

To guard against such incorrect optimizations, we intredcertain dependences between com-
mands due to allocation. For a sequential bléack Ci;...;l, : C,, there is an allocation
dependence between any two commahdsC; andl; : C; if one of them performs allocation
and the other performs deallocation. TdwAllocDeps function returns the set of all allocation
dependences in the sequential block. Note that we havequtee a dependence when both com-
mands perform allocation or when both perform deallocatidme dependences we have required

are sufficient to guarantee safe optimizations, as we sha én the soundness proof.

3.5 Examples and Experiments

In this section we discuss examples to illustrate the degrezel detection algorithm, and present
experimental results on performance improvements. Wenbeigh an example of a list segment
traversal programistInit(x,y), which traverses a linked list segment franto y, setting the

fields f1 and f5 in every cell tonil. The specification is given by spec talffewith dom(7) =
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i (e £ y){
(e #y A (s(2,9))p},0)
({e#y A (e [n: '])y * (1s(2’,9))g}, 0)

l1: T1i=T — N
{z1=a'Ae#y A (@ [n:a']) () * (1s(2',1))p},0)
Iy : r — f1 :=nil;
({z1=a'Az#y Az [n: a2/, f1: nil]>{l1,lz} * (Is(z’,y)) g}, {(l2,11)})
I3 : T — fo :=nil;
({zr=a2'Ao#y Az [ o, fiinil, foi0il]) g, 00 % (A8, 9))g} {(2, 1), (3, 12), (I3, 1))
la: listInit(z1,y);
{ei=a'reFy A (@ [n:a, frinil, foinidl) g, g, 0y ¢ (s(@,9) g,y 1 {2, 1), (s, 12), (13, 1))
}

Figure 3.5: Dependence detection IarstInit(x,y)

{1s(z,y)} and7 (1s(x,y)) = {1s(z,y)}, which gives both the pre- and post-condition of the
procedure as a list segment franto y. The procedure body and dependence analysis is shown
in figure[3%. TheExecAtm performs the symbolic execution for the atomic commandirst
unfolding the pre-condition using the rearrangement roitdit segments from figuife_3.3. It then
executes the next two atomic commatigiandls. At this point theExecSpec function is called,
which finds the spatial framg — [n : 2/, f1 : nil, fo 1 nil])y, 4, 1y, the pure frame = 2'Av #

y and the accessed labels esince no command has yet accessed thadist’, y), which is the
pre-condition of the recursive call. This pre-conditionréplaced by the post-condition from the
spec table, and the label of the command is added to it. Thendemce set obtained at the end
does not contain any dependences between the recursivg aatl the two statements andis,
and hence the recursive call can be executed in parallelthébe statements. This program is
representative of the general pattern in list processingrams in which some ‘work’ is done at
every node of a list and then the program is recursively daile the rest of a list. If the work at
each node does not depend on previous nodes then it may béndosllel with the rest of the

list, as our algorithm has detected in this case.

Previousreachability based approaches such s [26] would be unable to detectpipistonity

for optimization. Such approaches depend on reachabildpeyties of data structures to detect
dependences, e.g., statements referring to the left ahtsigptrees of a tree can be determined
to be independent since no heap location is reachable framdfdhem. In the case of the list
segment traversal example, a reachability analysis willi@ble to detect the independence found

by our algorithm because the list segment may in fact be gaatlarger cyclic data structure.
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if (z = nil) {y := nil; }else{
({z#nil A (1s(z,nil))y},0)

I : split(z,z1,2);
({z#nil A (1s(z1,nil)) , * (IS(m,nil)){zl}}v@)
lo: mergesort(z1,y1);
({z#0il A (1s(y1,nil)) (j, 4,y * (Is(22,0i)) 3 1 {2, 10)})
I3 : mergesort(z2,y2);
({z#nil A (Is(y1,nil)) gy goy * (Is(y2,011)) g, 1y ) {20 1), (Is,11)})
la: merge(y,y1,v2);
({z#nil A <ls(y=nil)>{ll,lz,l3,l4}}= {(l2,11), (I13,11), (14, 13), (14, 12), (la, 11)})
}

Figure 3.6: Dependence detection f@rgesort(z, y)

In contrast, our approach is based on detecting the celtsatieaactually accessed rather than
those that are reachable by a statement. We also make a ¢sompauith the proof-rewriting
method of [[31], where there is difficulty in comparing statts that are not consecutive in a
sequential composition, such as determining that statelpénindependent af,. Not being able
to compare non-consecutive statements significantly dipdttential optimizations, especially if
there are numerous statements processing a node in thallisf, which could potentially be
executed in parallel with the recursive call. The dependatetection in figur&-35 shows how,
in our case, the label-tracking mechanism provides a simptenatural method for comparing

distant statements.

Next, we give an example of a divide-and-conquer style #lyor Figure[3.6 shows the analy-
sis for the standard mergesort procedure for linked listichvbreaks the list into two lists, re-
cursively sorts each of them, and then merges the two. mElrgesort(z,y) procedure takes
a list atz and a returns a sorted version of the listyat Its specification is given with pre-
condition {1s(x,nil)} and post-condition1ls(y,nil)}. Thesplit(z,z1,x2) procedure has
pre-condition{1s(x,nil)} and post-conditiofls(z;,nil)*1s(x2,nil)} andmerge(y, y1,y2)
has pre-conditio{1s(y;,nil) * 1s(y2,nil)} and post-conditio1s(y,nil)}. Note that these
specifications do not describe the sorting performed by tbegalures, but only the shapes of the
lists in the pre- and post-conditions. This shape inforamais all that is required for our method
to analyse the heap accesses made in the program. The arsilgsin in figuré_-316 determines
that the second recursive céjldoes not depend dn, which allows us to convert the sequential

version of mergesort into the parallel version.

Finally, we give an example with trees, which is the treetioteprogramrotateTree(z) based
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if(x # nil){
({z # nil A (tree(z))y},0)
({z #nil A {z — [l:a/,r:y'])y = (tree(z’))y * (tree(y’))y},0)

I T i=x —

({z1=2'Az#nil A (z — (L2, rey]) g, * (tree(a’))y * (tree(y'))y}, 0)
lo: T =X — T

({ze=y'Az1=2'Ax#nil A (z — [l:m/,r:y’D{lhlz} * (tree(z’))y * (tree(y’))y}, D1)
I3 : r — [ := xo;

({ze=y'Az1=2'Ax#nil A (z — [rzo, 72y ]) (1) 1y 15y * (tTee(@’))g * (tree(y))y}, D2)
Iy : T —7ri=T;

({z2=y'Az1=2'Ax#nil A (z — (Frma,reea]) gy 105,041 * (tree(z))y = (tree(y))y}, D3)
ls:  rotateTree(z1);

({ze=y'Az1=2'Ax#nil A (z — (Frao, mr@a]) (1) 101,043 * (ETee(T1)) (15} * (tree(y’))p}, Ds)
l : rotateTree(z2);

({ze=y'Az1=2'Ax#nil A (z — ez, mr@a]) () 19 1,041 * (ETee(@1)) (1) * (tree(@2)) (11 1 D3)

}

Figure 3.7: Dependence detection fartateTree(x)

on the main example discussed by Hendeg¢ral in [26]. The procedure takes a treezatind
rotates it by recursively swapping its left and right subsreThe spec table gives the pre-condition
{tree(x)} and post-condition{tree(x)}. The procedure body and dependence detection is
shown in figuré3]7, where we have the dependencesets {(l2, (1)}, D2 = {(I3,12), (I3,11) }U

Dy and D3 = {(l4,13), (l4,12), (l4,11)} U Dy. The final dependence s&k; shows that the two
recursive callgs andlg are independent. Similar examples are given by other diaidkconquer
programs such as thepyTree anddisposeTree procedures from[3], in which our algorithm

determines the recursive calls to be independent and glaable.

Implementation and experimental evaluation We have implemented our dependence analysis
in the THOR analyzer [37,-35], which performs shape analgéi€ programs using separation
logic. We experimented with this implementation in the &gilon area ofC-to-gates synthesis
where the aim is to translate high level programs written intG hardware circuits, bringing the
power of hardware-based acceleration to mainstream progess. Recent work in this area has
made it possible to handle programs that manipulate dyraiytiallocated pointer data structures,
by finding a symbolic bound on the memory usage of the progiB&j. However, the efficiency of
the resulting circuits is very poor, because circuit optiations cannot be performed in the absence
of information about the heap dependences in the high leagiram. In joint work with Cook,
Magill, Simsa and Singh_[14], we used the THOR implementatib the dependence analysis

to develop an optimizing C-to-VHDL compiler for circuit syesis from programs with heap.
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Design Latency reduction (%) | Throughput increase (%)
Prio 45 110
Merge 65 282
Huffman 45 417

Figure 3.8: Latency and Throughput Measurements

This uses the computed dependences and adapts optimithiomiques from[15] to synthesize

optimized circuits.

Figure[3.B shows the performance improvement, in termstefity reduction and throughput in-
crease, for three sample designs. Phi® program implements a priority queue, which repeatedly
inputs a number of values from an input stream into a dyndipiallocated linked list, sorts the
values in the list, and then outputs them to an output strddm@Mergeprogram repeatedly inputs
values from two different streams, and then combines thestguences into a single sorted list,
before sending these values to an output stream. Huffmanprogram implements a tree data
structure for binary encoding of symbols. It repeatediyuiispsymbols and frequencies through
two input streams to build a Huffman encoder tree. It themigpalues from a third input stream,
computes their binary encodings using the encoder treethemdoutputs the encodings through

an output stream.

The significant improvement in performance shown in FiguBei8 largely due to the detection
of heap dependencies. For instance, by detecting the mlisgss of list structures in the Merge
program, the reading in of the two input sequences can baiwam parallel with one another,
and a pipeline stage can also be introduced in which the tintguof the sorted list is done in

parallel with the reading in of the next two input sequences.

3.6 Soundness

In this section we demonstrate soundness of the analysisyirslp that any optimization based
on the dependences we detect produces the same resultsaagjith@ program. We do this by
using an action trace semantics of commands. Our semastizased on the trace semantics
of Calcagno, O’'Hearn and Yang presentedlin [11], where &tima@ sequential composition of

atomic actions, and an atomic action is a function that foanss states. In our case we define a
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state as a triple of the foris, i, d) € Stacks x Heaps x D where

Heaps = Loc —f;,, ((Fields — Val) x P(Lab))
Stacks = (Var UVar’) — Val
D = P(Lab x Lab)

States = Stacks X Heaps x D

The stacks and heaph are as defined in the sectibn13.2, where every heap cell hdsxhdet
containing the labels of commands that have accessed theTte elementl € D is a depen-
dence relation between labels that will collect the depeoég between commands as execution
proceeds. Note that the label sets of cells and the depeadelation will be used as additional
bookkeeping structures in the states, and without them ulehawe a standard stack and heap

semantics of commands.

These concrete states will be related to the symbolic steted in the dependence analysis al-
gorithm described in sectidn_8.3. Recall that these stats wf the form(P, D), whereP is a
formula andD is a dependence set computed by the analysis. We will usei@raft satisfac-
tion between concrete and symbolic states, in which thedtR and dependence sBtgive an

over-approximation of the concrete state.

Definition 3.11 (satisfaction) For a state(s,h,d) € States, a formulaP € P(LSH) and a
dependence sé? € D, we defings, h,d) = (P, D) if s,h = P andd C D. We write[(P, D)]

for the set of all states that satisfy’, D).

Traces of programs are constructed by a sequential corigpositatomic actions of the forrh: a,
wherel € Lab is a label associated with the atomic actianAs in the semantics of commands
described in sectidn 4.1, an atomic action is semanticatigetied as a total function of the form

f : States — P(States) ', where theT element represents a faulting execution (dereferencing
a null pointer or an unallocated region of the heap), anduhetfon maps to the powerset in order
to account for possible non-determinism. Such functioedified to the topped powerset so that

for a functionf andS € P(States) we have

f8)= | fshd

(s,h,d)ES
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l:a [l : a](s, h,d)
l:x:=F {(s[z+ [E]s], h,d)}
liom B f {sx»—w] h[é»—>(r LuU{i})],du ({l} x L)) } if [E]s=4¢h()=(r,L),r(f)=v
B T otherwise
1By fim B { {(s,h[t— (', LU{I})],dU ({1} x L))} if [[Ell].s:Z, [E2]s =v, h(£) = (r,L), v =7r[f — ]
T otherwise
l: new(z) {(s[z— L), h % £ (r,{I}),d) | £ € Loc} wherer(f) =nilforall f € Fields
I: dispose(z) { is r',dU ({1} x L))} if [[m]]s': fandh =h' € — (r, L)
otherwise
) {(s,h,d)} if [b]s
I+ assune(b) { 0 otherwise

Figure 3.9: Denotational semantics of primitive actions

whereS U T = T foranyS € P(States)' andf(T) =

The denotational semantics of the primitive actions ismjivefigure[3.9. It is the standard stack
and heap semantics of commands, but with additional deperd@aformation recorded in the

label sets of heap cells and the dependence relation. FprdwEgssing commands, the label
of the command is recorded in the label set of the heap cdllitlzrcesses. The dependence
relation accumulates discovered heap-carried depensidretereen commands. For example,
in the case of the dispose command, although the cell thaicissaed by the command is dis-
posed, the dependences between this command and all me@dmmands that accessed the cell
is recorded in the dependence relation. &heume(b) action filters out states that do not satisfy
the booleard. Assume actions are used to model branching executiongx&arple, a conditional

if (b) then a; else as has possible tracesssume(b); a; andassume(—b); ag, representing the

two possible execution branches.

Definition 3.12 (Action trace) An action tracer is a finite sequential composition of atomic ac-

tions

Tu=(:a) | 757

Denotational semantics of action traces is given by the setigi composition of actions, which
is defined inductively using figureB.9:
[( - a);

7l(s,h) = [7I([L : a] (s, h))



96 Chapter 3. Dependence Analysis for Optimization

T(l:a) = {l:a}
T(:con(T)) = {7|7=1l:a1; - ;l:anandRV(r) C RV(l:com[T]), MV(T) C MV(i: con(T))
andvU € dom(T). [7]([(U, D)]) € [(T(U), D)1}
T(C1;C2) = {rim2 |1 €T(C1),m2 € T(C2)}

Figure 3.10: Action trace semantics of commands

The action trace sets of programs are shown in Figuré 3.lGatBmic commands the trace is the
atomic command itself. For specified commands, any tradestissfies the specification given
for the command is taken as a possible execution trace obtnenand. Although this may permit
more traces than the actual command may have, an over-ap@ation of possible executions is
sufficient to demonstrate soundness. Thus, for a specifietinemd! : com(7), we first require
that any tracer only reads/modifies variables that are read/modified by tmencand. Second,
the trace may only transform the concrete state accordiriget@pec table. Note that, since the
spec table does not make assertions about dependencesnthete states may have any possible
dependence relations in the input stdt@$, D)] and output] (7 (U), D)]. Every atomic action in
the trace of the specified command is given the lab&éthe command, since the action forms part

of the execution of the command.

Given this definition of trace sets, for any sequential bléck Cy;...;1, : C,, we have that
every trace is of the fornir,);...; (7,), wherer;, € T(l; : C)) and every atomic action imy,

has the label;, since it is part of the execution of the command with lahelOur aim is to show
that, given the set of dependences computed by our andlysisfor any trace of the sequential
block, if we perform a reordering of atomic actionsrithat satisfies the computed dependences,

then the resulting trace will produce the same output stes

Definition 3.13 (Dependence)The set of heap dependences in a trackom an initial state

(s, h,d) is defined as

hDep(r, (s,h,d)) = J{d' | (s',/,d) € [r](s,h,d)}

There is a stack dependence between labelisd !’ in 7 if there exist actiong : a« and!’ : o

in 7 that access common stack variables. There is an allocatapedence betweérand !’ if
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there exist actions : « and!’ : ¢’ in 7 such that one iaew and the other islispose. We write
sDep(1) and aDep(7) for the set of all stack and allocation dependences respalgti We write
dep(T, (s, h,d)) for the set of all stack, heap and allocation dependencesfiom initial state

(s,h,d).

Lifting to a set of states, we writedep(r,.S) (or hDep(r, S)) for the set of all dependences (or

heap dependences) infrom any state irf.

The next lemma describes a locality property of traces thsitilar to the one given in definition
[Z3, except that in this case the locality is only with respethe heap, rather than all components

of the concrete state.

Lemma 3.4 (heap locality) If we have[r](s,h,d) = S and.S # T then[r](s,h * hy,d) C
{(s', 1« hp,d) | (s, ,d') € S}

Proof: The proof is by induction om. For the base case wherds an atomic action, the result
can be checked for each of the actions in figuré 3.9. For thectivé case, assume= 7'; (1 : a).
Let [7'](s, h,d) = S" and[l : a](S") = S. By induction hypothesis we hafe’] (s, h * hy,d) C
(', 1« hy,d') | (s 1, d') € S'}. Let(s', ' * hy,d') € [7'](s,h + hy,d) and(s', I, d') € S'.
By the base case we hafk: a]|(s', ' « hy,d') C {(s",h" * hy,d") | (8",h",d") € S}. Hence
functional composition gives Us”; (I : ) (s, hxhys,d) C {(s”, " xhs,d") | (s",n",d") € S}.
|

Our next result relates the symbolic execution of the amaly#th the concrete trace semantics,
showing that the dependences computed by the analysis ak@aapproximation of any possible

dependence relation resulting in any concrete executidimegbrogram.

Lemma 3.5 (dependence detection soundnes§jiven a sequential block’ and pre-condition
P € P(LSH), assume we havgetDeps(C, P) = D (where thegetDeps function is as de-
fined in sectiori:313). Then for any trageof C' and any states, h that satisfiesP, we have

dep(r, (s,h,0)) € D

Proof: We havesDep(7) C getStackDeps(C') andaDep(7) C getAllocDeps(C') by definition of
thegetStackDeps andgetAllocDeps functions. The main thing is to show thabep(7, (s, h,0)) C
getHeapDeps(C, P).
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For this it is sufficient to show that, Exec(C, (P, D1)) = (P2, D), then[7]([(P1, D1)]) <
[(P, D2)]. This is shown by induction o', where the base cases are wi@ris an atomic
command or a specified command. For atomic commands, th# fellows by checking the

soundness of each of the symbolic execution rules in figide 3.

For a specified command: com[7], assumeH € P, andsi,hy = H andd; C D;. As
defined in algorithrill2, thExecSpec function finds somé’ € dom(7 ) such thaFrm(H,U, V) =

(Ilp, X F, L4) and returns the result?., Dy) where
P, = {llp AIASp*U[LoaU{l}] | TIA® € T(U) }

Dy = DU({Z} XLA)

Our aim is to show thafr](s1,h1,d1) C [(P2,D2)]. LetU = IIy A ¥y. By soundness of
frame inference (Corollarf_3.3) we know tha&t + IIp A IIy A Xp * Wiy[L4] and therefore

81,h1 ’: Yo% \IIU[LA]. Lethy = hf * h, such thatsl, hf ’: XF andsl,ha ’: \IIU[LA].

By definition of the trace set of specified commands in figuig3we havelr](s1, ha,d1) C

[(T(U),D)]. Assume we have some output stéte ', d') € [7](s1, ha,d1). Since every heap
cell in h, has labels contained ih4 and every action in- has label, we know that the resulting
heaph’ can only have labels if 4 U {l} and the resulting dependence getan only accumulate

dependences betweéand labels in_ 4. We therefore have’ C d; U ({I} x L4). This gives us

[71(s1,ha,dr) S [{ITAW[LAU{I} [TTAW € T(U)}, D1 U ({1} x La)] ()
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We then have

[7](s1,h1,dx)

= [71(s1, by * ha, dr)

C{(s" hy =, d) | (s,0,d) € [7](s1,ha,d1)} (by heap locality lemma3.4)

C{(s" s hyxh',d)| (s, hy) EIlp ANXpand(s',h',d") € [7](s1,ha,d1)}
(since(s1, hy) = IIr A L andr does not modify variables appearingdliz A X (by soundness
of frame inference and trace semantics of specified commiarfiggire[3I0D))

CH{(s", Wy =n",d) | (s, h) B llp AXpand(s', 1/, d') € [r](s1,ha,d1)}

=[{Op AIASp«U[LaU{l}] | IATY € T(U)},DiU({l} x La))] (by 1)

=[P, D2)]

For the inductive case, let the induction hypothesis haldfoandCs and letr = 7; =, be atrace
of C1; Cy such thatr; is a trace ofC;. Let Exec(Cy; Co, (P1, D1)) = (P, D3). We have by def-
inition of the Exec function that(P,, Dy) = Exec(C4, Exec(Cy, (P1, D1))). By the induction hy-
pothesis, we havér | ([(P1, D1)]) C [Exec(Cy, (Py, D1))] and 7] ([Exec(C1, (P1,D1))]) C
[(P2, D3)]. Hence by functional composition of traces we fyat 2] ([(P1, D1)]) C [(P2, D2)]

So far we have related the symbolic execution semanticstivitfttoncrete semantics. However,
the notion of dependence given in definition 3.13 has beemdtated with respect to the de-
pendence relation that is accumulated by the concrete sEmalt remains for us to show that
these accumulated dependences indeed satisfy the prabattseordering actions with respect
to these dependences will produce the same behaviour asdiv@abtrace. This final result will

use the next lemma, which shows that if there are no depeaddratween an action and all the
actions before it, then the action can be commuted above #hcifons to give an (extensionally)

equivalent trace.

Lemma 3.6 (Reordering) LetT = 7/; (I : a) and[7](s, h,d) # 0. If for all actions (I’ : a’) in 7/
we have(l,l') & dep(t, (s, h,d)), then[(l : a); 7'] (s, h,d) = [7](s, h,d).

Proof: The proof is by induction or’. For the base case we assume tha an atomic action

(I" : @'). It can then be checked for all combinations of atomic astionfigure[3.9 that if (I’ :
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a):(l:a)](s,h,d) =S5,5#0and(l,l') & dep((I" : d');(l : a),(s,h,d)) then[(l : a) : (I :
a)](s,h,d) = S.

For the inductive case, we assume tHat 7”; (I’ : ') and that[7"”; (I' : a’); (1 : )] (s, h,d) = S

andS # (. Let[7"](s,h,d) = S’. We have[(I' : a');(l : a)](S’) = S. We know that
(1,1") & dep(r, (s, h,d)), whichmeans that, ') & sDep((l' : a'); (I : a)) and(l,1") & aDep((I' :

a'); (1 : a)). Also, by definition of heap dependence, we havé') ¢ |J{d' | (s',1/,d") € S}.

Since[(I' : a’); (I : a)](S") = S, by definition of heap dependence we haid’) ¢ hDep((I’ :

a');(l : a),S"). Therefore(l,l') & dep((I" : a')(I : a),S’) and by the base case we hg\é :

a); (I": a)](S") = S. This gives ugr”; (1 : a); (I' : )] (s, h,d) = S.

In order to show thaf(l : a);7"; (' : a)](s,h,d) = S, it is sufficient to show[r"; (I :

a)](s,h,d) = [(I : a);7"](s,h,d). Let (" : ") be an action inr”. We know that(l,!") ¢

dep(r, (s, h,d)), which means thatl,!”) & sDep(7";(l : a)) and(l,1") & aDep(7";(l : a)).

By definition of heap dependence, we havg”) ¢ (J{d' | (s',h',d") € S}. Since[r"; (I :

a); (1" a)](s,h,d) = S, by definition of heap dependence we haud”) ¢ hDep(7";(l :

a);(I" : a'),(s,h,d)). This means thatl,l”) ¢ hDep(7";(l : a),(s,h,d)). So we have
(1,1"y ¢ dep(t”;(l : a),(s,h,d)), which by the induction hypothesis implies that”’; (I :

)(s,h,d) = [(1 : a); "] (s, h, )

Theorem 3.7 (Soundness)Given a sequential block’ and pre-conditionP € P(LSH), assume
we havegetDeps(C, P) = D. Letr be any trace of” and 7’ be any reordering of actions in

that respects all the dependences/in Then for any(s, h) = P such that[7](s, h,?) # 0, we

have[r](s, h,0) = [7](s, h,0).

Proof: Let s, h be a state satisfying the pre-conditidhand let[](s, h,0) = S whereS # (.
By Lemmal3b we havdep(r, (s, h,0)) C D. So we letr’ be any reordering of actions in
respecting dependences dap (T, (s, h,0)), and it is sufficient to showW'](s,h,0) = S. We
show this by induction omr. The base case is whenis an atomic action, in which case= 7/

and we are done.

For the inductive case, assume that 71; (I : a) and that]r](s,h,0) = S;. We know that

S1 # D sinceS # (. Now letr" = 7”;(l : a); 7" be the dependency respecting reordering of
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7 where, for all actiong!’ : o’) in 7, we have(l,l) & dep(t, (s, h,()). We have that”; 7"

is a reordering of. We also havelep(r1, (s, h,0)) C dep(r, (s, h,)) because the dependence
relation can only get bigger if another action is added tdrihee. Therefore, since’; 7"’ respects
all dependences idep(T, (s, h,0)), it also respects all dependencesdip (71, (s, h,?)). Hence

by the induction hypothesis we hafre’; 7' (s, h, ) = S;.

Now let [7"] (s, h,0) = S’. We have[r"](S") = S; and [l : a](S1) = S, which gives us
[7"; (1 : a)](S") = S. To complete the proof, we just need to show th@t: a); 7"](S") = S,

9

since that will give ug"”; (1 : a); 7] (s, h,0) = S.

Claim: [(I:a);7"](S") = S. To prove this claim, let!’ : «) be an action in”"”’. We know that
(I,U") & dep(T, (s, h,0)), which means thatl,!') & sDep(r"; (I : a)) and(l,1") & aDep(r"; (1 :

a)). Also, by definition of heap dependence, we h&é') ¢ |J{d' | (s',1/,d’) € S}. Since
[7"; (1 : a)](S") = S, by definition of heap dependence we h@kgé') & hDep(r"; (1 : a),S").

So there are no stack, allocation or heap dependences Ipeamgection inr”” andl : a when
executed from any state 8/. Hence by the reordering lemfial3.6 we hiile a); 7] (S’) = S.

|

3.7 Conclusion

In this chapter we have introduced labelled separatiort lagd demonstrated its application to the
optimization of programs. By annotating formulae with lesb keep track of memory regions
that are accessed by commands, labelled separation lagnitpe¢he analysis of memory separa-
tion properties throughout a program’s lifetime. Aparinfrthe ability to detect heap dependences
in this way, we have also identified the notion of dependedoesto dynamic memory allocation
and how it is important to account for such dependences torerte safety of optimizations,
which we have formally demonstrated. Although we preseatenples and initial experiments,

there is much more to explore in terms of practical appliceti

Much progress has been made in automated analysis withasiepalogic, which provides our
dependence detection method with many potential advasmtaggr traditional methods. For ex-
ample, the important issue of scalability of the shape aiglywhich has been an obstacle for

heap detection methods in general, may be addressed witkséhef join operators such as the
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ones described in%5]. Compositionality of the shape aislyas also been achieved with the Bi-
abduction method of [8]. This permits procedures to be aealyindependently of their callers,
which would allow dependence detection and optimizatiepfogram components with unknown
calling contexts. We would also like to extend the dependatetection method to handle more
arbitrary data structures, such as composite heap-stesc(e.g. nested lists)i[1] which com-
monly appear in industrial programs, and to use Al techridoeinfer data structure definitions

automatically, as in[24].

We have briefly described the application of our method toatltiemated synthesis of hardware
circuits, but so far we have only conducted preliminary expents to demonstrate the potential
benefits. With the extensions described above, we hope torexgpplications to a greater class
of industrial software that stands to benefit from fast ekieay or execution with reduced energy

consumption.



Chapter 4

Ownership Inference for Concurrent

Programs

In this chapter we turn our attention to the sharing of resesirin concurrent programs. The
analysis of concurrent programs is receiving much intéretite multi-core age, but is a difficult
problem because of the need to consider possible intenigavetween concurrent processes,
which becomes even more complicated in the presence oigjiasthe heap. This is especially
true in the case of ‘daring’ concurrent programs, whereugss may be accessed by concurrent
processes outside of critical regions, awehershipof resources is dynamically transferred during
program execution. Inferring how this ownership transfecuss is the key to the successful
analysis and verification of such programs. Concurrentragipa logic (CSL) [42], which we
described in the introduction, achieves modular reasoalrmyt dynamic ownership transfer with
the use ofresource invariantghat describe the ownership of shared resources. The prode
ownership inference can then be posed as the ability to aitcafly infer the resource invariants

so that a program proof in CSL can be automated.

Existing approaches for automating CSL include the redtityabased fixpoint method of Gots-
man et al. [[2B] and the more recent bi-abduction method ofdggio et al. [[9]. Both of these
approaches fail on some simple programs due to problemsanitiership inference. The dif-
ficulty is that, as observed inl[9], ownership is a global gty of the program based on how
resources are accessed at arbitrary points in the prognathhence cannot be determined by

analysing the critical regions in isolation.

103
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In this chapter we present an algorithm which addressestthership inference problem using la-
belled separation logic. We extend the method_aof [23] taktaenership of heap state through the
program proof, and infer transfers of ownership based op heeesses that may be made at possi-
bly arbitrary program points. Such tracking is done usingbelling technique similar in nature to
the one we used for the dependence analysis in cHdpter 3.vdpvrgerring ownership is differ-
ent from detecting command footprints, because there is static distinction between the part
of the heap that is shared and the part that belongs to eaddthinstead, ownership islgnamic
property in the sense that heap cells may move in and out chitueed state and the local states of
different threads at different points in program executi@Hearn refers to this phenomenon as
“ownership is in the eye of the asserter” since the asseatetdichoose the right resource invariant
in order to construct a proof in CSL. However, our algorithmws that the ownership policy can
be inferred by tracking how resources are accessed in tlgggmmo We demonstrate how the al-
gorithm verifies programs which both of the previous appheadreachability-based fixpoint and
bi-abduction) cannot handle. Also unlike the previous rod#h our algorithm does not require
user annotations about ownership distribution in the predition of the concurrent program, as it

infers this automatically.

We start in the next section with a description of the backgdbon the programming language,
CSL reasoning and the reachability-based fixpoint methd@3jffor inferring resource invariants.
In the following section we give an informal description afrdabel-tracking approach to owner-
ship inference. In sectidn’4.3 we describe the formulaedtetised in our analysis, and in section
H.4 we present the algorithm in detail. In sectiod 4.5 we destrate the algorithm on examples
that could not be handled by previous methods, and illestnatv our method handles different
aspects of dynamic ownership transfer. Finally, we addresership inference for programs with

while loops in sectiofi 4]6.

4.1 Background

The parallel programming language we use is adapted froli€42here a concurrent program

consists of an initialization phase, a resource declaratimd a single parallel composition of
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sequential commands

Prg == init;
resour ce ri(variable lis}, . . . | r,,,(variable lis}
Cill---Cn

The initialisation phase is some sequential code to seesaltivariables or create data structures.
The resource declaration (variable lisd, . . . , r,,, (variable lisy introduces a finite number of re-
source names that will be used in the program. Weklat= {r;,...,r,,} be the set of resource
names used in the program, angk a set of program variables ranged overdyy, z, . ... Every
resource name is associated with a set of program varigdmelsywe writevVar(r) for the set of

variables of resource andvar(Res) for the set of variables that are associated with any resourc

The resource declaration is followed by a single parallehjgosition of the thread€',...,Cy
with thread identifierd, ..., N respectively. Both the initialisation code and the threagscon-
structed with standard sequential commands, and threadsuake a synchronization construct.

The grammar for these commands is given as

E € VaruU{nil} expressions
B = E=E|E#EFE boolean expressions
C = z:=F|x:=[y]|[z]:=E|neu(z) | dispose(z) | assume(B) commands

|C;C|C+C|withrwhen BdoC

For the discussion in this chapter, we assume a single fidddap cells for simplicity, although
multiple fields may also be permitted. The heap look-up comina := [y]) setsx to the value
of the field in the cell at, and the mutation command:{ := E) updates the field in the cell
at x to the expressior’. We also have primitive commands for variable assignmentE)
dynamic allocationf{ew(z)), deallocationdispose(x)) andassume(B) commands, which block
if condition B is not satisfied. We shall sometimes writdor primitive commands that do not
access the heap, arff] for any command that accesses the heap @ook-up, mutation or

dispose).

For simplicity, the only sequential constructs are seqaknbmposition and non-deterministic
choice. Conditionals f Bt hen C; el se Cy can then be implemented assume(B); C; +
assume(—B); Cy. For the moment, we shall illustrate the concepts on loep-firograms, and

will describe the extension of our method to while loops ictem[Z46. Synchronization between
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threads is implemented with the conditional critical regi@CR) commanei t h » when B do C,
which we discussed in the introduction. It waits until cdiati B is true and no other CCR far
is currently executing, and then executes the b@dy mutual exclusion with all other CCRs for

r.

Programs in this language have well-formedness constrtiat a variable belongs to at most one
resource, a variable belonging to a resource can only ajyp@acritical region for that resource,
and if a variable is modified in one thread, then it cannot appeanother unless it belongs to a

resource. We writelv(C;) for the set of variables that are modified in threzd

CSL reasoning We now give the formulation of CSL reasoning for our programgranguage.
Firstly, each resource nameis associated a formul&(r) which is the resource invariant. The
invariant should satisfy the condition that any variablewsdng free in the formula must belong
to resourcer. When reasoning about each individual thregg the inference rule for critical
regions is given as:

{(P+I(r) AB}C{Q * I(r)}
{P}w thrwhen Bdo C{Q}

free(P,Q)NMV(C;) =0 forall j #i

The invariant is assumed to hold separately from the locéd $t when a thread enters a critical
region, and at the end of the CCR body, the thread must réls$tahe resource invariant, along
with some other post-conditio@. When the thread exits the CCR, it gives up ownership of the
shared resources, and so the resource invariant is hiddke inferred specification for the CCR.
The side condition requires that no other thread modifiedrde variables in the thread’s local
pre- and post-conditions. In this way, outside the CCR tlsaring can proceed independently
of shared resources, so the parallel composition rule gioghbines the pre- and post-conditions
for each thread:

BB Gl [ Cal@in % Q)

free(P;, Q;) NMV(C;) = O whenj # i

To infer an overall specification of the program, we have the for complete programs:

(PYinit {1(ry) 5+ 5 1) s P} {P}Cy |-+ ]| O {Q)
{P}Prg{@Q«I(r1)*---xI(rm)}
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c:=nil;

resource r(c)

with 7 when true do { with 7 when true do {
i f ¢#mnilthen dispose(c); i f ¢#mnilthen dispose(c);
new(c); new(c);

} }

Figure 4.1: Replace buffer

In a complete program the resource invariants must be sepaestablished by the initialization
code, along with a separate pre-conditi®tfor the parallel composition of threads. As the parallel
composition is specified independently of the shared ressurthe rule for complete programs
brings back the resource invariants in the overall posthitimm of the program. The soundness of
CSL has been shown ifl[6], where it is also shown that a progmanof in CSL guarantees that
the program is memory safe and data race free. We illusteatgoning with CSL on the example
program shown in figule—4.1, which illustrates dynamic owhgr transfer. In this program there
is a one-place buffer at the heap celland access to the buffer is synchronized with resource
namer. There are two identical threads, and each thread has & SB@R in which the thread
first gains ownership of the cell atwhen it enters the critical region. It then disposes the aradl
allocates a new cell for the buffer, and then gives up owngistthis cell when it exits the critical
region. This is a simplification of concurrent programs vehdifferent processes may compute
some value and place it in a shared buffer, so that other psesanay then use the value and then
replace it with a new one. To reason about this program, theuree invariant we can use for
resource- is

def

I(r) {(emp A ¢ =nil) V (c—nil)}

which states the buffer is either empty and nil, or ¢ points to a single cell in the buffer. The
CSL proof of the program is shown in figure¥.2, where applicadf the proof rules is displayed
in a linear fashion through the structure of the program. ifft@l pre-condition of the program
is the empty heagemp}, and after executing the initialisation code we have the-posdition
{emp A ¢ = nil}. In accordance with the rule for complete programs, we $hig formula
into a pre-condition for each of the threads and the resoukagiant, so that each thread gets

pre-conditionemp.

Each thread is then proven independently with its own praditimn, and in this case the proofs are
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{emp A ¢ =nil}
{emp * emp * (emp A ¢ = nil)}
{emp x emp * I(r)}

{enp} {enp}
with r when true do { with r when true do {
{omp 1(1)) {omp 1(r))
{(emp A ¢ =nil) V (c—nil)} {(emp A ¢ =nil) V (c+—nil)}
i f ¢c#£nilthen dispose(c); i f ¢c#£nilthen dispose(c);
{emp} {emp}
new(c); new(c);
{¢+—nil} {¢+—nil}
{emp « (1)} femp + (1)}
} }
{emp} {emp}

{emp * emp x I(r)}
Figure 4.2: CSL proof of replace buffer

identical for the two threads. When we enter the CCR, we agldadbource invariant in accordance
with the CCR rule, and then apply the standard rules of séparkogic to get to the end of the

CCR body. At this point, we re-establish the resource imwdras required by the CCR rule: the
new cell allocated by the thread becomes part of the resdwveeiant and the remaining post-

condition is empty. This post-condition is retained owtdide CCR in the thread’s local state, and
the resource invariant disappears with application of tB®Qule. Having proven each thread, the
parallel composition rule allows us to combine the spedifica of the threads to get the empty
pre- and post-condition for the parallel composition, amelrule for complete programs adds the
resource invariant back to the overall post-condition efitrhole program. This is an example of
a program proof in CSL, with which we have shown that therenarmmemory errors or data races

in the program.

The Reachability Method for Resource Invariant Synthesis We now outline the first method
for automatically synthesizing resource invariants, Whicas introduced by Gotsman et al. in
[23]. The approach requires the user to provide the podtition of the initialisation phase,
and also to specify how this is separated into the pre-camdidf each thread and the initial
resource invariants for each resource name. Thus in theotdlse buffer program in figurg4.1,

the user would provide the pre-conditiemp } for each of the two threads, and the initial resource
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{omp) {emp}
with r when true do { with r when true do {

emp + Io(r)} {emp 1, ()}

{emp A ¢ =nil} {(emp A ¢ =nil) V (c+nil)}

i f ¢#mnilthen dispose(c); i f ¢#mnilthen dispose(c);

{emp} {omp)

new(c); new(c);

{¢—nil} {¢+—nil}

{emp * c—nil} //new RI disjunc{c—nil} {emp * c—nil} //new RIdisjuncf{c—nil}
} }
{emp} {emp}

Figure 4.3: Reachability-based invariant synthesis fplaee buffer

invariant/y(r) = {emp A ¢ = nil}. Given this information, the method proceeds by attempting

construct a CSL proof of each thread, using the existinga@mration for the resource invariant.

When the proof reaches a CCR, the current resource invasiadided to the state, in accordance
with the CCR rule. When the proof reaches the end of the CCR, tlee formula needs to be split
into the thread local state and the shared state, which ipdim at which the question of own-
ership transfer comes in. At this point, the method uses ¢oeistic that the part of the formula
that isreachablefrom the resource variables is assumed to be part of the n@sgwariant. This
part is added as a new disjunction to the current approximatdf the resource invariant, and the
remaining part is kept as the thread’s local state, and thef montinues. This process continues

until enough disjunctions are gathered that a true resanvegiant for the program is found.

In the case of the buffer program from figlirel4. 1, the firsaiien of the method is shown in figure
M.3. Starting with the left thread, when we enter the CCRtiiteal approximation/y(r) is added.

At the end of the CCR body the formulafs—nil}. Now we apply the reachability heuristic to
obtain the part reachable from resource variablhich gives us the formul§c+— nil} as the
new disjunct for the resource invariant agb as the thread’s local state. We refine the resource
invariant approximation to gey = Iy vV {¢ — nil} and the thread local statenp is obtained
outside the CCR. When we analyse the next thread, the CCRsyibe same disjunct for the
resource invariant, so the new approximatiodyis= {(emp A ¢ = nil) V (¢+—nil)}. We have
therefore reached the valid resource invariant for thegarmgvhich was used in the CSL proof in

figure[4.2.
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J = 0;
resource r(c, f)
new(z); with r when £f=1 do {
with r when £ =0 do { Y=
c:= f:=0;
=1; }
} dispose(y);

Figure 4.4: Put-get buffer

This method provides an elegant way of synthesizing resomk@riants, by collecting disjuncts
based on the program’s execution. However, it is missing thodefor inferring how ownership
transfers occur in the program. Firstly, one may have ndiedrtitial annotation burden for the
user, since the initiadplitting for the pre-conditions and resource invariants must bengilidis
involves some kind of ownership inference on the part of ther in order to determine how the
splitting must be done. For example, consider the case wheraitialisation code for the buffer
is:

new(x);c = x;

So the buffer is initialised with some heap cellcatather than the empty heap. In this case the
post-condition of the initialisation code {& = = A z+—nil}. This can be spatially split to either
yield ¢ — nil or emp as the initial resource invariardt, and it is up to the user to give us the

correct one (which is the first).

A more significant problem is the use of a heuristic to decigrarship transfers occurring during
program execution. We illustrate this with the put-get buixample shown in figute4.4. In this
case, instead of each thread replacing the buffer cell, we tiae thread which puts the cell in and
another which takes it out of the buffer. The variableoints to the buffer cell and flag variabfe
indicates whether the buffer is full or empty, and is inisat to false. The left thread first creates
a new cell atz. It then waits until the buffer is empty, then enters the C@R setsc to point to
the cell and setg to true. Ownership of the cell has now moved into the buffiee @hared state).
The right thread waits until the buffer is full, and then giis variabley to c and f to false. After
exiting the CCR, the thread has obtained ownership of thp bel, and it then disposes the cell.

To do a CSL proof of this program, the correct resource iavdfis given by:

{(f=0Aemp)V (f =1Acr—nil)}
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{onp} fomp}
new(x); with r when £f=1 do {
{z+nil} {f=1Nemp* ((f =0Aemp)V (f =1Ac—nil))}
with r when £ =0 do { Y=
{f=0Az—nil*(f =0Aemp)} f:=0;
ci=ux; {f=0Ay=cAc—nil}
f=1 }  /newRldisjunc{ f =0 A c¢—nil}
{f=1ANc=2zANzr—nil} {emp}
+ /newRldisjunc{ f =1 A c¢—nil} || dispose(y);
{emp} {?} Il analysis fails

Figure 4.5: Failed analysis of put-get buffer

which states that either the buffer is empty ghid false, or the buffer has a single cellcadind f

is true.

We now describe how the reachability method would procedtiigmexample. Initially there is
no heap allocated so the initial resource invariant is 0 A emp and the the thread pre-condition
is emp. The analysis proceeds as shown in fiduré 4.5. When the fiesdhenters the CCR, the
initial resource invariant is added. When it reaches the @nithe CCR, we have the formula
{f = 1ANc=2zAz—nil}. Atthis point, since the cell is reachable from resourcéade c,
the resource invariant gets ownership of the cell with the disjunct{f = 1 A c——nil} and the
thread getemp in its local state. We then analyse the right thread and agldebource invariant
at the beginning of the CCR. At the end of the CCR, we againyaibyd reachability heuristic,
which now gives the disjuncff = 0 A ¢— nil} for the resource invariant. This says that the
buffer is not full, and yet there is a cell in it. Because ofthplitting, the thread’s local state
becomegemp}. The algorithm then fails when it attempts to dispose thk aslthe thread does
not have the required ownership. Hence, the reachabilityitec caused the resource invariant to

incorrectly keep ownership of resource which belonged echinead.

4.2 Label Tracking for Ownership Inference

We now give an informal introduction to our label-trackingpaoach to address the ownership
inference problem, which both alleviates the need forahitiser annotations about ownership

and also infers ownership transfers during execution withising heuristics. The difficulty in



112 Chapter 4. Ownership Inference for Concurrent Programs

ownership inference is that when a decision has to be madé hbw to spatially split a formula
to distribute ownership, this choice cannot be based solelihe existing information about the
formula. It actually depends on how resources may be aat@ssee future, at arbitrary program
points in any thread in the program. For example, in the a&mlyf the put-get buffer shown in
figure[4B, at the end of the second CCR there is no way of krgpwimether the cell should go
to the shared state or be kept in the local state, until onsiders the point at which the cell is

actually accessed when the thread attempts to dispose it.

Since ownership is a global property of the program, our @ggndelaysownership decisions
until heap accesses are actually made. We do this by adagcé@townership constraintvith
each spatial conjunct, which represents the condition mwwtieeh ownership of the conjunct may
be assumed. An ownership constraint is a relation thate®labelsto owners where a label
represents a spatial conjunct and an owner is a resource oraarthread identifier. So at the end
of a CCR, for example, we do not immediately decide for eaetialconjunct whether we should
send it to the resource invariant or keep in the thread ldaté sInstead, we create a fresh label for
the conjunct, and then send the conjunct to the invariantatdd a constraint relating its label to
the resource, and also keep the conjunct in the local statt&yith a constraint relating its label to
the thread ID. But a label can only have a single owner, arglitien heap accesses are actually
made that the ownership questions are resolved: when a b#éapaccessed, it is discovered that

the ownership constraints it carries must be satisfied fopthhgram to execute safely.

We illustrate the intuition behind our approach with the-gat buffer example on which the
reachability method fails. The analysis is shown in fidui@ 4The user only provides the pre-
condition of the whole program, which iemp} in this case. In this example, since the post-
condition of the initialization phase is also empty, eaclthefthread pre-conditions is empty and
the initial resource invariant is also empty witHalse. We will discuss examples with non-empty

pre-conditions later on.

In the first thread, the cell that is allocatedras given an empty ownership constraint as there is
no question about the thread having ownership of this ceiel\ive enter the CCR, as before we
add the initial approximation of the invariant. At the endtted CCR we come to the ownership
decision, where it is not known whether the cell should gd®resource invariant or stay in the
local state, and so we introduce the lahelo represent this choice. The cell is then sent as a new

disjunct for the resource invariant with a new ownershipst@int relatingl; to the resource,
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em
{emp} {. p}
with r when f =1 do {
new(x); |
{(z—nil),} {f=1Nempx (f =1A(c—nil) , 3}
with r when f =0 do { Yi=q
f=0;

f=0A{x—nil), *x(f =0Aen
¢ @ Jo* °mp)} {f=0Ay=cA{c—nil); .}

c:=x; N '
Fim1; } IInew RI disjunc{ f = 0 A (cr—>n11>{(lh7.)7(127,.)}}
{f=1Ac=aA (z—nil),} {=0id) (0. 121}

} inew Rl disjunct f = 1 A (c—nil) (g, 1} {{y+=—nil),} /ldiscover constrainf(ii,r), (l2,2)}

. dispose(y);
{{z—=nil) g, 11y} pose(y)

{emp}

Figure 4.6: Analysis of put-get buffer using label-traakin

and the cell is also kept in the local state with a constrailating/; to the thread identifiet. The

question of which ownel; actually relates to is resolved when we analyse the secaeddh

When we enter the CCR in the second thread we add the newdligjfie= 1A (c—nil) g 3}
and when we reach the end of the CCR, we have another own@etigion. As before we send
the cell to both the invariant and the local state, but add cavstraints with fresh labé). Now
when we come outside the CCR, we encounter the dispose cammaith is making a heap
access. At this point, in order to get concrete ownershiphefdell, the constraint associated
with the cell must hold. So we infer that the constrditt;, ), (I2,2)} relatingl; to r andls to
thread?2 is valid, which gives concrete ownership of the cell. Haviligcovered this constraint,
we also apply it to refine our existing resource invariantragipnation. Thus the disjundtf =
LA (c—nil)yq, .} refinesto{ f = 1A (c—nil)y} since we have discovered thatloes relate
tor. In the case of the other disjunff = 0 A (c—nil)y, . 4,3} the constraint associated
with the spatial conjunct relatégto . Since the discovered constraint relakeo thread2, this
disjunct cannot have ownership of the cell, and so the disjtefines to{ f = 0 A emp}. In this
way, the ownership constraint we discover at the heap agbessus the correct resource invariant

for the program.

4.3 Formulae with Ownership constraints

In this section we describe the formulae that are used inwreship inference algorithm. The

formulae are based on symbolic heaps extended with a ndtlabelling on the spatial conjuncts,
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which is similar to the labelling method used in the previobapter to detect dependences. How-
ever, instead of recording the labels of accessing commandhis case the spatial conjuncts
recordownership constraintshat describe conditional ownership of parts of the formulde

algorithm marks spatial conjuncts with such constraintsrater to track ownership of heap state

between threads and resources.

We use the ternownerto refer in general to either a thread identifier or a resonarae: in the
context of CSL, an owner is anything that can have ownershipme heap state at some point in

program execution.

Definition 4.1 (Ownership constraint) The set of owners, ranged over by.’, .. ., is defined
asQ & ResU{l,..., N}, whereN is the number of threads in the parallel composition. Lat
be an infinite set of labels ranged over by, . ... An ownership constraintk € P(Lab x ) is

a relation relating labels with owners.

An ownership constraint is said to be consistent when it ca¢sssociate more than one owner

with any label.

Definition 4.2 (Consistent constraint) An ownership constraink is consistent, which is written

consistent(L), if it is not that case thatl,w) € L and(l,w’) € L for v’ # w andl € Lab.

The formulae we use are from the standard symbolic heap &agdefined in figur€-31 in the
last chapter. However, since we are assuming a single fieliefap cells, the only simple spatial
formulae we consider here are:

S:u=FE—F|1s(E,F)

whereFE — F describes the heap cell Atin which the field has valu€’, andls(FE, F') is a linked
list from E to F. We extend these formulae by associating an ownership reamstvith every

simple spatial conjunct, as follows:

Y= emp|(S), |E+xX labelled spatial formulae

H:= IIANZ labelled symbolic heaps

We may sometimes writgS), € H to mean thatS), is a conjunct ind. We letvar(H) be the
set of all program variables iff and letL.SH be the set of all labelled symbolic heaps. A general

formula P € LSH is a set of labelled symbolic heaps.
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The ownership constraint for every simple spatial conjunet labelled symbolic heap describes
the condition under which ownership of the heap state desdiby the conjunct can be assumed.
For example, in the labelled symbolic he&px (S);, the heap described by is only owned if
the constraint. is satisfied, and otherwise the formula is equivalert t&We refer to a formula as

concrete if we have unconditional ownership over all pafthe formula.

Definition 4.3 (Concrete formula) A labelled symbolic heaf is concretewritten isConc(H),
if every spatial conjunct irf has an empty ownership constraint. We definec(H) as the
concrete portion of, which is the head without any spatial conjuncts that have non-empty
ownership constraints. Similarly, for a formuawe defineconc(P) £ {conc(H) | H € P} and

isConc(P) if everyH € P is concrete.

Because ownership constraints introduce conditionatinédion about ownership, a formula with
ownership constraints is interpreted with respect to aiipe@luation of the labels in its con-
straints. This is formalised by tHépd(P, L) function, which resolves the constraints fihwith
respect to the valuation given by the constrdingE P(Lab x 2). The update function does two
things. First, it removes any conjuncts ihwhose ownership constraint is inconsistent with
For the remaining conjuncts, which all have ownership caings consistent witll, the labels

that are in common witll, are removed from the conjunct, as these labels are now radund

Definition 4.4 (Upd function) Assume we are given a labelled symbolic héaand a label con-
straint L. LetH = IT A (S1)p, * -+ * (Sn), * X, whereX contains all the(S);, € H such that

—consistent(L' U L). We then have

def

Upd(H,L) =11 A <51>L/1 * ek (Sp)
def

whereL! = L; \ L. For a formulaP, we defindJpd(P, L) = {Upd(H,L) | H € P}.

For example, a formul® = {(z — nil), )} can be updated to the following concrete for-

mulae depending on the valuation of labels:

Upd(P, {(l1,7)}) = {emp}

Upd(P, {(l1,2)}) = {{z — nil)y}
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Algorithm 3 InvSynth(Prg, P;,)
1: Pemp = SeqExec(init, Py,) ;
2: ¢ := Split(Pemp, Q) ;
3 Pre= ol vy
4 Ip = (b’Res ;
5: 7 :={(Ip,0)};
6: while true do
7. fori=1toN do
8: T := {(Upd(Pre(i),L),I,L) | (I,L) €L} ;
o: IZ:={({,L)|(PI,L) € Exec(i,C;,T)};

10: end for

11:  if Z = ( then

12: return failure ;
13:  endif

14:  ZI:={(abs(I),L)|(I,L) eT};
15 forall (I,L) € T do
16: I.:={H €1 |isConc(H)} ;

17: if Test(Prg, Pi,, I.) then
18: return 1. ;

19: end if

20: end for

21: end while

A formula with non-empty ownership constraints therefogpresents a collection of possible
concrete formulae depending on the specific valuation @l&that we use to interpret it. Concrete
formulae have the standard interpretation of unlabellechfdae given in figuré-3]2 in the last

chapter.

4.4 Invariant Synthesis

We now describe the resource invariant synthesis procedtnieh is shown in Algorithnid3. The
InvSynth procedure takes as arguments the progfam (consisting of the initialisation code,
resource declaration and parallel composition), and aretemdormulaP;,, which is the given
pre-condition of the whole program. If successful, the pohe returns a resource invariant for
every resource in the program, such that a proof of the prnogrdsts in CSL using these resource
invariants. The resource invariants are returned as aifumét: Res — P(LSH), which maps

every resource name used in the program to a concrete farmula

We now explain how thénvSynth procedure works, using the running example of the put-get
buffer program from figurE-414, which we discussed informadlsectiodfZ.R. Given this program

and the overall pre-conditiofemp}, thelnvSynth procedure returns the correct resource invariant
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{(f =0Aemp)V(f =1Ac—nil)} for the resource. ThelnvSynth procedure can be described

in three phases: initialisation, thread execution, anihig®f invariants.

4.4.1 Initialisation

In the first line in AlgorithnB, théSeqExec function performs a standard symbolic execution of
the initialisation code on the given pre-condition to get fost-condition”,,,,,,. For our running

example we havé’.,,,, = {f = 0 A emp}.

At this point in a CSL proof, the formul#..,,, is spatially separated as a pre-condition for each
of the threads and the resource invariant, in accordandetigtrule for complete programs. But
since it is not known how this splitting should be done, tlgoethm gives all possible owners as
much resource as possible, but introduces new ownershigiraimts. The constraints use fresh
labels such that any possible valuation of the new labelg@tvners represents a specific choice
of ownership distribution. These constraints will be rgedl later on when the heap is accessed
by the right owners. The algorithm calls tBelit(F.,,,,2) function to determine the formula
assigned to each owner at line 2, which returns a mappin@ — P(LSH) that maps each owner

to its assigned formula.

For a given formula and a set of owners, 8pdit function first creates a fresh label for every spatial
conjunct. It then creates a copy of the formula for every awhet adds ownership constraints
associating the new labels to that owner. The part of thedt@nhat is reachable from the owner’s
variables is then returned as the heap assigned to that owitbrvariables not belonging to
the owner becoming existential (as required by the variabieitions of CSL). In the following
definition, for a symbolic heafy and a set of variablels, we writerestrict(H, V') for the heapd

in which every variable not it is replaced by a fresh primed variable. We also wiitejunk (H)

to be the part of{ that is reachable from some program variable.

Definition 4.5 (Split function) Assume we are given a set of ownérs- 2 and a labelled sym-
bolic heapH = IL A (S1), * -+ * (Sn), - We assume fresh labéls .. ., 1,,. For eachw € O,

let

Ho = TN S poq e * % ) 0t )

If w e {1,..., N} then letVar(w) = Var \ (Var(Res) U U MV(C;)). The functiorbplit(H, O) :
1#w
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O — LSH is defined as
Split(H, O)(w) = nonjunk(restrict(H,, Var(w)))
For a formula P, the functionSplit(P, O) : O — P(LSH) is defined as

Split(P, 0)(w) = {Split(H, 0)(w) | H € P}

In our running example, the formufa.,,,, is spatially empty, s6plit( P, {7, 1,2}) = ¢, where

¢(r) = {f =0A emp}
¢(1) = {fi =0Aemp} = {emp}
¢(2) = {f3=0Aemp} = {emp}

where the resource variabfebecomes existential in the thread pre-conditions. As anatkam-
ple, if the pre-condition of the program was given{as= = A (z + nil),} then theSplit function

would give us

o(r) = {f=0Ac=ay A(cnil) .} = {f =0A{c—nil)y, n}
(1) = {fi=0ncdy =2 A (znil) pt = (& nil) iyt

9(2) = {fs=0Ah=aA(x—nil); ot = {(z—nil) 1t

where the resource variables become existential in thedhpee-conditions and non-resource

variablez becomes existential in the resource invariant.

Atlines 3 and 4 in the algorithm, the mapping of formulae me#d by theSplit function is sepa-
rated into the thread pre-conditio#8e : {1... N} — P(LSH), and the initial approximation of
the resource invariantg : Res — P(LSH). In our example this give®re(1) = Pre(2) = {emp}

andly(r) = {f=0A emp}.

Next, at line 5 the algorithm initializes the candidate rgse invariants and ownership constraints
that will be discovered by the algorithm. The gets a set of tuples of the forri, L), where
I : Res — P(LSH) is a possible candidate for the resource invariant, And P(Lab x )
contains all the ownership constraints that have been ised by the algorithm. The reason

that we maintain aetof tuples is that the algorithm may sometimes encounter eetom how to
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make an ownership inference, which leads to different @atdiresource invariants and associated
ownership constraints, as we shall discuss in examples.s&tig is initialised at line 5 in the
algorithm with the single tuple in which the resource ingaticandidate i, and the ownership

constraint is empty, as nothing has been discovered yet.

4.4.2 Thread execution

We enter the main loop of the algorithm at line 6. At everyatam, the first thing is to refine the
existing resource invariant candidates in theZsdby executing each thread on its pre-condition
using the existing invariants. This is done in the for loapgl7 to 10). For each threagdbefore
executing the thread, the thread pre-condition is first tguievith respect to each of the candidate
ownership constraints that have been determined so fa &jn In our running example, each
thread has the empty pre-condition, so it does not chandethétupdate. The set of tripl&sis

the input to the thread execution functiBrec, which is called at line 9.

TheExec function symbolically executes a thread in order to discoav ownership constraints
and to improve the resource invariant approximation. Timetion takes as parameters a thread
identifieri wherel < ¢ < N, the thread body”;, and a set of triples of the forrtP, I, ).
The formulaP € P(LSH) is the pre-condition of the thread,: Res — P(LSH) is the current
approximation of the resource invariants, dnd P(Lab x (2) is the accumulation of discovered

ownership constraints. We I&t be the set of all triples of the foritP, 1, L).

The function returns a set of triples frofh, the non-determinism in the output of the function
being due to possible branching on ownership decisions. defiaition of theExec function is

given in figurdZl, and we now discuss each of the cases shmthie figure.

Primitive commands The first two cases in figule 4.7 are for primitive commandsiciviuse
the application and rearrangement functidme andRng for transforming symbolic heaps. These
functions are defined using the symbolic execution ruleedonmand application and rearrange-
ment shown in figurE-418, which define the symbolic heap tmansdtions and the propagation of
label constraints. The symbolic heap transformationstaredard, as in the previous chapter. The
label constraints are propagated such that under any i@luatlabels to concretize the symbolic

heaps, each rule is a sound inference from premise to coniclus
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def

Exec(i, c, {(P,1,L)}) {(App(c,P),l,L)}

Exec(i, c[E], {(P,1,1)}) &

{(App(c[E], Upd(P',L")),Upd(I,L'), LU L") | P'=Rng(P,E), L' € Getcons(P’,E)}

Exec(i, C1;C2, {(P, I, L)}) & Exec(i, 02, Exec(i, C1, (P, I, L)))

Exec(i, C1 + C2,{(P,1,L)}) &'

{((Upd(P/,L”) UP"), 1", L") | (P',I',L') € Exec(i,C1, (P, 1, L)), (P",I",L") € Exec(i, C2, (Upd(P, L/),I’,L/))}

Exec(i,wi t h + when B do C, {(P,1,L1)}) &

{6@, Il 1) Ve, L) | (P, 1", L") € Exec(i,C, (B A P+ 1(r), 1, 1)), $=Split(P’, {i,r})}

Exec(i, C, Th U T) = Exec(i,C, T1 UT>) U Exec(i, C, Th U T»)

Figure 4.7: Thread execution function

Definition 4.6 (Application and Rearrangement Functions) For a non-heap-accessing primi-
tive command and formulaP, the functionApp(c, P) applies the command application rule for
commandc from figure[4B to every symbolic hedp € P that is consisterH and returns the

resulting set of symbolic heaps that are consistent.

For a heap-accessing commadd’], the functiorApp(c[E], P) is undefined if there exisf§ € P
such that there is noE— F'), € H. Otherwise App(c|E], P) applies the command application
rule for c[E] to all consistent symbolic heag$ € P, and returns the resulting set of heaps that

are consistent.

The rearrangement functioRng(P, E') applies the rearrangement rules from figlirel4.8 to every
symbolic heaf € P, to all conjuncts inH to which the rules apply, and returns the resulting set

of heaps.

The first case in figurE—4.7 is that of non-heap accessing comimamitive command:. In
this case the thread state is simply transformed accordiniget command application rule, and
everything else stays the same. The second case is that whitijer commandc[E] accessing
the heap cell aE. This is the point at which ownership decisions are madegime the heap is

actually accessed. In this case, every symbolic heap inrdvegnditonP needs to be brought

'a symbolic heap is inconsistent if its concrete portion is satisfiable and equivalent to false (e.g. it contains
E =FANE # F,oritcontains(E— F), * (E— G),). Inconsistent heaps do not represent concrete state and ar
therefore ignored. Consistency of concrete heaps can lmie@theising methods such as the one describedin [17].
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COMMAND APPLICATIONRULES

IAY B ) NAS (B F'), _
P B /e WA Sy C I s Ee s, P

A2 / 5 OAS*(E— F),
(IT A B)[z’ /x] * (x — nil), new(z), z’ fres e

dispose(F)

MAS % (E— F), R IAS
v = Flo i ALAS # (B — Fyg)a/a] © oh@ Jres BALIAS

assume(DB)

REARRANGEMENTRULES

MAS* (F F'), A S« (1s(F, F')),
—————— [IFE=F I+ F # F' A E = Fandz’ fresh
IAS«(E— F'), DAS«(E—a'), « sz, F'))

Figure 4.8: Command Application and Rearrangement Rules

into a form where it contains concrete ownership of the hefi@tE: that is, it contains a spatial
conjunct of the form(E — F'); so that the appropriate command application rule from figulle

can be applied.

This is done by first applying the rearrangement functioneioftf = Rng(P, E). Then the func-
tion GetCons(P’, ) returns the set of all possible label constraints under veiery heap i’
contains concrete ownership of a heap celfaEach element of this set of constraints represents
a different choice of ownership. We will discuss a progranermhsuch choice is encountered in

exampleD.

Definition 4.7 (GetCons) Let E be an expressiontl a symbolic heap, ané’ = {H,,..., H,}

a formula withn symbolic heaps. We define

def

GetCons(H,E) ={L | (E—F), € H}

def

GetCons(P',E) = {LyU---UL, | L; € GetCons(H;, E), consistent(L1U---ULy,)}

Note that if there is a symbolic heap #f that does not contain a conjunct of the fo(f — F)
thenGetCons(P’, E) = 0, and hencéexec(i, c[E], {(P,I,L)}) = (. This means thaf is elimi-

nated as a possible resource invariant for the program be@x@cution could not proceed further.



122 Chapter 4. Ownership Inference for Concurrent Programs

Sequential and choice composition The next two cases in figufe 4.7 are for sequential composi-
tion and non-deterministic choice, which are handled irstaedard way. Sequential composition
applies the second command to the output of the first commBaodnon-deterministic choice,
both commands are executed on the pre-condition and thecpodtitions are disjunctively com-
bined, but the resource invariants and ownership contdragfined by the execution of the first
command are used in the execution of the second. In Exdhple @escribe the analysis of a

program with non-deterministic choice.

Critical regions The final case in figurE4.7 is that of the conditional criticeion command
wi t hr»when B do C, which is where new questions about ownership arise. Givemput state
(P, 1, L), the bodyC of the CCR is first executed with pre-conditiéhA P « I(r), in accordance
with the CSL rule for critical regions. For every output staf’, I’, L') that this returns, we need
to split the post-condition”’ into the part that goes into the resource invariant and thietpat
stays in the thread local state outside the CCR. This is dgnealting the Split function with
two possible owners: the resourceand the thread identifier. The part going to the resource
invariant is added as a new disjunct to the resource inviaaaud the part going to the thread is the

post-condition of the CCR execution.

We now illustrate the thread execution function on our ragnéxample of the put-get buffer.
Recall from the end of sectidn Z.%.1 that the thread pre-itiond arePre(1) = Pre(2) = {emp}
and the initial resource invariant i(r) = {f = 0 A emp}. The execution of the two threads
in the first iteration of the algorithm is shown in figurel4.9 the left thread, the command
application rule is first applied to allocate the new cell.eT®&CR is then executed, which again
involves applying the command application rules for the t@mmands. At the end of the CCR a
new disjunct for the resource invariant is obtained usimgbiiit function, which introduces fresh
labell;. Execution of the right thread starts with the CCR, in whizh ¢command application rules
are applied for the two commands in the body. At the end of tB& Canother resource invariant
disjunct is obtained with new labeé}. At this point, the heap accessing dispose command is
executed, in which th&etCons function returns the set with single constrairt;, ), (I2,2)}.
Applying this constraint gives concrete ownership of thapheell, which allows the command
application rule for dispose to be applied. The resourcariamt is also updated with respect to

the discovered constraint, as defined by the execution wfifive heap-accessing commands.
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{({emp}, I1,0)}

with r when f =1 do {
{{f=1Nempx I} 11,0)}
{{f =1/ le—nil) iy, oy b 1 0)}

{({emp}, 10, 0)}

new(z);

{({{z—=nil)y}, lo,0)}

with 7 when £ =0 do {

=c f:=0;
=0A {zrnil), *x Io}, Io, 0 ’
E(.{_fm-f._f.m o+ o o0} {{f=0Ay=cAle—nil) iy 1} 11, 0)}
i }
=1Ac=zA (z—nil),}, o, 0
}{({f c=xz A {(z >@} 0,0)} {({(yHniD{(ll,r),(lz,Q)}}’12’0)}
dispose(y);

{({(z=n0il) 1, 19y} 1 0)} {0, Iz, {(l,7), (I2,2)})}

Li(r)y=I(r)U{f=1A (cn—>nil){(h”,)}}
Lir)y=L({r)U{f=0A <C#—>ni1>{(l1’7,)’(12’1ﬁ)}}
I3(r) = Upd(I2(r), {(l1,7),(12,2)}) ={f =0Aemp, f =1A(c—nil),}

Figure 4.9: Thread executions for put-get buffer

4.4.3 Testing of invariants

After executing all of the threads, at line 11 the algorithests if the sef of candidate resource
invariants is empty. This set can be empty because, as wasdisd in the previous section, the
Exec function eliminates candidate resource invariants if aiea of heap-accessing commands
cannot proceed. If is empty then there are no more resource invariant candidigfteand so the

algorithm fails at this point.

At line 14, the algorithm applies some standard abstradtieuristics to the resource invariant
candidates in order to generalize the formulae to help reacimvariant. This is done with the
abs(7) function, which applies the abstraction heuristics for bgiit heaps presented in[17] to
the concrete parts of all the formulaein These heuristics make generalizations such as remov-
ing existential variables from the middle of list segmerits: example, a formuldls(z, ")), *
(1s(a',y)), will be abstracted tqls(z,y)),. We give an example of where this kind of general-

ization is required in Examp[&]L0 in the next section.

The for loop at line 15 tests each of the candidates to seeoifigin ownership decisions have
been resolved that a resource invariant has been found.ofimeifa . at line 16 consists only of
the concrete disjuncts ih. At line 17, the algorithm checks if these concrete formylaavide

a resource invariant with which a CSL proof can be constducTéde Test function is a standard

CSL specification checker, such as the one described in fithatakes a concurrent program, a
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concrete pre-condition and a concrete resource invaaadtchecks if a CSL proof of the program
can be constructed with the given resource invariant. Ifesesucceeds on any of the candidates,
then the algorithm returns the resource invariant and welane. If the test does not succeed on
any of the candidates, then we exit the for loop and go to tléiteration to further refine the
candidate resource invariants. Since the algorithm cactsta CSL proof using the synthesized

resource invariants, soundness follows from the soundsfeSSL.

In the case of our running example of the put-get buffer, atthd of the thread executions in the

first iteration (shown in figure4.9), we have the single cdat# resource invariaift such that

I3(r)={f=0Aemp, f=1A(c—nil)y}

We therefore hav& = {13}, and since both formulae are concrete, we have: I5 at line 16.
This is a valid resource invariant for the put-get buffergyeon, and so our algorithm successfully

completes in one iteration.

4.5 Examples and Comparison with Previous Methods

In this section we discuss some more examples to illustiéfereht aspects of the invariant syn-
thesis algorithm. For our first example, we discuss the pmemon which O’Hearn describes as
“ownership is in the eye of the asserter”. Consider the @wgn figurd’Z10, which is an address-
transferring put-get buffer, as opposed to the cell-tremisfg buffer from figuré—Zl4. We briefly
discussed the contrast between these two programs insgcH® in the introduction. While the
initialisation phase and thgut andget CCRs are exactly the same in both cases, the difference is
that in the address-transferring case, the left threadskeemership of the heap cell rather than
transferring it into the buffer. This is because the lefetid disposes the cell outside the CCR
and, in agreement with this ownership policy, the right éicdkreloes not access the cell and only
reads its address. The ownership policy for the addressfaaing buffer can be formalised with
a different choice of resource invariant, which is the foly = 1 A emp) V (f = 0 A emp).
O’Hearn refers to this as ownership being in the “eye of treeder” [42], since one can verify
the two programs with a different choice of resource invariglowever, our algorithm illustrates
how this choice can actually be inferred from how threadessthe heap, as shown in the next

example.
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c:=nil;
f=0;
resource r(c, f)
new(z);
with r when £ =0 do { with r when f=1 do {
ci=ux; f:=1; y:=c¢; f:=0;

} }
dispose(z);

Figure 4.10: Address transferring put-get buffer

Example 8 (Address transferring put-get buffer) For the program in figuré 430, we are given
the overall pre-conditio{emp}. The initialisation phase is identical to the cell-transfeg buffer
described in section4.4, and so we hd¥e(1) = Pre(2) = {emp} andp(r) = {f=0Aenp}.
The first iteration proceeds as follows:

({emp}, Io, Q))

new(z);

({emp}, I, L)

with r when f =1 do {

({(mi—>nil>w}, Io, (D)

with 7 when £ =0 do {
{f=1ANempx1Is},I2, L)

({f=1Aemp}, 2, L)

yi=cf:=0;

({f =0A (z—nil)y*Io}, 1o, 0)
ci=uz; f :=1;

{f=1Ac=a A (x—nil),}, Io,0)
{f=0Ay=cAemp}, I L)

}

({emp}, I, L)

}
({(mn—mil){(ll’l)}}, I,0)
dispose(z);

({emp}, I, L)

The new disjunct obtained at the end of the first CCR is addedetanvariant to get/; (r) =
Linyu{f=1A (c»—>nil>{(lw)}}. When the dispose command is encountered, the constraint
L = {(l4,1)} is discovered, which causes an updateofo getly(r) = {f = 0 Aemp, f =

1 A emp}. In the second thread, the new invariant is added when we émeCCR, and at the
end of the CCR the heap is empty. Hence the disj{ifict 0 A emp} is added to the invariant

but it already contains this disjunct and so it remains unaed. At the end of the iteration, the

invariant I5 is checked to be the valid resource invariant for the program

We next discuss an example where the algorithm encountdrsieecabout how to make an own-

ership inference. The program is shown in fighre ¥.11, whieie ttme there are two buffers
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c1 :=nil; ¢ :=nil;
J1:=0; f2:=0;
resourceri(c, f1), r2(ce, f2)

gety (y);
RV | gty (2):
put, (2); if (z=y)then{[z]:=w;}
puty(z); dispose(y);

Figure 4.11: Two buffer program

represented by resource namesandr,. For resource;, theput, andget, commands are the
put and get CCRs using cell and flag variableand f;. The left thread creates a single new cell
and puts it into both buffers. But ownership of the cell catyanove into one of them, and in
this program the buffer; acts as a cell-transferring buffer white acts as an address-transferring
buffer. This can be seen in the right thread, where ownershifne cell comes out from the
get,(y) command because the thread disposes the cglirathe last line. Hence thget,(z)
command only obtains the address of the cell and not thetself.i In the following example
we show how the algorithm encounters a choice at a certairt pbout how to make the correct

ownership inference, which it then resolves later on.

Example 9 (Ownership choice in two buffer program) The algorithm analyses the program in
figure[4I1 in one iteration. Firstly, note that, as descdlj@eviously, we implement the condi-
tional in the right thread as the non-deterministic comfiosi (assume(z = y); [z] = w;) +
(assume(z # y); skip;). For the initial stage, theSplit function gives udy(r1) = {f1 =
0 A emp} and Ip(r2) = {f2 = 0 A emp} as the initial resource invariants anflemp} as pre-

condition of each thread. For the left thread we have the @ixec:

({emp}, Io, 0)
new(z);

({{(z+—nil)y}, 1o, 0)

put (z);
({(z=nil) g, 1y} 11, 0)
puty(x);

({<$'—>n11>{(11,1),(12,1)}}, I5,0)

After executing the first CCR we havg(r1) = Io(r1) U {f1 = 1 A {c1—nil)g,, . 3} and
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Ii(ra) = Io(re). After the second CCR we havg(ry) = I1(r1) and Ir(r2) = {fa = 1 A

(c2=1il) g, 1) 15,0903} Then for the right thread we have the following execution:

({emp}, 2, 0)

get, (v);
{(y—nil) ) 10203 )5 13, 0)
gety(2);

{y=0i1) (1, ). 0e,21 * 1) (1 1), (12,0, (10,20 - 120 0)

(Y —=nil) g, ) 1,203 * FEDEL) 00 1) 100re) 0203 145 0)

assume(z = y);

({z =y A (y—=nil) g ) as0y * 010 (000 1o a2y 1 14 0)

[2] := w;

{z=yny—wht Is, L) ({z=yA(z—w)y}, Is, La)
+
{(y=nil)g}, I5, L) ({{z—nil)y}, Is, L2)
assune (z # 1);
({z #yA(y—nil)y}, Is,L1) ({2 #y A (2—nil)y}, I6, Lo)

skip;

({z#yA(y—nil)y}, Is, L1) ({2 #yA{z—nil)y}, I, Lo)
{z=yA (yr—>w>®, z# YN (yr—>nil>®},f5,L1) {z=yA <zr—>w>®, z£ YN (z»—»nil}w},f(;,Lg)
dispose(y);

({z=yAenmp,z#yAemp},I5, L)

The first CCR givess(r1) = Ia(r1) U {fi = 0 A {c=nil) g, 1) gym)3 ) @NA13(r2) = To(72).
The next CCRgive (1) = I3(r1) andly(r2) = Is(r2)U{fa = OA(c—=0i1) 4 1) (15.00) (o)} ) -
We then enter the first part of the non-deterministic comjmwsiand after executing the assume
statement we encounter the heap access on the cell Because of the equality = y, after
applying the rearrangement function both conjuncts carsiiihg give the heap cell required to
execute the command. We therefore obtain two possibleraonistafter executing the heap mu-
tation, which areL; = {(l1,71), (I3,2)} and Ly = {(l1,1), (I2,72), (l4,2)}. We branch on these
two constraints with the two triples in the output of theec command, one updated with respect

to L, and the other with respect tbs.
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We then execute the second part of the non-deterministigasition, where the initial pre-
condition of the non-deterministic composition is updaitedhe left and the right triple with
the newly discovered constrainfs, and Lo respectively. When we exit the non-deterministic
composition, for each triple, the post-condition of the position is obtained as the union of
the post-conditions of the two parts of the composition.alyn with these two triples we then
encounter thedispose(y) command. At this point we find that the triple with the con-
straint cannot provide the heap cell gtin the disjunct where: # 3, and so theL, branch
fails and disappears. Thé; branch is able to proceed safely, and this resolves the owner
ship decision. Constraint; gives us the updated resource invaridgt= Upd(1ly, L), where
Is(r1) = {fi =0Aemp, fi = 1A (c1—nil)y} andI5(r2) = {f2 = 0 Aemp, fo =1 A emp},

which is the correct resource invariant for the program.

We also remark that the two-buffer program in figlure ¥#.11 isxaample which cannot be analysed
by the bi-abduction method dfl[9]. In this method, resournaiiants are built up spatially by
inferring missing pieces of state using bi-abductidn [&r &ample, in the put-get buffer program
in figure[4.3, the resource invariant is initialised to thatsgly smallest formuld (f = 1 Aemp)V

(f = 0 A emp)}, and a proof is attempted. The proof fails in the second thveaen the dispose
command requires ownership of the heap cell. At this pdm,last CCR, which is the get CCR,
is checked to see if the cell could have come from the resdoveeiant if the formula had more
state. The answer is yes, and the spatially bigger invafight= 1 A ¢+—nil) vV (f =0 A emp)}

is obtained through bi-abduction, which allows the proo$ucceed.

However, this method does not address the ownership irderproblem in full. Although bi-
abduction is useful in finding out what state is required,oi¢sl not answer the other part of the
guestion, which isvherethe ownership is coming from. It addresses this with the isgarof
checking thdast CCR from the point at which the proof fails. This heuristichk®in the simple
put-get buffer where there is only one previous CCR in theatly but does not work in general.
An example where the method would fail is the two-buffer pamg in figurd’Z.TIL. In this case the
method will initialise the resource invariants farandrs to {(f; = 1 A emp) V (f1 =0 A emp)}
and{(fe = 1 Aemp) V (fo = 0 A emp)} respectively. The proof will then fail when the heap
access is made in the conditional in the left thread. In thgedhe last CCIget,(z) would be
able to provide the required heap cell, but the cell shoutdadly come from theget,(y) CCR

before that, becausse is the cell-transferring buffer. This way the method getesrdhe incorrect
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c:=nil;
f=0;
list := nil;

resource r(c, f), r'(list)

alloc(xy);

alloc(xa); get(y);
put(z1); dealloc(y);
dealloc(zs);

alloc(x) €' with 7’ when true do { dealloc(y) €' with 7’ when true do {
i f (list =0)then {new(z);}
el se{x := list; list := [z]; }

} }

[y] := list;
list :==y;

Figure 4.12: Combined buffer and memory manager

resource invariant§(fi = 1 Aemp)V (fi = 0Aemp)} and{(fo = 1Ac—nil)V(fs = 0Aemp)}
for r; andrs respectively. In contrast, our method avoids this problerit ases label-tracking to

keep track of where ownership is coming from.

As our final example, we choose a complex program that coralitme use of two different re-
sources: the put-get buffer and a memory manager. The egashplvs how our algorithm de-
termines the resource invariants for both resources, awdshlows how the abstraction function
helps to reach a valid resource invariant for memory mandges is also an example where the

algorithm requires more than one iteration to reach thescbresource invariants.

The program is shown in figule—4]12. The buffer is represebtedesource name and the
memory manager by resource nameThe memory manager internally maintains a linked list of
all the free cells, where the head of the list is maintainethenresource variabl&st. This list

is initialised to the empty list in the initialisation phasthe manager has two CCRslloc(z)
which removes an element from the head of the list or callsyiseem allocator if the list is empty,
anddealloc(y) which moves the cell aj to the head of the free list and back into the resource.
The main program has two threads. The left one allocates ¢éli® &nd puts one in the buffer and
disposes the other. The other thread gets the cell from tfiertand then disposes it. For this
program the algorithm determines that the resource inviafta the memory manager is a singly

linked list at variabldist, and determines the standard invariant for the buffer.
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Example 10 (Combined buffer and memory manager)We are given the program in figure 4112
and the preconditiof{emp}. TheSplit function gives udy(r) = {f = 0 A emp} and I (') =
{list = nil A emp} as the initial resource invariants anfemp} as pre-condition of each thread.
The first iteration proceeds as follows:

({emp}, Io, Q)

alloc(z1);
({(z1—ni1)4}, 1o, 0) ({emp}, 12, 0)

alloc(zs); get(y);

({(z1—=10i1)y} * (x2—nil)y}, o, 0) {w—=nil) 1, )52y} 13, 0)
put (z1); dealloc(y);

({<x'_’nil>{(11,1)} * (z2—nil)y}, [1,0) ({(yr—>x'>{(l4’2)} * <x/'_’nil>{(12,w),(15,2)} ,(yr—>ni1>{(l6’2)}},f4,L1)

dealloc(x2);

({znil) g, 1)y *(@2—nil) o) o)} 12,0)

After the first two allocations, there are no new disjunctstf® ' resource invariant because
the system allocator is used. Then the put CCR giveg us Iyjr — Io(r) U{f = 1 A
(cnil)gq, ;3] and thedealloc(y) CCRgivedy = Ii[r" — Ii(r') U{(list—nil), .y}

In the second thread, the get CCR gives= Izo[r — I>(r) U{f = 0 A {c—>nil)q o 153
Then inside th@ealloc(y) CCR, the cell ay is accessed, and hence we discover the constraint
Ly = {(l1,7),(I3,2)}, which updates the invariant to give uUg(r) = {f = 0 Aemp, f =

L A (c—nil),}. The new disjunct added to the invariant férgives us

Ly(r") = I3 (r") U {{list = 2") (g, ooy * (@ =0id) g, 0 o oyys (list=nil) g oy}

At the end of this iteration, all the concrete disjuncts fbe tbuffer give the correct resource
invariant. However, the concrete disjuncts for the memaapager collected so far do not give a
valid resource invariant for the memory manager, and so wéogithe next iteration. This starts
as follows:

({emp}, Iy, Ll)

alloc(z1);

({{z1—nil)y}, I5, L)

alloc(z2);
({(z1—=nil)y} * (x2—nil)y}, I6, La)

In the first CCR, the head of the free list is accessed, and sdisgever the constrainfy =
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Ly U{(la, "), (I4,7"), (I, ") }. Updating with respect to this constraint gives us
Upd(14(r'), L2) = {list = nil Aemp, (list—nil)y, (list—a')y* (z'—nil) .y}

When we exit the CCR, we g&{(r') = I4(r') U {{list —nil)(, . .} IN the next CCR,
again the head of the list is accessed and so the latest dispgimes us the constraints =
Ly U{(l5,7"), (I7,7")}. Updating with respect to this constraint and adding the msjunct we
get

Is(r') = {list = nil A emp, (list+—nil)y, (list—a')y* (z'+—nil),, (list —>nil) g 1}

Now the third disjunct in this set is concrete, and so at theé@tthis iteration when the abstraction
heuristics are applied, the existential variahtéin the third disjunct is thrown away to give the
general formulals(list,nil). This is a list segment frorist to nil, which is the valid resource

invariant for the memory manager.

4.6 Extension to Loops

So far we have not discussed how to handle programs with Wdoles. Programs with loops
usually require abstraction on the symbolic states in otolgeneralise the states so that a loop
invariant can be reached. This causes a complication whehkitig ownership transfer between
loop iterations, since it is not known how to perform abdtoacwithout knowing the distribution
of ownership. This is a general problem for resource invargynthesis methods that attempt
to infer ownership, such as in the case of the bi-abductiothoge[9] where the problem is not
addressed. In the case of the reachability methdd of [28hda@o not present a complication since
there is no ownership inference being performed, as it asdutmat the reachability heuristic
provides the correct ownership distribution. This methad therefore proceed with standard

abstraction techniques to reach loop invariants.

In this section we present a general technique for owneiigfépence in the presence of loops,
which is parametric in an invariant synthesis method fopléee programs. The technique is
based on analysing finite loop-freafoldingsof the concurrent program. We extend the program-

ming language with the while loop commandile B C which executes the body until the
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Algorithm 4 ExtInvSynth(Prg, P;;,)
1:1:=1;
2: while true do
3: I :=InvSynth(Prg_,,Pp);
4. if Testlnv(Prg, P;,, I) then
5 return I;
6: endif
;
8:

1:=1+1;
end while

condition B is false. Note that the loop body may contain CCRs and owipetsinsfers may oc-
cur between iterations of the loop. Given a prog@na- while B C’ we define theth unfolding
C.i~ of C as
Cco> = assume(—DB)

Ceitt> = assume(B); C'; Ccis + Cys
For a given concurrent progratArg containing while loops, we defin€rg_;. to be Prg in
which every while loopC is replaced byC.;~. We show the extended method for handling
concurrent programs with while loops in algoritihin 4. Theoaithm progressively unfolds all the
loops in the program and infers a resource invariant for tifelded program using thiavSynth
procedure from Algorithnil3. The abstraction function apglin thelnvSynth procedure help to
reach a generalised resource invariant formula which iicgipe to anarbitrary number of loop
unfoldings. The algorithm uses tAestInv function to check if such a formula has been reached

after every iteration.

Note is that this is a generic method for ownership inferéndbe presence of loops, in that our
technique can be used with any invariant inference methatdatbrks for loop-free programs. For
example, instead of using thevSynth procedure in algorithiil 4, we may use some other invariant

synthesis method such as the bi-abduction methad of [9].

Examples 4.1 The program on the left in figule“Z113 shows the producer«wmes pattern in
which a producer thread continuously creates a new cell aaitsfor the buffer to empty before
placing the cell in the buffer, and the consumer thread waitl the buffer is full and then takes
the cell out of the buffer and disposes it. In this case, orfeldimg of the program is the put-get
buffer program from figure-414, for which thevSynth procedure generates the resource invariant
{f=0Aemp, f=1Ac—nil}. Thisis the valid resource invariant for the producer-comer

program and so th&xtlnvSynth procedure finds the correct invariant in one unfolding.
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1 c:=nil;

c:=nil;

F=o. f:=0;
Y list :=nil;

resource r(c, ,
) resource r(c, f) r'(list)

while (true) { while (true) {
new(z); get(y);
put(z); dispose(y);

} }

while (true) { while (true) {
alloc(x); get(y);
put(x); dealloc(y);

} }

Figure 4.13: Producer-consumer (left) and producer-ameswith memory manager (right)

The program on the right in figufe’Z11 3 shows the producesaarer pattern that uses the memory
manager we described in exampld 10. In this case again, ferumfiolding of the program, the
InvSynth procedure discovers the resource invariant(/ist,nil) for the memory manager and
the standard one for the buffer, which are the correct reseunvariants for the actual program

with loops.

4.7 Conclusion

We have presented an algorithm that synthesizes resowaeaints for automating CSL proofs.

The method is based on a form of label tracking in which owhmiprsonstraints are propagated
through a program proof, and ownership transfers are detedrirom heap accesses at arbitrary
points in the execution. We have demonstrated how the meéstadale to analyse programs which
could not be handled previously, and also does not requaeamotations about ownership dis-

tribution.

Although the approach that we have presented intuitiveBsdwt rely on any heuristic decisions
about ownership inference (as was the case in previous a®thiis property has not yet been
demonstrated in a formal sense. It remains for us to explomgeskind of completenessesult

about our algorithm, perhaps in a restricted setting whiahids the other standard sources of

imprecision such as the abstraction functions.

Another next step is to investigate ownership inferencefifog-grained concurrent programs,
which use synchronization methods that avoid mutuallywesiek access to entire data structures,

and therefore achieve greater parallelism. Such programsre more advanced analyses than
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CSL, such as the recent rely-guarantee based metho@dsldiZh3,n these analyses the state
of shared resources may change under spediitionsrather than always satisfying an invari-
ant. However, as with the inference of resource invariaxisting methods for inferring actions
[52] resort to heuristic ownership inference techniqudsictv may possibly be avoided with the

incorporation of label tracking.



Chapter 5

Conclusion and Future Directions

This thesis has extended resource reasoning with sepatatiec in the areas of modular pro-
gram specification, program optimization, and concurrevexyfication. The general theory of
relevance footprints developed in the setting of abstgamation logic has formalised the essen-
tiality and sufficiency properties of footprints in locabsoning. We have also introduced a new
semantic model of heaps which reestablishes the correspoadetween safety and relevance
footprints, and we identified the general property of deteism constancy which guarantees this
correspondence in arbitrary resource models. We have yafpiore practical applications of the
new semantic heap model which, apart from resolving thepfaut problems, also permits the

modelling of deterministic and bounded-memory allocatigmlike the standard model.

The second part of the thesis introduced labelled separétigic, which is based on the idea
that, while spatial separation delivers local reasoning) taactable verification of programs, the
stronger notion ofabelled separatiorallows us to track deeper properties of program executions.
We first described the use of labelled separation logic fteadimg dependences between program
statements, which is needed for program optimizations ssgbarallelization. The method has
yielded promising initial results in the area of hardwaratkegsis, and with the incorporation of
various recent techniques to improve the underlying shaphysis, we aim to explore its applica-

tion to a wider class of industrial programs.

In the third part of the thesis we applied the notion of reseuabelling to the problem of inferring
ownership of shared resources in concurrent programs. @éepted a new ownership inference

algorithm based on label-tracking which can verify conentiprograms that could not be handled
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by previous methods. As part of next steps, we would like tonfdly demonstrate the non-
heuristic nature of the ownership inference method, as agetb extend it to the verification of

fine-grained concurrent programs.

We end with a discussion of some further directions in whiah resource reasoning techniques

presented in this thesis may be developed and applied iotiget term.

Dependence analysis at higher levels of abstractionTraditional analyses only test dependence
based on actual memory accesses, but sometimes commandsceeray the same memory yet still
be ‘independent’ with respect to the abstract specificatgired of a program. For example, the
W3C DOM library for updating web pages is specified in termspérations that act locally on
an abstract tree structure, so that two updates to disjoithesiin the DOM tree would be consid-
ered to be independent at the abstract level. However, degeon the specific implementation,
these operations may interfere on the underlying heaptatauthat represents the abstract struc-
ture, such as performing global traversals to reach theaetenodes. It will be interesting to
explore recent approaches such as context logic[[10, 20bsiract predicate$ [44] to adapt la-
belled resource reasoning to higher levels of abstractuinch may lead to more powerful forms

of optimizations.

Object-oriented programming Due to a range of difficulties, such as the extensive preseihce
aliasing, higher-order features and inheritance, theyaisabf object-oriented programs presents
many challenges. In this thesis we have focused on simpleritige programming languages
with heap-manipulating commands, but significant advahesee also been made in using sepa-
ration logic for the verification of object-oriented progra [44,45[1B]. Exploring the possible
combination of these techniques with the methods presentéis thesis may be a first step

toward addressing optimization and concurrency analgsisiiject-oriented programs.

Futures-annotated programs Another area that we are currently exploring are prograntls wi
futuresannotations[[40]. Futures are synchronization constithetispermit the result of a compu-

tation to be computed in parallel with the rest of the exexutiWe aim to use the resource track-
ing provided by labelled separation logic to verify the impot safety property that resources

are shared correctly between the future computation anddhtnuation, so that the annotated
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program can be guaranteed to produce the same results egltngial counterpart. This is unlike
memory-safety checking for concurrent programs, whereaatimeis only to show the absence of

memory errors, rather than to show equivalence with someaesdigl program.

Concurrency optimizations Since concurrent programs are difficult to write, programsod-

ten make over-conservative choices to ensure safety, suchreeeded synchronization or larger
than needed critical regions. The ownership inference odetti chapteE4 provides information
about how resources are being used and shared in a concprogmém. Apart from verifying
safety properties, this information may also help in usigpurces more efficiently in concurrent
programs. For example, together with a dependence anéikestbe one described in chaplédr 3, it
may enable various synchronization optimizations in cameu programs([16], such as synchro-
nization elimination, critical region expansion (to mirism overhead of acquires and releases),
critical region reduction (to increase concurrency), aathdeplication to reduce synchronized

access to shared data.
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