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Abstract

Since 1990, the world wide web has evolved from a static collection of refer-

ence pages to a dynamic programming and application-hosting environment.

At the core of this evolution is the programming language JavaScript and

the XML update library “DOM”. Every modern web browser contains a

DOM implementation which allows JavaScript programs to read and alter

the web page that the user is currently viewing. JavaScript and DOM are

extremely successful, and this success may be in part due to their highly

dynamic and tightly integrated nature. However, this very nature hinders

formal program analysis and tool development. Even the implementation

independent specification that defines DOM is largely written in the English

language, and not using any formal system.

While client-side web programming was once a simple discipline of form

validation and interface trickery, it is fast becoming a far more serious

business encompassing application development for the emerging ubiqui-

tous “cloud”. As this evolution gains pace there is an increasing demand

for client-side tool support of the sort commonly enjoyed by “enterprise”

programmers, working in more easily analysed languages such as Java.

This thesis makes use of recent developments in program reasoning using

context logic to provide the first formal, compositional specification for the

Fundamental Interfaces of DOM Core Level 1. It presents both a big-

step operational semantics for the necessary operations of the library and a

context logic for reasoning about programs which use the library. Finally,

it presents example programs that use the library and shows how context

logic can be used to prove useful properties of those programs.
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1. Introduction

In his 2000 paper “Intuitionistic Reasoning about Shared Mutable Data

Structure” [57], John Reynolds described programming with pointers as “a

no-man’s land inhabited by many useful and intuitively straight-forward

programs that have been poorly served by both type systems and program-

proving methodologies”. He claimed that this no-man’s land was “far more

than a hacker’s jungle”, and proposed the methods which ultimately led to

the development of separation logic and have since met with a great deal of

success in that no-man’s land.

Today, there is a growing body of work on reasoning about pointer pro-

gramming, including significant success with automated reasoning about

complete industrial programs[69]. While the no-man’s lands of pointer pro-

grams may have been claimed and tamed, there is now a new world of

programs which have been poorly served by both type systems and program-

proving methodologies. Dynamically typed “scripting languages” sacrifice

the safety of type systems on the altar of flexibility and short release-cycles.

They are extremely difficult to reason about, and have been very successful

on the fast paced world wide web, which rewards first-movers, and makes

it easy to instantly distribute bug-fixes to an entire user base. This thesis

takes the latest developments in the methodologies that were used to con-

quer the no-mans land of pointer programs, and applies them to forging a

path through the new hacker’s jungle.

1.1. The Hacker’s Jungle

The origins of the world wide web lie in a proposal written in 1989 by

Tim Berners-Lee[67] and re-written in 1990 with Robert Cailliau[68]. The

proposal was to create “a large hypertext database with typed links”, the

purpose of which was to allow high energy physicists to share data, news

and documentation. The first web pages were “static”, meaning that any
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two attempts to access the same page would return the same data, and that

data would be composed of inert text and graphics.

In 1993 the Common Gateway Interface (CGI) was standardised[17], al-

lowing web servers to serve not just static web pages, but also pages that

were produced dynamically by a console program. This allowed for the

creation of sites like search engines or other database query systems. This

also opened the door for early versions of e-commerce sites such as Amazon.

While this technology allowed a server to respond to each HTTP request

with a unique, dynamically generated page; it did not introduce any dynam-

icism into the client – the web browser. Each page was still composed of text

and images which could not respond to user-interaction without loading a

new page from the server.

Three key technologies have since emerged in client-side web program-

ming. In 1995, Netscape included a JavaScript implementation in the 2.0

release of their browser Netscape Navigator[25]. In the same year, Sun

released the first version of their Java programming language, which intro-

duced Java “applets”. Hot on the heels of Netscape and Sun, Macromedia

released “Flash” in 1996.

All three of these technologies aimed to enrich the user experience of

browsing the web by allowing reactive code to run on the client machine.

However, the specific goals of each technology differed slightly. JavaScript

was initially most often used for simple form validation, while Java applets

were used for “enterprise” client-server programming and Flash was mostly

used for animation. These perceptions changed in 2004 and 2005 when

Google unveiled Gmail and Google Maps. Both of these applications made

use of JavaScript as their client-side programming language and are consid-

ered by many to have been the first wide deployments of the web program-

ming techniques now known as “Ajax”[2]. The term “Ajax” is shorthand for

“Asynchronous JavaScript and XML”, and refers to the use of JavaScript

running in a web browser and interacting in a timely fashion with the user

while making asynchronous requests of the web server to ensure that any

data the user requires is available in the client program when they require it.

A good example of this technique is the scrolling map feature pioneered by

Google Maps. The JavaScript program listens to the drag-events generated

by the user’s mouse, and uses those events to scroll the map in real time. In

the background, the program requests adjacent map tiles from the server,
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so that whenever the user drags a previously unseen area of map into view,

that map tile will have already been loaded into program memory and the

user need not wait for a network request.

In 2010, Java applets are rare on the web while Ajax web-applications

are flourishing. JavaScript has become an international standard called

ECMAScript[26]. What was Macromedia Flash is now called Adobe Flash,

and features a programming language based on ECMAScript, which is called

“ActionScript”.

One of the keys to the success of Ajax is the tight integration of the

JavaScript programming language with the user interface of the web browser.

This integration is largely achieved through a library called DOM. DOM

stands for “Document Object Model” and is a library for performing in-

place XML update. Every modern web browser contains a DOM imple-

mentation which is used by JavaScript programs to read and alter the web

page that the user is currently viewing.

The origins of DOM lie in several competing and incompatible XML up-

date libraries developed during the 1990s. Today however, DOM is defined

by an implementation neutral specification, maintained by the World Wide

Web Consortium (W3C)[22]. The W3C first published “DOM Level 1” in

1998, and have built subsequent layers on top of that first standard. The

current release of the specification, called “DOM Level 3” was published in

2004.

It is thanks to the implementation neutrality of the DOM and ECMAScript

specifications that it is now possible to run the same client-side web program

in Chrome, Firefox, Internet Explorer or Safari. In addition to implemen-

tations in web browsers, there are also DOM implementations available for

most high-level programming languages. This makes it possible to write

server-side CGI programs which use the same programming techniques for

managing their XML. DOM also provides a convenient means for writing

other programs that manipulate XML, without necessarily having anything

to do with the web. The Open Document Format is an example of a mod-

ern XML-based format for storing word processor documents, spreadsheets,

presentations, graphics and formulae. OpenOffice provides its own imple-

mentation of DOM in order to manipulate these documents.

It is instructive to compare the current state of DOM and JavaScript

to that of their 1995 competitor, Java. DOM is successful, mature and
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implementation neutral, but it suffers from being written in the English

language rather than in a more precise, mathematical fashion. There are

some cases which are unclear or ambiguous, and this leads to inconsistency

in implementations and bugs in client code. This thesis represents the first

formal mathematical specification for DOM. An operational semantics for

JavaScript was only recently produced by Maffeis, Mitchell and Taly [48].

JavaScript programmers have no type system or any other kind of auto-

mated reasoning to support them. While many type systems have been

devised for small subsets of the language[3, 63, 38], these subsets all ignore

several key features of the language-proper. A recent survey by Richards,

Lebresne, Burg and Vitek of JavaScript as it is used in the wild demon-

strates that many of these features are in extremely wide use[59].This is in

stark contrast with Java, which has been extensively studied from the point

of view of precisely specified subsets of the language such as featherweight

java[42], lightweight java[46], middlewight java[5] and ClassicJava[27]. Java

has a powerful static type system which can be extended to support mech-

anisms such as ownership types[18, 7] and session types[41]. Parkinson

introduced separation logic for reasoning about Java in 2005[56], and this

work is being automated in the jStar tool[21]. This work all results in tools

which support Java programmers in writing large reliable programs.

In the past, JavaScript and DOM programs have tended to be small.

Such programs need little in the way of tool support, but benefit greatly

from flexibility and tight browser integration. This is changing. As web

programming and Ajax become more and more ubiquitous and complex,

the demand for tools, libraries and other innovative methods of ensuring

the reliability of web programs is increasing. Unit testing frameworks and

well-designed libraries such as jQuery[44] can and do take some of the strain.

However, thoroughly testing large complex code is difficult, especially when

the number of platforms which must be tested is constantly increasing as

new web browsers designed for new form-factors such as web-phones and

tablet PCs are introduced to the market. Libraries can help reduce the

complexity of application programs, but only at the expense of increasing

the complexity of libraries. Whether it is the application author or the

library author who is writing the complex code, it is clear that if programs

are to be written in JavaScript and DOM then more advanced tools-support

of the sort enjoyed by java will be essential.
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Another solution to the problem of the increasing complexity of JavaScript

and DOM programs is to write code in another language entirely. Bet-

ter supported languages include Java, Haskell or the purpose-designed lan-

guages Flapjax or Milescript. In all these cases, the programmer can now

write code in their language of choice and compile to JavaScript. This is

not how Java was deployed on the web in 1995, but is how Google chose

to deploy their new service“Wave”, which was written entirely in Java and

deployed using the Google Web Toolkit[19] which compiles the client-side

portion to JavaScript. It is clear that even if web programmers are tempted

away from JavaScript when writing programs, they will continue to compile

to JavaScript for the foreseeable future. If DOM and JavaScript are to be

the assembly language of the web, then a formal understanding of DOM

and JavaScript will surely play a crucial role in developing compilers that

target it. Since JavaScript seems to be resistant to static type analysis, and

since a formal understanding of DOM and JavaScript will be important in

the future development of programmers tools, and web language compilers,

it is desirable to find another means of reasoning about DOM/JavaScript

code.

This thesis concentrates on reasoning about DOM, while keeping in mind

that future work will involve reasoning about JavaScript.

From the point of view of a JavaScript programmer, DOM is a large global

data structure, which may be accessed by any part of a JavaScript program

regardless of scope. This is reminiscent of a C programmer’s heap, which

is also a large global data structure which exists outside the normal rules

of scope. Both structures play havoc with the modular design of programs,

introduce problems of aliasing, and make formal reasoning difficult.

O’Hearn, Reynolds and others recently introduced separation logic which

has met with a great deal of success in reasoning about C programs which

make use of the heap [57, 55, 58]. That work has led to a number of

automated tools which have been very successful in finding and eliminating

bugs in environments where testing is difficult and there is little support

from a type system[4, 62, 69, 11].

Separation logic allows a mathematician or an automated tool to reason

about the shape of a heap: to isolate only the small sub-heap that a partic-

ular subroutine requires to run, to reason about the effects of the subroutine

on that sub-heap, and finally to use this reasoning to draw conclusions about
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the whole global heap.

This methodology seems to be a sensible approach to reasoning about the

large global structure of web programs. However, while the C heap is a sim-

ple bag of heap cells, the tree structure of DOM is more complex. Calcagno,

Gardner and Zarfaty have shown[12] that separation logic is insufficient to

reason about tree structures, and have introduced context logic to fill the

gap. Context logic is inspired by ambient logic[16], and has been used to

reason about programs that manipulate simple tree structures.

This thesis applies context logic to the task of reasoning about DOM

programs.

1.2. Contributions and Thesis Outline

The key contributions of this thesis are a formal description of the Funda-

mental Interfaces of DOM Core Level 1, and an application of Gardner and

Zarfaty’s context logic for reasoning about DOM programs. DOM data is

significantly more complex than the data models of previous context logic

applications. The core conceptual difficulties presented by the DOM struc-

ture are distilled in “Featherweight DOM” and dealt with in Chapters 3

and 4. This work on Featherweight DOM then serves as a road map for

work on the Fundamental Interfaces of DOM Core Level 1, which is covered

in Chapters 6 and 7. Using this formal description and context logic, it is

possible to reason in an intuitive and modular fashion about the correctness

of programmes that use DOM to manipulate XML data.

Here is the outline of this thesis:

• Chapter 2 provides background on program verification techniques,

beginning with Hoare logic and tracing the development of separation

logic and context logic. It defines much of the mathematical notation

and explains many of the techniques that are used in later chapters.

• Chapter 3 follows the example of featherweight java and presents

“Featherweight DOM”. Featherweight DOM concentrates on the Node

interface of DOM Core Level One and demonstrates the conceptual

core of our approach without getting lost in all the detail of the Fun-

damental Interfaces of DOM Core Level One. This presentation con-

sists of a big-step operational semantics of the necessary operations of
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Featherweight DOM and an implementation of the remaining opera-

tions in terms of those.

• Chapter 4 presents a context logic for Featherweight DOM, and shows

soundness using a new notion of program locality.

• Chapter 5 demonstrates context logic for Featherweight DOM by rea-

soning about several example programs.

• Chapter 6 extends the work in Chapter 3 to cover all the Fundamental

Interfaces of DOM Core Level One. The act of precisely specifying

its behaviour uncovers a number of ambiguous or unclear descriptions

in the W3C specification. As with Chapter 3, this chapter presents a

core of operational semantics and implementations of remaining oper-

ations. It concludes with some example programs which demonstrate

the features of the Fundamental Interfaces of DOM Core Level One.

• Chapter 7 presents a context logic for the Fundamental Interfaces of

DOM Core Level One. As with Chapter 4, this logic is then used to

reason about the example programs given in the previous chapter.

• Chapter 8 briefly describes the real world behaviour of key features

of several DOM implementations and discusses some of the possible

reasons for some common deviations from the specification.

1.3. Publications

While much of the work in this thesis is unpublished, other parts have

previously appeared in the following publications:

• Gardner, Smith, Wheelhouse and Zarfaty. DOM: Towards a Formal

Specification. Plan-X – a POPL Workshop, 2008[30]

• Gardner, Smith, Wheelhouse and Zarfaty. Local Hoare reasoning

about DOM. Proceedings of the Twenty-Seventh ACM SIGMOD-

SIGACT-SIGART Symposium on Principles of Database Systems:

PODS, 2008[33]

These papers introduced Featherweight DOM as it is presented here in

Chapter 3. This was the first attempt to use local reasoning with con-

text logic to reason about web programs. The core concepts, including
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the Featherweight DOM data structure were provided by Smith, while

all authors contributed technical details and examples. In particular,

Zarfaty provided valuable context logic expertise.

• Gardner, Smith, Wright. Local Reasoning about Mashups. Theory

workshop paper at the 3rd International Conference on Verified Soft-

ware: Theories, Tools and Experiments 2010[31]

This paper and the accompanying technical report used some of the

techniques and specifications developed in this thesis, and applied

them to the problem of reasoning about mashups. This paper began

as Wright’s MSc project to extend Featherweight DOM to a broader

setting. Smith provided DOM expertise, and all authors contributed

technical details and examples.
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2. Technical Background

This chapter describes the common notation and techniques used through-

out the thesis. It introduces separation logic and context logic, which form

the basis for the reasoning used for DOM.

The chapter starts with an introduction to program reasoning in Sec-

tion 2.1. It begins with Hoare’s seminal 1969 paper “An Axiomatic Basis

for Computer Programming”, and goes on to note several extensions made

over the years by others. Section 2.2 introduces separation logic, which

makes reasoning about pointer programs practical and has been success-

fully adapted to reasoning about Java programs. Section 2.3 introduces

context logic, which is a generalisation of separation logic that enables us

to reason about tree-like structures such as DOM.

2.1. Hoare Reasoning

In his 1969 paper “An Axiomatic Basis for Computer Programming”[39],

Hoare laid the logical foundations for reasoning about the properties of

computer programs. This paper took Floyd’s treatment of flowcharts[28]

and applied those notions to program texts, establishing the notation which

has come to be known as the “Hoare Triple”, the notion of a command

axiom, and the first rules of inference with which one may make deductions

about a program. Over the years since, this system has been refined and

extended by the research community. It still remains recognisable as the

deductive system described in [39].

The central concept of this system is the Hoare Triple1 {P}C{Q}. In this

expression, P and Q are first-order logic predicates which describe the state

of the program, and C is the program that the statement reasons about. The

statement as a whole means “If the assertion P is true before initiation of

1In his 1969 paper, Hoare used the notation P{C}Q, but the above notation has become
standard.
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a program C, then the assertion Q will be true on its completion”. It must

be noted that the triple does not guarantee successful termination of C. It

may fail to terminate either “due to infinite loop; or . . . due to violation of

an implementation-defined limit”. The particular implementation-defined

limit we will typically be interested in here is a memory fault, which is

caused when a program attempts to dereference an unallocated memory

cell.

The practicality of Hoare’s system in top-down program construction was

demonstrated in papers such as his 1971 “Proof of a Program: FIND”[40].

In the years since, Hoare Reasoning has been re-used and extended in

many ways. Here we are chiefly concerned with its use to reason about

programs that destructively update data structures. In 1972 Burstall of-

fered “Some techniques for proving correctness of programs which alter data

structures”[9] which made use of what he called a “distinct nonrepeating

tree system”. The key intuition of this paper was that the nonrepeating

tree system, written as P1& . . .&Pn contained n assertions Pi which each

described a distinct region of storage. Thus, a single location could change

only one Pi, and the complexity of reasoning about pointer programs could

be managed.

In 1975, Dijkstra introduced the concept of “weakest preconditions”[20].

Dijkstra’s weakest preconditions were inspired directly by Hoare’s triples,

with the chief difference that Dijkstra expected the programmer/logician

to prove both the correctness of any result that the program might return,

and also that the program would always terminate. He defined the weakest

precondition wp(S,R), where S denotes some statement list (or program)

and R denotes some condition on the state of the system, to be “the weakest

precondition for the initial state of the system such that activation of S is

guaranteed to lead to a properly terminating activity leaving the system in a

final state satisfying the postcondition R”. Where Hoare would characterise

a single command C with one or more axioms of the form {P}C{Q}, Dijkstra

would characterise that command with its most general weakest precondi-

tion. He would say “For any postcondition R, we have wp(C, R) = . . . ”.

When we speak of “the weakest precondition of a command” without speci-

fying a particular postcondition, it is this most general weakest precondition

to which we are referring. While Dijkstra was not chiefly concerned with

reasoning about pointer programs and destructive data update, his weakest
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preconditions have become a standard tool in the program verification belt.

As we will see, this concept of a weakest precondition, and in particular

the most general weakest precondition for an arbitrary postcondition, turns

out to be crucial in proving the completeness of later systems of program

reasoning for loop-free code.

2.2. Separation Logic

In 2000, Reynolds[57] identified limitations in Burstall’s techniques for prov-

ing programs which alter data structures. For example, for any given as-

sertion P1 & . . .& Pn, the only allowed sharing was from variables into

data fragments described by distinct Pi, or from one fragment Pi to an-

other Pj . This meant that a given assertion P1 & . . .& Pn could only

describe structures with a fixed finite bound on the number of substruc-

tures. To overcome this and other limitations, Reynolds drew inspiration

from Kripke’s work[45] on intuitionistic logic and introduced “Intuitionistic

Reasoning about Shared Mutable Data Structure”[57]. Similar intuitionis-

tic semantics were developed independently by Ishtiaq and O’Hearn using

the logic of bunched implication[52]. Ishtiaq and O’Hearn also devised a

classical version of the logic which is more expressive. In particular, it can

express storage deallocation. Reynolds then extended this classical version,

adding pointer arithmetic, while O’Hearn and Yang introduced the concept

of “small axioms”. This early work by O’Hearn, Reynolds and Yang was

distilled in what is now known as “separation logic”[55, 58].

The key concept of separation logic is the notion of “local Hoare reason-

ing”, whereby one reasons not about a program’s effect on the whole state

of a machine, but rather only about its effect on the state that is essential

to its running. This is achieved by the use of a separating conjunction ∗
which is used in a similar way to the & of Burstall, and by a new inference

rule called “the Frame Rule” which allows a local proof to be generalised to

one which describes data that a program leaves unchanged. As we will see,

the ∗ of separation logic does not require the rigid structure of Burstall’s

distinct nonrepeating tree system, and so can describe structures without a

fixed finite bound on the number of substructures.

The remainder of this section briefly describes separation logic as it is

applied to reasoning about a C-like language, with a shared heap.
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2.2.1. The Heap

A key characteristic of any C-like language is a dynamically-allocated stor-

age mechanism known as a “heap”. A heap is a finite collection of cells,

which are indexed by the positive natural numbers. Each cell stores a single

value which can be interpreted simply as an integer, or as a pointer which

either refers to another cell in the heap, or is the special value 0 which is

not associated with any cell. If the cell indexed by x stores the value y, we

write x 7→ y. Cells which store multiple values can be emulated by using

adjacent cells. The notation x 7→ y, z is commonly used to refer to a heap

in which x 7→ y and (x + 1) 7→ z. The empty heap is referred to by the

notation emp.

2.2.2. The Assertion Language

The assertion language of separation logic extends first-order logic with

two new operators: separating conjunction “∗”, and separating implication

“−∗”. Given our heap and C-like language, the assertion“P ∗Q” states that P

holds over one portion of the heap and that Q hold over a separate, disjoint

portion of the heap. Using this operator we can, for example, cleanly specify

a linked list:
list(x) , x = 0

list(x) , ∃h, t. x 7→ h, t ∗ list(t)

Furthermore, we can cleanly specify a pair of disjoint lists list(x)∗ list(y).

Note that this predicate holds for disjoint lists such as those depicted on

the left below, but not for lists with sharing such as those on the right:

The assertion “P −∗Q”, is satisfied by any heap h0 such that for all heaps

h1 satisfying P , h0 ∗ h1 satisfies Q. This is particularly useful in describing

the weakest preconditions of commands.

2.2.3. Program Reasoning

Traditional Hoare triples {P}C{Q} are interpreted “loosely” – meaning that

they provide no guarantees about any state not explicitly mentioned in
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either P or Q. By contrast, the local Hoare reasoning of separation logic

interprets these triples “tightly”. This means that: the command C may

only access state which is either described in P or explicitly allocated by

C itself. The triple guarantees that all the state not mentioned by the

predicates P and Q remains unchanged by the command C.

In order to reason about a program using tightly interpreted separa-

tion logic triples, that program must be composed entirely of “local” com-

mands, as described in [70]. A command C is local if and only if it satisfies

both the safety monotonicity property and the frame property. The safety-

monotonicity property says that, if a heap contains all the cells necessary

for safe execution of a command, then so does every larger heap. The frame

property says that if a command can be executed safely on a small heap

then execution on any larger heap can be traced back to the small state.

One advantage of local specifications is that they allow us to reason about

a program in the same way as a programmer is likely to think informally

about it. That is, by considering only that portion of the state that the

program changes. To see how the specified program behaves in a larger

state, we can apply the Frame Rule, as introduced in [55]:

{P}C{Q}
{R ∗ P}C{R ∗Q}

where C modifies no variables that are free in R

Using tightly interpreted Hoare triples, we can specify commands “lo-

cally” – mentioning only the data that the command requires, and relying

on the Frame Rule to scale the specification up to arbitrary states. Where

Hoare provides command “Axioms”, we may now provide “Small Axioms”.

This avoids the issues of aliasing which make non-local Hoare logic command

axioms impractical to use with shared mutable data structures.

For example, we can use the “list” predicate from the previous section to

specify a subroutine which disposes of a linked list:

{list(x)} disposeList(x) {emp}

The procedure “disposeList” acts only on the heap cells that form the

linked list referred to in the precondition list(x). The postcondition states
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that the heap is empty, which is to say that the list cells have been de-

allocated. Using this specification and the Frame Rule given above, we can

derive a description of how the disposeList procedure behaves when there

are two lists present in the heap.

{list(x) ∗ list(y)} disposeList(x) {list(y)}

This example demonstrates two important points. Firstly, the use of ∗
in the Frame Rule (and hence in the derived local Hoare triple) precludes

the possibility that the list beginning with cell x shares any elements with

the list beginning with cell y. That is to say, there will be no unexpected

behaviour due to aliasing between the two distinct portions of the heap.

Secondly, neither of the lists in this example has a fixed finite bound on its

number of substructures – the reasoning holds regardless of the length of

the list.

While the examples given here have been low-level C-style examples, it is

possible to use separation logic to reason about object systems such as the

java object-heap [56, 21]. In addition, separation logic has been used to rea-

son about resources and concurrency[51, 15], permission accounting[6] and

information hiding[53]. It has also been married with other reasoning sys-

tems such as rely/guarantee[64] and cyclic proof[8]. Finally, separation logic

reasoning has been automated in a number of tools including Smallfoot[4],

Space Invader[62], SLAyer[60] and jStar[21]. Of particular note here are

the first automatic proofs of pointer usage in entire industrial programs:

Microsoft and Linux device drivers of up to 10,000 lines of code[69] and new

techniques which pave the way to automatically verifying programs of over

a million lines of code[11].

2.3. Context Logic

In 2005, Calcagno, Gardner and Zarfaty drew inspiration from the ambient

logic of Cardelli and Gordon[16] to produce a generalisation of separation

logic which was capable of elegantly handling tree structures[12, 71]. A

key motivation for this work was the discovery that neither separation logic

nor ambient logic were sufficient for local reasoning about tree programs.

This insufficiency is formally described in [13] which introduces the concept
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of “parametric expressivity”. Previous results by Lozes had shown that

for closed formulae, both the assertion languages of separation logic and

of context logic were no more expressive than propositional logic. In [13],

Calcagno et al. observed that in program reasoning it is often necessary to

parameterise a formula. For example, when expressing the weakest precon-

dition for the command disposeList, which is “P ∗ list(x)”, the P stands

for the arbitrary postcondition which we wish to satisfy after the execution

of disposeList. [13] shows that when this kind of parametric formula is

taken into account, context logic is indeed more expressive than previous

systems.

Context logic can be applied to many kinds of structured data, as has been

discussed in [14]. It is shown in [12] that if one applies context logic to a

relatively simple data structure such as a heap the context logic collapses

neatly into separation logic. Here, we are primarily interested in trees.

2.3.1. The Tree

In this thesis we will be using context logic to reason about complex tree-like

structures which correspond to DOM data. This section illustrates context

logic with the example of simple trees, defined as follows:

T ::= ∅ | a[T ] | T ⊗ T

A tree is either empty, a node with a unique label and a subtree, or the

collection of subtrees. The composition operator ⊗ is associative and non-

commutative with unit ∅. The empty tree ∅ may be considered analogous

to the empty heap.

This tree may be manipulated by a program just as a C program manip-

ulates the heap. For reasoning about these manipulations, it is helpful to

consider the natural contexts of these trees:

C ::= | a[C] | C ⊗ T | T ⊗ C

Notice that each context must contain precisely one hole . There is a

simple context application function ap : C × T ⇀ T which inserts a tree

into the hole in a context, and returns the resulting tree.
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Figure 2.1.: Context Application and Adjoints

2.3.2. The Assertion Language

The assertion language of context logic follows separation logic in extending

first-order logic with new operators. Where separation logic introduced

separating conjunction “∗”, context logic introduces separating application

“◦”. Separating application is not symmetric, so in place of separation

logic’s “−∗”, context logic’s “◦” has two right-adjoints: “−◦” and “◦−”.

The formula K ◦ P is satisfied by a tree if that tree can be split into a

context satisfying K and disjoint tree satisfying P.

The formula P−◦Q is satisfied by a context c if, whenever a tree satisfying

P is inserted into the hole in c, the resulting tree satisfies Q.

The formula K ◦−Q is satisfied by a tree t if, whenever it is inserted into

a context satisfying K, the resulting tree satisfies Q.

The three formulae K ◦ P , P −◦ Q and K ◦− Q and the relationships

between them are illustrated in Figure 2.1.

Unlike separation logic, context formula may be partitioned into two

types: tree formulae and context formulae. The treatment above is typ-

ical in that it uses P and Q to refer to tree formulae, and K to refer to

context formulae. Since there are two types of formulae, there are also two

types of true: trueT is satisfied by any tree and trueC is satisfied by any

context.

24



Using context logic, it is possible to specify complex ancestral relation-

ships in a tree. For example, the formula:

(∅−◦ (trueC ◦ x[trueT])) ◦ y[trueT]

This is a complex formula which demonstrates several features of the

context logic assertion language, and also turns out to be a particularly

useful shape for program reasoning in later chapters. It describes any tree

which contains at least two nodes labeled x and y, in which y is not an

ancestor of x.

The formula describes a context (∅−◦(trueC◦x[trueT])) applied to a tree

containing only y and its children. To understand the context ∅−◦ (trueC,

consider Figure 2.1. The formula is a −◦ formula which describes a context

such that if some tree satisfying P were to be inserted, the resulting tree

would satisfy Q. In this case, our formula P is ∅, which means that if the

hole in the context were to simply vanish, then the resulting tree would look

like Q. The Q in this case describes any tree which contains a node “x”.

The context formula therefore describes any context that contains a node

x somewhere within it. Since a context may contain no nodes whose ances-

tors are the context hole we can be sure that after the context application,

the node y is not an ancestor of x in the resulting tree.

2.3.3. Program Reasoning

As with separation logic, context logic may only be used to reason about

programs which are local. The safety-monotonicity and frame properties

are essentially the same as in separation logic, but re-stated in terms of

contexts. Also as with separation logic we have the Frame Rule, re-stated

to use separating application instead of separating conjunction:

{P}C{Q}
{K ◦ P}C{K ◦Q}

We can use context logic to specify a command “move y under x” which

is similar to the DOM command appendChild. This command takes y from

wherever it is in the tree, and places it at the end of the list of x’s children.

If y is an ancestor of x, then this command should fail rather than attempt

to create a structure with a loop, or an unreachable subtree. The axiom for
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this command is as follows:

{(∅−◦ (C ◦ x[T ])) ◦ (y[T ′])}
move y under x

{C ◦ x[T ⊗ y[T ′]]}

The precondition is of the form discussed earlier in Section 2.3.2, which

specifies that y is not an ancestor of x. We use variables such as C and T to

specify that the parts of the tree around x and y which we have examined

do not change during the execution of the command.

As with separation logic, we can apply the Frame Rule to see how this

command behaves in the presence of additional disjoint data:

{z[w[trueT]⊗ ] ◦ ((∅−◦ (C ◦ x[T ])) ◦ (y[T ′]))}
move y under x

{z[w[trueT]⊗ ] ◦ (C ◦ x[T ⊗ y[T ′]])}

It is these sorts of techniques which we will apply in future chapters to

reasoning about DOM programs.

In this thesis, context logic is used to reason about trees and tree-like

structures. However, it can be applied to a wide variety of data structures[14,

71]. There have been a number of developments in understanding context

logic, including adjunct elimination[10], and completeness results[13]. There

has been some success in using context logic in conjunction with separa-

tion logic to relate high level specifications to low level implementations

of those specifications[32, 29]. This thesis represents the first attempt to

apply context logic in an industrial problem-space[33], and has provided

the motivation for the most recent evolution of context logic: the intro-

duction of segment structures which allow smaller specifications for move

commands[34].
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3. Featherweight DOM

This chapter describes “Featherweight DOM”, which is a small XML update

language designed by the author to demonstrate the conceptual core of

DOM.

The W3C DOM specification is divided into a number of levels, of which

the Level 1 is the most fundamental. The Level 1 specification is itself sep-

arated into two parts: Core, which “provides a low-level set of fundamental

interfaces that can represent any structured document”; and HTML, which

“provides additional, higher-level interfaces. . . to provide a more convenient

view of an HTML document”. Furthermore, the DOM Core specification

presents “two somewhat different sets of interfaces to an XML/HTML doc-

ument; one presenting an ‘object-oriented’ approach with a hierarchy of

inheritance, and a ‘simplified’ view that allows all manipulation to be done

via the Node interface”.

Featherweight DOM captures the spirit of the Node interface of DOM

Core Level 1 focusing on the tree structure and simple text nodes. Feather-

weight DOM does not deal directly with more complex DOM structure, such

as Attributes, DocumentFragments and so on. For a more comprehensive

and rigorously compliant treatment of DOM Core Level 1, see Chapter 6.

Featherweight DOM consists of two parts: The DOM library functionality

of Featherweight DOM and the simple imperative language into which the

DOM functionality is embedded. This chapter defines an abstract data

structure, and presents the operational semantics for Featherweight DOM.

3.1. Featherweight DOM Data Structures

We introduce an abstract data structure to represent the XML-like data that

Featherweight DOM programs manipulate. This data structure is given

in Definition 2. Following the shape of this data structure, we also give

the corresponding context structure in Definition 4. This is essential to
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our reasoning and also helpful in describing the operational semantics for

Featherweight DOM.

In the following structure, elements ele and text nodes txt represent their

namesakes in [22]. The grove structure g may be regarded as analogous to

the object heap, and forests f represent the contents of the NodeList object

that contains the children of a given Element1.

A DOM Element in turn corresponds to an XML element. A DOM text

node is an artifact of the DOM choice to model all XML data in terms of

nodes: XML documents may contain text at any point in their structure,

and DOM models this by wrapping that text in a node which may be moved

around and otherwise manipulated in the same way as, for example, an

element node. A side effect of this choice is that the same XML document

may have more than one DOM representation. For example, the XML

〈p〉This is a paragraph〈/p〉 contains the text “This is a paragraph”. This

text may be represented in DOM as a single text node containing the string

“This is a paragraph”, or as two adjacent text nodes containing the strings

“This i” and “s a paragraph”, or as three adjacent text nodes containing

the strings “This i”, “”, “s a paragraph”.

Definition 1 (Strings). Given a finite set Char of text characters, with a

distinguished character ‘#’, strings s ∈ S are defined by: (with c ∈ Char)

strings ∈ S s ::= ∅S | <c>S | s⊗S s

As a notational convenience, we will use the shorthand “abc” to refer to

the string <‘a’>S ⊗S <‘b’>S ⊗S <‘c’>S.

1We follow the DOM specification in that we write DOM type names in UpperCamel-
Case – hence “Element”. When describing XML elements however, it is usual to use
standard English capitalization.
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Definition 2 (Featherweight Data). Given an infinite set ID of node iden-

tifiers and the strings S defined in Definition 1, groves g ∈ G, elements

ele ∈ ELE, forests f ∈ F, text nodes txt ∈ TXT are defined by: (with

id,fid ∈ ID)

groves ∈ G g ::= ∅G | <ele>G | <txt>G | g⊕ g

elements ∈ ELE ele ::= sid[f]fid where ‘#’ 6∈ s

forests ∈ F f ::= ∅F | <ele>F | <txt>F | f⊗F f

text nodes ∈ TXT txt ::= “#text”ids

For well-formedness, the identifiers id and fid must be unique across the

whole data structure. For the remainder of this thesis, we consider only

well-formed data structures, with unique identifiers. The set of possible

data types {G,ELE,F,TXT,S} is written D. Given an arbitrary data

type D ∈ D, d ∈ D denotes arbitrary data, and ids(d) is the set of all

identifiers id and fid in the data structure d.

Definition 3 (Congruence). The structural congruence ≡ is the least equiv-

alence relation on
⋃

D∈DD satisfying:

Associativity of ⊕ g1 ⊕ (g2 ⊕ g3) ≡ (g1 ⊕ g2)⊕ g3

Commutativity of ⊕ g1 ⊕ g2 ≡ g2 ⊕ g1

Identity of ⊕ g ≡ g⊕∅G

Associativity of ⊗F f1 ⊗F (f2 ⊗F f3) ≡ (f1 ⊗F f2)⊗F f3

Identity of ⊗F f ≡ f⊗F ∅F

Associativity of ⊗S s1 ⊗S (s2 ⊗S s3) ≡ (s1 ⊗S s2)⊗S s3

Identity of ⊗S s ≡ s⊗S ∅S

Notice that text nodes txt use the string “#text” which contains the

distinguished character ‘#’. Element nodes on the other hand may have

an arbitrary string s, but that string must not contain the distinguished

character ‘#’. This is as specified in the W3C specification[22].

The XML fragment mentioned earlier: 〈p〉This is a paragraph〈/p〉 can

now be represented as the Featherweight DOM structure:

“p”id[<“#text”id′“This is a paragraph”>F]fid

It can also be represented by the following, equally valid, Featherweight
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DOM structure:

“p”id[<“#text”id′“This i”>F ⊗F “#text”id′′“s a paragraph”>F]fid

Each of these featherweight DOM structures corresponds to a DOM struc-

ture allowed by [22]. These structures are not equivalent under ≡, and they

both accurately represent the XML fragment in question. The string as-

sociated with a Featherweight DOM element structure corresponds to the

nodeName attribute of the corresponding DOM Node, and hence to the

tag of the corresponding XML element. The string associated with Feath-

erweight DOM text structures corresponds to the nodeValue attribute of

the corresponding DOM Node, and hence to a portion of the text in the

corresponding XML document. The id and fid values do not correspond

to any part the XML data. They may be regarded as object addresses

for DOM nodes in an object heap. Their purpose is to uniquely identify

Featherweight DOM structures so that Featherweight DOM programs can

refer to, and update them. The id corresponds to the heap-address of the

Node object in question while the fid corresponds to the heap-address of

the NodeList that contains the children of the Node object in question.

Definition 4 (Featherweight Contexts). Given an infinite set ID of node

identifiers and the data structures defined in Definition 2, grove contexts cg ∈
CG, element contexts cele ∈ CELE, forest contexts cf ∈ CF, text con-

texts ctxt ∈ CTXT, and string contexts cs ∈ CS are defined by:

grove contexts cg ::= −G | <cele>G | <ctxt>G | cg⊕ g

element contexts cele ::= −ELE | sid[cf]fid where ‘#’ 6∈ s

forest contexts cf ::= −F | <cele>F | <ctxt>F | cf⊗F f | f⊗F cf

text contexts ctxt ::= −TXT | “#text”id“cs”

string contexts cs ::= −S | cs⊗S s | s⊗S cs

As before, element names may not contain “#”, identifiers id and fid are

unique across the whole data structure, and there is an analogous congru-

ence ≡. The set of possible context types {CG,CELE,CF,CTXT,CS}
is written CD.

Given data types D1,D2 ∈ D and a context type CD2 ∈ CD which

corresponds to data type D2, we sometimes write cd : D1 → D2 to denote a
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ap(−G,g) , g

ap(<cele>G,d1) , <ap(cele,d1)>G

ap(<ctxt>G,d1) , <ap(ctxt,d1)>G

ap(cg⊕ g,d1) , ap(cg,d1)⊕ g iff ids(g) ∩ ids(d1) = ∅

ap(−ELE, ele) , ele

ap(sid[cf]fid,d1) , sid[ap(cf,d1)]fid if id,fid /∈ ids(d1)

ap(−F, f) , f

ap(<cele>F,d1) , <ap(cele,d1)>F

ap(<ctxt>F,d1) , <ap(ctxt,d1)>F

ap(cf⊗F f,d1) , ap(cf,d1)⊗F f iff ids(f) ∩ ids(d1) = ∅
ap(f⊗F cf,d1) , f⊗F ap(cf,d1) iff ids(f) ∩ ids(d1) = ∅

ap(−TXT, txt) , txt

ap(“#text”id“cs”, s) , “#text”id“ ap(cs, s) ”

ap(−S, s) , s

ap(cs⊗S s′, s) , ap(cs, s)⊗S s′

ap(s′ ⊗S cs, s) , s′ ⊗S ap(cs, s)

Notice that ap is a partial function, and is not defined in cases which would
result in a structure with duplicate ids.

Figure 3.1.: Context Application
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context cd ∈ CD2 with hole −D1 . We call D1 → D2 the context type of cd.

We define the partial application function ap : (D1�D2) × D1 ⇀ D2,

which returns a result if there is no clash of identifiers between the arguments

of the function.

Definition 5 (Context Application). Given data types D1,D2 ∈ D, the

partial application function ap : (D1�D2) × D1 ⇀ D2 is defined by in-

duction on the structure of the first argument in Figure 3.1 (and undefined

where not given). The notation ap(cd,d)↓ states that ap(cd,d) is defined.

Using the application function we can represent the XML fragment

〈p〉This is a paragraph〈/p〉 as a pair of disjoint Featherweight DOM struc-

tures:

ap(“p”id[−F]fid, <“#text”id′“This is a paragraph”>F)

Here the application function has been used to isolate a text node from

its parent. As we shall see, this is particularly useful if we wish to define

a command which operates in the same way on the text node regardless of

its context.

3.2. A Simple Imperative Language

At the core of Featherweight DOM is the simple imperative programming

language into which the DOM library is embedded. While future work will

certainly involve reasoning about DOM in the context of JavaScript, in this

thesis we content ourselves with a language which is as simple as possible.

The language is dynamically typed and consists of sequential composition,

assignment, conditional and loop commands and a simple procedure system

with dynamic scope. This means that the reasoning about Featherweight

DOM given in Chapter 4 cannot rely on language features which JavaScript

doesn’t have, such as static types or properly lexically scoped variables.

In this way, we keep the language simple, focus on reasoning about the

Featherweight DOM library, and also support future development in the

direction of JavaScript.
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3.2.1. Program State

As normal for in-place update, our language depends on a variable store s.

To distinguish program variables from expressions in our reasoning, program

variable names will always be written in lower case.

Definition 6 (The Variable Store). Given the special value null and the

sets of identifiers ID, strings S, integers Z and booleans B, a store is a finite

partial function from variables to values:

s:VarProg ⇀ ({null} ∪ ID ∪ S ∪ Z ∪ B)

Variable lookup of a variable var in a store s is written s(var). The

notation [s|var � v] describes an updated store, which differs from an

existing store s only in that the variable var has the value v. If the existing

store s contains a variable var, then that variable is overwritten in the

new store. If the existing store s does not contain a variable var, then the

new store is extended with that variable. The notation [s\var] describes an

updated store which differs from an existing store s only in that the variable

var has been removed.

The special value null may be thought of as a distinguished identifier

value which refers to no data structure. As we shall see, there are a number

of DOM commands which always return either an identifier in ID or the

special value null.

3.2.2. Expressions

We introduce expressions Expr ∈ Exp which do not alter the program state.

Due to the dynamically typed nature of this language, the values of some

syntactically correct expressions are undefined. If a program command at-

tempts to evaluate such an expression, it will fault. To distinguish ex-

pressions from variables in our reasoning, expression names will always be

written in UpperCamelCase.

Definition 7 (Expressions). Given the special value null, the empty string ∅S,

characters c ∈ Char, integers n ∈ Z, booleans true and false, and vari-
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ables var ∈ VarProg, expressions Expr ∈ Exp are defined by:

Expr ::= null | ∅S | <c>S | n | true | false literal constants

| var variables

| Expr = Expr equality test

| Expr⊗S Expr string concatenation

| len(Expr) string and forest length

| Expr + Expr | Expr− Expr

| Expr× Expr | Expr÷ Expr
arithmetic operations

| Expr ∧ Expr | Expr ∨ Expr | ¬Expr boolean operations

In order to define our expression evaluation, we require the auxiliary

function len.

Definition 8 (Forest Length). The length of a string or forest is defined

by:

len(∅D) , 0

len(<d>D) , 1

len(d1 ⊗D d2) , len(d1) + len(d2)

where D ∈ {F,S}, and d1,d2 ∈ D, and d ∈ ELE ∪TXT ∪C

Definition 9 (Expression Evaluation). The evaluation of expression Expr

in store s is defined by the partial function given in Figure 3.2.

Note that not all syntactically correct expressions can be successfully

evaluated. Attempting to evaluate such an expression at runtime will result

in a runtime fault.

3.2.3. Standard Imperative Commands

The core of the Featherweight DOM language is a set of imperative com-

mands that the reader will be familiar with from many other languages.

Definition 10 (Featherweight DOM Commands). The commands of the
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JnullKs , null

J∅SKs , ∅S

J<c>SKs , <c>S

JnKs , n

JtrueKs , true

JfalseKs , false

JvarKs , s(var) iff var ∈ dom(s)

JExpr = Expr′Ks , JExprKs = JExpr′Ks
JExpr⊗S Expr′Ks , JExprKs ⊗S JExpr′Ks iff JExprKs, JExpr′Ks ∈ S

Jlen(Expr)Ks , len(JExprKs)
JExpr + Expr′Ks , JExprKs + JExpr′Ks iff JExprKs, JExpr′Ks ∈ Z
JExpr− Expr′Ks , JExprKs − JExpr′Ks iff JExprKs, JExpr′Ks ∈ Z
JExpr× Expr′Ks , JExprKs × JExpr′Ks iff JExprKs, JExpr′Ks ∈ Z
JExpr÷ Expr′Ks , JExprKs ÷ JExpr′Ks iff JExprKs, JExpr′Ks ∈ Z
JExpr ∧ Expr′Ks , JExprKs ∧ JExpr′Ks iff JExprKs, JExpr′Ks ∈ B
JExpr ∨ Expr′Ks , JExprKs ∨ JExpr′Ks iff JExprKs, JExpr′Ks ∈ B

J¬LExprKs , ¬JLExprKs iff JLExprKs ∈ B

Note that this function is partial, and therefore that not all syntactically
correct expressions can be evaluated. Attempting to evaluate such an ex-
pression will result in a runtime fault.

Figure 3.2.: Expression Evaluation
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JExprKs = val

s,g, var:=Expr [s|var←val],g

s,g, C1  s′,g′

s′,g′, C2  s′′,g′′

s,g, (C1 ; C2) s′′,g′′

JExprKs = true
s,g, C1  s′,g′

s,g, if Expr then C1 else C2 fi  s′,g′

JExprKs = false
s,g, C2  s′,g′

s,g, if Expr then C1 else C2 fi  s′,g′

s,g, if Expr then C ; while Expr do C od else skip fi  s′,g′

s,g, while Expr do C od  s′,g′

val = s(var)
[s|var � null],g, C s′,g′

s,g, local var : C endloc  [s′|var � val],g′

var 6∈ dom(s)
[s|var � null],g, C s′,g′

s,g, local var : C endloc  [s′ \ var],g′

s,g, skip s,g

Figure 3.3.: Imperative Commands

Featherweight DOM language are:

C ::= var := Expr assignment

| C; C sequential composition

| if Expr then C else C fi conditionals

| while Expr do C od loops

| local var : C endloc local variable declaration

| skip skip

| v:=procname(params) , C procedure declaration

| v:=procname(vars) procedure call

| CDOM DOM commands (see Section 3.3)

We deal with procedures in Section 3.2.4 and the DOM commands in

Section 3.3. We give big-step operational semantics for the remaining com-

mands here.

Definition 11 (Imperative Commands). The operational semantics of Feath-

erweight DOM’s standard imperative commands are given in Figure 3.3

by an evaluation relation  relating configuration triples s,g, C, terminal
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states s,g, and faults.

For convenience, we also have the following simple syntactic sugars.

An else-less if:

if Expr then C fi , if Expr then C else skip fi

We may also group local scope declarations:

local x, y, · · · z :

C

endloc

, local x :

local y :

· · ·
local z :

C

endloc

endloc

endloc

3.2.4. Procedures

We provide a primitive procedure system with dynamic scope. This means

that if a procedure is defined within one local scope declaration, and called

within another, it is the variables in the calling-scope that are modified by

the procedure, not the variables in the lexical defining-scope. Procedures

are defined statically for each program with the following syntax:

v:=procname(params) , C

where procname is the name of the procedure, v is a variable, params is

a vector of variables and C is the body of the procedure.

Definition 12 (procs). Procedures are represented during program exe-

cution as a partial function procs which maps procedure names procname

to the tuple (v, params, C) which contains the return variable v, a vector of

the procedure’s parameter variables params and the procedure’s body C.

Notice that since procedures (and the procs map that contains them) are

both statically defined and dynamically scoped, it does not matter where

in the program text a procedure is written. The following three programs

are equivalent. All result in the variable y taking the value 5.
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y:=0 ;

local x :

x:=4 ;

y:=myproc() ,

y:=x

endloc ;

local x :

x:=5 ;

y:=myproc()

endloc

y:=0 ;

local x :

x:=4

endloc ;

local x :

x:=5 ;

y:=myproc() ,

y:=x

y:=myproc()

endloc

y:=myproc() ,

y:=x

y:=0 ;

local x :

x:=4

endloc ;

local x :

x:=5 ;

y:=myproc()

endloc

Procedure call

Given a partial function procs taking procedure names to procedures, the

semantics of procedure call are given by the following rule:

procs(procname) = (v′, params, C)

|params| = |vars|
params = p1 . . . pn
vars = v1 . . . vn

s,g, C{v/v′, v1/p1, . . . , vn/pn} s′,g′

s,g, v:=procname(vars) s′,g′

where vars is a vector of variables.

Note that procedure call is only defined when the number of parameter

expressions matches the number of parameter variables.

Ignoring Return Values and Void Procedures

Since there are circumstances in which one might wish to ignore the return

value of a procedure, we define syntactic sugars and a special variable for

doing so.

Definition 13 (The devnull variable). The distinguished variable devnull

behaves exactly like any other variable, except that no user-defined program

may mention it. It exists solely for use in the following syntactic sugars.
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When we wish to ignore the return value of a procedure or DOM command

“var:=command(vars)”, we may use the syntactic sugar:

command(vars)

which expands to:

local devnull :

devnull:=command(vars)

endloc

Since the devnull variable is not mentioned in any user-defined program,

the only effect of this syntactic sugar is to calculate the return value of the

procedure as normal, and then to ignore it.

When we wish to define a procedure which returns no value, we may use

the syntactic sugar:

procname(params) , C

which expands to:

devnull:=procname(params) , C

Since the devnull variable is not mentioned in any user-defined program

(and in particular, is not mentioned in C), the effect of this syntactic sugar

is to produce a procedure which has no effect on its return variable. The

procedure is therefore most naturally called using the syntactic sugar for

ignoring a return value.

3.3. Featherweight DOM Commands

The essential character of Featherweight DOM is found not in its simple

imperative core, but in the DOM library Commands embedded in the sim-

ple imperative language. The DOM library commands are defined in this

section.

Recall that we are compiling the essence of the Node interface defined

in [22]. That interface defines a number of commands of which we specify

an essential subset. Since that interface makes extensive use of NodeList

objects, we also specify commands from the NodeList interface. In addi-
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tion to these, we also specify two commands from the Document interface:

createElement and createTextNode. We require these two commands in

order to create new nodes in our data structure. Finally, in order to make

it possible to write more interesting example programs, we specify some

commands from the CharacterData interface. We then use the resulting

language to implement the remaining Node interface commands.

Since we are embedding the Featherweight DOM Commands in a sim-

ple imperative language rather than an object oriented language, we do

not insist that all commands (for example, appendChild) return a value

if this would result in them simply returning one of their arguments un-

changed. This simplifies our Featherweight presentation without sacrificing

functionality. For a more slavish adherence to the letter of the W3C DOM

Specification, see Chapter 6.

Recall the standard imperative commands C defined in Section 3.2.3.

Here, we extend that language with DOM commands.

Definition 14 (DOM Library Commands). The DOM library commands

for Featherweight DOM are:

CDOM ::= appendChild(parent, newChild)

| removeChild(parent, oldChild)

| name := getNodeName(node)

| id := getParentNode(node)

| fid := getChildNodes(node)

| node := createElement(Name)

| node := createTextNode(Str)

| node := item(list, Int)

| str:=substringData(node, Offset, Count)

| appendData(node, Arg)

| deleteData(node, Offset, Count)

In line with our procedure semantics, the arguments of most of these

commands are restricted to being variables (written in lowerCamelCase)

rather than expressions. Some commands however, are used in practice

most frequently with literal expressions. These commands can therefore

accept expressions (written in upperCamelCase) as arguments. The DOM

commands have the following behaviour and requirements:
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appendChild (parent, newChild) moves the tree newChild to the end of

parent’s child list. It requires that parent is an element node, and

that newChild is an element and is not an ancestor of parent.

removeChild (parent,oldChild) removes the node oldChild and its sub-

tree from parent’s child forest and re-inserts it at the root of the

grove. It requires that parent is an element and oldChild is a child

of parent.

name := getNodeName (node) assigns to the variable var the nodeName

value of node. It requires that node is either a text node or an element.

If node is a text node, then var is set to “#text”.

var := getParentNode (node) assigns to the variable var the identifier of

the parent of node, if it exists, and null otherwise. It requires that

node is either a text node or an element.

var := getChildNodes (node) assigns to the variable var the identifier of

the child forest of the element node. It requires that node is an el-

ement. We differ slightly from the letter of the W3C specification

in that we do not require this command to return a reference to an

empty NodeList when it is called on a text node. This simplifies our

Featherweight presentation without sacrificing functionality. For a

more rigid treatment of the W3C specification, see the definition of

getChildNodes in Chapter 6.

var := createElement (Name) creates a new element node at the root of

the grove, with fresh id and fid and a name equal to Name. The

identifier id of the new node is recorded in the variable var. It requires

that Name is a string and that # 6∈ JNameKs.

var := createTextNode (Str) creates a new text node at the grove level,

with fresh id and the string contained within the text node set to Str.

It records the new node’s identifier in the variable var and requires

that Str evaluate to a string.

var := item (list, Int) sets the variable var to the (Int + 1)th node in

the list pointed to by list, setting it to null if Int evaluates to an

invalid index. It faults if list does not correspond to the fid of an

existing structure or if Int is not an integer.
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var := substringData (node,Offset,Count) assigns to the variable var a

substring of the string of the text node node. That substring will be of

length Count and will start with (Offset+1)th character of the string

of the text node. If Offset+Count exceeds the string length, then all

the characters to the string end are returned. This command requires

that node is a text node, that Offset and Count be non-negative

integers, and that Offset be at most the string length.

appendData (node, Arg) appends the string Arg to the end of the string

contained in node. It requires that node exists and be a text node

and that Arg evaluate to a string.

deleteData (node, Offset, Count) deletes a substring of length Count start-

ing with the (Offset + 1)th character of the value of the text node

referred to by node. Count. If Offset + Count exceeds the string

length, then all the characters to the string end are deleted. This

command requires that node is a text node, that Offset and Count

be non-negative integers, and that Offset be at most the string length.

Definition 15 (Semantics of The DOM Library Commands). The opera-

tional semantics of these Featherweight DOM commands are given in Fig-

ures 3.4 and 3.5 by an evaluation relation  relating configuration triples

s,g, C, terminal states s,g, and faults.

Featherweight DOM is “minimal” in the sense that each specified DOM

command cannot be implemented in terms of the remaining commands.

Those Node interface commands which are not specified as part of Feath-

erweight DOM can be implemented in terms of those which are. These

implementations may be found in Appendix A.1.
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(
t ≡ name′

s(newChild)
[f′]fid′

∨ t ≡ “#text”s(newChild)“str”

) g ≡ ap(cg′, <t>G)
ap(cg′,∅G) ≡ ap(cg,names(parent)[f]fid)
g′ ≡ ap(cg,names(parent)[f⊗F <t>F]fid)

s,g, appendChild(parent, newChild) s,g′(
t ≡ name′

s(newChild)
[f′]fid′

∨ t ≡ “#text”s(newChild)“str”

) g ≡ ap(cg′, <t>F)
ap(cg′,∅F) ≡ ap(cg,names(parent)[f]fid)
g′ ≡ ap(cg,names(parent)[f⊗F <t>F]fid)

s,g, appendChild(parent, newChild) s,g′

(t ≡ name′
s(oldChild)

[f]fid ∨ t ≡ “#text”s(oldChild)“str”)

g ≡ ap(cg,names(parent)[f1 ⊗F <t>F ⊗F f2]fid′ )
g′ ≡ ap(cg,names(parent)[f1 ⊗F f2]fid′ )⊕<t>G

s,g, removeChild, (parent, oldChild) s,g′

g ≡ ap(cg,names(node)[f]fid)

s,g, var := getNodeName(node) [s|var← name],g

g ≡ ap(cg, “#text”s(node)“str”)

s,g, var := getNodeName(node) [s|var← “#text”],g(
t ≡ name′

s(node)
[f]fid′

∨ t ≡ “#text”s(node)“str”

)
g ≡ ap(cg,nameid[f1 ⊗F <t>F ⊗F f2]fid)

s,g, var := getParentNode(node) [s|var← id],g(
t ≡ name′

s(node)
[f]fid′

∨ t ≡ “#text”s(node)“str”

)
g ≡ ap(cg, <t>G)

s,g, var := getParentNode(node) [s|var← null],g

g ≡ ap(cg,names(node)[f]fid)

s,g, var := getChildNodes(node) [s|var← fid],g

Figure 3.4.: Semantics of Featherweight DOM Commands (Part 1)
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# 6∈ JNameKs g′ ≡ g⊕<JNameKsnode[∅F]fid>G node,fid fresh

s,g, var := createElement(Name) [s|var← node],g′

g′ ≡ g⊕<“#text”nodeJStrKs>G node fresh

s,g, var := createTextNode(Str) s[var← node],g′

(t ≡ name′node[f]fid ∨ t ≡ “#text”node“str”)
g ≡ ap(cg,nameid[f1 ⊗F <t>F ⊗F f2]s(list)) len(f1) = JIntKs

s,g, var := item(list, Int) [s|var← node],g

g ≡ ap(cg,nameid[f]s(list)) JIntKs ≥ len(f) ∨ JIntKs < 0

s,g, var := item(list, Int) [s|var← null],g

g ≡ ap(cg, “#text”s(node)str1 ⊗S str⊗S str2) len(str1) = JOffsetKs len(str) = JCountKs
s,g, var := substringData(node, Offset, Count) [s|var← str],g

g ≡ ap(cg, “#text”s(node)str1 ⊗S str) len(str1) = JOffsetKs len(str) < JCountKs
s,g, var := substringData(node, Offset, Count) [s|var← str],g

g ≡ ap(cg, “#text”s(node)str)

g′ ≡ ap(cg, “#text”s(node)str⊗S JArgKs)

s,g, appendData(node, Arg) s,g′

g ≡ ap(cg, “#text”s(node)str1 ⊗S str⊗S str2)

g′ ≡ ap(cg, “#text”s(node)str1 ⊗S str2)

len(str1) = JOffsetKs len(str) = JCountKs
s,g, deleteData(node, Offset, Count) s,g′

g ≡ ap(cg, “#text”s(node)str1 ⊗S str)

g′ ≡ ap(cg, “#text”s(node)str1)

len(str1) = JOffsetKs len(str) < JCountKs
s,g, deleteData(node, Offset, Count) s,g′

Figure 3.5.: Semantics of Featherweight DOM Commands (Part 2)
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4. Context Logic for

Featherweight DOM

This chapter presents Context Logic for Featherweight DOM.

We follow previous work on Context Logic for analysing simple trees [12].

Although the basic reasoning is the same, the transition was by no means

easy due to the comparative complexity of the DOM structures.

Context Logic consists of standard formulae constructed from the connec-

tives of first-order logic, variables, expression tests, and quantification over

variables. In addition, it has general structural formulae and model-specific

formulae which reflect the data structure being modeled. We adapt the

structural formulae of Context Logic slightly, so as to be able to handle the

multiple types of DOM data. The structural formulae consist of an applica-

tion connective for analysing context application, and its two corresponding

right adjoints. For DOM data types D,D1,D2 ∈ D:

• the application formula P ◦D1 P1 describes data of e.g. type D2,

which can be split into a context of type D1 → D2 satisfying P , and

disjoint subdata of type D1 satisfying P1; the application connective

is annotated with type information about the context hole, since this

cannot be determined from the given data;

• one right adjoint P ◦−D2P2 describes data of e.g. type D1 which, when-

ever it is successfully placed in a context of type D1 → D2 satisfying

P , results in data of type D2 satisfying P2; the adjoint is annotated

with type information about the resulting data, since this cannot be

determined from the hole type; and

• the other right adjoint P1−◦P2 describes a context of e.g. type D1 →
D2 which, whenever data of type D1 satisfying P1 is successfully in-

serted into it, results in data of type D2 satisfying P2; there is no type

annotation as it can be inferred from the type of the given data.
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With DOM-specific formulae we can analyse the data and context struc-

ture of DOM. The DOM-specific formulae have a direct correspondence with

the data structures given in definitions 2 and 4. For example, the specific

forest formula <“name”id[trueF]fid>F describes a forest containing one tree

with top node labelled “name”, an arbitrary subforest, and identifiers de-

termined by the values of the identifier variables given by the store. The

formula:

∃ID, FID. true(F�ELE) ◦F 〈“name”ID[trueF]FID〉F

describes a tree which can be split into a context and a subforest containing

one tree with top node labelled “name”. The formula:

∃ID, FID. (∅F −◦ P ) ◦F 〈“name”ID[trueF]FID〉F

describes a tree that can be split into a context and a subforest containing

a tree with top node “name”. This time the context satisfies the property

that, when the empty forest is put into the context hole, the resulting tree

satisfies formula P . Finally, the formula:

∃ID, FID, ID′, FID′.
(∅F −◦ (true(ELE�G) ◦ELE “name2”ID′ [trueF]FID′)) ◦F 〈“name1”ID[trueF]FID〉F

describes a tree that can be split into a context and a subforest containing a

tree with top node “name1”. The context contains the node “name2”. The

node “name1” may be a descendent of “node2”, but may not be an ancestor

of “node2”. Formulae of this shape are particularly useful in describing

commands which move nodes around the tree.

4.1. Logical Variables

In addition to the program store s which stores program variables, we also

introduce a logical environment e which stores logical variables. Logical vari-

ables may contain any value which may be stored in the program store s, and

in addition may contain any data or context value. These data and context

variables will be used extensively in Section 4.7 to assert that portions of the

DOM tree have are not changed by particular commands. For example, the

triple {NAMEnode[F : F]FID}var := getNodeName(node){NAMEnode[F : F]FID}
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uses the logical variable F (which is of type F) to assert that the command

getNodeName does not change any of the children of node. The logical

environment e is not mentioned in the operational semantics for the Feath-

erweight DOM language, and so values stored in it have no effect whatsoever

on program execution. They exist solely to facilitate reasoning about pro-

grams.

Definition 16 (Logical environment). A logical environment e is a finite

partial function sending logical variables VarLogic to their values:

e:VarLogic → ({null} ∪ ID ∪ Z ∪ B ∪D ∪ (D1�D2))

where D,D1,D2 ∈ D and VarLogic denotes the set of logical variables.

To distinguish logical variables from program variables and expressions

in our reasoning, we adopt the convention that logical variables will always

be written in UPPERCASE.

In the example formulae given earlier, logical variables were existentially

quantified to represent unknown values. For example:

∃ID, FID. true(F�ELE) ◦F 〈“name”ID[trueF]FID〉F

In this example ID and FID are logical variables which represent the iden-

tifiers of the node in question. This technique is useful if we wish to discover

the id of a node in the tree, and later assert that a program variable takes

this value. In addition, it is possible to use logical variables to store the

value of whole forests. For example, consider the formula:

∃ID, FID. true(F�ELE) ◦F 〈“name”ID[F:F]FID〉F

This example is identical to the last one, except that it records the value

of the subforest of the “name” node in the logical variable F. If this sort

of formula is used in the precondition of a command, the variable F may

be used in the postcondition to assert that the subforest has not changed.

The notation :F declares the type of the variable F, and is explained in

Section 4.4
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4.2. Logical Expressions

Since we will wish to, for example, compare program and logical variables

in our logical formulae, we introduce “logical expressions”. The definition

of logical expressions and their evaluation function is identical to that of

program expressions and their evaluation, except that logical expressions

can refer to logical variables, and where a program expression evaluation

would cause a program fault, a logical expression evaluation will render the

formula unsatisfiable.

Definition 17 (Logical Expressions).

LExpr ::= null | ∅D | <c>S | n | true | false | literal constants

var | VAR | program and logical variables

LExpr = LExpr | equality test

LExpr⊗S LExpr | string concatenation

len(LExpr) | string length

LExpr + LExpr | LExpr− LExpr |
LExpr× LExpr | LExpr÷ LExpr |

arithmetic operations

LExpr ∧ LExpr | LExpr ∨ LExpr | ¬LExpr boolean operations

As in Chapter 3.1 we have the shorthand “abc” and we write logical

expression names in UpperCamelCase.

Definition 18 (Logical Expression Evaluation). The evaluation of logical

expression LExpr in store s and environment e is defined by the function

given in Figure 4.1.

Note that this evaluation is a partial function, since not all expressions

can be successfully evaluated. If such an expression is part of a formula,

then it follows directly from the definition of expression comparisons and

DOM-specific formulae in Definition 22 that the formula is unsatisfiable.

Lemma 19 (Program and Logic Expression Equivalence). For any program

expression Expr, store s and environment e such that JExprKs does not fault

we have JExprKs ≡ JExprKs,e

Proof. The proof follows directly from the definitions of program and logi-

cal expressions (which are identical except for the addition of environment

variables to logical expressions) and the evaluation functions of program
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JnullKs,e , null

J∅SKs,e , ∅S

J<c>SKs,e , <c>S

JnKs,e , n

JtrueKs,e , true

JfalseKs,e , false

JvarKs,e , s(var) iff var ∈ dom(s)

JVARKs,e , e(VAR) iff VAR ∈ dom(e)

JLExpr = LExpr′Ks,e , JLExprKs,e = JLExpr′Ks,e
JLExpr⊗S LExpr′Ks,e , JLExprKs,e ⊗S JLExpr′Ks,e iff JLExprKs,e, JLExpr′Ks,e ∈ S

Jlen(LExpr)Ks,e , len(JLExprKs,e)
JLExpr + LExpr′Ks,e , JLExprKs,e + JLExpr′Ks,e iff JLExprKs,e, JLExpr′Ks,e ∈ Z
JLExpr− LExpr′Ks,e , JLExprKs,e − JLExpr′Ks,e iff JLExprKs,e, JLExpr′Ks,e ∈ Z
JLExpr× LExpr′Ks,e , JLExprKs,e × JLExpr′Ks,e iff JLExprKs,e, JLExpr′Ks,e ∈ Z
JLExpr÷ LExpr′Ks,e , JLExprKs,e ÷ JLExpr′Ks,e iff JLExprKs,e, JLExpr′Ks,e ∈ Z
JLExpr ∧ LExpr′Ks,e , JLExprKs,e ∧ JLExpr′Ks,e iff JLExprKs,e, JLExpr′Ks,e ∈ B
JLExpr ∨ LExpr′Ks,e , JLExprKs,e ∨ JLExpr′Ks,e iff JLExprKs,e, JLExpr′Ks,e ∈ B

J¬LExprKs,e , ¬JLExprKs,e iff JLExprKs,e ∈ B

Figure 4.1.: Logical Expression Evaluation
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and logical expressions (which are identical except for the addition of envi-

ronment variable evaluation for logical expressions).

In the example formulae given earlier, logical expressions were used to

specify the names of some of the nodes in the tree. For example:

∃ID, FID. true(F�ELE) ◦F 〈“name”ID[trueF]FID〉F

In this example, the string “name” is a simple logical expression.

4.3. Logical Formulae

We present the logical formulae for Featherweight DOM, following the in-

formal discussion at the beginning of this chapter.

Definition 20 (Featherweight DOM Formulae). Let A denote a data or

context type of the form D or (D1�D2) where D,D1,D2 ∈ D. The Feath-

erweight DOM Formulae are defined by:

P ::= ¬P | P ∧ P | P ∨ P | trueA | falseA boolean formulae

| P ◦D1 P | P ◦−D2 P | P −◦ P structural formulae

| PDOM DOM-specific formulae (see below)

| VAR:A type-annotated logical variables

| LExpr .
= LExpr | LExpr <· LExpr expression equality and inequality

| LExpr ∈ LExpr substring inclusion

| LExpr ∈ D type checking

| ∃VAR. P quantification

where VAR denotes a logical variable. Notice the unusual use of the notation

StringExpr1 ∈ StringExpr2 to denote that StringExpr1 as a substring of

StringExpr2.

The DOM-specific formulae are:

PDOM ::= −ELE | PId[P ]Fid

| −TXT | “#text”IdP

| ∅F | −F | <P>F | P ⊗F P

| ∅G | −G | <P>G | P ⊕ P

| ∅S | −S | <P>S | P ⊗S P | LExpr
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P :A

¬P :A

P1:A P2:A

(P1 ∧ P2):A

P1:A P2:A

(P1 ∨ P2):A

trueA:A falseA:A

Figure 4.2.: Boolean Formula Types

As will be further explained in Section 4.4, there is a firm boundary be-

tween untyped expressions and typed formulae. The formula ∅G is statically

known to have type G, but the type of the expression VAR depends on the

environment that the variable VAR is evaluated in. If that environment maps

VAR to ∅G then the expression VAR is of type G, but VAR could just as easily

take the value ∅F of type F. In contrast to the untyped expression VAR, the

typed formula VAR : F has the statically known type F. This formula is only

satisfied by a concrete data structure f of type F and a logical environment

which maps the variable VAR to a concrete data structure equivalent to f.

Note in particular that the formula VAR : F can never be satisfied by the

concrete data structure ∅G, not even if the logical environment maps the

variable VAR to the concrete structure G.

We take equal care to distinguish between the untyped expression Expr1 =

Expr2 and the typed formula Expr1
.
= Expr2. Previous works [50, 12] have

often included expressions as formulae, and hence recycled the equality op-

erator of their expression language at the formula level. Doing this in feath-

erweight DOM would allow us to write expressions such as VAR without

type annotations at the formula level. For this reason, maintaining the

boundary between untyped expressions and typed formulae requires us to

distinguish between untyped expression-level equality Expr1 = Expr2 and

typed formula-level equality Expr1
.
= Expr2.

The types of formulae and the consequences of referring to untyped ex-

pressions in typed formulae are described more thoroughly in the next sec-

tion.
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P1:D1�D2 P2:D1

(P1 ◦D1 P2):D2

P1:D1�D2 P2:D2

(P1 ◦−D2 P2):D1

P1:D1 P2:D2

(P1 −◦ P2):D1�D2

Figure 4.3.: Structural Formula Types

4.4. Formula Types

The type annotations on the formulae enable us to define a simple typing

relation P :A, where A is a data or context type, by induction on the struc-

ture of formula P . For a formula to be satisfied by a datum or context

a ∈ A, the formula in question must also be of type A.

The Boolean formulae and quantified formulae inherit their types from

the subformulae. Formulae which only compare expressions (such as
.
= and

<·) will satisfy arbitrary A, since they test the store rather than the data

and context structures and hence are really outside the typing system. The

DOM-Specific formulae have specific types.

Definition 21 (Formula Types). Let A denote a data or context type of

the form D or (D1�D2) where D,D1,D2 ∈ D. The types for the boolean

formulae are given in Figure 4.2. The types for the structural formulae are

given in Figure 4.3. DOM-specific formulae types are given in Figure 4.4

while the remaining formula types are given in Figure 4.5.

The boundary between untyped logical expressions and typed formulae is

managed by the use of type annotation. In particular, logical variables must

be annotated using the notation VAR:A. If the value of a logical variable

does not match the type of its annotation, then the formula is unsatisfiable.

A formula which compares untyped expressions using
.
= does not require

the two expressions being compared to be of any particular type, but it is

only satisfied if they both evaluate to the same value. This in turn implies

that the expressions evaluate to values of the same type. In contrast, a

formula which compares untyped expressions using <· does require that the

two expressions being compared evaluate to a specific type – they must be

integers. In all other cases, it is unsatisfiable.

Finally, notice that untyped expressions may appear without annotation

as a part of a DOM-specific string formula. In this case the formula is of

type S and is only satisfiable if the expression in question evaluates to a
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−D:D�D

P :S P ′:F

PId[P ′]FId:ELE

P :S P ′:D�F

PId[P ′]FId:D�ELE

P :S

“#text”IdP :TXT

P :S�S

“#text”IdP :S�TXT ∅D:D

P1:D�F P2:F

(P1 ⊗F P2):D�F

P1:F P2:D�F

(P1 ⊗F P2):D�F

P :TXT

<P>F:F

P :ELE

<P>F:F

P :D�TXT

<P>F:D�F

P :D�ELE

<P>F:D�F

P1:F P2:F

(P1 ⊗F P2):F

P :TXT

<P>G:G

P :ELE

<P>G:G

P :D�TXT

<P>G:D�G

P :D�ELE

<P>G:D�G

P1:G P2:G

(P1 ⊕ P2):G

P1:D�G P2:G

(P1 ⊕ P2):D�G

P :C

<P>S:S

P1:S P2:S

(P1 ⊗S P2):S

LExpr:S

P1:S P2:D�S

(P1 ⊗S P2):D�S

P1:D�S P2:S

(P1 ⊗S P2):D�S

Figure 4.4.: DOM-Specific Formula Types

(VAR:A):A (LExpr
.
= LExpr′):A (LExpr <· LExpr′):A

(LExpr ∈ LExpr′):A (LExpr ∈ D):A

P :A

(∃VAR. P ):A

Figure 4.5.: Remaining Formula Types
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string. For example, note the difference between the formula VAR:ELE and

the formula VAR. The formula VAR:ELE is of type ELE and is satisfied by

the element node which is equal to the element node stored in the logical

variable VAR. If the logical variable VAR does not contain an element node,

the formula is unsatisfiable. The formula VAR is of type S and is satisfied by

the string which is equal to the value stored in VAR. If the logical variable

VAR does not contain a string, the formula is unsatisfiable.

Recall the example formula given earlier:

∃ID, FID. true(F�ELE) ◦F 〈“name”ID[F:F]FID〉F

The purpose of the type annotations in that formula should now be clear.

In particular, notice that the logical variable F may contain any value of

any type. However, the formula is only satisfiable if the logical variable F

contains a forest of type F as asserted by the type annotation :F.

Sometimes, it is convenient to write a formula with an under-specified

type. For example:

<trueT>F where T ∈ {ELE,TXT}

This formula is really shorthand for the following two formulae:

<trueELE>F

<trueTXT>F

Together, these formulae are satisfied by a singleton forest which contains

either an element or a text node.

Similarly, consider the formula:

<T:T>F where T ∈ {ELE,TXT}

This formula is identical to the previous example, except that it also

asserts that the element or node in question be equal to the one stored in

the logical variable T. This pattern is particularly useful when we wish to

refer to a node with a particular id without requiring that that node be of

a particular type. For example, the precondition of a command might refer
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to the node identified by the program variable “node”:

(NAMEnode[F:F]FID ∨ NAMEnodeVAL) ∧ T:T

where T ∈ {ELE,TXT}

This formula may be satisfied by either an element or a text node, so long

as that node is referred to by the program variable node. Notice also that

the logical variable T must contain the element or text node in question.

This allows us to refer to the same variable in both the precondition and

postcondition of a command. For example in the axiom for “getNodeName”

(given in Figure 4.11), we use the variable T to assert that the grove is not

changed by the command.

4.5. Satisfaction

Definition 22 (Satisfaction for Featherweight DOM). The semantics of

our logic for Featherweight DOM is given by the satisfaction relation |=A

where A denotes a data or context type of the form D or (D1�D2) for

D,D1,D2 ∈ D.

The satisfaction relation for boolean formulae is given in Figure 4.6. The

satisfaction relation for the structural formulae is given in Figure 4.7. The

relation for DOM-specific formulae is given in Figures 4.8 and 4.9 while

the relation for the remaining formulae1 is in Figure 4.10. This relation

makes use of value equality “=”, set inclusion “∈” and a substring predi-

cate substr(s1, s2) which holds precisely when the concrete string s1 is a

substring of the concrete string s2.

Notice that the formula ¬P is not satisfied by data or contexts of a

different type to P . The formula ¬P is satisfied by all data or contexts which

do not satisfy P , so long as they are also of the same type as P . For example,

the formula ∃ID, FID. “p”ID[trueF]FID is satisfied by all elements with the

nodeName “p”. The formula ¬(∃ID, FID. “p”ID[trueF]FID) is satisfied by all

elements whose nodeName is not “p”.

1Notice that meaning of the notation
.
= is significantly different from the similar notation

routinely used in separation logic. In those separation logic the notation , x
.
= y is

equivalent to x = y ∧ emp, and so the footprint of x
.
= y is of size zero. In this

work we use
.
= to distinguish the untyped expression Expr = Expr′ from the typed

formula Expr
.
= Expr′.The boundary between untyped expressions and typed formulae

is discussed further in Section 4.4.
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e, s,a |=A ¬P ⇐⇒ P :A ∧ e, s,a 6|=A P
e, s,a |=A P1 ∧ P2 ⇐⇒ (e, s,a |=A P1) ∧ (e, s,a |=A P2)
e, s,a |=A P1 ∨ P2 ⇐⇒ (e, s,a |=A P1) ∨ (e, s,a |=A P2)
e, s,a |=A trueA always
e, s,a |=A falseA never

Figure 4.6.: Satisfaction for Boolean Formulae

e, s,d2 |=D2 P1 ◦D1 P2 ⇐⇒ ∃cd:(D1�D2),d1:D1.d2 = ap(cd,d1)
∧ e, s, cd |=(D1�D2) P1 ∧ e, s,d1 |=D1 P2

e, s,d1 |=D1 P1 ◦−D2 P2 ⇐⇒ ∀cd:(D1�D2). (e, s, cd |=(D1�D2) P1 ∧
ap(cd,d1)↓)⇒ e, s, ap(cd,d1) |=D2 P2

e, s, cd|=(D1�D2)P1 −◦ P2 ⇐⇒ ∀d1:D1. e, s,d1 |=D1 P1 ∧ ap(cd,d1)↓
⇒ e, s, ap(cd,d1) |=D2 P2

Figure 4.7.: Satisfaction for Structural Formulae

4.6. Derived Notation

Expression inequalities such as ·>, <
.
= and >

.
= are derivable in the usual

way, as is string exclusion 6∈. We also introduce notation for expressing

‘somewhere, potentially deep down’ ♦D1�D2P and ‘everywhere from here

down’ �D1�D2P . Similarly, we define the related concept of “somewhere at

this forest-level” ♦⊗(P ) and “everywhere at this forest-level” �⊗(P ):

♦(D1�D2)P , true(D1�D2) ◦D1 P ♦⊗P , (trueF ⊗F <P>F ⊗F trueF)

�(D1�D2)P, ¬♦(D1�D2)¬P �⊗P, ¬♦⊗¬P

Finally, it is also sometimes convenient to write formula without IDs. So

we introduce the shorthand notation:

P [P ′] , ∃ID, FID. PID[P
′]FID

“#text”P , ∃ID. “#text”IDP

“#text” , ∃ID, VAL. “#text”IDVAL

The notations �⊗ and �(D1�D2) deserve further comment. Since their
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e, s, cd |=(ELE�ELE) −ELE ⇐⇒ cd ≡ −ELE

e, s,d |=ELE PId[P
′]Fid ⇐⇒ ∃s:S, f:F. (d ≡ sJIdKs,e [f]JFidKs,e) ∧

e, s, s |=S P ∧ e, s, f |=F P ′

e, s, cd |=(D�ELE) PId[P
′]Fid ⇐⇒ ∃s:S, cf:(D�F). (cd≡sJIdKs,e [cf]JFidKs,e)

∧ e, s, s |=S P ∧ e, s, cf |=(D�F) P
′

e, s, cd |=(TXT�TXT) −TXT ⇐⇒ cd ≡ −TXT

e, s,d |=TXT “#text”IdP ⇐⇒ ∃s:S. (d≡“#text”JIdKs,e“s”) ∧ e, s, s |=S P

e, s, cd |=(S�TXT) “#text”Id“P”⇐⇒ ∃cs:(S�S). (cd ≡ “#text”JIdKs,e“cs”) ∧
e, s, cs |=(S�S) P

e, s,d |=F ∅F ⇐⇒ d ≡ ∅F

e, s, cd |=(F�F) −F ⇐⇒ cd ≡ −F

e, s,d |=F <P>F ⇐⇒ ∃d′:D. (d ≡ <d′>F) ∧ e, s,d′ |=D P

e, s, cd |=(D1�F) <P>F ⇐⇒ ∃cd′:(D1�D2). (cd≡<cd′>F) ∧ e, s, cd′|=(D1�D2)P

e, s,d |=F P1 ⊗F P2 ⇐⇒ ∃f1:F, f2:F. (d ≡ f1 ⊗F f2) ∧
e, s, f1 |=F P1 ∧ e, s, f2 |=F P2

e, s, cd |=(D�F) P1 ⊗F P2 ⇐⇒ ∃cd′:(D�F), f′:F.
((cd ≡ cd′ ⊗F f′) ∧ e, s, cd′ |=(D�F) P1 ∧ e, s, f′ |=F P2) ∨
((cd ≡ f′⊗Fcd′) ∧ e, s, f′ |=F P1 ∧ e, s, cd′ |=(D�F) P2)

Figure 4.8.: Satisfaction for DOM-Specific Formulae (Part 1)

57



e, s,d |=G ∅G ⇐⇒ d ≡ ∅G

e, s, cd |=(G�G) −G ⇐⇒ cd ≡ −G

e, s,d |=G <P>G ⇐⇒ ∃d′:D. (d ≡ <d′>G) ∧ e, s,d′ |=D P

e, s, cd |=(D1�G) <P>G ⇐⇒ ∃cd′:(D1�D2). (cd ≡ <cd′>G) ∧ e, s, cd′ |=(D1�D2) P

e, s,d |=G P1 ⊕ P2 ⇐⇒ ∃d1:G,d2:G. (d ≡ d1 ⊕ d2) ∧
e, s,d1 |=G P1 ∧ e, s,d2 |=G P2

e, s, cd |=(D�G) P1⊕P2 ⇐⇒ ∃cd′:(D�G),g:G. (cd ≡ cd′ ⊕ g) ∧
e, s, cd′ |=(D�G) P1 ∧ e, s,g |=G P2

e, s, cd |=(S�S) −S ⇐⇒ cd ≡ −S

e, s,d |=S LExpr ⇐⇒ d ≡ JLExprKs,e ∧ JLExprKs,e ∈ S ∪ {null}

e, s,d |=S P1 ⊗S P2 ⇐⇒ ∃d1:S,d2:S. (d ≡ d1 ⊗S d2) ∧
e, s,d1 |=S P1 ∧ e, s,d2 |=S P2

e, s, cd |=(S�S) P1 ⊗S P2 ⇐⇒ ∃cd′:(S�S),d:(S).
((cd≡cd′ ⊗S d) ∧ e, s, cd′|=(S�S)P1 ∧ e, s,d|=SP2) ∨
((cd≡d⊗S cd′) ∧ e, s,d|=SP1 ∧ e, s, cd′|=(S�S)P2)

Figure 4.9.: Satisfaction for DOM-Specific Formulae (Part 2)

e, s,a |=A VAR:A ⇐⇒ e(VAR) ∈ A ∧ a ≡ e(VAR)
e, s,a |=A LExpr

.
= LExpr′ ⇐⇒ JLExprKs,e = JLExpr′Ks,e

e, s,a |=A LExpr <· LExpr′ ⇐⇒ JLExprKs,e, JLExpr′Ks,e ∈ Z ∧ JLExprKs,e < JLExpr′Ks,e
e, s,a |=A LExpr ∈ LExpr′ ⇐⇒ JLExprKs,e, JLExpr′Ks,e ∈ S ∧ substr(JLExprKs,e, JLExpr′Ks,e)
e, s,a |=A LExpr ∈ D ⇐⇒ JLExprKs,e ∈ D
e, s,a |=A ∃VAR. P ⇐⇒ ∃v. [e|VAR � v], s,a |=A P

Figure 4.10.: Satisfaction for the Remaining Formulae
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behaviour is quite similar, we will illustrate with �⊗. While this notation is

described above using the phrase “everywhere at this forest-level”, a more

accurate description might be “everywhere at this forest level which is of

the same type as the following formula”. This is because of the way logical

negation interacts with the types of our formulae. Recall that the formula

¬P is satisfied by all data or contexts which do not satisfy P , so long as they

are also of the same type as P . For example, the formula “p”[trueF] is satis-

fied by all elements with the nodeName “p” and the formula ¬(“p”[trueF])

is satisfied by all elements whose nodeName is not “p”.

With this in mind, consider the following formulae:

• ♦⊗(trueELE) describes a forest which contains at least one element

node.

• ♦⊗(“p”[trueF]) describes a forest which contains at least one element

node with nodeName “p”.

• ♦⊗(¬(“p”[trueF])) describes a forest which contains at least one el-

ement node with a nodeName which isn’t “p”. In particular, this

formula is not satisfied by a forest which contains only text nodes.

• ♦⊗(¬trueELE) describes a forest which contains at least one element

node which does not satisfy trueELE. Since there are no element nodes

which do not satisfy trueELE, this formula is not satisfiable.

• ¬♦⊗(¬trueELE) describes a forest which does not contain any element

node which does not satisfy trueELE. Since there are no element nodes

which do not satisfy trueELE, this formula is trivially satisfied by all

forests.

• ¬♦⊗(¬“p”[trueF]) describes a forest which does not contain any el-

ement node with a nodeName which isn’t “p”. That is to say, all

element nodes in the forest must have the nodeName “p”. This for-

mula is satisfied by a forest which contains only text nodes.

In this light of this interaction between logical negation, the types of our

formulae and the “somewhere” notation, consider the following formulae:

• �⊗(trueELE) describes any forest in which all element nodes satisfy

trueELE. Since all element nodes satisfy trueELE by definition, this

formula is satisfied by all forests.
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• �⊗(“p”[trueF]) describes any forest in which all element nodes have

the nodeName “p”. This formula is therefore also satisfied by a forest

which contains only text nodes.

• ¬♦⊗(trueTXT)∧�⊗(“p”[trueF]) describes a forest which contains only

element nodes, in which all those element nodes have nodeName “p”.

The notation �(D1�D2) is similar. For example, the formula

¬♦(TXT�F)(trueTXT) ∧ �(ELE�F)(“p”[trueF]) describes a forest in which

there are no text nodes, and all the elements have nodeName “p”, and all

the children of those elements are elements with nodeName “p”, as are all

their children and so on.

4.7. Program Reasoning

Program reasoning for Featherweight DOM follows the example of the pro-

gram reasoning for the Basic Tree Update language (BTU) defined in Zarfaty’s

thesis[71]. Featherweight DOM includes several commands that have no

counterpart in BTU, but the more significant difference is the extra com-

plexity of the Featherweight DOM data structure. For example, the tree

structure of BTU is uniform, meaning that there is no difference between

a node at the top of the tree and a node arbitrarily deep in the tree. The

semantics of BTU are defined on this uniform structure, which makes the

definition of fault-avoiding Hoare triples in the style of O’Hearn et al[55]

relatively simple. In contrast, the Featherweight DOM structure has a dis-

tinguished “grove layer” consisting of structures wrapped up using < . . .>G

and composed using ⊕. No node in the grove layer may have a parent,

and the semantics of Featherweight DOM commands are only defined at

the grove level (See Definiions 11 and 15). The commands appendChild,

removeChild, createElement, createTextNode do intuitively act at the

grove level:

• appendChild takes a subtree from its current position and appends

it to the subtree of an element node. The element node that serves

as the new parent of the subtree might potentially be anywhere in

the grove. There may be no common ancestor element of both the

subtree to be moved and the new parent element, which means that

the structure the command effects is a grove-level structure.
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• removeChild takes a subtree from its current position and places it

at the grove-level.

• createElement creates a new element node which is placed at the

grove-level.

• createTextNode creates a new text node which is placed at the grove-

level.

However, the commands getNodeName, getChildNodes, item, substring-

Data, appendData, deleteData essentially act on specific subtrees identified

by the command, rather than at the grove level. For example the command

getNodeName returns the name of a particular node, whether that node

is at the grove level or arbitrarily deep in the tree. The command get-

ParentNode is a hybrid, having different behaviour at the subtree level

(where it returns the parent) and the grove level (where it returns null).

We therefore provide two forms of local Hoare triple, depending on whether

we are reasoning about trees or groves. We use O’Hearn’s fault-avoiding

partial correctness interpretation of triples, which requires not only partial

correctness, but also fault avoidance. This says that if a state satisfies a

precondition, then the command cannot fault and the resulting state must

satisfy the postcondition.

Definition 23 (Local Hoare Triples). Given a Featherweight DOM com-

mand C and two grove formulae P :G, Q:G, the Hoare triple {P}C{Q} is

said to hold iff whenever e, s,g |=G P then:

partial correctness ∀s′,g′. s,g, C s′,g′ ⇒ e, s′,g′ |=G Q

fault avoidance s,g, C 6 fault

Similarly, given a Featherweight DOM command C and two tree formulae

P :T, Q:T where T ∈ {ELE,TXT}, the Hoare triple {P}C{Q} is said to

hold iff whenever e, s,g |=G <P>G then:

• ∀s′,g′. s,g, C s′,g′ ⇒ e, s′,g′ |=G <Q>G (partial correctness)

• s,g, C 6 fault (fault avoidance)

Notice that our interpretation of the Hoare triples on trees coerces those

trees to singleton groves using <−>G. This allows us to reason at the
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{
(∅D −◦ (C:ELE�G ◦ELE (NAMEparent[F:F]FID))) ◦D
<(NAME′newChild[F

′:F]FID′ ∨ “#text”newChildVAL) ∧ T:D′>D

}
appendChild(parent, newChild)

{C:ELE�G ◦ELE (NAMEparent[F:F⊗F <T:D′>F]FID)}
where D ∈ {F,G},D′ ∈ {ELE,TXT}

 <C:ELE�G ◦ELE (NAMEparent[
F1:F⊗F <(NAME′oldChild[F

′:F]FID′ ∨ “#text”oldChildVAL) ∧ T:D>F ⊗F F2:F
]FID)>G


removeChild(parent, oldChild)

{<C:ELE�G ◦ELE (NAMEparent[F1:F⊗F F2:F]FID)>G ⊕<T:D>G}
where D ∈ {ELE,TXT}

{(NAMEnode[F:F]FID ∨ NAMEnodeVAL) ∧ T:D}
var := getNodeName(node)
{T:D ∧ (var

.
= NAME)}

where D ∈ {ELE,TXT}

{NAME′
ID′ [F1:F⊗F <(NAMEnode[F:F]FID ∨ “#text”nodeVAL) ∧ T:D>F ⊗F F2:F]FID′}

var := getParentNode(node)
{NAME′

ID′ [F1:F⊗F <T:D>F ⊗F F2:F]FID′ ∧ (var
.
= ID′)}

where D ∈ {ELE,TXT}

{<(NAMEnode[F:F]FID ∨ “#text”nodeVAL) ∧ T:D>G}
var := getParentNode(node)
{<T:D>G ∧ (var

.
= null)}

where D ∈ {ELE,TXT}

{NAMEY[F:F]FID ∧ node
.
= Y}

var := getChildNodes(node)
{NAMEY[F:F]FID ∧ (var

.
= FID)}

{∅G ∧ var
.
= Y ∧ Name ∈ S ∧ ‘#′ 6∈ Name}

var := createElement(Name)
{∃FID. <Name{Y/var}var[∅F]FID>G}

{
NAMEID[F1:F⊗F <(NAME′

ID′ [F
′:F]FID′ ∨ “#text”ID′VAL

′) ∧ T:D>F ⊗F F2:F]list
∧ (Int

.
= len(F1)) ∧ Y

.
= list

}
var := item(list, Int)

{NAMEID[F1:F⊗F <T:D>F ⊗F F2:F]Y ∧ (var
.
= ID′)}

where D ∈ {ELE,TXT}

{NAMEID[F:F]list ∧ list
.
= Y ∧ (Int <· 0 ∨ Int >

.
= len(F))}

var := item(list, Int)
{NAMEID[F:F]Y ∧ (var

.
= null)}

Figure 4.11.: Featherweight DOM Axioms (Part 1)

62



{
“#text”node(STR1 ⊗S STR′ ⊗S STR2) ∧ (Offset

.
= len(STR1))

∧ (Count
.
= len(STR′) ∧ node

.
= Y)

}
var := substringData(node, Offset, Count)

{“#text”Y(STR1 ⊗S STR′ ⊗S STR2) ∧ (var
.
= STR′)}{

“#text”node(STR1 ⊗S STR′) ∧ (Offset
.
= len(STR1))

∧ (Count·> len(STR′)) ∧ node
.
= Y

}
var := substringData(node, Offset, Count)
{“#text”Y(STR1 ⊗S STR′) ∧ (var

.
= STR′)}

{“#text”nodeSTR ∧ Arg ∈ S}
appendData(node, Arg)

{“#text”node(STR⊗S Arg)}{
“#text”node(STR1 ⊗S STR⊗S STR2) ∧ (Offset

.
= len(STR1))

∧ (Count
.
= len(STR))

}
deleteData(node, Offset, Count)
{“#text”node(STR1 ⊗S STR2)}{

“#text”node(STR1 ⊗S STR) ∧ (Offset
.
= len(STR1))

∧ (Count·> len(STR))

}
deleteData(node, Offset, Count)

{“#text”nodeSTR1}

{∅G ∧ var
.
= Y ∧ Str ∈ S}

var := createTextNode(Str)
{<“#text”varStr{Y/var}>G}

{∅G ∧ (Y
.
= Exp)}

var := Exp

{∅G ∧ (var
.
= Y)}

{∅G}
skip

{∅G}

Figure 4.12.: Featherweight DOM Axioms (Part 2)
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tree level even though is only defined for configuration triples containing

groves.

Definition 24 (Command Axioms). The axioms for the basic Feather-

weight DOM commands are given in Figures 4.11 and 4.12.

Notice that we often use substitutions such as in the postcondition of the

createElement command, where the substitution {Y/var} is made over

the expression Name. These substitutions are used to ensure that we avoid

contradictions in cases when two or more program expressions mention the

same variable. For example, if one were to reason about the program

x := createElement(x).

Notice also the use of the type placeholder “D” in axioms such as that

of appendChild which hold for multiple types. By way of illustration, the

appendChild axiom is equivalent to the following four axioms:

{(∅G −◦ (C:ELE�G ◦ELE (NAMEparent[F:F]FID))) ◦G <NAME′newChild[F
′:F]FID′ ∧ T:ELE>G}

appendChild(parent, newChild)

{C:ELE�G ◦ELE (NAMEparent[F:F⊗F <T:ELE>F]FID)}

{(∅G −◦ (C:ELE�G ◦ELE (NAMEparent[F:F]FID))) ◦G <“#text”newChildVAL ∧ T:TXT>G}
appendChild(parent, newChild)

{C:ELE�G ◦ELE (NAMEparent[F:F⊗F <T:TXT>F]FID)}

{(∅F −◦ (C:ELE�G ◦ELE (NAMEparent[F:F]FID))) ◦F <NAME′newChild[F
′:F]FID′ ∧ T:ELE>F}

appendChild(parent, newChild)

{C:ELE�G ◦ELE (NAMEparent[F:F⊗F <T:ELE>F]FID)}

{(∅F −◦ (C:ELE�G ◦ELE (NAMEparent[F:F]FID))) ◦F <“#text”newChildVAL>F ∧ T:TXT}
appendChild(parent, newChild)

{C:ELE�G ◦ELE (NAMEparent[F:F⊗F <T:TXT>F]FID)}

All of these “appendChild” axioms make use of the pattern “(∅−◦ (K ◦
parent)) ◦ newChild” in the precondition to assert that “newChild” is not

an ancestor of “parent”. This pattern is discussed in Chapter 2.3.2. They
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also use the logical variables such as C and F to assert that portions of the

grove remain unchanged by the command. Finally, they all use the logical

variable T to assert that the “newChild” node remains internally unchanged

despite its move into the children of “parent”.

The axiom of “removeChild” is similar in that it uses a type placeholder

“D” and describes the movement of a node in the grove. It is different in

that the move is always to the grove-level, rather than to the child-list of

any other element. As a result there is no need to specify that any node

is not an ancestor of the node being moved, and so there is no need to use

“∅−◦ ”.

Definition 25 (Inference Rules). The local reasoning inference rules include

the standard Hoare Logic Rules for Sequencing, If-Then-Else, While-Do,

Local Block, Consequence, Disjunction, Auxiliary Variable Elimination, and

a local reasoning rule called the Frame Rule. They are given in Figure 4.13.

4.8. Soundness

4.8.1. Defining Soundness

In order for any Hoare reasoning system to be of any use, we require that

for every triple {P}C{Q} which can be derived in the system, and for ev-

ery concrete state which satisfies P , the result of successfully running the

command C in that state is a new concrete state which satisfies Q. More

formally, we must prove the interpretation of Hoare Triples which is given

for Featherweight DOM in Definition 23. For Featherweight DOM, that

interpretation depends on the types of the formulae P and Q, which may

be either tree or grove formulae. If P and Q are grove formulae, then the

interpretation of the triple {P}C{Q} consists of partial correctness and fault

avoidance as follows:

partial correctness ∀s′,g′. s,g, C s′,g′ ⇒ e, s′,g′ |=G Q

fault avoidance s,g, C 6 fault

If the formulae P and Q are tree formulae, then the interpretation of the

triple {P}C{Q} consists of partial correctness and fault avoidance as above,

but with the data lifted to the grove level so as to match the operational
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Sequence:
{P}C1{Q} {Q}C2{R}
{P}C1 ; C2{R}

If Then Else:
{(Bool .

= true) ∧ P}C1{Q} {(Bool
.
= false) ∧ P}C2{Q}

{P}if Bool then C1 else C2 fi {Q}

While:
{(Bool .

= true) ∧ P}C{P}
{P}while Bool do C od {(Bool .

= false) ∧ P}

Local Block:
{var = null ∧ P}C{Q}

{P}local var : C endloc {Q}
var 6∈ free(P,Q)

{P}local var′ : C{var′/var} endloc {Q}
{P}local var : C endloc {Q}

var′ 6∈ free(C)

Consequence:
P ′ ⇒ P {P}C{Q} Q⇒ Q′

{P ′}C{Q′}

Disjunction:
{P}C{Q} {P ′}C{Q′}
{P ∨ P ′}C{Q ∨Q′}

Aux Var Elim:
{P}C{Q}

{∃VAR. P}C{∃VAR. Q}

Frame Rule:
{P}C{Q}

{K ◦D P}C{K ◦D Q}
mod(C) ∩ free(K) = ∅
D ∈ {ELE,TXT,G}

Where free(K) is the set of free variables and mod(C) is the set of variables
changed by C.

Figure 4.13.: Inference Rules for Featherweight DOM
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semantics which are defined on groves. This is a small but significant differ-

ence between Featherweight DOM and previous work, in which there was

only one sort of triple, and therefore only one definition of partial correctness

and fault avoidance. The significance of this difference is explored in the

following sections, which detail the techniques used to prove the soundness

of previous systems, and one crucial problem that occurs when trying to use

those techniques to prove a sound system for reasoning about Featherweight

DOM.

4.8.2. An Existing Approach to Soundness for Local

Reasoning

In [71], Zarfaty proves the soundness of the Frame Rule in his system by

using a natural adaptation of the technique first introduced in [55]. That

technique is to introduce a definition of a “local command”, to prove that

all programs written in the programming language are “local”, and then

to prove that the Frame Rule is correct when used to reason about local

programs.

4.8.3. The Problem with the Existing Approach

Zarfaty relied on a definition of locality that comprised two properties:

safety monotonicity s, t, C 6 fault ∧ ap(c, t)↓ =⇒ s, ap(c, t), C 6 fault

frame property s, t, C 6 fault ∧ ap(c, t)↓ ∧ s, ap(c, t), C  s′, t′ =⇒ ∃t′′

such that s, t, C s′, t′′ ∧ t′ ≡ ap(c, t′′)

Consider naive adaptations of these properties into the context of Feath-

erweight DOM, using t to denote a concrete DOM element or text node, g

for a grove and cg for a grove context, which may have any type of hole:

Safety Monotonicity

(s,g, C 6 fault ∧ ap(cg,g)↓ =⇒ s, ap(cg,g), C 6 fault)

∧ (s,<t>G, C 6 fault ∧ ap(cg, t)↓ =⇒ s, ap(cg, t), C 6 fault)
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Frame Property

(s,g, C 6 fault ∧ ap(cg,g)↓ ∧ s, ap(cg,g), C s′,g′ =⇒ ∃g′′

such that g′ ≡ ap(cg,g′′) ∧ s,g, C s′,g′′)

∧ (s,<t>G, C 6 fault ∧ ap(cg, t)↓ ∧ s, ap(cg, t), C s′,g′ =⇒ ∃t′′

such that g′ ≡ ap(cg, t′′) ∧ s,<t>G, C s′, <t′′>G)

For languages in which all commands satisfy these properties, it is possible

to prove the soundness of the frame rule using the same technique as Zarfaty

used in [71]. Unfortunately, DOM specifies one essential command which

does not satisfy these properties: getParentNode. This command is defined

by the following two operational rules:

(
t ≡ name′s(node)[f]

′
fid

∨ t ≡ “#text”s(node)“str”

)
g ≡ ap(cg,nameid[f1 ⊗F <t>F ⊗F f2]fid)

s,g, var := getParentNode(node) [s|var← id],g(
t ≡ name′s(node)[f]

′
fid

∨ t ≡ “#text”s(node)“str”

)
g ≡ ap(cg, <t>G)

s,g, var := getParentNode(node) [s|var← null],g

Consider the behaviour of the command x := getParentNode(y) when

run on a grove <“parent”1[<“child”2[∅F]3>F]4>G and store in which y

maps to 2. After running the command, the variable x will be equal to

1. Now consider the Frame Property. If we choose cg to be equal to

“parent”1[<−ELE>F]4 and t to be equal to “child”2[∅F]3, the frame prop-

erty then requires that the behaviour of the getParentNode command on

the grove <t>G also result in the variable x being set equal to 1. In fact,

the behaviour of this command on this grove is to set x to be equal to null.

It is clear that, at least given this definition of locality, the getParent-

Node command is not local. Rather than try to find a definition of locality

which does allow the getParentNode command, we take this opportunity to

present a method for allowing local reasoning about non-local commands.
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4.8.4. A New Approach

Outline

The proof of soundness of reasoning with context logic for Featherweight

DOM follows the proof of soundness of reasoning with context logic about

the Basic Tree Update (BTU) language provided by Zarfaty [71]. However

while Zarfaty’s tree structure was uniform, the Featherweight DOM struc-

ture is not. As we have seen, some Featherweight DOM commands act at

the tree level, some at the grove level and some at both.

Both BTU and Featherweight DOM have only one non-standard inference

rule, and this is the Frame Rule. The most interesting part of Zarfaty’s

soundness proof is his handling of this rule, which in turn closely follows the

approach of O’Hearn et al. That approach is to define a notion of a “local

command”, and to prove that the Frame Rule is sound when reasoning

about local commands.

Since Zarfaty’s tree structure is uniform, a uniform notion of locality is

natural. However, the Featherweight DOM structure is not uniform and

calls for different notions of locality at the grove and tree levels.

The command getParentNode is particularly problematic, since it oper-

ates at both the grove level and the tree level and behaves differently at

different levels. In order to prove the Frame Rule sound for commands like

this, we need to know which sort of locality we are dealing with in each

case.

Our approach is to define locality not simply as a property of a command,

but as a property of a command with respect to a formula. In this section,

we define what it means for a command C to be local to all groves or trees

described by a formula P . We show that if a command is local to a formula

P , then it is also local to extensions of that formula K ◦D P . We show

that all Featherweight DOM commands are local to the preconditions of

their axioms. Finally, we show that all Featherweight DOM inference rules

propagate the property of locality and that the frame rule is sound for

reasoning about commands which are local to their precondition.

4.8.5. Defining Locality

First we define what it means for a command to be local with respect

to a formula, and we show an important property of locality. Zarfaty’s
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Program faults.

Program predictable.

Figure 4.14.: Traditional Locality

Program faults.

Program predictable.

Program unpredictable.

Figure 4.15.: A Third Option

approach to locality can be visualised as in Figure 4.14. A command is either

has enough resource to run predictably, or so little resource that it faults.

We introduce a third option, illustrated in Figure 4.15. A command may

have so little resource that it faults, or it may have enough resource to run

predictably as before, but it may also have an amount in the middle: enough

resource that it doesn’t fault, but not enough that it will run predictably.

We weaken the definition of traditional locality by considering the behaviour

of a command only when it has enough resource, not only to merely avoid

faulting, but to behave predictably. We measure this footprint using a

formula P , and say that the command is local “with respect to P”. Note

that this definition of locality is strictly weaker than the more traditional

70



definition. If a command is local in the traditional sense, then it is certainly

local with respect to all possible formulae P .

Definition 26 (Locality). Locality is defined differently at the grove and

tree levels.

A command C is local to a footprint described by formula P where P :G

if it satisfies the following two properties:

grove-level safety-monotonicity

s,d, C 6 fault ∧ ap(c,d)↓ ∧
(∃e,dfoot, csurplus.d ≡ ap(csurplus,dfoot) ∧ e, s,dfoot |=G P )

=⇒ s, ap(c,d), C 6 fault

grove-level frame property

s,d, C 6 fault ∧ ap(c,d)↓ ∧ s, ap(c,d), C s′,d2 ∧
(∃e,dfoot, csurplus.d ≡ ap(csurplus,dfoot) ∧ e, s,dfoot |=G P )

=⇒ ∃d3. s,d, C s′,d3 ∧ d2 ≡ ap(c,d3)

A command C is local to a footprint described by formula P where

P :T,T ∈ {ELE,TXT} if it satisfies the following four properties:

tree-level safety-monotonicity

s,<d>G, C 6 fault ∧ ap(c,d)↓ ∧ c:(D�G) ∧
(∃e,dfoot, csurplus.d ≡ ap(csurplus,dfoot) ∧ e, s,dfoot |=T P )

=⇒ s, ap(c,d), C 6 fault

tree-level frame property

s,<d>G, C 6 fault ∧ ap(c,d)↓ ∧ s, ap(c,d), C s′,d2 ∧
(∃e,dfoot, csurplus.d ≡ ap(csurplus,dfoot) ∧ e, s,dfoot |=T P )

=⇒
∃d3. s, <d>G, C s′, <d3>G ∧ d2 ≡ ap(c,d3)
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node-grove-level safety-monotonicity

s,d, C 6 fault ∧ ap(c,d)↓ ∧ c:(D�G) ∧
(∃e,dfoot, csurplus.d ≡ ap(csurplus,dfoot) ∧ e, s,dfoot |=T P )

=⇒ s, ap(c,d), C 6 fault

node-grove-level frame property

s,d, C 6 fault ∧ ap(c,d)↓ ∧ s, ap(c,d), C s′,d2 ∧
(∃e,dfoot, csurplus.d ≡ ap(csurplus,dfoot) ∧ e, s,dfoot |=T P )

=⇒
∃d3. s,d, C s′,d3 ∧ d2 ≡ ap(c,d3)

In order to show the soundness of the frame rule, we will require that if a

command C is local in the triple {P}C{Q} then it must also be local in the

extended triple {K ◦D P}C{K ◦D Q}. This property is the monotonicity of

locality as defined below.

Lemma 27 (Monotonicity of Locality). If a command C is local to a foot-

print described by P then it is also local to all extensions of that footprint

described by K ◦D P .

Proof. Consider the three possible cases separately: The case in which P :G ;

the case in which P :T and K:(T�T′) for T,T′ ∈ {ELE,TXT} ; and the

case in which P :T and K:(T�G) for T ∈ {ELE,TXT}.

• First, consider the case in which P :G.

The aim is to prove that grove-level safety-monotonicity of C with

respect to P implies grove-level safety-monotonicity of C with respect

to K ◦GP and that the grove-level frame property of C with respect to

P implies the grove-level frame-property of C with respect to K ◦G P .

grove-level safety-monotonicity

From the given premise:

s,d, C 6 fault ∧ ap(c,d)↓ ∧
(∃e,dfoot, csurplus.d ≡ ap(csurplus,dfoot) ∧ e, s,dfoot |=G P )

=⇒ s, ap(c,d), C 6 fault
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In order the show the conclusion:

s,d, C 6 fault ∧ ap(c,d)↓ ∧
(∃e,dfoot, csurplus.d ≡ ap(csurplus,dfoot) ∧ e, s,dfoot |=G K ◦G P )

=⇒ s, ap(c,d), C 6 fault

It is sufficient to show:

(∃e,dfoot, csurplus.d ≡ ap(csurplus,dfoot) ∧ e, s,dfoot |=G K ◦G P )

=⇒
(∃e,dfoot, csurplus.d ≡ ap(csurplus,dfoot) ∧ e, s,dfoot |=G P )

By the definition of context application, it can be seen that:

(∃e,dfoot, csurplus,d
′
foot, c

′
surplus.d ≡ ap(csurplus,dfoot) ∧

dfoot ≡ ap(c′surplus,d
′
foot) ∧ e, s,d′foot |=G P )

=⇒
(∃e,dfoot, csurplus.d ≡ ap(csurplus,dfoot) ∧ e, s,dfoot |=G P )

Since d ≡ ap(csurplus,dfoot) and dfoot ≡ ap(c′surplus,d
′
foot) it is possible

to choose c′′surplus such that d ≡ ap(c′′surplus,d
′
foot). This leads to:

(∃e,d′foot, c
′′
surplus.d ≡ ap(c′′surplus,d

′
foot) ∧ e, s,d′foot |=G P )

=⇒
(∃e,dfoot, csurplus.d ≡ ap(csurplus,dfoot) ∧ e, s,dfoot |=G P )

which is true by the definition of existential quantification.

grove-level frame property

From the given premise:

s,d, C 6 fault ∧ ap(c,d)↓ ∧ s, ap(c,d), C s′,d2 ∧
(∃e,dfoot, csurplus.d ≡ ap(csurplus,dfoot) ∧ e, s,dfoot |=G P )

=⇒ ∃d3. s,d, C s′,d3 ∧ d2 ≡ ap(c,d3)

In order to show the conclusion:

s,d, C 6 fault ∧ ap(c,d)↓ ∧ s, ap(c,d), C s′,d2 ∧
(∃e,dfoot, csurplus.d ≡ ap(csurplus,dfoot) ∧ e, s,dfoot |=G K ◦G P )

=⇒ ∃d3. s,d, C s′,d3 ∧ d2 ≡ ap(c,d3)
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It is sufficient to show:

(∃e,dfoot, csurplus.d ≡ ap(csurplus,dfoot) ∧ e, s,dfoot |=G K ◦G P )

=⇒
(∃e,dfoot, csurplus.d ≡ ap(csurplus,dfoot) ∧ e, s,dfoot |=G P )

which is shown above, in the argument for grove-level safety-monotonicity.

• Next, consider the case in which P :T, Q:T and K:(T�T′) for T,T′ ∈
{ELE,TXT}.

tree-level safety-monotonicity

From the given premise:

s,<d>G, C 6 fault ∧ ap(c,d)↓ ∧ c:(D�G) ∧
(∃e,dfoot, csurplus.d ≡ ap(csurplus,dfoot) ∧ e, s,dfoot |=T P )

=⇒ s, ap(c,d), C 6 fault

In order to show the conclusion:

s,<d>G, C 6 fault ∧ ap(c,d)↓ ∧ c:(D�G) ∧
(∃e,dfoot, csurplus.d ≡ ap(csurplus,dfoot) ∧ e, s,dfoot |=T K ◦T′ P )

=⇒ s, ap(c,d), C 6 fault

It is sufficient to show:

(∃e,dfoot, csurplus.d ≡ ap(csurplus,dfoot) ∧ e, s,dfoot |=T K ◦T′ P )

=⇒
(∃e,dfoot, csurplus.d ≡ ap(csurplus,dfoot) ∧ e, s,dfoot |=T P )

The argument is then the same as that for grove-level safety-monotonicity,

but with the type T substituted in place of the type G.

tree-level frame property, node-grove-level safety-monotonicity

and node-grove-level frame property

As with tree-level safety-monotonicity, the arguments for the tree-level

frame property and the node-grove-level frame property are the same

as for the grove-level frame property, but with the type T substituted

in place of the type G. For node-grove-level safety-monotonicity the

argument is the same as grove-level safety-monotonicity but with the
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type T substituted in place of the type G.

• Finally, consider the case in which P :T, Q:T and K:(T�G) for T ∈
{ELE,TXT}. This case is more interesting, because it involves mov-

ing from tree-level safety-monotonicity and frame properties to grove-

level safety-monotonicity and frame properties.

grove-level safety-monotonicity

Consider arbitrary s,d, c which satisfy:

s,d, C 6 fault ∧ ap(c,d)↓ ∧
(∃e,dfoot, csurplus.d ≡ ap(csurplus,dfoot) ∧ e, s,dfoot |=G K ◦T P )

The goal is to show that s, ap(c,d), C 6 fault.

By the definition of context application, it can be seen that:

s,d, C 6 fault ∧ ap(c,d)↓ ∧
(∃e,dfoot, csurplus,d

′
foot, c

′
surplus.d ≡ ap(csurplus,dfoot) ∧

dfoot ≡ ap(c′surplus,d
′
foot) ∧ e, s,d′foot |=T P )

Since d ≡ ap(csurplus,dfoot) and dfoot ≡ ap(c′surplus,d
′
foot) it is possible

to choose c′′surplus such that d ≡ ap(c′′surplus,d
′
foot). This leads to:

s,d, C 6 fault ∧ ap(c,d)↓ ∧
(∃e,d′foot, c

′′
surplus.d ≡ ap(c′′surplus,d

′
foot) ∧ e, s,d′foot |=T P )

Finally, by node-grove-level safety monotonicity of C with respect to

P , it can be seen that s, ap(c,d)C, 6 fault, which is the goal.

grove-level frame property

Consider arbitrary s,d, c which satisfy:

s,d, C 6 fault ∧ ap(c,d)↓ ∧ s, ap(c,d), C s′,d2 ∧
(∃e,dfoot, csurplus.d ≡ ap(csurplus,dfoot) ∧ e, s,dfoot |=G K ◦T P )

The goal is to show that:

∃d3. s,d, C s′,d3 ∧ d2 ≡ ap(c,d3)
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By the definition of context application, it can be seen that:

s,d, C 6 fault ∧ ap(c,d)↓ ∧ s, ap(c,d), C s′,d2 ∧
(∃e,dfoot, csurplus,d

′
foot, c

′
surplus.d ≡ ap(csurplus,dfoot) ∧

dfoot ≡ ap(c′surplus,d
′
foot) ∧ e, s,d′foot |=G P )

Since d ≡ ap(csurplus,dfoot) and dfoot ≡ ap(c′surplus,d
′
foot) it is possible

to choose c′′surplus such that d ≡ ap(c′′surplus,d
′
foot). This leads to:

s,d, C 6 fault ∧ ap(c,d)↓ ∧ s, ap(c,d), C s′,d2 ∧
(∃e,d′foot, c

′′
surplus.d ≡ ap(c′′surplus,d

′
foot) ∧ e, s,d′foot |=G P )

Finally, by the node-grove-level frame property of C with respect to

P it can be seen that:

∃d3. s,d, C s′,d3 ∧ d2 ≡ ap(c,d3)

which is the goal.

4.8.6. Locality of the Featherweight DOM Commands

We show that each command of Featherweight DOM is local with respect

to the preconditions of its axioms. The most interesting case is that of

getParentNode, which is the only command which is not local according

to the traditional definition. The movement commands appendChild and

removeChild are also interesting, since they alter the structure of the tree.

The remaining commands do not alter the structure of the existing tree,

and are trivially local.

Lemma 28 (Locality of getParentNode). The command getParentNode

is local to the preconditions of its axioms.

Proof. This command is defined by two rules.

Rule 1:

t ≡ name′s(node)[f]
′
fid

∨ t ≡ “#text”s(node)“str”
g ≡ ap(cg,nameid[f1 ⊗F <t>F ⊗F f2]fid)

s,g, id := getParentNode(node) [s|id← id],g
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Rule 2:

t ≡ name′s(node)[f]
′
fid

∨ t ≡ “#text”s(node)“str”
g ≡ ap(cg, <t>G)

s,g, id := getParentNode(node) [s|id← null],g

This command has two axioms, with the following two preconditions:

P ,
{<(NAMEnode[F:F]FID ∨ “#text”nodeVAL) ∧ T:T>G}
where T ∈ {ELE,TXT}

and:

P ′ ,
{NAME′ID′ [F1:F⊗F <(NAMEnode[F:F]FID ∨ “#text”nodeVAL) ∧ T:T>F ⊗F F2:F]FID′}
where T ∈ {ELE,TXT}

Consider each precondition in turn.

The first precondition P is of type G, and so it is necessary to show the

grove-level safety-monotonicity and frame properties.

For safety-monotonicity, consider arbitrary s,d, c such that:

s,d, id := getParentNode(node) 6 fault ∧ ap(c,d)↓ ∧
(∃e,dfoot, csurplus.d ≡ ap(csurplus,dfoot) ∧ e, s,dfoot |=G P

The goal is to show that s, ap(c,d), id := getParentNode(node) 6 
fault.

Since e, s,dfoot |=G P (which stipulates that the node referred to by

node is at the grove-level) there is no need to consider Rule 1 (which

only describes the case in which the node referred to by node has a

parent).

Since e, s,dfoot |=G P , it can be seen that that dfoot must match the

pattern denoted t in Rule 2.

By the definition of Rule 2, for all g, cg such that g ≡ ap(cg,dfoot),

s,g, id := getParentNode(node) 6 fault.

Since d ≡ ap(csurplus,dfoot) it follows that for all g, cg such that
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g ≡ ap(cg,d) it can be seen that:

s,g, id := getParentNode(node) 6 fault

It follows directly that s, ap(c,d), id := getParentNode(node) 6 
fault, which is the goal.

For the frame property, consider arbitrary s,d, c, s′,d2 such that:

s,d, id := getParentNode(node) 6 fault ∧ ap(c,d)↓ ∧
s, ap(c,d), id := getParentNode(node) s′,d2 ∧
(∃e,dfoot, csurplus.d ≡ ap(csurplus,dfoot) ∧ e, s,dfoot |=G P )

The goal is to show that:

∃d3. s,d, id := getParentNode(node) s′,d3 ∧ d2 ≡ ap(c,d3)

As with safety-monotonicity, there is no need to consider Rule 1.

As with safety-monotonicity, dfoot matches the pattern denoted t.

Similarly, by Rule 2, for all g, cg such that g ≡ ap(cg,dfoot) it follows

that:

s,g, id := getParentNode(node) [s|id � null],g

Since d ≡ ap(csurplus,dfoot) it follows by Rule 1 that:

s, ap(c,d), id := getParentNode(node) [s|id � null], ap(c,d)

Which implies that s′ = [s|id � null] and that d2 ≡ ap(c,d).

In addition, by Rule 1 it can be seen that:

s,d, id := getParentNode(node) s′,d

Since d2 ≡ ap(c,d) it is possible to choose d3 ≡ d and show that:

∃d3. s,d, id := getParentNode(node) s′,d3 ∧ d2 ≡ ap(c,d3)

which is the goal.
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The second precondition P ′ is of type ELE, and so it is necessary to show

the tree-level safety-monotonicity and frame properties and the node-

grove-level safety monotonicity and frame properties.

For safety-monotonicity, consider arbitrary s,d, c such that:

s,<d>G, id := getParentNode(node) 6 fault ∧ ap(c,d)↓ ∧ c:(D�G) ∧
(∃e,dfoot, csurplus.d ≡ ap(csurplus,dfoot) ∧ e, s,dfoot |=G P ′

The goal is to show that s, ap(c,d), id := getParentNode(node) 6 
fault.

Since e, s,dfoot |=ELE P ′ (which stipulates that the node referred to

by node has a parent) there is no need to consider Rule 2 (which only

describes the case in which the node referred to by node is at the grove

level).

Since e, s,dfoot |=G P ′, it can be seen that that dfoot must match the

pattern denoted nameid[f1 ⊗F t⊗F f2]fid in Rule 1.

By the definition of Rule 1, for all g, cg such that g ≡ ap(cg,dfoot),

s,g, id := getParentNode(node) 6 fault.

Since d ≡ ap(csurplus,dfoot) it follows that for all g, cg such that

g ≡ ap(cg,d) it can be seen that:

s,g, id := getParentNode(node) 6 fault

It follows directly that s, ap(c,d), id := getParentNode(node) 6 
fault, which is the goal.

For the frame property, consider arbitrary s,d, c, s′,d2 such that:

s,<d>G, id := getParentNode(node) 6 fault ∧ ap(c,d)↓ ∧
s, ap(c,d), id := getParentNode(node) s′,d2 ∧
(∃e,dfoot, csurplus.d ≡ ap(csurplus,dfoot) ∧ e, s,dfoot |=T P )

The goal is to show that:

∃d3. s, <d>G, id := getParentNode(node) s′, <d3>G∧d2 ≡ ap(c,d3)

As with safety-monotonicity, there is no need to consider Rule 2.
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As with safety-monotonicity, dfoot matches the pattern denoted nameid[f1⊗F

t⊗F f2]fid.

Since d ≡ ap(csurplus,dfoot) it follows by Rule 1 that:

s, ap(c,d), id := getParentNode(node) [s|id � id], ap(c,d)

Which implies that s′ = [s|id � id] and that d2 ≡ ap(c,d).

In addition, by Rule 1 it can be seen that:

s,<d>G, id := getParentNode(node) s′, <d>G

Since d2 ≡ ap(c,d) it is possible to choose d3 ≡ d and show that:

∃d3. s, <d>G, id := getParentNode(node) s′, <d3>G∧d2 ≡ ap(c,d3)

which is the goal.

For node-grove-level safety-monotonicity, consider that the only

difference between tree-level safety-monotonicity is that the clause in

the premise of tree-level safety-monotonicity s,<d>G, C 6 fault is

changed in node-grove-level safety-monotonicity to s,d, C 6 fault.

Since the proof of tree-level safety-monotonicity for getParentNode

given above does not use this clause of the premise, the proof of node-

grove-level safety-monotonicity is identical.

For the node-grove-level frame property, the proof is almost

identical to that of the tree-level frame property. Consider arbitrary

s,d, c, s′,d2 such that:

s,d, id := getParentNode(node) 6 fault ∧ ap(c,d)↓ ∧
s, ap(c,d), id := getParentNode(node) s′,d2 ∧
(∃e,dfoot, csurplus.d ≡ ap(csurplus,dfoot) ∧ e, s,dfoot |=T P )

The goal is to show that:

∃d3. s,d, id := getParentNode(node) s′,d3 ∧ d2 ≡ ap(c,d3)

As with tree-level safety-monotonicity and the tree-level frame prop-
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erty, there is no need to consider Rule 2.

As with tree-level safety-monotonicity and the tree-level frame prop-

erty, dfoot matches the pattern denoted nameid[f1 ⊗F t⊗F f2]fid.

Since d ≡ ap(csurplus,dfoot) it follows by Rule 1 that:

s, ap(c,d), id := getParentNode(node) [s|id � id], ap(c,d)

Which implies that s′ = [s|id � id] and that d2 ≡ ap(c,d).

In addition, by Rule 1 it can be seen that:

s,d, id := getParentNode(node) s′,d

Since d2 ≡ ap(c,d) it is possible to choose d3 ≡ d and show that:

∃d3. s,d, id := getParentNode(node) s′,d3 ∧ d2 ≡ ap(c,d3)

which is the goal.

Lemma 29 (Locality of appendChild). The command appendChild is local

to the precondition of its axiom.

Proof. This command is defined by two rules:

Rule 1:

t ≡ name′s(newChild)[f
′]fid′

∨ t ≡ “#text”s(newChild)“str”

g ≡ ap(cg′, <t>G)

ap(cg′,∅G) ≡ ap(cg,names(parent)[f]fid)

g′ ≡ ap(cg,names(parent)[f⊗F <t>F]fid)

s,g, appendChild(parent, newChild) s,g′

Rule 2:

t ≡ name′s(newChild)[f
′]fid′

∨ t ≡ “#text”s(newChild)“str”

g ≡ ap(cg′, <t>F)

ap(cg′,∅F) ≡ ap(cg,names(parent)[f]fid)

g′ ≡ ap(cg,names(parent)[f⊗F <t>F]fid)

s,g, appendChild(parent, newChild) s,g′
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This command has one axiom, with the following precondition:

P ,
(∅D −◦ (C:ELE�G ◦ELE (NAMEparent[F:F]FID))) ◦D
<(NAME′newChild[F

′:F]FID′ ∨ “#text”newChildVAL) ∧ T:D′>D

Since this axiom is of type G, it is sufficient to show that appendChild

satisfies grove-level safety-monotonicity and the grove-level frame rule.

For safety-monotonicity, consider arbitrary s,d, c such that:

s,d, appendChild(parent, newChild) 6 fault ∧ ap(c,d)↓ ∧
(∃e,dfoot, csurplus.d ≡ ap(csurplus,dfoot) ∧ e, s,dfoot |=G P

The goal is to show that s, ap(c,d), appendChild(parent, newChild) 6 
fault.

Regardless of which rule determines the result of executing

s,d, appendChild(parent, newChild), it follows that d ≡ ap(cg′, <t>D).

It is therefore possible to choose cg′′ such that ap(c,d) ≡ ap(cg′′, <t>D).

It follows directly from the operational semantics that

s, ap(c,d), appendChild(parent, newChild) 6 fault, which is the goal.

For the frame property, consider arbitrary s,d, c, s′,d2 such that:

s,d, appendChild(parent, newChild) 6 fault ∧ ap(c,d)↓ ∧
s, ap(c,d), appendChild(parent, newChild) s′,d2 ∧
(∃e,dfoot, csurplus.d ≡ ap(csurplus,dfoot) ∧ e, s,dfoot |=G P )

The goal is to show that:

∃d3. s,d, appendChild(parent, newChild) s′,d3 ∧ d2 ≡ ap(c,d3)

Regardless of which rule determines the result of executing

s,d, appendChild(parent, newChild), it follows that d ≡ ap(cg′, <t>D).

Since ap(cg′,∅D) ≡ ap(cg,names(parent)[f]fid), it is possible to choose

cgbig, cg′big such that ap(c,d) ≡ ap(cg′big, <t>D) and

ap(cg′big,∅D) ≡ ap(cgbig,names(parent)[f]fid)

Since s, ap(c,d), appendChild(parent, newChild)  s′,d2, it follows di-
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rectly from the operational semantics that

∃d3. s,d, appendChild(parent, newChild) s′,d3 ∧ d2 ≡ ap(c,d3)

which is the goal.

Lemma 30 (Locality of the Remaining Commands). The remaining com-

mands are local to the preconditions of their axioms.

Proof Sketch. The argument for removeChild is identical to that of append-

Child. Assignment is trivially local to any formula, since it is independent

of the grove.

Now consider the commands getNodeName, getChildNodes, item, sub-

stringData, appendData and deleteData. Each of these commands act

only on a single node, and will only fault if that node is missing or other-

wise defective – for example if substringData is called on a node which is

not a text node. The safety monotonicity properties always hold for these

commands, since the successful application of a context to the given tree

will still leave the requisite node in the resulting tree. Notice also that these

commands all describe the transformation of a tree ap(cg, t) to a new tree

ap(cg, t′). The frame properties hold since running the command on a larger

well defined tree ap(cg′, ap(cg, t)) will result in the tree ap(cg′, ap(cg, t′))

– the execution can clearly be tracked back to the smaller state.

The commands createElement and createTextNode both operate on an

empty grove and will not fault on any larger grove, hence the grove-level

safety-monotonicity property holds. These commands are similar to the

ones discussed in the previous paragraph in that they describe the trans-

formation of a grove ap(cg,g) to a new grove ap(cg,g′). The grove-level

frame property holds since running the command on a larger well defined

grove ap(cg′, ap(cg,g)) will result in the grove ap(cg′, ap(cg,g′)), which

can clearly be tracked back to the smaller state. The usual subtlety of

the locality of memory allocation commands applies here. Memory allo-

cation commands are non-deterministic in that they may allocate any free

address. For any execution on a large state ap(cg′, ap(cg,g)) which results

in the grove ap(cg′, ap(cg,g′)), there is at least one possible execution on

the smaller state ap(cg,g) which will result in the grove ap(cg,g′). This is
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all that is required of locality.

4.8.7. Soundness and Locality Propagation

Since the soundness of our frame rule will rely on the locality of the com-

mand being reasoned about, we are obliged to show not only partial correct-

ness and fault avoidance for each derivable Hoare triple, but also locality.

We show all three properties by simultaneous induction on the derivation of

Hoare triples. The base cases are the axioms, which are sound by standard

arguments and are local by Lemmas 28, 29 and 30. The inductive steps are

the inference rules, which we deal with in the following lemmas.

Lemma 31 (Soundness and Locality for Sequence). If the premises of the

sequential composition rule are sound and local with respect to their precon-

ditions, then the conclusion of the sequential composition rule is sound and

local with respect to its precondition.

Proof. The argument for the soundness of the sequential composition rule

is standard. The argument for locality follows.

The inference rule for sequential composition is:

{P}C1{Q} {Q}C2{R}
{P}C1 ; C2{R}

The semantics of sequential composition are defined by:

s,g, C1  s′,g′

s′,g′, C2  s′′,g′′

s,g, (C1 ; C2) s′′,g′′

The goal is to show that if C1 is local to P and C2 is local to Q then C1 ; C2

is local to P .

Note that by the definition of Hoare triples, P,Q and R must all be of

the same type. Now consider the two possible cases separately: The case in

which P :G , and the case in which P :T where T ∈ {ELE,TXT}.

The case in which P :G The goal in this case is to show that C1 ; C2 satisfies

the grove-level safety-monotonicity and frame properties given that

both C1 and C2 do.
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To show safety-monotonicity choose arbitrary s,d, c such that:

s,d, C1 ; C2 6 fault ∧ ap(c,d)↓ ∧
(∃e,dfoot, csurplus.d ≡ ap(csurplus,dfoot) ∧ e, s,dfoot |=G P )

The goal is to show that s, ap(c,d), C1 ; C2 6 fault.

By the safety-monotonicity property of C1 with respect to P it follows

that s, ap(c,d), C1 6 fault.

By the premise {P}C1{Q} it follows that s, ap(c,d), C1  s′,g′ such

that ∃e. e, s′,g′ |=G Q.

By the safety-monotonicity property of C2 with respect to Q, it follows

that s′, ap(c,g), C2 6 fault

It then follows from the operational semantics of C1 ; C2 that s, ap(c,d), C1 ;

C2 6 fault which is the goal.

To show the frame property choose arbitrary s,d, c,d2 such that:

s,d, C1 ; C2 6 fault ∧ ap(c,d)↓ ∧ s, ap(c,d), C1 ; C2  s′,d2 ∧
(∃e,dfoot, csurplus.d ≡ ap(csurplus,dfoot) ∧ e, s,dfoot |=G P )

The goal is to show that ∃d3. s,d, C1 ; C2  s′,d3 ∧ d2 ≡ ap(c,d3)

By the operational semantics of C1 ; C2 it is possible to choose inter-

mediate state s′′,d′2 such that s, ap(c,d), C1  s′′,d′2 and s′′,d′2, C2  

s′,d2

By the grove-level frame property of C1 with respect to P it is possible

to choose an intermediate small state d′3 such that

s,d, C1  s′′,d′3 ∧ d′2 ≡ ap(c,d′3)

From s,d, C1 ; C2 6 fault and the operational semantics of C1 ; C2 it

follows that s′′,d′3, C2 6 fault.

By the premise {P}C1{Q} it follows that ∃e. e, s′′,d′3 |=G Q.

By the grove-level frame property of C2 with respect to Q and since

s′′,d′2, C2  s′,d2 and d′2 ≡ ap(c,d′3) it follows that ∃d3. s
′′,d′3, C2  

s′,d3 ∧ d2 ≡ ap(c,d3)

By the operational semantics of C1 ; C2 it follows that ∃d3. s,d, C1 ;

C2  s′,d3 ∧ d2 ≡ ap(c,d3), which is the goal.
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The case in which P :T The goal in this case is to show that C1 ; C2 satisfies

the tree-level safety-monotonicity and frame properties and the node-

grove-level safety-monotonicity and frame properties given that both

C1 and C2 do.

The arguments for tree-level and node-grove-level safety-monotonicity

are identical to the argument above for grove-level safety-monotonicity.

The arguments for the tree-level and node-grove-level frame properties

are identical to the argument above for the grove-level frame property.

The frame rule says:

{P}C{Q}
{K ◦D P}C{K ◦D Q}

mod(C) ∩ free(K) = ∅
D ∈ {ELE,TXT,G}

Lemma 32 (Soundness and Locality for the Frame Rule). If a command

C is local to the precondition P of a Hoare triple {P}C{Q}, then the Frame

Rule can be safely used to extend that Hoare triple and C will be local with

respect to the precondition of the extended Hoare triple {K ◦DP}C{K ◦DQ}

Proof. Locality for the Frame Rule follows directly from Lemma 27, the

monotonicity of locality. Soundness for the Frame Rule may be split into

three cases: The case in which {P}C{Q} is grove triple with P :G, Q:G ; the

case in which {P}C{Q} is a tree-level triple with P :T, Q:T and K:(T�T′)

where T,T′ ∈ {ELE,TXT} ; and the case in which {P}C{Q} is a tree-level

triple with P :T, Q:T and K:(T�G) where T ∈ {ELE,TXT}.

• First consider the case that the premise {P}C{Q} is grove triple with

P :G, Q:G. The goal is to show partial correctness and fault-avoidance.

Let e, s,g be an arbitrary environment, store and grove satisfying

e, s,g |=G K ◦G P .

By the definition of context application, the grove may be split:

g ≡ ap(c,g0) where e, s,g0 |=G P and e, s, c |=(G�G) K.

By the fault avoidance of the premise {P}C{Q} it can be seen that

s,g0, C 6 fault.
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By the grove-level safety-monotonicity property with respect to {P}C{Q},
it can be seen that s, ap(c,g0), C 6 fault. Since g ≡ ap(c,g0) fault-

avoidance follows directly.

Since fault avoidance holds, it is possible to introduce g′, s′ such that

s,g, C s′,g′.

By the grove-level frame property there exists g′0 such that

s,g0, C s′,g′0 and g′ ≡ ap(c,g′0).

By partial correctness of the premise it can be shown that e, s′,g′0 |=G

Q.

By the side condition mod(C)∩free(K) = ∅ it follows from e, s, c |=(G�G)

K that e, s′, c |=(G�G) K

Since g′ ≡ ap(c,g′0) and e, s′, c |=(G�G) K, it is possible to show

e, s′,g′ |=G K ◦G Q which provides partial correctness for the conclu-

sion.

Both partial correctness and fault avoidance have now been shown in

this case.

• Next consider the case that the premise {P}C{Q} is a tree-level triple

with P :T, Q:T and K:(T�G) where T ∈ {ELE,TXT}. The goal is

to show partial correctness and fault avoidance.

This case follows the pattern of the grove-level case.

Choose arbitrary e, s,g satisfying e, s,g |=G K ◦T P .

Split the grove as before, but this time into a context and a tree:

g ≡ ap(c, t0) where e, s, t0 |=T P and e, s, c |=(T�G) K.

By the fault avoidance of the premise {P}C{Q} it is shown that

s,<t0>G, C 6 fault.

By the tree-level safety-monotonicity property, it is shown that

s, ap(c, t0), C 6 fault, and since g ≡ ap(c, t0) this provides fault-

avoidance for the conclusion.

Since fault avoidance holds, it is possible to introduce s′,g′ such that

s,g, C s′,g′.

By the tree-level frame property there exists t′0 such that

s,<t0>G, C s′, <t′0>G and g′ ≡ ap(c, t′0).
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By partial correctness of the premise it follows that

e, s′, <g′0>G |=G <Q>G.

By the satisfaction of <Q>G it follows that e, s′,g0 |=T Q and hence

by the side condition as above that e, s′,g′ |=G K ◦TQ which provides

partial correctness for the conclusion.

Both partial correctness and fault avoidance have now been shown in

this case.

• Finally consider the case where the premise {P}C{Q} is a tree-level

triple with P :T, Q:T and K:(T�T′) where T,T′ ∈ {ELE,TXT}.
The goal is to show partial correctness and fault avoidance.

This case follows the pattern of the previous cases.

Choose arbitrary e, s,g satisfying e, s,g |=G <K ◦T P>G

Split the grove as before, into a context and a tree: g ≡ ap(c, t0)

where

e, s, t0 |=T P and e, s, c |=(T�G) <K>G.

By the fault avoidance of the premise {P}C{Q} it follows that

s,<t0>G, C 6 fault.

By the tree-level safety-monotonicity property, it follows that

s, ap(c, t0), C 6 fault, and since g ≡ ap(c, t0) this provides fault-

avoidance for the conclusion.

Since fault avoidance holds, it is possible to introduce s′,g′ such that

s,g, C s′,g′.

By the tree-level frame property there exists t′0 such that

s,<t0>G, C s′, <t′0>G and g′ ≡ ap(c, t′0).

By partial correctness of the premise it follows that

e, s′, <g′0>G |=G <Q>G, and hence by the side condition e, s′,g′ |=G

<K ◦T Q>G which provides partial correctness for the conclusion.

Both partial correctness and fault avoidance have now been shown in

this case.
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Lemma 33 (Soundness and Locality for the Remaining Inference Rules). If

the premises of the remaining rules are sound and local, then the conclusions

of those rules are sound and local.

Proof Sketch. The arguments for soundness of the remaining rules are stan-

dard.

The inference rules for conditional blocks, while loops and local blocks

directly propagate the preconditions of their subcommands, changing only

non-structural conditions such as Bool
.
= true. It follows that if the sub-

commands are local to their preconditions then the conditional blocks, loops

and local blocks are local to their preconditions.

Similarly, locality propagation for the inference rules for consequence,

disjunction and auxiliary variable elimination follow directly from the defi-

nitions of implication, disjuction and auxiliary variables.

Theorem 34 (Soundness of Featherweight DOM Reasoning). Every deriv-

able Hoare triple in Featherweight DOM is sound.

Proof. A Featherweight DOM Hoare triple is sound if it satisfies the two

properties given in Definition 23: partial correctness and fault avoidance. In

addition, it is desirable to show that every command in Featherweight DOM

is local with respect to the precondition of every derivable Hoare triple as

defined in Definition 26.

All three of these properties are shown by simultaneous induction on the

derivation of Hoare triples. The base cases are the axioms, which are sound

by standard arguments and are local with respect to their preconditions by

Lemmas 28, 29 and 30. The inductive steps are the inference rules, the

conclusions of which are sound and local with respect to their preconditions

by Lemmas 31, 32, and 33.
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5. Featherweight DOM Examples

This chapter demonstrates Featherweight DOM reasoning with a number

of examples. First, it addresses the issue of completing the Node Inter-

face functionality by implementing additional commands in Featherweight

DOM. Next it uses the W3C DOM Compliance tests to drive a discussion

about the relationship between specification and a correct implementation.

Finally it demonstrates the sort of reasoning one might find in a more in-

dustrial context, proving schema-invariance properties of a more realistic

program-fragment.

5.1. Additional Commands

Recall that Featherweight DOM reflects the essence of the Node interface

defined in [22]. The remaining Node interface commands are implemented

in Appendix A.1. In this section, we select some representative commands

from that appendix, describe their implementation, and prove their be-

haviour using context logic.

5.1.1. getPreviousSibling

The object attribute “previousSibling” is defined on the Node interface of

DOM Core Level 1. We implement the getter method getPreviousSibling,

using an auxiliary command ‘getIndex’ which is not in DOM Core Level 1

(and which is also useful in its own right). getIndex returns the index

of a given node in a given list. The implementations of getIndex and

getPreviousSibling are given in Figure 5.1.

The getIndex command uses a simple while loop to do a linear search of

the nodes in the parameter nodeList, counting the elements in turn until

the target node is found. It then returns the position of that node. The

getPreviousSibling command uses getParentNode and getChildNodes

to obtain the list of siblings of the parameter node. It then uses getIndex
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n := getIndex(nodeList, node) ,
local current, returnval :

returnval := 0 ;
current := item(nodeList, returnval) ;
while (current 6= node ∧ current 6= null) do

returnval := returnval + 1 ;
current := item(nodelist, returnval)

od ;
n := returnval

endloc

sibling := getPreviousSibling(node) ,
local parent, children, n :

parent := getParentNode(node) ;
if parent = null then

sibling := null
else

children := getChildNodes(parent) ;
n := getIndex(children, node) ;
sibling := item(nodelist, n− 1)

fi

endloc

Figure 5.1.: getIndex and getPreviousSibling
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

NAMEID[
F1:F⊗F

<(NAME′node[F
′:F]FID′ ∨ “#text”nodeVAL

′) ∧ T:D>F

⊗F F2:F
]Y
∧ Y

.
= nodelist


n := getIndex(nodeList, node) ,

local current, returnval :
returnval := 0 ; current := item(nodeList, returnval) ;
∃NAME′′, F′′, FID′′, VAL′′, F3, F4. returnval

.
= len(F3) ∧ Y

.
= nodeList

∧ NAMEID[(
(F1:F⊗F <(NAME′node[F

′:F]FID′ ∨ “#text”nodeVAL
′) ∧ T:D>F) ∧

(F3:F⊗F <(NAME′′current[F
′′:F]FID′′ ∨ “#text”nodeVAL

′′)>F ⊗F F4:F)

)
⊗F F2:F

]Y


while (current 6= node ∧ current 6= null) do

∃NAME′′, F′′, FID′′, VAL′′, F3, F4, NAME′′′, ID′′′, F′′′, FID′′′, VAL′′′.
returnval

.
= len(F3) ∧ Y

.
= nodeList

∧ NAMEID[
(F1:F⊗F <(NAME′node[F

′:F]FID′ ∨ “#text”nodeVAL
′) ∧ T:D>F) ∧

F3:F⊗F

<(NAME′′current[F
′′:F]FID′′ ∨ “#text”nodeVAL

′′)>F ⊗F

<(NAME′′′
ID′′′ [F

′′′:F]FID′′′ ∨ “#text”nodeVAL
′′′)>F ⊗F

F4:F


⊗F F2:F

]Y


returnval := returnval + 1 ; current := item(nodelist, returnval)
∃NAME′′′, F′′′, FID′′′, VAL′′′, F′3, F′4. returnval

.
= len(F3) ∧ Y

.
= nodelist

∧ NAMEID[(
(F1:F⊗F <(NAME′node[F

′:F]FID′ ∨ “#text”nodeVAL
′) ∧ T:D>F) ∧

(F′3:F⊗F <(NAME′′′current[F
′′′:F]FID′′′ ∨ “#text”nodeVAL

′′′)>F ⊗F F4:F)

)
⊗F F2:F

]Y


od ;

∃NAME′′′, F′′′, FID′′′, VAL′′′, F′3, F′4.
returnval

.
= len(F3) ∧ current

.
= node ∧ Y

.
= nodelist

∧ NAMEID[(
(F1:F⊗F <(NAME′node[F

′:F]FID′ ∨ “#text”nodeVAL
′) ∧ T:D>F) ∧

(F′3:F⊗F <(NAME′′′current[F
′′′:F]FID′′′ ∨ “#text”nodeVAL

′′′)>F ⊗F F4:F)

)
⊗F F2:F

]Y


n := returnval

endloc{
NAMEID[F1:F⊗F <T:D>F ⊗F F2:F]Y ∧ (n = len(F1))}

}
where D,D′ ∈ {ELE,TXT}

Figure 5.2.: Derivation for the getIndex Specification
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{<(NAMEnode[F:F] ∨ “#text”nodeVAL) ∧ T:D>G}
sibling := getPreviousSibling(node) ,

local parent, children, n :
parent := getParentNode(node) ;
{<(NAMEnode[F:F] ∨ “#text”nodeVAL) ∧ T:D>G ∧ parent

.
= null}

if parent = null then sibling := null else . . .
endloc

{<(NAMEnode[F:F] ∨ “#text”nodeVAL) ∧ T:D>G ∧ (sibling
.
= null)}

where D ∈ {ELE,TXT}

{NAMEID[<(NAME′′node[F
′′:F]FID′′ ∨ NAME′′nodeVAL

′′) ∧ T′′:D′′>F ⊗F F2:F]FID}
sibling := getPreviousSibling(node) ,

local parent, children, n :
parent := getParentNode(node) ;
if parent := null then . . . else{

NAMEID[<(NAME′′node[F
′′:F]FID′′ ∨ NAME′′nodeVAL

′′) ∧ T′′:D′′>F ⊗F F2:F]FID
∧ parent

.
= ID

}
children := getChildNodes(parent) ; n := getIndex(children, node) ;{
NAMEID[<(NAME′′node[F

′′:F]FID′′ ∨ NAME′′nodeVAL
′′) ∧ T′′:D′′>F ⊗F F2:F]FID

∧ parent
.
= ID ∧ children

.
= FID ∧ n

.
= 0

}
sibling := item(nodelist, n− 1)

fi

endloc

{NAMEID[<(NAME′′node[F
′′:F]FID′′ ∨ NAME′′nodeVAL

′′) ∧ T′′:D′′>F ⊗F F2:F]FID ∧ (sibling
.
= null)}

where D ∈ {ELE,TXT}

Figure 5.3.: Derivations for the getPreviousSibling Specifications (Part One)
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

NAMEID[
F1:F ⊗F

<(NAME′
ID′ [F

′:F]FID′ ∨ NAME′
ID′VAL

′) ∧ T′:D′>F

⊗F <(NAME′′node[F
′′:F]FID′′ ∨ NAME′′nodeVAL

′′) ∧ T′′:D′′>F

⊗F F2:F
]FID


sibling := getPreviousSibling(node) ,

local parent, children, n :
parent := getParentNode(node) ;
if parent := null then . . . else

NAMEID[
F1:F ⊗F

<(NAME′
ID′ [F

′:F]FID′ ∨ NAME′
ID′VAL

′) ∧ T′:D′>F

⊗F <(NAME′′node[F
′′:F]FID′′ ∨ NAME′′nodeVAL

′′) ∧ T′′:D′′>F

⊗F F2:F
]FID
∧ parent

.
= ID


children := getChildNodes(parent) ; n := getIndex(children, node) ;

NAMEID[
F1:F ⊗F

<(NAME′
ID′ [F

′:F]FID′ ∨ NAME′
ID′VAL

′) ∧ T′:D′>F

⊗F <(NAME′′node[F
′′:F]FID′′ ∨ NAME′′nodeVAL

′′) ∧ T′′:D′′>F

⊗F F2:F
]FID
∧ parent

.
= ID ∧ children

.
= FID ∧ (n− 1)

.
= len(F1)


sibling := item(nodelist, n− 1)

fi

endloc

NAMEID[
F1:F ⊗F

<(NAME′
ID′ [F

′:F]FID′ ∨ NAME′
ID′VAL

′) ∧ T′:D′>F

⊗F <(NAME′′node[F
′′:F]FID′′ ∨ NAME′′nodeVAL

′′) ∧ T′′:D′′>F

⊗F F2:F
]FID
∧ (sibling = ID′)


where D′,D′′ ∈ {ELE,TXT}

Figure 5.4.: Derivations for the getPreviousSibling Specifications (Part
Two)

94



to find the position of node in that list, and item to return the previous

one if it exists or null otherwise. If node is a root level node and therefore

has no siblings, getPreviousSibling returns null.

getIndex is described by two complementary specifications. When node

is an element of nodeList (the only case used by getPreviousSibling),

the specification is:{
NAMEID[F1:F⊗F <(NAME′node[F

′:F]FID′ ∨ “#text”nodeVAL
′) ∧ T:D>F ⊗F F2:F]Y

∧ Y .
= nodeList

}
n := getIndex(nodeList, node)

{NAMEID[F1:F⊗F <T:D>F ⊗F F2:F]Y ∧ (n
.
= len(F1))}

where D ∈ {ELE,TXT}

The precondition states that a tree identified by node is a child of a tree

with a child list identified by nodeList. The postcondition states that the

tree is unaltered, and that the store now records the position of the tree

node in the variable n.

getPreviousSibling, meanwhile, is described using three specifications,

corresponding to when the node is at the grove level, the beginning of a

nodeList, or elsewhere.

If the node is at the grove level:

{<(NAMEnode[F:F] ∨ “#text”nodeVAL) ∧ T:D>G}
sibling := getPreviousSibling(node)

{<(NAMEnode[F:F] ∨ “#text”nodeVAL) ∧ T:D>G ∧ (sibling
.
= null)}

where D ∈ {ELE,TXT}

If the node is at the beginning of a nodeList:

{NAMEID[<(NAME′′node[F
′′:F]FID′′ ∨ NAME′′nodeVAL′′) ∧ T′′:D′′>F ⊗F F2:F]FID}

sibling := getPreviousSibling(node){
NAMEID[<(NAME′′node[F

′′:F]FID′′ ∨ NAME′′nodeVAL′′) ∧ T′′:D′′>F ⊗F F2:F]FID

∧ (sibling
.
= null)

}
where D ∈ {ELE,TXT}
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firstChild := getFirstChild(node) ,
local kids :

kids := getChildNodes(node) ;
firstChild := item(kids, 0) ;

endloc

Figure 5.5.: getFirstChild

If the node is elsewhere in a nodeList:

NAMEID[

F1:F ⊗F

<(NAME′ID′ [F
′:F]FID′ ∨ NAME′ID′VAL

′) ∧ T′:D′>F

⊗F <(NAME′′node[F
′′:F]FID′′ ∨ NAME′′nodeVAL′′) ∧ T′′:D′′>F

⊗F F2:F

]FID


sibling := getPreviousSibling(node)

NAMEID[

F1:F ⊗F

<(NAME′ID′ [F
′:F]FID′ ∨ NAME′ID′VAL

′) ∧ T′:D′>F

⊗F <(NAME′′node[F
′′:F]FID′′ ∨ NAME′′nodeVAL′′) ∧ T′′:D′′>F

⊗F F2:F

]FID

∧ (sibling
.
= ID′)


where D′,D′′ ∈ {ELE,TXT}

The derivations for the specifications are given in Figures 5.3 and 5.4.

5.1.2. getFirstChild

The read-only object attribute “firstChild” is defined on the Node interface

of DOM Core Level 1. We implement the getter command getFirstChild

in Figure 5.5.

This command simply uses getChildNodes and item to discover the first

child of the node node and assign its ID value to the variable firstChild.

This command can be described with the following two axioms. In the case

96



where node has children:{
NAMEnode[<(NAME′ID′ [F

′:F]FID′ ∨ “#text”ID′VAL
′) ∧ T:D>F ⊗F F2:F]FID

∧ Y .
= node

}
firstChild := getFirstChild(node){

NAMEY[<T:D>F ⊗F F2:F]FID

∧ firstChild .
= ID′

}

The precondition states the variable node refers to an element node which

has at least one child. That child may be either an element or a text node.

The postcondition adds that the variable firstChild refers to the first child

of the node referred to by the variable node.

In the case where node has no children:{
NAMEnode[∅F]FID

∧ Y .
= node

}
firstChild := getFirstChild(node) ,{

NAMEY[∅F]FID

∧ firstChild .
= null

}

The precondition states that node refers to an element node which has no

children. The postcondition adds that the variable firstChild takes the

value null.

The derivations of these specifications are given in Figure 5.6

5.1.3. getDataLength

The CharacterData interface of DOM Core Level 1 defines the read-only

object attribute “length”. We implement this functionality with the getter

command getDataLength. This command returns the length of the data

stored in a given text node. The implementation of getDataLength is given

in Figure 5.7

This command uses a simple while loop to traverse the value of the text

node referred to by node, keeping a count of the number of characters

encountered. By the time the command has terminated, the length of the

value of the text node node has been recorded in the variable length. This

behaviour can be given by the following specification:
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{
NAMEnode[<(NAME′ID′ [F

′:F]FID′ ∨ “#text”ID′VAL
′) ∧ T:D>F ⊗F F2:F]FID

∧ Y .
= node

}
firstChild := getFirstChild(node) ,

local kids :
kids := getChildNodes(node) ;{
NAMEY[<(NAME′ID′ [F

′:F]FID′ ∨ “#text”ID′VAL
′) ∧ T:D>F ⊗F F2:F]kids

}
firstChild := item(kids, 0) ;

endloc{
NAMEY[<T:D>F ⊗F F2:F]FID
∧ firstChild .

= ID′

}

{
NAMEnode[∅F]FID
∧ Y .

= node

}
firstChild := getFirstChild(node) ,

local kids :
kids := getChildNodes(node) ;{
NAMEY[∅F]kids

}
firstChild := item(kids, 0) ;

endloc{
NAMEY[∅F]FID
∧ firstChild .

= null

}

Figure 5.6.: Derivation of the getFirstChild axioms

length := getDataLength(node) ,
local str :

length := 0 ;
str := substringData(node, length, 1) ;
while str 6= ∅S do

length := length + 1 ;
str := substringData(node, length, 1)

od

endloc

Figure 5.7.: The getDataLength Command
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{
“#text”YVAL ∧ Y

.
= node

}
length := getDataLength(node){

“#text”YVAL

∧ len(VAL)
.
= length

}
The precondition states that the variable node refers to a text node. The

postcondition adds that the variable length contains the length of the value

of that text node. The derivation of this specification is given in Figure 5.8.

5.1.4. getData

The CharacterData interface of DOM Core Level 1 defines the object at-

tribute “data”. We implement the read-functionality of this object attribute

with the getter command getData, which returns the data stored in the

value of a text node. The implementation is in Figure 5.9.

This command simply uses the previously defined getDataLength com-

mand and the substringData command to assign the value of a text node

to the variable data. The specification is:{
“#text”nodeVAL ∧ Y

.
= node

}
data := getData(node) ,{

“#text”YVAL ∧ data
.
= VAL

}
The precondition simply states that node refers to a text node, while the

postcondition adds that the variable data has taken the value of that text

node. This specification is derived in Figure 5.10

5.2. Weakest Preconditions

In [71], Zarfaty used the inference rules of his program reasoning to derive

the weakest preconditions of each of the commands in his BTU program-

ming language from their axioms. These derivations became the crux of

a proof that his reasoning was complete for straight-line code. To prove

straight-line-completeness of reasoning over a multi-layered structure such

as Featherweight DOM is considerably more involved. However, in this

section, we do follow Zarfaty’s example in presenting the derivation of the
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{
“#text”YVAL ∧ Y

.
= node

}
length := getDataLength(node) ,

local str :
length := 0 ;{

“#text”YVAL ∧ length
.
= 0

}
str := substringData(node, length, 1) ;
∃A, B, C. “#text”YVAL ∧ VAL ≡ A⊗S B⊗S C

∧ length .
= 0 ∧ len(A)

.
= length ∧

((str
.
= B ∧ len(B)

.
= 1) ∨ (str

.
= B⊗S C ∧ len(B⊗S C) <· 1))


∃A, B, C. “#text”YVAL ∧ VAL ≡ A⊗S B⊗S C

∧ len(A)
.
= length ∧

((str
.
= B ∧ len(B)

.
= 1) ∨ (str

.
= B⊗S C ∧ len(B⊗S C) <· 1))


while str 6= ∅S do

∃A, B, C. “#text”YVAL ∧ VAL ≡ A⊗S B⊗S C

∧ len(A)
.
= length ∧

(str
.
= B ∧ len(B)

.
= 1)


length := length + 1 ;
∃A, B, C. “#text”YVAL ∧ VAL ≡ A⊗S B⊗S C

∧ len(A⊗S B)
.
= length ∧

(str
.
= B ∧ len(B)

.
= 1)


str := substringData(node, length, 1)
∃A, B, C. “#text”YVAL ∧ VAL ≡ A⊗S B⊗S C

∧ len(A)
.
= length ∧

((str
.
= B ∧ len(B)

.
= 1) ∨ (str

.
= B⊗S C ∧ len(B⊗S C) <· 1))


od

str
.
= ∅S ∧

∃A, B, C. “#text”YVAL ∧ VAL ≡ A⊗S B⊗S C

∧ len(A)
.
= length ∧

((str
.
= B ∧ len(B)

.
= 1) ∨ (str

.
= B⊗S C ∧ len(B⊗S C) <· 1))


∃A, B, C. “#text”YVAL ∧ VAL ≡ A⊗S B⊗S C

∧ len(A)
.
= length ∧

(str
.
= B⊗S C ∧ len(B⊗S C) <· 1)


endloc{

“#text”YVAL
∧ len(VAL)

.
= length

}

Figure 5.8.: Derivation of getDataLength
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data := getData(node) ,
local length :

length := getDataLength(node) ;
data := substringData(node, 0, length)

endloc

Figure 5.9.: The getData command

{
“#text”nodeVAL ∧ Y

.
= node

}
data := getData(node) ,

local length :
length := getDataLength(node) ;{

“#text”nodeVAL ∧ Y
.
= node ∧ length .

= len(VAL)
}

data := substringData(node, 0, length)
endloc{

“#text”YVAL ∧ data
.
= VAL

}
Figure 5.10.: Derivation of the getData Command

weakest precondition for the getNodeName command. The derivations for

the remaining commands are given in Appendix A.2.

The axiom for the getNodeName command is:

{(NAMEnode[F:F]FID ∨ NAMEnodeVAL) ∧ T:D}
var := getNodeName(node)

{T:D ∧ (var
.
= NAME)}

In order to derive the weakest precondition of this command, we first ap-

ply the frame rule to the axiom using a carefully chosen frame. We choose

this frame such that the resulting context application will leave a postcondi-

tion equivalent to “P”, which is the general postcondition we wish to find the

weakest precondition for. Choosing such a frame is straightforward, since

we may use the adjoint “−◦”. Once we have applied this frame, we use the

rules of consequence and variable elimination to simplify the postcondition

to “P”. The derivation is given in Figure 5.11.
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{
(NAMEnode[F:F]FID ∨ “#text”nodeVAL) ∧ T:D

}
var := getNodeName(node){
T:D ∧ (var

.
= NAME)

}
Frame{

(T:D−◦ P{NAME/var}) ◦D
((NAMEnode[F:F]FID ∨ “#text”nodeVAL) ∧ T:D)

}
var := getNodeName(node){

(T:D−◦ P{NAME/var}) ◦D
(T:D ∧ (var

.
= NAME))

}
Cons{

♦D�D′((NAMEnode[F:F]FID ∨ “#text”nodeVAL) ∧ T:D) ∧ P{NAME/var}
}

var := getNodeName(node){
P{NAME/var} ∧ (var

.
= NAME)

}
Cons/Elim{

∃NAME, F, FID, VAL, T.
♦D�D′((NAMEnode[F:F]FID ∨ “#text”nodeVAL) ∧ T:D) ∧ P{NAME/var}

}
var := getNodeName(node){
P
}

where D ∈ {ELE,TXT},D′ ∈ {ELE,TXT,F,G}

Figure 5.11.: Weakest Precondition Derivation for getNodeName
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5.3. Compliance Testing

The W3C provide a collection of “conformance tests”[23], each of which

tests for a specific behaviour of a DOM implementation. Tests suites of

this sort can provide good evidence that a particular implementation of

DOM satisfies the specification. In [32] there is ongoing work to connect

high level context logic reasoning about specifications such as DOM to low

level reasoning about implementations of such libraries. One goal of that

line of research is to make it more feasible to prove complete implemen-

tations against formal specifications of the sort presented in this thesis.

Conformance tests are still useful however, since they can be seen as an-

other partial representation of the specification itself. If a formalism such

as the one given in this thesis truely represents the informal specification

in the specification document and the conformance tests, then it should be

possible to use that formalism to prove that each of the tests pass.

This section presents an adaptation of a typical test to the context of

Featherweight DOM. The test in question is the “characterdataAppend-

DataGetData” test, which tests the results of appending data to a text

node and then getting the value of that text node. The test expects that

the value of the text node should be the concatenation of its original value

and the value that has been appended.

We make two particular changes to the original code of the test given

in [23]:

Firstly, rather than using runtime “assert” statements of the sort that may

be found in many programming languages to test the results of running the

test program, we use our assertion language to describe the expected result,

and then we prove that the program always terminates in a state satisfying

that assertion.

Secondly, since Featherweight DOM does not contain any methods for

loading XML files or for performing a search after the fashion of the DOM

Level 1 command “getElementsByTagName”, we start the test in a state

pre-seeded with the appropriate data.

This test operates on the data given in Figure 5.12. Using the code

given in Figure 5.13 where the childlist of the first “employee” node can be

referred to using the variable “employeeChildren”. The test will pass if the

value of the program variable “childData” at the end of the program is the
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<employees>

<employee>

<employeeId>EMP0001</employeeId>

<name>Margaret Martin</name>

<position>Accountant</position>

<salary>56,000</salary>

<gender>Female</gender>

<address>1230 North Ave. Dallas, Texas 98551</address>

</employee>

<employee>

<employeeId>EMP0002</employeeId>

<name>Martha Raynolds</name>

<position>Secretary</position>

<salary>35,000</salary>

<gender>Female</gender>

<address>1900 Dallas Road Dallas, Texas 98554</address>

</employee>

</employees>

Figure 5.12.: Test Data for the “characterdataAppendDataGetData” Test

local nameNode, child, childData :
nameNode := item(employeeChildren, 1) ;
child := getFirstChild(nameNode) ;
appendData(child, “, Esquire”) ;
childData := getData(child)

endloc

Figure 5.13.: The “characterdataAppendDataGetData” Test
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string “Margaret Martin, Esquire”. The postcondition of the test program

is therefore {childData .
= “Margaret Martin, Esquire” ∧ trueELE} while

the precondition is:

“employees”ID1 [

<“employee”ID2 [

<“employeeId”ID3 [<“#text”ID4“EMP0001”>F]FID3>F ⊗F

<“name”ID5 [<“#text”ID6“Margaret Martin”>F]FID5>F ⊗F

<“position”ID7 [<“#text”ID8“Accountant”>F]FID7>F ⊗F

<“salary”ID9 [<“#text”ID10“56,000”>F]FID9>F ⊗F

<“gender”ID11 [<“#text”ID12“Female”>F]FID11>F ⊗F

<“address”ID13 [

<“#text”ID14“1230 North Ave. Dallas, Texas 98551”>F

]FID13>F

]employeeChildren>F ⊗F

<“employee”ID15 [

<“employeeId”ID16 [<“#text”ID17“EMP0002”>F]FID16>F ⊗F

<“name”ID18 [<“#text”ID19“Martha Raynolds”>F]FID18>F ⊗F

<“position”ID20 [<“#text”ID21“Secretary”>F]FID20>F ⊗F

<“salary”ID22 [<“#text”ID23“35,000”>F]FID22>F ⊗F

<“gender”ID24 [<“#text”ID25“Female”>F]FID24>F ⊗F

<“address”ID26 [

<“#text”ID27“1900 Dallas Road Dallas, Texas 98554”>F

]FID26>F

]FID15>F

]FID1


Since the precondition describes more data than the program uses, the

first step in proving the program is to use the frame rule to observe that

it is sufficient to show that the postcondition (which may describe element
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data of any size) holds given the smaller precondition:

“employee”ID2 [

<“employeeId”ID3 [<“#text”ID4“EMP0001”>F]FID3>F ⊗F

<“name”ID5 [<“#text”ID6“Margaret Martin”>F]FID5>F ⊗F

<“position”ID7 [<“#text”ID8“Accountant”>F]FID7>F ⊗F

<“salary”ID9 [<“#text”ID10“56,000”>F]FID9>F ⊗F

<“gender”ID11 [<“#text”ID12“Female”>F]FID11>F ⊗F

<“address”ID13 [

<“#text”ID14“1230 North Ave. Dallas, Texas 98551”>F

]FID13>F

]employeeChildren


The proof of the test program is given in Figure 5.14

5.4. Proving Schema Invariants

When reasoning about programs, it is often desirable to prove a particular

property about a program rather than proving the whole (often complex)

specification. One example of this involves proving XML schema invariants.

For example, consider writing a program to update an XML addressBook

document which complies with the XML schema in Figure 5.15

The schema asserts that the root element of the document should be

an addressBook node, whose children should be zero or more household

nodes. These household nodes should contain one or more person nodes,

one address node and one phone node. Each of these third-level nodes

should contain data of type ‘string’.
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

“employee”ID2 [
<“employeeId”ID3 [<“#text”ID4“EMP0001”>F]FID3>F ⊗F

<“name”ID5 [<“#text”ID6“Margaret Martin”>F]FID5>F ⊗F

<“position”ID7 [<“#text”ID8“Accountant”>F]FID7>F ⊗F

<“salary”ID9 [<“#text”ID10“56,000”>F]FID9>F ⊗F

<“gender”ID11 [<“#text”ID12“Female”>F]FID11>F ⊗F

<“address”ID13 [
<“#text”ID14“1230 North Ave. Dallas, Texas 98551”>F

]FID13>F

]employeeChildren


local nameNode, child, childData :

nameNode := item(employeeChildren, 1) ;

“employee”ID2 [
<“employeeId”ID3 [<“#text”ID4“EMP0001”>F]FID3>F ⊗F

<“name”nameNode[<“#text”ID6“Margaret Martin”>F]FID5>F ⊗F

<“position”ID7 [<“#text”ID8“Accountant”>F]FID7>F ⊗F

<“salary”ID9 [<“#text”ID10“56,000”>F]FID9>F ⊗F

<“gender”ID11 [<“#text”ID12“Female”>F]FID11>F ⊗F

<“address”ID13 [
<“#text”ID14“1230 North Ave. Dallas, Texas 98551”>F

]FID13>F

]employeeChildren


child := getFirstChild(nameNode) ;

“employee”ID2 [
<“employeeId”ID3 [<“#text”ID4“EMP0001”>F]FID3>F ⊗F

<“name”nameNode[<“#text”child“Margaret Martin”>F]FID5>F ⊗F

<“position”ID7 [<“#text”ID8“Accountant”>F]FID7>F ⊗F

<“salary”ID9 [<“#text”ID10“56,000”>F]FID9>F ⊗F

<“gender”ID11 [<“#text”ID12“Female”>F]FID11>F ⊗F

<“address”ID13 [
<“#text”ID14“1230 North Ave. Dallas, Texas 98551”>F

]FID13>F

]employeeChildren


appendData(child, “, Esquire”) ;

“employee”ID2 [
<“employeeId”ID3 [<“#text”ID4“EMP0001”>F]FID3>F ⊗F

<“name”nameNode[<“#text”child“Margaret Martin, Esquire”>F]FID5>F ⊗F

<“position”ID7 [<“#text”ID8“Accountant”>F]FID7>F ⊗F

<“salary”ID9 [<“#text”ID10“56,000”>F]FID9>F ⊗F

<“gender”ID11 [<“#text”ID12“Female”>F]FID11>F ⊗F

<“address”ID13 [
<“#text”ID14“1230 North Ave. Dallas, Texas 98551”>F

]FID13>F

]employeeChildren


childData := getData(child)

“employee”ID2 [
<“employeeId”ID3 [<“#text”ID4“EMP0001”>F]FID3>F ⊗F

<“name”nameNode[<“#text”child“Margaret Martin, Esquire”>F]FID5>F ⊗F

<“position”ID7 [<“#text”ID8“Accountant”>F]FID7>F ⊗F

<“salary”ID9 [<“#text”ID10“56,000”>F]FID9>F ⊗F

<“gender”ID11 [<“#text”ID12“Female”>F]FID11>F ⊗F

<“address”ID13 [
<“#text”ID14“1230 North Ave. Dallas, Texas 98551”>F

]FID13>F

]employeeChildren
∧ childData

.
= “Margaret Martin, Esquire”


endloc

{childData .
= “Margaret Martin, Esquire” ∧ trueELE}

Figure 5.14.: Proof of the “characterdataAppendDataGetData” Test
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<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified">

<xs:element name="addressBook">

<xs:element name="household" minOccurs="0"

maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:element name="person" maxOccurs="unbounded">

<xs:complexType>

<element name="name" type="string"/>

</xs:complexType>

</xs:element>

<xs:element name="address" type="string"/>

<xs:element name="phone" type="string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:element>

Figure 5.15.: Addressbook Schema

We can specify this XML schema using the grove formula S:

S , <addressBook[households]>G where

households , ¬♦⊗(trueTXT) ∧�⊗(

household[

<person[txts]>F ⊗F people⊗F

<address[txts]>F ⊗F <phone[txts]>F

]

)

txts , <“#text”>F ⊗F (¬♦⊗(trueELE)�⊗(“#text”))

people , ¬♦(trueTXT) ∧�⊗(person[txts])

Now consider a Featherweight DOM program which updates the address-

Book document when a specified person leaver moves house.

The program moves leaver out of its current household, into a newly

created house with a user-supplied address and phone number. The program

checks if the original household is now empty and, if it is, deletes it.
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moveHouse(leaver, newAddress, newPhone) ,

local house, book, newHouse, addr, adtxt, phn, kids, firstChild, firstName :

// Move leaver into a new house.

house := getParentNode(leaver);

book := getParentNode(house);

newHouse := createElement(“household”);

appendChild(newHouse, leaver);

addr := createElement(“address”);

adtxt := createTextNode(newAddress);

appendChild(addr, adtxt);

appendChild(newHouse, addr);

phn := createElement(“phone”);

phntxt := createTextNode(newPhone);

appendChild(phn, phntxt);

appendChild(newHouse, phn);

appendChild(book, newHouse);

// Remove old house if empty.

kids := getChildNodes(house);

firstChild := item(kids, 0);

firstName := getNodeName(firstChild);

if firstName = “person” then

skip

else

removeChild(book, house);

fi

endloc

The safety condition for moveHouse is that leaver refers to a person

node and newAddress and newPhone are String variables. This can be

simply expressed by the formula

P , ♦T�G“person”leaver[trueF] ∧ newAddress ∈ S ∧ newPhone ∈ S

We can prove that moveHouse maintains the schema formula S provided

that this safety formula P also holds:

{S ∧ P}moveHouse(leaver, newAddress, newPhone){S ⊕ trueG}
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As discussed in Chapter 3.2, we treat Featherweight DOM as a garbage

collected language. We thus have trueG in the postcondition to refer to

uncollected garbage generated by the program, which is safely ignored. The

proof is in Figure 5.16.

This example is particularly enticing since each step in the reasoning is

relatively mechanical, and since the properties we wish to prove can be easily

derived from assertions in schema languages that are already in widespread

use. A long term goal of this research must be to automate this process.

Although the context logic presented here has no way to represent regular

expressions, and hence cannot represent all DTDs, it seems feasible that a

tool could be produced after the fashion of the W3C HTML Validator[65].

Where the HTML validator can assert that a web page is valid HTML, the

new tool could assert that no matter what the embedded javascript does

with the web page, it will remain valid HTML.
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{
S ∧ P

}

<“addressBook”[
households⊗F<“household”[

people⊗F<“person”leaver[txts]>F⊗Fpeople⊗F

<“address”[txts]>F⊗F<“phone”[txts]>F

]>F⊗Fhouseholds
]>G


moveHouse(leaver, newAddress, newPhone) ,

local house, book, newHouse, addr, adtxt, phn, kids, firstChild, firstName :
// Move leaver into a new house.
house := getParentNode(leaver); book := getParentNode(house);
newHouse := createElement(“household”); appendChild(newHouse, leaver);
addr := createElement(“address”); adtxt := createTextNode(newAddress);
appendChild(addr, adtxt); appendChild(newHouse, addr);
phn := createElement(“phone”); phntxt := createTextNode(newPhone);
appendChild(phn, phntxt); appendChild(newHouse, phn);

<“addressBook”book[
households⊗F <“household”house[

people⊗F <“address”[txts]>F ⊗<“phone”[txts]>F

]>F ⊗F households
]>G

⊕<“household”newHouse[
<“person”leaver[txts]>F ⊗F

<“address”[newAddress]>F ⊗F

<“phone”[newPhone]>F

]>G


appendChild(book, newHouse);
<“addressBook”book[

households⊗F <“household”house[
people⊗F <“address”[txts]>F ⊗F <“phone”[txts]>F

]>F ⊗F households
]

>G


// Remove old house if empty.
kids := getChildNodes(house);
firstChild := item(kids, 0);
firstName := getNodeName(firstChild);
if firstName = “person” then

skip

<“addressBook”[
households⊗F<“household”[

<“person”[txts]>F⊗F

people⊗F

<“address”[txts]>F⊗F

<“phone”[txts]>F

]>F⊗Fhouseholds

]>G


else

removeChild(book, house);{
<“addressBook”[households]>G ⊕ trueG

}
fi

endloc{
S ⊕ trueG

}

Figure 5.16.: Schema Preservation Derivation
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6. DOM Core Level 1, The

Fundamental Interfaces

This chapter presents a formal specification of the Fundamental Interfaces

portion of DOM Core Level 1. This specification consists of an abstract

data structure for representing DOM data, and an operational semantics of

the commands DOM provides over that structure.

DOM Core Level 1 is the smallest subset of DOM which may be imple-

mented by a compliant browser. Having shown the intuitions behind the

conceptual core of DOM with Featherweight DOM, DOM Core Level 1 pro-

vides a natural next step to show that Featherweight-DOM-style reasoning

scales well to substantial industrial specifications.

DOM Core Level 1 is divided into two parts. By far the larger part is

the “Fundamental Interfaces”, which describe all the central DOM concepts

and commands necessary to manipulate HTML in a simple web browser:

Begin Quote

The interfaces within this section are considered fundamental,

and must be fully implemented by all conforming implementa-

tions of the DOM, including all HTML DOM implementations.

End Quote

A much smaller portion is termed the “Extended Interfaces”, which are

designed to allow the programmer to distinguish between various different

XML dialects, and perform various extra functions that are not related to

the manipulation of HTML:

Begin Quote

objects that expose these interfaces will never be encountered in

a DOM implementation that deals only with HTML. As such,
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HTML-only DOM implementations do not need to have objects

that implement these interfaces.

End Quote

This thesis is concerned with formalising and reasoning about a complete

HTML-only DOM specification, consisting of all the functionality described

in the Fundamental Interfaces of DOM Core Level 1. This will provide a

solid base from which to pursue future work: reasoning about JavaScript,

larger fragments of DOM and other web programming libraries.

6.1. Notation

In the following section, we will introduce a large number of notations,

many of which follow a common pattern. For ease of understanding, and

for mnemonic value, we present the pattern informally here. What DOM

refers to as a “Node”, will generally look like this:

nameid [< ats ]>aid
idref
typenum[kids]fidvalue

We will formally define several sorts of node which follow this pattern. All

these nodes will have a name, a potentially null list of attributes [< ats ]>aid

and a potentially empty list of children [kids]fid. The node as a whole may

be referenced by its id, and its child-list may be referenced by its fid. If a

node has an attribute list, that list may be referenced by its aid. A node

also has a value, which is a string (and may contain, for example, the text

in a text node); a typenum which is a natural number ; and an idref which

references the id of another node – the document which “owns” this node.

We will also introduce a number of specific notations for when particular

node types don’t perfectly fit this general pattern. These will be explained

as they appear.

6.2. Data Structure

In order to reason about DOM, we introduce an abstract data structure

to represent the XML-like data that DOM programs manipulate. As with

Featherweight DOM, this structure represents parsed XML which is to be
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manipulated in-memory by DOM. This data structure is given in Figure 6.1.

As with Featherweight DOM, we also introduce a natural “Context” struc-

ture in Figure 6.2. Since these data structures are significantly larger than

those in Featherweight DOM, we also show the relationships between data

and context structures in Figure 6.3. Note in particular that some data

structures have no analogous context. As a notational convenience, we will

use the shorthand “abc” to refer to the string <‘a’>S⊗S<‘b’>S⊗S<‘c’>S.

Definition 35 (Data Structure). Given an infinite set ID of node identifiers

and a finite set C of characters, with distinguished characters ‘#’ and ‘*’,

we define the DOM Data Structure as in Figure 6.1. For well-formedness

we also require:

• id,fid,aid ∈ ID must be unique across the whole data structure;

• the idref ∈ ID in a node must be equal to the id of an existing

Document node elsewhere in the data structure, which we call that

node’s “owner document”;

• if the parent of a node is a Document node, then the owner document

of that node must be that Document node;

• no node may be owned by a different Document than its parent;

• the idref in an element search must refer to the id of an element or a

document node, which we call that search’s “search root”.

Finally we have a simple structural congruence, denoted ≡, which states

that:

• for any type D, D-composition ⊗D is associative with unit ∅D;

• grove-composition ⊕ is associative and commutative with unit ∅G.

In Chapter 6.3.2, we define a language for manipulating this data struc-

ture. Every command in that language preserves these requirements.

In the following subsections, we explain some of the decisions apparent

in the data structure described above in Definition 35 and Figure 6.1. We

believe that through careful choices in the data structure we can make the

precise definition of the behaviour of DOM commands significantly simpler.

For this reason we will often motivate choices made here with reference
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groves g ∈ G g ::= <doc>G | <ele>G | <frag>G | <attr>G | <txt>G |
<es>G | <comm>G | ∅G | g⊕ g

documents doc ∈ DOC doc ::= “#document”id [< ∅EA ]>null
null
9 [df]fidnull

document forest df ∈ DF df ::= <dnel,de,dnel>DF where the second dnel is ∅DNEL if de is ∅DE

non-element df dnel ∈ DNEL dnel ::= <comm>DNEL | ∅DNEL | dnel⊗DNEL dnel

document element de ∈ DE de ::= <ele>DE | ∅DE

document fragments
frag ∈ FRAG

frag ::= “#document-fragment”id [< ∅EA ]>null
idref
11 [fragf]fidnull

document fragment forests fragf ::= <ele>FRAGF | <txt>FRAGF | <comm>FRAGF | ∅FRAGF

fragf ∈ FRAGF | fragf⊗FRAGF fragf

elements ele ∈ ELE ele ::= sid [< ea ]>aid
idref
1 [ef]fidnull where ‘#’, ‘*’ 6∈ s

element attributes ea ∈ EA ea ::= <attr>EA | ∅EA | ea⊗EA ea
where the name string s of
each attr is sibling unique

element forests ef ∈ EF ef ::= <ele>EF | <txt>EF | <comm>EF | ∅EF | ef⊗EF ef

attributes attr ∈ ATTR attr ::= <<sid 7→ [af]fid>>
idref
bool where ‘#’,‘*’ 6∈ s

attribute forests af ∈ AF af ::= <txt>AF | ∅AF | af⊗AF af

comments comm ∈ COMM comm ::= “#comment”id [< ∅EA ]>null
idref
8 [cf]fids

comment forests cf ∈ CF cf ::= ∅CF

text txt ∈ TXT txt ::= “#text”id [< ∅EA ]>null
idref
3 [tf]fids

text forests tf ∈ TF tf ::= ∅TF

element searches es ∈ ES es ::= sidref
fid

strings s ∈ S s ::= <c>S | ∅S | s⊗S s where c ∈ C

booleans bool ∈ BOOL bool ::= true | false

where id,fid, idref,aid ∈ ID, id,fid,aid must be unique ; the idref ∈ ID in a node must be

equal to the id of an existing Document node elsewhere in the data structure ; if the parent of a

node is a Document node, then the owner document of that node must be that Document

node ; no node may be owned by a different Document than its parent ; the idref in an element

search must refer to the id of an element or a document node.

Figure 6.1.: DOM Data Structure
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cg ::= <cdoc>G | <cele>G | <cfrag>G | <cattr>G | <ctxt>G |
<ces>G | <comm>G | −G | cg⊕ g

cdoc ::= “#document”id [< ∅EA ]>null
null
9 [cdf]fidnull | −DOC

cdf ::= <cdnel,de,dnel>DF | <dnel, cde,dnel>DF

<dnel,de, cdnel>DF | −DF

cdnel ::= <ccomm>DNEL | −DNEL | cdnel⊗DNEL dnel | dnel⊗DNEL cdnel

cde ::= <cele>DE | −DE

cfrag ::= “#document-fragment”id [< ∅EA ]>null
idref
11 [cfragf]fidnull | −FRAG

cfragf ::= <cele>FRAGF | <ctxt>FRAGF | <ccomm>FRAGF | −FRAGF

| cfragf⊗FRAGF fragf | fragf⊗FRAGF cfragf

cele ::= sid [< ea ]>aid
idref
1 [cef]fidnull | where ‘#’, ‘*’ 6∈ s

sid [< cea ]>aid
idref
1 [ef]fidnull | −ELE

cea ::= <cattr>EA | −EA | cea⊗EA ea | ea⊗EA cea
where the name string s of
each attr is sibling unique

cef ::= <cele>EF | <ctxt>EF | <ccomm>EF | −EF | cef⊗EF ef | ef⊗EF cef

cattr ::= <<sid 7→ [caf]fid>>
idref
bool | −ATTR where ‘#’, ‘*’ 6∈ s

caf ::= <ctxt>AF | −AF | caf⊗AF af | af⊗AF caf

ccomm ::= “#comment”id [< ∅EA ]>null
idref
8 [∅CF]fidcs | −COMM

ctxt ::= “#text”id [< ∅EA ]>null
idref
3 [∅TF]fidcs | −TXT

cs ::= −S | cs⊗S s | s⊗S cs

where id,fid, idref,aid ∈ ID, id,fid,aid must be unique and idref ∈ ID must

be equal to the id of an existing Document node elsewhere in the data structure ;

if the parent of a node is a Document node, then the owner document of that

node must be that Document node ; no node may be owned by a different

Document than its parent

Figure 6.2.: DOM Context Structure
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Data Contexts
groves g ∈ G cg ∈ CG
documents doc ∈ DOC cdoc ∈ CDOC
document-forest df ∈ DF cdf ∈ CDF
non-element df dnel ∈ DNEL cdnel ∈ CDNEL
document-element de ∈ DE cde ∈ CDE
elements ele ∈ ELE cele ∈ CELE
element attributes ea ∈ EA cea ∈ CEA
element forests ef ∈ EF cef ∈ CEF
document fragments frag ∈ FRAG cfrag ∈ CFRAG
document fragment forests fragf ∈ FRAGF cfragf ∈ CFRAGF
attributes attr ∈ ATTR cattr ∈ CATTR
attribute forests af ∈ AF caf ∈ CAF
comments comm ∈ COMM ccomm ∈ CCOMM
comment forests cf ∈ CF
text txt ∈ TXT ctxt ∈ CTXT
text forests tf ∈ TF
strings s ∈ S cs ∈ CS
element searches es ∈ ES

Figure 6.3.: Data Structure Sets

to commands we define later in Chapter 6.3, and their less precise W3C

specifications [22].

6.2.1. Node Types

DOM allows a programmer to distinguish between different types of node

(elements, documents, etc) by means of the read-only object attribute “node-

Type”, which is represented in Chapter 6.3 of this document as the getter

command “getNodeType”. This object attribute is defined by DOM to re-

turn an integer, which communicates to the programmer the type of the

node. The integer “1” means the node is an Element Node, “2” means an

Attr and so on. When we refer to the “type number” of a node, we are refer-

ring to this integer, as given in Definition 36. When we refer to the “type”

of a node, we are referring to the set of such nodes, as given in Figure 6.1.

Definition 36 (Type Numbers). The type number of a node is an integer

between 1 and 12.

When we wish to refer to a particular type number in a program, we will
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use the constants defined by [22] in the Node interface. They are written as

ELEMENT NODE, ATTRIBUTE NODE and so on.

The data structure given in Figure 6.1 may be divided into the disjoint

sets on the left of Figure 6.3. We consider these sets to be the “types” of the

data they contain, and for convenience we group these types into further

sets.

Definition 37 (Node Type Groupings). The types of the data defined in

Figure 6.1 are grouped into the following sets:

Nodes N , {DOC,ELE,FRAG,ATTR,COMM,TXT,ES}
Forests F , {DF,DNEL,DE,EA,EF,FRAGF,AF,CF,TF,S}

Data D , N ∪ F ∪ {G}

If we have a set D such that D ∈ D and a datum d ∈ D, we may consider

d to be of type D, written as d:D.

Note in particular that since our data structure allows nodes of a given

type (for example, elements ∈ ELE) to appear in more than one type of

forest (for example, both fragment forests ∈ FRAGF and also element

forests ∈ EF), we distinguish between singleton elements of different forest-

types using an angle bracket notation:

<structure>D

When we refer to the “type” of a structure (as opposed to the “type

number”), it is this D to which we are referring.

6.2.2. The Grove

At the top level of the structure defined in 6.1 is the grove. As with Feath-

erweight DOM, this is analogous to an object heap in object oriented pro-

gramming, and may contain all types of node and list.

6.2.3. Document Nodes

The name of a document is always “#document”. Document nodes have no

attributes. In our notation the attribute list of a document node therefore

has a null aid, and ∅EA contents. The value of a document node is always
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null. The type number of a document node is 9. The owner document of a

document node is null.

Documents have as children any number of comment nodes, and zero

or one element nodes. We represent the pattern of child nodes using the

“document-forest” structure:

<dnel,de,dnel>DF

If the document has no element children, then the second dnel will be

∅DNEL. If the document has one element child, then the first dnel will

contain all the comments that come before the element in the document

order, while the second dnel will contain all the comments that come after

the element in the document order. This property is preserved by all the

commands in Chapter 6.3

6.2.4. Document Fragments

The name of a document fragment is always “#document-fragment”. Doc-

ument fragment nodes have no attributes. In our notation, the attribute list

of a document fragment node has a null aid and ∅EA contents. The value

of a document fragment node is always null. Document fragments have 0

or more elements, text nodes or comments as children. The type number

of a document fragment node is 11. All document fragment nodes have a

non-null owner document.

6.2.5. Element Nodes

The name of an element node may be any string that doesn’t contain “#”,

and corresponds to the “tag” of an element in an XML document. Element

nodes have 0 or more attribute-children, and so the aid of the node is not

null. Element nodes have 0 or more other element nodes, comment nodes

or text nodes as children. The type number of an element node is 1. Every

element node has a non-null owner document. The value of an element

node is always null.
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6.2.6. Attributes

While an XML attribute, or attr node in the DOM specification is a subclass

of Node, the specification also says:

Begin Quote

Attr objects inherit the Node interface, but since they are not

actually child nodes of the element they describe, the DOM does

not consider them part of the document tree . . . The DOM takes

the view that attributes are properties of elements rather than

having a separate identity from the elements they are associated

with; . . . In short, users and implementors of the DOM need to

be aware that Attr nodes have some things in common with

other objects inheriting the Node interface, but they also are

quite distinct.

End Quote

An attr node behaves sufficiently differently from other nodes that in this

formalisation, we give it a unique syntax. If a node informally looks like:

nameid [< ats ]>aid
idref
type [kids]fidvalue

Then an analogous informal attr looks like:

<<nameid 7→ [kids]fid>>
idref
specified

The type number of an attr is 2, but since attr nodes have unique syntax,

this number does not need to be literally recorded in that syntax. Com-

mands which use the type number data of their arguments (such as the

getNodeType command defined in Chapter 6.3) will assume a type number

of 2 when passed any argument that looks like an attr.

The name of an attr may be an arbitrary string, but that string must

uniquely identify the attr among its siblings in the attribute forest of its

parent element node. Attr nodes only have text nodes as children. Attr

nodes have no attributes of their own. All attributes have a non-null owner

document.
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Attr nodes have a property that other nodes do not. In the informal

presentation above, it is named “specified” while in Figure 6.1 it is a boolean.

This property corresponds to the object attribute called “specified” in [22].

In [22], the behaviour associated with the “specified” property is complex

and potentially confusing. We deal with it in full in Chapter 6.3.2. For now,

it is enough to be aware that attr nodes carry a boolean payload we call

“specified”.

Finally, [22] specifies that attr nodes should have a “value”, such as might

be returned by a call to the “getNodeValue” getter command specified in

Chapter 6.3:

Begin Quote

On retrieval, the value of the attribute is returned as a string.

. . .

On setting, this creates a Text node with the unparsed contents

of the string.

End Quote

The reason setting the value of an attr node creates a new Text node is

that the value of an XML attribute as represented in DOM may be viewed

as the “value” property of an attr object, or as the concatenation of the

“value” properties of its child Text nodes. This enables a programmer to

set the value of an XML attribute to a literal string with a single assignment

to the “value” property of the object; or to edit the value of an attribute

to append some text from elsewhere in the document with a single call to

appendChild. These two views of the value of an xml attribute must be

kept consistent at all times.

In this formalisation of DOM, the canonical form of the value of an XML

attibute is the child list of the attr and the text nodes in that list. When a

call is made to the getter command “getNodeValue” defined in Chapter 6.3,

that command constructs a literal value on the fly by concatenating the

values of the text nodes in the attr’s child list. When a call is made to the

setter command “setNodeValue”, the command creates a new text node as

per the specification quoted above. That text node is added to the child list

of the attr, and all previous children are removed.
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6.2.7. Comments and Text Nodes

The names of comments and text nodes are “#comment” and “#text”

respectively, and their type numbers are 8 and 3. Neither node type has

attributes, and so always has an aid equal to null. Both node types must

always have non-null owner documents, and neither may have children.

Despite not having children, both comments and text nodes always have

non-null fids. While this is not consistent with the nil aid values, both

decisions are made explicit in the documentation for the “Node” interface

in [22]:

Begin Quote

nodeName nodeValue attributes

. . .

Text #text content of the text node null

. . .

Comment #comment content of the comment null

. . .

childNodes A NodeList that contains all children of this

node. If there are no children, this is a NodeList containing

no nodes.

End Quote

The values of comment and text nodes, as suggested by this quote, rep-

resent the content of those nodes. They are strings.

6.2.8. Element Searches

All but one of the substructures presented in Figure 6.1 directly correspond

to structures explicitly described in [22]. The “element search” structure

however, is motivated by the following interaction of two requirements of

the W3C specification.

[22] specifies a method both on the Document and the Element interfaces

which is called “getElementsByTagName”. The method is first described

in the Document interface:
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Begin Quote

getElementsByTagName Returns a NodeList of all the Ele-

ments with a given tag name in the order in which they would

be encountered in a preorder traversal of the Document tree.

End Quote

The description on the Element interface differs only in its substitution of

“Element Tree” in place of “Document Tree”.

[22] also says:

Begin Quote

NodeLists and NamedNodeMaps in the DOM are “live”, that

is, changes to the underlying document structure are reflected

in all relevant NodeLists and NamedNodeMaps. For example,

if a DOM user gets a NodeList object containing the children

of an Element, then subsequently adds more children to that

element (or removes children, or modifies them), those changes

are automatically reflected in the NodeList without further ac-

tion on the user’s part. Likewise changes to a Node in the tree

are reflected in all references to that Node in NodeLists and

NamedNodeMaps.

End Quote

Taken together, these two clauses mandate the following potential be-

haviour:

Suppose we have an element “e”, with no children. If we call

“l = e.getElementsByTagName(‘foo’)” then l will be assigned an empty

NodeList. If we call “l.length”, the return value will be 0.

If we then use “appendChild” to add an element with name “foo” to the

childlist of e, then the NodeList l will automatically be updated to contain

that new element. The return value of “l.length” will now be 1.

It is tempting to assert that this is not the desired behaviour of the

specification – that surely the “live update” policy quoted above only applies

to NodeLists which are actually part of the tree structure of a document.

Surely it should not apply to NodeLists which contain the results of a query
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which has been applied to that structure. This view of the specification is

opposed by the following quote, taken from the section of the specification

of the Node interface that deals with the Node’s children:

Begin Quote

childNodes A NodeList that contains all children of this node.

If there are no children, this is a NodeList containing no nodes.

The content of the returned NodeList is “live” in the sense that,

for instance, changes to the children of the node object that it

was created from are immediately reflected in the nodes returned

by the NodeList accessors; it is not a static snapshot of the con-

tent of the node. This is true for every NodeList, including the

ones returned by the getElementsByTagName method.

End Quote

In order to allow for this required behaviour, the command “getElements-

ByTagName” as defined in Chapter 6.3 does not return a static NodeList.

Instead it does not perform a tree search at all, but returns an element

search structure which records the parameters of the search:

sidref
fid

The string s is the search term – either the tag name being searched for,

or the special character “*” which is a wildcard. The idref is a reference

to the root of the search. This is either an element or a document node.

Finally the fid is analogous to the fid of any other structure which has

children.

An element search may be treated as a node list, in which case any at-

tempt to access the data in it will result in an on-the-fly search of the current

state of the tree. For example, calling “getLength()” will result in the en-

tire subtree of the search root being searched for element nodes with names

matching the search string s. The results will be counted, and that count

will be returned.

By returning an element search structure rather than a node list structure,

we are able to provide the “live update” behaviour required by [22].
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Lazy searches of this sort may of course be computationally expensive.

Rather than searching lazily, an implementation might search eagerly, and

then use the “listener pattern” of object oriented programming to provide

“live updates” whenever any part of the DOM that a search depends on

is changed. Specifying behaviour in this way is unnecessarily complicated

however. In this specification, we choose the clarity of lazy evaluation over

the computational efficiency of listeners.

6.2.9. Strings and Characters

[22] has this to say on the subject of strings:

Begin Quote

To ensure interoperability, the DOM specifies the DOMString

type as follows:

• A DOMString is a sequence of 16-bit quantities. This may

be expressed in IDL terms as:

typedef sequence<unsigned short> DOMString;

• Applications must encode DOMString using UTF-16 (de-

fined in Appendix C.3 of [UNICODE] and Amendment 1

of [ISO-10646]).The UTF-16 encoding was chosen because

of its widespread industry practice. Please note that for

both HTML and XML, the document character set (and

therefore the notation of numeric character references) is

based on UCS-4. A single numeric character reference in

a source document may therefore in some cases correspond

to two array positions in a DOMString (a high surrogate

and a low surrogate). Note: Even though the DOM defines

the name of the string type to be DOMString, bindings may

used different names. For, example for Java, DOMString

is bound to the String type because it also uses UTF-16 as

its encoding.

End Quote
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Since this formalisation is concerned with behaviour rather than bit-

representation, it is effectively character-set-independent, requiring only

that literal characters in the programming language have some representa-

tion in memory. In Figure 6.1, we simply specify that strings are sequences

of characters. We do not explicitly enumerate all the allowable UTF-16

characters.

6.2.10. Contexts

Just as in Featherweight DOM, we give a context structure which mirrors

the DOM data structure.

Definition 38 (DOM Context Structure). Given an infinite set ID of node

identifiers and a finite set C of characters, with distinguished characters ‘#’

and ‘*’, we define the DOM context structure as in Figure 6.2, following the

pattern of the DOM data structure given in Figure 6.1. For well formedness,

the structure of contexts follows the requirements of DOM data as outlined

in Definition 35: id,fid,aid ∈ ID must be unique across the whole data

structure and idref ∈ ID must be equal to an existing id elsewhere in the

data structure. An idref in a node must refer to the id of a document node,

which we call that node’s “owner document”. Any node which is a child

of a document must be owned by that document, and no other node may

be owned by a different document to its parent. Document nodes have no

owner document, and so their idrefs are set to null.

Finally, we have a simple structural congruence, denoted ≡, which states

that:

• for any type D, D and D-context composition ⊗D is associative with

unit ∅T;

• grove-composition ⊕ is associative and commutative with unit ∅G.

Note that each hole is annotated with a type (see Chapter 6.2.1), which

corresponds to the type of data that can be inserted into that hole using

the application function ap (defined in Definition 41).

Just as the data structures in 6.1 can be divided into the disjoint sets on

the left of Figure 6.3, so may the context structures in 6.2 be divided into

the disjoint sets on the right of Figure 6.3. For contexts however, we wish

to differentiate between types of a finer granularity.
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Definition 39 (Context Types). Recall the type grouping D given in Def-

inition 37. Given a context cd and node types D1,D2 ∈ D, the context cd

has type D1�D2 (written cd:(D1�D2) iff:

• cd ∈ CD2, where CD2 is the context set corresponding to D2 in

Figure 6.3;

• cd contains a hole −D1 .

The analogy between context types and function types is intentional. In

Section 6.2.11 we will define the partial application function “ap” to preserve

the types ((D1�D2)×D1) ⇀ D2.

Recall the type groupings given in Definition 37. Sometimes we will wish

to refer generically to structure which may be either a datum or a context.

In these cases we will often use the type A ∈ A:

Definition 40 (The Biggest Type Group).

Data and Contexts A , D ∪
⋃

D1,D2∈D
{D1�D2}

6.2.11. Context Application

Context application is defined using an application function ap:((D1�D2)×
D1) ⇀ D2. Since the application function behaves the same way with every

kind of node, we use a general notation to specify the application function

on several node-types at once. Similarly with D-composition ⊗D.

Definition 41 (Context Application). Given data types D1,D2 ∈ D, the

partial application function ap:((D1�D2) × D1) ⇀ D2 is defined as in

Figure 6.4.

ap(cd,d)↓ denotes that ap(cd,d) is defined.

The partial application function inserts a data structure into a context

hole of a matching type. The function is partial, since various rules about

the resulting data structure must be preserved. It is not permissible to insert

a node with a particular ID into a hole in a structure which already contains

a node of that ID for example. This function is essential for defining our

local reasoning in Chapter 7, but also turns out to be very useful for defining

the operational semantics of our language in Section 6.3.
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ap(−D1 ,d1) , d1

ap(nameid [< ea ]>aidn
irn
tp [con]fidval,d1) , nameid [< ea ]>aidn

irn
tp [ap(con,d1)]fidval

ap(sid [< con ]>aid
idref
1 [ef]fidnull,d1) , sid [< ap(con,d1) ]>aid

idref
1 [ef]fidnull

ap(<con>D2 ,d1) , <ap(con,d1)>D2

ap(con⊕ d2,d1) , ap(con,d1)⊕ d2

ap(con⊗D2 d2,d1) , ap(con,d1)⊗D2 d2

ap(d2 ⊗D2 con,d1) , d2 ⊗D2 ap(con,d1)

ap(<<sid 7→ [con]fid>>
idref
bool ,d1) , <<sid 7→ [ap(con,d1)]fid>>

idref
bool

ap(nameid [< ea ]>aidn
irn
tp [f]fidcon,d1) , nameid [< ea ]>aidn

irn
tp [f]fidap(con,d1)

ap(<con,de,dnel>DF,d1) , <ap(con,d1),de,dnel>DF

ap(<dnel, con,dnel′>DF,d1) , <dnel, ap(con,d1),dnel′>DF

ap(<dnel,de, con>DF,d1) , <dnel,de, ap(con,d1)>DF

where:
d1:D1, d2:D2, con:(D1�D3), ea:EA, ef:EF, f:D4

D1,D2,D3,D4 ∈ D

name ∈ S

val ∈ {null} ∪ S, tp ∈ {1 . . . 12}, s ∈ S,
id,fid, idref,aid ∈ ID, aidn, irn ∈ ID ∪ {null}

Figure 6.4.: The Application Function
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6.3. The Language

We present DOM Core Level One as an abstract data structure paired with a

language which is used to manipulate that data structure. The language fol-

lows the language of Featherweight DOM presented in Part 3.2. It contains

standard simple imperative features, described in Chapter 6.3.1, and a large

number of commands originating in [22], described in Chapter 6.3.2. Since

there is a lot of repeated functionality in [22], we do not exhaustively define

every method. Instead, we select a subset of those methods which we define

using operational semantics (in Chapter 6.3.2), and define the behaviour of

the remaining methods in terms of that subset (in Appendix B.1).

In keeping with the imperative nature of separating our DOM abstract

data structure from the programming language, we present DOM in terms of

imperative commands rather than methods. Where [22] says “foo.appendChild(bar)”,

we say “appendChild(foo,bar)”. Where [22] specifies an object attribute,

we provide a getter and setter command to return and update the relevant

data structure. In doing this, we focus on the language-neutral behaviour

we intend to specify, rather than getting bogged down in the details of

incidentally specifying a particular object-oriented language.

Similarly, we do not reason about exception-handling mechanisms. We

take the view of [22]:

Begin Quote

DOM operations only raise exceptions in “exceptional” circum-

stances, i.e., when an operation is impossible to perform (either

for logical reasons, because data is lost, or because the imple-

mentation has become unstable). In general, DOM methods re-

turn specific error values in ordinary processing situation, such

as out-of-bound errors when using NodeList.

End Quote

Since programs should not rely on exceptions as part of their normal oper-

ation, we assume that fault-free programs should be exception-free. Where

[22] specifies that an exception should be thrown, our language will fault.

The fault-avoiding reasoning given in Chapter 7 will guarantee that any

program which satisfies a given Hoare triple will never throw an exception
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during the normal cause of operation.

6.3.1. The Host Language

As with Featherweight DOM, we define the host language, which we use

to demonstrate the use of the DOM library described in Chapter 6.3.2.

This language is not explicitly specified by [22], but aims to be as sim-

ple as possible while still allowing us to write substantial DOM programs.

This language is therefore dynamically typed, with simple statically defined

procedures, dynamic scope and basic imperative control structures. In addi-

tion to minimising the constructions needed to describe the language, these

choices will simplify the process of evolving our language in the direction of

JavaScript in future.

Program State

In addition to the DOM data structure described in Chapter 6.2, the host

language has a variable store, defined exactly as in Featherweight DOM.

Definition 42 (The Variable Store). A variable store s is a finite partial

function from variables to values:

s:VarProg → ({null} ∪ ID ∪ S ∪ Z ∪ B)

Variable look up of a variable var in the store s, is written s(var). The

notation [s|var � v] extends an existing store s with a new variable var

containing value v or to overwrites the existing value of var with v. The

notation [s \ var] removes a variable var from the store s. .

Expressions

We introduce expressions Expr ∈ Exp which do not alter the program state.

Due to the dynamically typed nature of this language, the values of some

syntactically correct expressions are undefined. If a program command at-

tempts to evaluate such an expression, it will fault

Definition 43 (Expressions). The expressions Expr ∈ Exp of the program-
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ming language are:

Expr ::= null | <c>S | n | true | false | literals: null, characters, integers and booleans

var | variables

Expr = Expr | equality test

Expr⊗S Expr | string concatenation

len(Expr) | string length

Expr + Expr | Expr− Expr |
Expr× Expr | Expr÷ Expr |

arithmetic operations

Expr ∧ Expr | Expr ∨ Expr | ¬Expr boolean operations

Just as in Chapter 6.2, we write “abc” to refer to the string <‘a’>S ⊗S

<‘b’>S ⊗S <‘c’>S

To distinguish program variables from expressions in our reasoning, we

adopt the convention that program variable names are always written en-

tirely in lowercase, while expression names will always be written in Upper-

CamelCase.

In order to define our expression evaluation, we require the auxiliary

function len.

Definition 44 (Forest Length). Recall N and F , from Definition 37. The

length of a string or forest is defined by:

len(∅D) , 0

len(<d>D) , 1

len(d1 ⊗D d2) , len(d1) + len(d2)

where D ∈ F , d1,d2 ∈ D, d ∈ D′ and D′ ∈ N

Definition 45 (Expression Evaluation). The evaluation JExprKs of expres-

sion Expr in store s is given in Figure 6.5.

Note that this evaluation is a partial function, since not all expressions

can be successfully evaluated. Attempting to evaluate such an expression

at runtime will result in a runtime fault.

The DTD Fragment

XML Documents in the real world exist in the context of a “DTD” or

“Document Type Definition” which describes what subset of XML is valid
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JnullKs , null

J∅SKs , ∅S

J<c>SKs , <c>S

JnKs , n

JtrueKs , true

JfalseKs , false

JvarKs , s(var) iff var ∈ dom(s)

JExpr = Expr′Ks , JExprKs = JExpr′Ks
JExpr⊗S Expr′Ks , JExprKs ⊗S JExpr′Ks iff JExprKs, JExpr′Ks ∈ S

Jlen(Expr)Ks , len(JExprKs)
JExpr + Expr′Ks , JExprKs + JExpr′Ks iff JExprKs, JExpr′Ks ∈ Z
JExpr− Expr′Ks , JExprKs − JExpr′Ks iff JExprKs, JExpr′Ks ∈ Z
JExpr× Expr′Ks , JExprKs × JExpr′Ks iff JExprKs, JExpr′Ks ∈ Z
JExpr÷ Expr′Ks , JExprKs ÷ JExpr′Ks iff JExprKs, JExpr′Ks ∈ Z
JExpr ∧ Expr′Ks , JExprKs ∧ JExpr′Ks iff JExprKs, JExpr′Ks ∈ B
JExpr ∨ Expr′Ks , JExprKs ∨ JExpr′Ks iff JExprKs, JExpr′Ks ∈ B

J¬ExprKs , ¬JExprKs iff JExprKs ∈ B

Figure 6.5.: The Evaluation of Expressions

in the current context. For example, on the web, we use xhtml[43]. In DOM,

we have no need to model the whole DTD, but the behaviour of DOM is

effected by a fragment of the DTD in the current context. We model this

context as follows:

Definition 46 (DTD Fragments). We define a DTD fragment d:(S,S) ⇀ S

which is a partial function mapping element and attribute names to default

attribute values. The full use of this structure is described in section 6.3.2.

Standard Imperative Commands

As with Featherweight DOM, we describe a minimal imperative language,

with which we can use the DOM library.

Definition 47 (Imperative Commands). The commands of the imperative
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JExprKs = val

s, d,g, var:=Expr [s|var←val], d,g

s, d,g, C1  s′, d,g′

s′, d,g′, C2  s′′, d,g′′

s, d,g, (C1 ; C2) s′′, d,g′′

JBoolKs = true
s, d,g, C1  s′, d,g′

s, d,g, if Bool then C1 else C2 fi  s′, d,g′

JBoolKs = false
s, d,g, C2  s′, d,g′

s, d,g, if Bool then C1 else C2 fi  s′, d,g′

s, d,g, if Bool then C ; while Bool do C od else skip fi  s′, d,g′

s, d,g, while Bool do C od  s′, d,g′

val = s(var)
[s|var � null], d,g, C s′, d,g′

s, d,g, local var : C endloc  [s′|var � val], d,g′

var 6∈ dom(s)
[s|var � null], d,g, C s′, d,g′

s, d,g, local var : C endloc  [s′ \ var], d,g′

s, d,g, skip s, d,g

Figure 6.6.: Imperative Commands

language are:

C ::= var := Expr assignment

| C; C sequential composition

| if Expr then C else C fi conditionals

| while Expr do C od loops

| local var : C endloc local variable declaration

| skip skip

| v:=procname(params) , C procedure declaration

| v:=procname(vars) procedure call

| CDOM DOM commands (see Definition 49)

where params is a vector of parameters, and vars is a vector of variables..

We deal with procedures in Section 6.3.1 and the DOM commands in

Section 6.3.2. We give big-step operational semantics for the remaining

commands here.
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Definition 48 (Imperative Commands). The operational semantics of the

standard imperative commands are given in Figure 6.6 by an evaluation

relation relating configuration quadruples s, d,g, C, terminal states s, d,g,

and faults.

The simple imperative commands for DOM Core Level 1 behave exactly

as the simple imperative commands for Featherweight DOM. We include

them here however, since the  relation for Featherweight DOM relates

configuration triples, not quadruples, to terminal states. The new element

in the Core Level 1 configuration quadruples is the DTD Fragment d, defined

in Definition 46, and is only used by certain DOM commands defined in

Section 6.3.2.

As with Featherweight DOM, we use the simple syntactic sugars for else-

less if and grouped local scope declarations

Procedures

As with Featherweight DOM, we provide a primitive procedure system

with dynamic scope. Procedures are defined statically for each program

exactly as for Featherweight DOM in Section 3.2.4.Exactly as in Feather-

weight DOM, procedures are represented during program execution as a

partial function procs which maps procedure names procname to the tuple

(v,params, C) which contains the return variable v, a vector of the proce-

dure’s parameter variables params, and the procedure’s body C.

Procedure call is defined almost exactly as for Featherweight DOM, except

that the rule uses a Core Level 1 configuration quadruples rather than a

Featherweight DOM configuration triple. As with the simple imperative

commands, the extra element in this quadruples is the DTD Fragment d:

procs(procname) = (v′, params, C)

|params| = |vars|
s, d,g, C{v/v′, ∀pi ∈ params, vi ∈ vars. vi/pi} s′, d,g′

s, d,g, v:=procname(vars) s′, d,g′

where vars is a vector of variables.

We have the same devnull variable and syntactic sugars for ignoring

the return values of procedures as were given for Featherweight DOM in

Section 3.2.4.
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6.3.2. DOM Library Commands

Next, we complete our language by defining operational semantics for each

command in DOM. We present the commands from each Interface of DOM

separately.

Definition 49 (DOM Library Commands). The DOM Library Commands

are:

CDOM ::= CDOC Document Commands, see Definition 50

| CNODE Node Commands, see Definition 51

| CNODELIST NodeList Commands, see Definition 53

| CELE Element Commands, see Definition 55

| CATTR Attr Commands, see Definition 56

| CMAP NamedNodeMap Commands, see Definition 57

| CCD CharacterData Commands, see Definition 58

Any attempt to execute a syntactically correct program which is not cov-

ered by the following semantics will result in a runtime fault. For example,

calling createElement(x, s) in an environment where x is not the id of a

Document node will fault. Wherever [22] calls for an exception to be thrown,

we will fault in this way.

These commands are defined in groups corresponding to the interfaces

in which they are defined in the DOM specification, but first it is best to

explain the behaviour of “specified”, which effects several commands from

various interfaces.

The “Specified” Property and The DTD Fragment

Recall that in Section 6.2.6, we described the general shape of the Attr data

structure as being:

<<nameid 7→ [kids]fid>>
idref
specified

The boolean property “specified” corresponds to the object attribute of

the same name defined on the Attr interface. The behaviour of DOM im-

plementations in their interpretation of this part of the specification is quite

varied. We investigate this behaviour in Chapter 8 and Appendix C.
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Since there is no consensus among DOM implementations for how this

property should behave, it is all the more important that we carefully in-

terpret the specification document. The “specified” property is described

in [22] as follows:

Begin Quote

If this attribute was explicitly given a value in the original doc-

ument, this is true; otherwise, it is false. Note that the imple-

mentation is in charge of this attribute, not the user. If the user

changes the value of the attribute (even if it ends up having the

same value as the default value) then the specified flag is au-

tomatically flipped to true. To re-specify the attribute as the

default value from the DTD, the user must delete the attribute.

The implementation will then make a new attribute available

with specified set to false and the default value (if one exists).

In summary:

• If the attribute has an assigned value in the document then

specified is true, and the value is the assigned value.

• If the attribute has no assigned value in the document and

has a default value in the DTD, then specified is false, and

the value is the default value in the DTD.

• If the attribute has no assigned value in the document and

has a value of #IMPLIED in the DTD, then the attribute

does not appear in the structure model of the document.

End Quote

The first important thing to notice about the value of specified then, is

that it will be automatically changed to true if any change is made to the

attribute in question. Thus, any command in the following semantics which

changes an Attr node, will also change its “specified” property.

The second important thing to notice is that there are only two ways the

value of specified for any node can ever be false. Firstly, it may have been

parsed that way - which is outside the scope of this document. Secondly,
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it might be that an Attr node was removed, and re-created by DOM using

the default value in the Document Type Definition (DTD - [24]).

Modelling the behaviour of the DTD is beyond the scope of this docu-

ment, so we define a minimal fragment sufficient for our needs. That DTD

fragment is defined above in Definition 46: a partial function d mapping

element and attribute names to default attribute values. Whenever an Attr

is removed from a NamedNodeMap, the name of the Attr, and the name of

the Element which owns that Attr will be looked up in the DTD fragment

d. If they are not found there, then the removal will happen as normal. If,

on the other hand, a default attribute value is found for that Element-Attr

pair, then a new Attr will be created with that value, and inserted into the

NamedNodeMap in question.

The DTD fragment d cannot be altered programatically. It is defined for

a given run of the program, according to the type of document that the

program is manipulating. For example, in a web browser, the value of d will

likely be a description of the default values of various HTML attributes.

Document

We define the Document Interface commands, following the “Document

Interface” of [22].

Definition 50 (Document Interface Commands). The Document Interface

Commands are:

CDOC ::= x := createElement(Doc, TagName)

| x := createDocumentFragment(Doc)

| x := createTextNode(Doc, Data)

| x := createComment(Doc, Data)

| x := createAttribute(Doc, Name)

| x := createDocument()

| x := getElementsByTagName(Doc, TagName)

Since there are no classes in [22] which subclass Document, all the Doc-

ument Interface commands take as their first argument a document node

Doc, which we know must have the shape:

“#document”JDocKs [< ∅EA ]>null
null
9 [f]fid′null
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with nil document owner, no attributes and a type number of 9.

Node Creation [22] provides methods for creating every type of node

apart from Documents. Document nodes cannot be created programati-

cally using DOM, and are assumed to come into existence when an XML

document is parsed. DOM provides a means of editing documents, not cre-

ating them. Furthermore, the methods provided for creating all other types

of node do so in the context of a Document, which will be the new Node’s

Owner Document.

Each of the following commands therefore execute in a state in which the

grove contains at least one document. That document is identified by “Doc”

– the first parameter of the command. The command then alters the state

only in that it creates a single new Node, and assigns its id to the return

variable. The commands createElement and createAttribute also take

a second parameter “Name”, which is a string copied into the new node.

The commands createTextNode and createComment take as their second

parameter the string “Data”, which is similarly copied into the new node.

In all the following commands id,aid, fid and fid′ ∈ ID are fresh.

g ≡ g′′ ⊕<“#document”JDocKs [< ∅EA ]>null
null
9 [f]fid′null>G

g′ ≡ g⊕<JTagNameKsid [< ∅EA ]>aid
JDocKs
1 [∅EF]fidnull>G

s, d,g, x := createElement(Doc, TagName) [s|x � id], d,g′

In the case that we wish to provide an HTML (rather than general XML)

implementation of DOM, we can replace the above createElement com-

mand with the following:

g ≡ g′′ ⊕<“#document”JDocKs [< ∅EA ]>null
null
9 [f]fid′null>G

g′ ≡ g⊕<toUpper(JTagNameKs)id [< ∅EA ]>aid
JDocKs
1 [∅EF]fidnull>G

s, d,g, x := createElement(Doc, TagName) [s|x � id], d,g′

which makes use of the auxiliary function “toUpper(s)”, which maps ev-

ery alphabetic character in s to its uppercase equivalent. On non-alphabetic

characters, toUpper is the identity function. The HTML version of the com-

mand then maps TagName to the canonical uppercase. In practice, most web

browsers use the XML version of this command. As such, in our examples,
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so will we.

g ≡ g′′ ⊕<“#document”JDocKs [< ∅EA ]>null
null
9 [f]fid′null>G

g′ ≡ g⊕<“#document-fragment”id [< ∅EA ]>null
JDocKs
11 [∅FRAGF]fidnull>G

s, d,g, x := createDocumentFragment(Doc) [s|x � id], d,g′

g ≡ g′′ ⊕<“#document”JDocKs [< ∅EA ]>null
null
9 [f]fid′null>G

g′ ≡ g⊕<“#text-node”id [< ∅EA ]>null
JDocKs
3 [∅TF]fidJDataKs>G

s, d,g, x := createTextNode(Doc, Data) [s|x � id], d,g′

g ≡ g′′ ⊕<“#document”JDocKs [< ∅EA ]>null
null
9 [f]fid′null>G

g′ ≡ g⊕<“#comment”id [< ∅EA ]>null
JDocKs
8 [∅CF]fidJDataKs>G

s, d,g, x := createComment(Doc, Data) [s|x � id], d,g′

g ≡ g′′ ⊕<“#document”JDocKs [< ∅EA ]>null
null
9 [f]fid′null>G

g′ ≡ g⊕<<<JNameKsid 7→ [∅AF]fid>>
JDocKs
true >G

s, d,g, x := createAttribute(Doc, Name) [s|x � id], d,g′

The command createAttribute is particularly interesting because Attr

nodes behave differently to other Node objects. As described in Sections 6.2.6

and 6.3.2, Attr nodes have a boolean field called “specified”. This field tells

us whether the value of the attribute was specified explicitly, or whether

it was set by default in the DTD. Since all attributes created by create-

Attribute are created explicitly by the programmer, all attributes created

in this way always have a “specified” value of “true”.

Finally, we provide the createDocument, even though it is not speci-

fied in DOM Core Level 1. We provide this command in the interests of

completeness of this language, since without it, the only way to create a

new Document node after the initial document parse (which is beyond the

scope of this thesis) is to clone an existing Document node and delete all its

contents. Since the command “cloneNode” is in all other respects a compos-

ite command, we choose to include the simple command createDocument

in our core language, and implement the far more complex cloneNode in

Appendix B.1.

g′ ≡ g⊕<“#document”id [< ∅EA ]>null
null
9 [∅DNEL,∅DE,∅DNEL]fidnull>G

s, d,g, x := createDocument() [s|x � id], d,g′
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getElementsByTagName As described in Chapter 6.2.8, this method is best

implemented “lazily” by caching the parameters of the method in a new

structure, and generating the results of the call each time they are accessed.

This command therefore operates in a similar manner to the node creation

commands.

g ≡ g′′ ⊕<“#document”JDocKs [< ∅EA ]>null
null
9 [f]fidnull>G

g′ ≡ g⊕<
JDocKs
JTagNameKs id

>G

s, d,g, x := getElementsByTagName(Doc, TagName) [s|x � id], d,g′

Node

The Node interface is subclassed by the Document, DocumentFragment, El-

ement, Attribute, Comment and Text interfaces. The following commands

therefore take as their first argument a node N, which may be of any type

D ∈ (N \ ES), where N is the “Nodes” type grouping from Definition 37

and ES is the type of Element Search nodes. We therefore present cases for

the general node shape nameJNKs [< af ]>aidn
irn
tp [f]fidval and for the special

case of Attr nodes <<nameJNKs 7→ [af]fid>>
doc
specified.

Definition 51 (Node Interface Commands). The Node Interface Com-

mands are:
CNODE ::= nm := getNodeName(N)

| v := getNodeValueHelper(N)

| setNodeValueHelper(N, Str)

| i := getNodeType(N)

| p := getParentNode(N)

| kids := getChildNodes(N)

| ats := getAttributes(N)

| od := getOwnerDocument(N)

| n := appendChild(Parent, NewChild)

| n := removeChild(Parent, OldChild)

getNodeName This is a “getter” command, which provides the function-

ality of the read-only object attribute “nodeName” as specified in [22]. It

returns the name of the node N, regardless of its type.
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g ≡ ap(cg,nameJNKs [< af ]>aidn
irn
tp [f]fidval)

s, d,g, nm := getNodeName(N) [s|nm � name], d,g

g ≡ ap(cg, <<nameJNKs 7→ [af]fid>>
doc
specified)

s, d,g, nm := getNodeName(N) [s|nm � name], d,g

getNodeValue The command getNodeValue provides part of the function-

ality of the object attribute “nodeValue” (the other part being provided by

setNodeValue). It returns the value of the node N, or null if N is of a type

that has no value. getNodeValue can be implemented by making use of

existing commands, in conjunction with the following helper command:

g ≡ ap(cg,nameJNKs [< af ]>aidn
irn
tp [f]fidval)

s, d,g, v := getNodeValueHelper(N) [s|v � val], d,g

Note that this helper command is equivalent to getNodeValue in the

non-Attr case. For Attribute nodes, we provide a more complex composite

command which accesses every child of N in Chapter B.1.

setNodeValue This command provides the remaining part of the function-

ality of the object attribute “nodeValue”. It allows the programmer to set

the value of any node which allows it. setNodeValue can be implemented by

making use of existing commands, in conjunction with the following helper

command:

g ≡ ap(cg,nameJNKs [< af ]>aidn
irn
tp [f]fidval)

g′ ≡ ap(cg,nameJNKs [< af ]>aidn
irn
tp [f]fidJStrKs)

s, d,g, setNodeValueHelper(N, Str) s, d,g′

Note that this helper command is equivalent to setNodeValue in the

non-Attr case. For Attribute nodes we provide a more complex composite

command which accesses every child of N in Chapter B.1.

Which node types allow their values to be set is determined by the data

structure itself. For example, consider a Grove g containing an Element

node Ele:

g ≡ ap(cg,nameJEleKs [< af ]>aid
idref
1 [f]fidnull)
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There can be no data structure g′ containing any Element Node Ele with a

non-null value, and so it is impossible to call setNodeValueHelper(Ele, S).

getNodeType This command provides the functionality of the read-only

object attribute “nodeType”. Note that the type number of every node

type other than Attribute nodes is recorded in the node data structure.

Attribute nodes have a unique structure, and so the type number “2” is not

explicitly recorded.

g ≡ ap(cg,nameJNKs [< af ]>aidn
irn
tp [f]fidval)

s, d,g, i := getNodeType(N) [s|i � tp], d,g

g ≡ ap(cg, <<nameJNKs 7→ [af]fid>>
doc
specified)

s, d,g, i := getNodeType(N) [s|i � 2], d,g

getParentNode This command provides the functionality of the read-only

object attribute “parentNode”. It returns a reference to the node which is

N’s parent. If N has no parent, or is an Attribute node, getParentNode

returns null.

g ≡ ap(cg,nameid [< af ]>aidn
irn
tp [

f1 ⊗D2 <name′JNKs [< af′ ]>aidn′
irn′

tp′ [f′]fid′val′>D2 ⊗D2 f2

]fidval)

s, d,g, p := getParentNode(N) [s|p � id], d,g

g ≡ g′ ⊕<nameJNKs [< af ]>aidn
irn
tp [f]fidval>G

s, d,g, p := getParentNode(N) [s|p � null], d,g

g ≡ ap(cg, <<nameJNKs 7→ [af]fid>>
doc
specified)

s, d,g, p := getParentNode(N) [s|p � null], d,g

g ≡ ap(cg, <<nameid 7→ [

af1 ⊗AF <name′JNKs [< af′ ]>aidn′
irn′

tp′ [f′]fid′val′>AF ⊗AF af2

]fid>>
doc
specified)

s, d,g, p := getParentNode(N) [s|p � id], d,g
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g ≡ g′⊕
<“#document”id [< ∅EA ]>null

null
9 [

<dnel1 ⊗DNEL

<name′JNKs [< af′ ]>aidn′
irn′

tp′ [f′]fid′val′>DNEL

⊗DNEL dnel2,de,dnel>DF

]fidnull>G

s, d,g, p := getParentNode(N) [s|p � id], d,g

g ≡ g′⊕
<“#document”id [< ∅EA ]>null

null
9 [

<dnel1, <sJNKs [< af′ ]>aid
idref
1 [f]fid′null>DE,dnel2

]fidnull>G

s, d,g, p := getParentNode(N) [s|p � id], d,g

g ≡ g′⊕
<“#document”id [< ∅EA ]>null

null
9 [

<dnel,de,dnel1 ⊗DNEL

<name′JNKs [< af′ ]>aidn′
irn′

tp′ [f′]fid′val′>DNEL

⊗DNEL dnel2>DF

]fidnull>G

s, d,g, p := getParentNode(N) [s|p � id], d,g

getChildNodes This command provides the functionality of the read-

only object attribute “childNodes”. It returns the “fid” of the children of

the node N, which can then be passed to any command which [22] specifies

as expecting a NodeList object.

[22] describes childNodes as:

Begin Quote

A NodeList that contains all children of this node. If there are

no children, this is a NodeList containing no nodes. The con-

tent of the returned NodeList is “live” in the sense that, for

instance, changes to the children of the node object that it was

created from are immediately reflected in the nodes returned by
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the NodeList accessors; it is not a static snapshot of the content

of the node.

End Quote

Note in particular that it is not possible to have a null childNodes list.

Even node types which may have no children under any circumstances will

always have an empty childNodes list. This means, for example, that in

languages which support it, it is possible to safely write programs such as:

getGrandChildren(n) = concat (map getChildNodes (getChildNodes(n)))

. . . without worrying about handling null cases.

The “live” nature of the returned data structure is handled by return-

ing a reference to the actual child structure of the node N. If N’s children

change, then the elements in the NodeList referred to by fid will change by

definition.

g ≡ ap(cg,nameJNKs [< af ]>aidn
irn
tp [f]fidval)

s, d,g, kids := getChildNodes(N) [s|kids � fid], d,g

g ≡ ap(cg, <<nameJNKs 7→ [af]fid>>
doc
specified)

s, d,g, kids := getChildNodes(N) [s|kids � fid], d,g

getAttributes This command provides the functionality of the read-only

object attribute “attributes”. It returns the aid of the node N’s attribute

map unless N is of a type that cannot have attributes, in which case it

returns null.

g ≡ ap(cg,nameJNKs [< af ]>aidn
irn
tp [f]fidval)

s, d,g, ats := getAttributes(N) [s|ats � aidn], d,g

g ≡ ap(cg, <<nameJNKs 7→ [af]fid>>
doc
specified)

s, d,g, ats := getAttributes(N) [s|ats � null, d,g

getOwnerDocument This command provides the functionality of the read-

only object attribute “ownerDocument”. All Nodes except Document nodes

are owned by a Document node. In the case that N is not a Document node,

this command returns the id of the Document node that owns N. In the case

that N is a Document node, this command returns null.
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g ≡ ap(cg,nameJNKs [< af ]>aidn
irn
tp [f]fidval)

s, d,g, od := getOwnerDocument(N) [s|od � irn], d,g

g ≡ ap(cg, <<nameJNKs 7→ [af]fid>>
doc
specified)

s, d,g, od := getOwnerDocument(N) [s|od � doc, d,g

appendChild The next challenge is the class of commands which move

nodes around in the grove. If we provide “appendChild” and “remove-

Child”, we can implement “insertBefore” and “replaceChild”.

[22] says:

Begin Quote

Adds the node newChild to the end of the list of children of this

node. If the newChild is already in the tree, it is first removed.

End Quote

This is a move command. It moves the node NewChild from wherever it

currently is, to become the last child of the node described in [22] as “this

node”, and here as Parent. If NewChild doesn’t exist, then the command

faults.

First, we present the two possible cases for if the node Parent is a Doc-

umentFragment or Element node.

The simplest case for appendChild is:

g ≡ ap(cg′, <nameJNewChildKs [< af ]>aidn
idref
ndftp[f]fidval>D′1

)

ap(cg′,∅D1) ≡ ap(cg,name′JParentKs [< af′ ]>aidn′
idref
dfetp[fnd′]fid′null)

g′ ≡ ap(cg,name′JParentKs [< af′ ]>aidn′
idref
dfetp[

fnd′ ⊗D2

<nameJNewChildKs [< af ]>aidn
idref
ndftp[f]fidval>D2

]fid′null)

s, d,g, n := appendChild(Parent, NewChild) [s|n � JNewChildKs], d,g′

where dfetp ∈ {11, 1}, ensuring that the Parent node is either a Docu-

mentFragment or an Element node, and ndftp ∈ {1, 3, 8, 9}, ensuring that

the NewChild node is not a DocumentFragment node.
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If the new child to be inserted is a document fragment, then we add the

forest of the new child, not the child itself.

Begin Quote

When a DocumentFragment is inserted into a Document (or in-

deed any other Node that may take children) the children of

the DocumentFragment and not the DocumentFragment itself

are inserted into the Node. This makes the DocumentFragment

very useful when the user wishes to create nodes that are sib-

lings; the DocumentFragment acts as the parent of these nodes

so that the user can use the standard methods from the Node

interface, such as insertBefore() and appendChild().

End Quote

To define this command, we make use of a partial function “cast”, which

transforms a forest from one type into another. For example, it can be used

to transform the forest of children of a Document Fragment into an Element

forest, which may be appended to the child list of an Element node.

Definition 52 (The cast function). The function “cast” takes a type pa-

rameter D and a forest f. It returns a new forest of type D which contains

the same elements as f.

cast(D1,∅D2) , ∅D1

cast(D1,d2 ⊗D2 d′2) , cast(D1,d2)⊗D1 cast(D1,d
′
2)

cast(D1, <f>D2) , <f>D1

g ≡ <“#document-fragment”JNewChildKs [< ∅EA ]>null
idref
11 [f]fidnull>G ⊕

ap(cg,name′JParentKs [< af′ ]>aidn′
idref
dfetp[fnd′]fid′val′)

g′ ≡ ap(cg,name′JParentKs [< af′ ]>aidn′
idref
dfetp

[
fnd′ ⊗FND′ cast(FND′, f)

]
fid′

val′)

⊕<“#document-fragment”JNewChildKs [< ∅EA ]>null
idref
11 [∅FRAGF]fidnull>G

s, d,g, n := appendChild(Parent, NewChild); [s|n � JNewChildKs], d,g′

where dfetp ∈ {11, 1}, ensuring that the Parent node is either a Doc-

umentFragment or an Element node and fnd′ ∈ FND′, ensuring that the

new children are cast to the correct type.
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Next we present the synonymous cases if the parent is an Attr. Note

that because this command modifies the Attr, its value of “specified” will

be changed to true, as explained in Chapter 6.3.2.

The simpler case where the node NewChild is not a Document Fragment

is given by

g ≡ ap(cg′, <nameJNewChildKs [< af ]>aidn
idref
ndftp[f]fidval>D′1

)

ap(cg′,∅D′1
) ≡ ap(cg, <<name′JParentKs 7→ [f′]fid′>>

idref
specified)

g′ ≡ ap(cg, <<name′JParentKs 7→ [

f′ ⊗D2

<nameJNewChildKs [< af ]>aidn
idref
ndftp[f]fidval>D′2

]fid′>>
idref
true )

s, d,g, n := appendChild(Parent, NewChild); [s|n � JNewChildKs], d,g′

where ndftp ∈ {1, 3, 8, 9}, ensuring that the NewChild node is not a

DocumentFragment node. The case when the child is also a document

fragment is given by

g ≡ <“#document-fragment”JNewChildKs [< ∅EA ]>null
idref
11 [f]fidnull>G ⊕

ap(cg, <<name′JParentKs 7→ [f′]fid′>>
idref
specified)

g′ ≡ ap(cg, <<name′JParentKs 7→
[

f′ ⊗EA cast(EA, f)
]
fid′

>>idref
true )

⊕<“#document-fragment”JNewChildKs [< ∅EA ]>null
idref
11 [∅FRAGF]fidnull>G

s, d,g, n := appendChild(Parent, NewChild); [s|n � JNewChildKs], d,g′

Finally, we present the cases where Parent is a Document node. Recall

that the forest of a Document node as a triplet of dnel,de,dnel. The mid-

dle entry in the triplet is restricted to being a single element, or ∅DE. The

outer entries are true forests, which may not contain Elements. If the middle

entry is ∅DE, then the right-most entry must be ∅DNEL. This property is

maintained by these commands. Most particularly, the command remove-

Child, when removing an element from beneath a Document node, will

simultaneously move all Comment nodes from the right-most entry in this

triplet to the left-most.
First we present the appendChild cases where Parent is a Document node

and in which one of the children to append – either NewChild or if NewChild
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is a Document Fragment, then its children – is an element:

g ≡ ap(cg, <sJNewChildKs [< af ]>aid
JParentKs
1 [f]fidnull>D′

1
)

⊕<“#document”JParentKs [< ∅EA ]>null
null
9 [f′,∅DE,∅DNEL]fid′null>G

g′ ≡ ap(cg,∅D′
1
)

⊕<“#document”JParentKs [< ∅EA ]>null
null
9 [

f′,

<sJNewChildKs [< af ]>aid
JParentKs
1 [f]fidval>DE,

∅DNEL

]fid′null>G

s, d,g, n := appendChild(Parent, NewChild); [s|n � JNewChildKs], d,g′

g ≡ g′′ ⊕
<“#document-fragment”JNewChildKs [< ∅EA ]>null

JParentKs
11 [

f1 ⊗FRAGF

<sJNewChildKs [< af ]>aid
JParentKs
1 [f]fidnull>FRAGF

⊗FRAGF f2

]fidnull>G

⊕<“#document”JParentKs [< ∅EA ]>null
null
9 [f′,∅DE,∅DNEL]fid′null>G

g′ ≡ g′′ ⊕<“#document-fragment”JNewChildKs [< ∅EA ]>null
JParentKs
11

[
∅FRAGF

]
fid

null>G

<“#document”JParentKs [< ∅EA ]>null
null
9 [

f′ ⊗DNEL cast(DNEL, f1),

<sJNewChildKs [< af ]>aid
JParentKs
1 [f]fidnull>DE,

cast(DNEL, f2)

]fid′null>G

s, d,g, n := appendChild(Parent, NewChild); [s|n � JNewChildKs], d,g′

Next, we present the 4 remaining cases, in which none of the children

to append are elements. In these cases, recall that the type number of a

comment is 8 and the type number of a Document Fragment is 11. In the

first case, NewChild is a Comment, and Parent does not have an Element

child.

g ≡ ap(cg, <nameJNewChildKs [< ea ]>aidn
JParentKs
8 [f]fidval>D1

)⊕
<“#document”JParentKs [< ∅EA ]>null

null
9 [dnel,∅DE,∅DNEL]fid′null>G

g′ ≡ ap(cg,∅D1
)⊕

<“#document”JParentKs [< ∅EA ]>null
null
9 [

dnel⊗DNEL

<nameJNewChildKs [< ea ]>aidn
JParentKs
8 [f]fidval>DNEL,

∅DE,∅DNEL

]fid′null>G

s, d,g, n := appendChild(Parent, NewChild); [s|n � JNewChildKs], d,g′

In the second the case, NewChild is a Comment and Parent does already
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have an Element child.

g ≡ ap(cg, <nameJNewChildKs [< ea ]>aidn
JParentKs
8 [f]fidval>D1

)⊕
<“#document”JParentKs [< ∅EA ]>null

null
9 [dnel1,de,dnel2]fid′null>G

g′ ≡ ap(cg,∅D1
)⊕

<“#document”JParentKs [< ∅EA ]>null
null
9 [

dnel1,de,dnel2 ⊗DNEL

<nameJNewChildKs [< ea ]>aidn
JParentKs
8 [f]fidval>DNEL

]fid′null>G

∧ dnel1 6= ∅DNEL ∧ de 6= ∅DE

s, d,g, n := appendChild(Parent, NewChild); [s|n � JNewChildKs], d,g′

In the third case, NewChild is a Document Fragment and Parent does

not have an Element child.

g ≡ g′′ ⊕
<“#document-fragment”JNewChildKs [< ∅EA ]>null

JParentKs
11 [f]fidnull>G

⊕<“#document”JParentKs [< ∅EA ]>null
null
9 [dnel,∅DE,∅DNEL]fid′null>G

g′ ≡ g′′ ⊕
<“#document-fragment”JNewChildKs [< ∅EA ]>null

JParentKs
11 [∅FRAGF]fidnull>G

⊕<“#document”JParentKs [< ∅EA ]>null
null
9 [dnel⊗DNEL cast(DNEL, f),∅DE,∅DNEL]fid′null>G

s, d,g, n := appendChild(Parent, NewChild); [s|n � JNewChildKs], d,g′

In the fourth case, NewChild is a Document Fragment and Parent does

already have an Element child.

g ≡ g′′ ⊕
<“#document-fragment”JNewChildKs [< ∅EA ]>null

JParentKs
11 [f]fidnull>G

⊕<“#document”JParentKs [< ∅EA ]>null
null
9 [dnel1,de,dnel2]fid′null>G

g′ ≡ g′′ ⊕
<“#document-fragment”JNewChildKs [< ∅EA ]>null

JParentKs
11 [∅FRAGF]fidnull>G

⊕<“#document”JParentKs [< ∅EA ]>null
null
9 [dnel1,de,dnel2 ⊗DNEL cast(DNEL, f)]fid′null>G

∧ dnel1 6= ∅DNEL ∧ de 6= ∅DE

s, d,g, n := appendChild(Parent, NewChild); [s|n � JNewChildKs], d,g′

removeChild The command “removeChild” is simpler, since the destina-

tion of the move is always the root-level of the grove. In the usual case, we

have:
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g ≡ ap(cg,nameJParentKs [< ea ]>aidn
idref
dfetp[

f1 ⊗D2

<name′JOldChildKs [< ea′ ]>aidn′
idref
tp′ [f′]fid′val′>D2

⊗D2 f2

]fidval)

g′ ≡ ap(cg,nameJParentKs [< ea ]>aidn
idref
dfetp[f1 ⊗D2 f2]fidval)

⊕<name′JOldChildKs [< ea′ ]>aidn′
idref
tp′ [f′]fid′val′>G

s, d,g, n := removeChild(Parent, OldChild); [s|n � JOldChildKs], d,g′

where dfetp ∈ {11, 1}, ensuring that the Parent node is either a Docu-

mentFragment or an Element node.

In the case where the old parent node is an attribute we must remember

to set “specified” to true as explained in Chapter 6.3.2:

g ≡ ap(cg, <<nameJParentKs 7→ [

f1 ⊗D2

<name′JOldChildKs [< ea′ ]>aidn′
idref
tp′ [f′]fid′val′>D2

⊗D2 f2

]fid>>
idref
specified)

g′ ≡ ap(cg, <<nameJParentKs 7→ [f1 ⊗D2 f2]fid>>
idref
true )

⊕<name′JOldChildKs [< ea′ ]>aidn′
idref
tp′ [f′]fid′val′>G

s, d,g, n := removeChild(Parent, OldChild); [s|n � JOldChildKs], d,g′

Finally, we present the three cases where the old parent node is a doc-

ument node. Recall that the forest of a Document node is a triplet of

dnel,de,dnel. Removing a node from each part of this triplet is handled

separately. First we present the case which handles the left-most part.
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g ≡ ap(cg, “#document”JParentKs [< ∅EA ]>null
null
9 [

<f1 ⊗DNEL

<name′JOldChildKs
[< ea′ ]>aidn′

JParentKs
tp′ [f′]fid′val′>DNEL

⊗DNEL f2,

de,dnel>DF

]fidnull)

g′ ≡ ap(cg, “#document”JParentKs [< ∅EA ]>null
null
9 [<f1 ⊗DNEL f2,de,dnel>DF]fidnull)

⊕<name′JOldChildKs
[< ea′ ]>aidn′

JParentKs
tp′ [f′]fid′val′>G

s, d,g, n := removeChild(Parent, NewChild); [s|n � JOldChildKs], d,g′

The case which handles the right-most part of the triplet is similar.

g ≡ ap(cg, “#document”JParentKs [< ∅EA ]>null
null
9 [

<dnel,de,

f1 ⊗DNEL

<name′JOldChildKs
[< ea′ ]>aidn′

JParentKs
tp′ [f′]fid′val′>DNEL

⊗DNEL f2>DF

]fidnull)

g′ ≡ ap(cg, “#document”JParentKs [< ∅EA ]>null
null
9 [<dnel,de, f1 ⊗DNEL f2>DF]fidnull)

⊕<name′JOldChildKs
[< ea′ ]>aidn′

JParentKs
tp′ [f′]fid′val′>G

s, d,g, n := removeChild(Parent, NewChild); [s|n � JOldChildKs], d,g′

Recall that if the middle entry is ∅DE, then the right-most entry must
be ∅DNEL. We maintain this property in this command by ensuring that
whenever the element in the middle is removed, all the Comment nodes
from the right entry are simultaneously moved into the left entry.

g ≡ ap(cg, “#document”JParentKs [< ∅EA ]>null
null
9 [

<dnel1,

<name′JOldChildKs
[< ea′ ]>aid′

JParentKs
1 [f′]fid′null>DE,

dnel2>DF

]fidnull)

g′ ≡ ap(cg, “#document”JParentKs [< ∅EA ]>null
null
9 [<dnel1 ⊗DNEL dnel2,∅DE,∅DNEL>DF]fidnull)

⊕<name′JOldChildKs
[< ea′ ]>aid′

JParentKs
1 [f′]fid′null>G

s, d,g, n := removeChild(Parent, NewChild); [s|n � JOldChildKs], d,g′

NodeList

The NodeList interface only provides one vital command, and that is “item”.

Definition 53. The NodeList Interface commands are:

CNODELIST ::= n := item(List, Int)

151



This command returns a reference to the ith element of a given list. We

have several different kinds of lists, over which we present the command

“item” as a unified interface. Recall the definition of the function “len”

given in Definition 44. We use that function in the following definitions.

All nodes have a NodeList of children as a part of their structure. These

nodes are of the shape:

nameid [< af ]>aidn
irn
tp [f]JListKsval

where aidn, irn ∈ ID ∪ {null} , id ∈ ID , val ∈ S ∪ {null} , name ∈ S ,

tp ∈ {9, 11, 1, 8, 3}
The NodeList containing the children of a node of this shape can be

accessed with the command defined by the following two rules:

len(f1) = JIntKs ∧
g ≡ ap(cg,nameid [< ea ]>aidn

idref
tp [

f1⊗D2

<name′
id′

[< ea′ ]>aidn′
idref
tp′ [f′]fid′val′>D2

⊗D2f2

]JListKsval)

s, d,g, n := item(List, Int) [s|n � id′], d,g

(len(f) ≤ JIntKs ∨ JIntKs < 0) ∧
g ≡ ap(cg,nameid [< ea ]>aidn

idref
tp [f]JListKsval)

s, d,g, n := item(List, Int) [s|n � null], d,g

Attributes also have a NodeList as part of their structure:

<<nameid 7→ [af]JListKs>>
doc
specified

The corresponding command to access the list of children of an Attribute

is similar to the usual node case:
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len(f1) = JIntKs ∧
g ≡ ap(cg, <<nameid 7→ [

f1⊗D2

<name′
id′

[< ea′ ]>aidn′
idref
tp′ [f′]fid′val′>D2

⊗D2f2

]JListKs>>
idref
specified)

s, d,g, n := item(List, Int) [s|n � id′], d,g

(len(f) ≤ JIntKs ∨ JIntKs < 0) ∧
g ≡ ap(cg, <<nameid 7→ [f]JListKs>>

idref
specified)

s, d,g, n := item(List, Int) [s|n � null], d,g

Documents are a little more complex, because of their more complex forest
structure. None-the-less, the rules follow the same basic pattern. First, we
present the case when the node to be accessed is in the left part of the
structure.

len(f1) = JIntKs ∧
g ≡ g′ ⊕<“#document”id [< ∅EA ]>null

null
9 [

<f1⊗DNEL

<name′
id′ [< ea′ ]>aidn′

idref
tp′ [f′]fid′val′>DNEL

⊗DNELf2,de,dnel>DF

]JListKsnull>G

s, d,g, n := item(List, Int) [s|n � id′], d,g

Next, we present the case when the node to be accessed is in the central

part of the structure.

len(dnel1) = JIntKs ∧
g ≡ g′ ⊕<“#document”id [< ∅EA ]>null

null
9 [

<dnel1,

<name′
id′ [< ea′ ]>aidn′

idref
tp′ [f′]fid′val′>DE,

dnel2>DF

]JListKsnull>G

s, d,g, n := item(List, Int) [s|n � id′], d,g

Next, we present the case when the node to be accessed is in the right

part of the structure.
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len(dnel) + len(de) + len(f1) = JIntKs ∧
g ≡ g′ ⊕<“#document”id [< ∅EA ]>null

null
9 [

<dnel,de, f1⊗DNEL

<name′
id′ [< ea′ ]>aidn′

idref
tp′ [f′]fid′val′>DNEL

⊗DNELf2>DF

]JListKsnull>G

s, d,g, n := item(List, Int) [s|n � id′], d,g

Finally, the case in which the index is out of range.

(len(dnel1) + len(de) + len(dnel2) ≤ JIntKs ∨ JIntKs < 0) ∧
g ≡ g⊕<“#document”id [< ∅EA ]>null

null
9 [<dnel1,de,dnel2>DF]JListKsnull>G)

s, d,g, n := item(List, Int) [s|n � null], d,g

Recall the Element Search structure described in Section 6.2.8, and the

getElementsByTagName command described in section 6.3.2. The com-

mand getElementsByTagName does not perform a search when it is called.

Instead, it saves the parameters of the search, in a new Element Search

structure so that the search may be performed lazily whenever the struc-

ture is accessed by the item command. The Element Search structure has

the following shape:

id
patternJListKs

where pattern ∈ S is the string that we will search for, id identifies the

root of the tree we will search in, and JListKs identifies this Element Search

structure itself. We define the item command over the Element Search

data structure using a new auxiliary function “dosearch”, to perform a

“Document Order Search”. The effect of calling item on an Element Search

object will be to perform a document order search that constructs a forest

of items, and then to select the appropriate item from that forest.

Definition 54 (The “dosearch” function). The “dosearch” function is given

in Figure 6.7.

With this function, we can define:
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dosearch(s, sid [< ea ]>aid
idref
1 [f]fidnull) , <sid [< ea ]>aid

idref
1 [f]fidnull>EF ⊗EF dosearch(s, f)

dosearch(*, sid [< ea ]>aid
idref
1 [f]fidnull) , <sid [< ea ]>aid

idref
1 [f]fidnull>EF ⊗EF dosearch(s, f)

dosearch(s,nameid [< ea ]>aidn
irn
tp [f]fidval) , dosearch(s, f) where (s 6= name ∧ s 6= *) ∨ tp 6= 1

dosearch(s, <d1>D2
) , dosearch(s,d1)

dosearch(s,d2 ⊗D2
d′2) , dosearch(s,d2)⊗EF dosearch(s,d′2)

dosearch(s,∅D2
) , ∅D2

Figure 6.7.: The “dosearch” Function

g ≡ <id
patternJListKs

>G ⊕ ap(cg,nameid [< ea ]>aidn
irn
tp [f]val)

∧ dosearch(pattern, f) ≡ f1 ⊗EF <sid′ [< ea′ ]>aid′
idref
1 [f]fid′null>EF ⊗EF f2

∧ len(f1) = JIntKs
s, d,g, n := item(List, Int) [s|n � id′], d,g

g ≡ <id
patternJListKs

>G ⊕ ap(cg,nameid [< ea ]>aidn
irn
tp [f]val)

∧ dosearch(pattern, f) ≡ f′

∧ (len(f′) ≤ JIntKs ∨ JIntKs < 0)

s, d,g, n := item(List, Int) [s|n � null], d,g

Element

The Element interface defines only one essential method.

Definition 55 (Element Interface Commands). The Element Interface Com-

mands are:

CELE ::= x := getElementsByTagName(Ele, TagName)

Since there are no classes in [22] which subclass Element, we can be

specific about the shape of the node Ele. The node Ele is an Element with

a type number of 1, a null value and a non-null attribute list. We define

the getElementsByTagName command as follows:

g ≡ ap(cg, sJEleKs [< ea ]>aid
idref
1 [f]fidnull)

g′ ≡ g⊕<JTagNameKs
JEleKs
id >G

s, d,g, x := getElementsByTagName(Ele, TagName) [s|x � id], d,g′
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This command is essentially the same as the one described for Document

nodes in Chapter 6.3.2. The only difference is in the type of the node that

becomes the root of the search.

Attr

There are no classes in [22] which subclass Attr, and there is just one vital

behaviour which is not covered by the Node interface. That behaviour is

that of the read-only object attribute “specified” the meaning of which is

discussed in Chapter 6.3.2. We specify that behaviour here with a simple

“getter” command.

Definition 56 (Attr Interface Commands). The Attr Interface Commands

are:

CATTR ::= sp := getSpecified(N)

The operational rule for getSpecified is:

g ≡ ap(cg, <<nameJNKs 7→ [ea]fid>>
idref
specified)

s, d,g, sp := getSpecified(N) [s|sp � specified], d,g

NamedNodeMap

NamedNodeMap is another collection like NodeList. NamedNodeMaps exist

as part of Element nodes, to store a list of Attrs. As a result, the first

parameter “Map” of any command in this section will be an ID, identifying

the NamedNodeMap in an Element (with type number 1 and a null value)

that looks like this:

nameid [< ea ]>JMapKs
idref
1

[f]fidnull

where id,fid ∈ ID

The NamedNodeMap interface defines 3 essential commands.

Definition 57 (NamedNodeMap Interface Commands). The NamedNodeMap

Interface Commands are:

CMAP ::= n := item(Map, Int)

| n := setNamedItem(Map, Arg)

| n := removeNamedItem(Map, Name)
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item As with NodeList, the most vital method is item:

g ≡ ap(cg,nameid [<

ea1 ⊗EA <<<name′
id′
7→ [f ’]>>idref

specified>EA ⊗EA ea2

]>JMapKs
idref
1

[f]fidnull)

∧ len(ea1) = JIntKs
s, d,g, n := item(Map, Int) [s|n � id′], d,g

g ≡ ap(cg,nameid [< ea ]>JMapKs
idref
1

[f]fidnull)

∧ (len(ea) ≤ JIntKs ∨ JIntKs < 0)

s, d,g, n := item(Map, Int) [s|n � null], d,g

setNamedItem The command “setNamedItem” is a move command, which
moves a node into a namedNodeMap, possibly replacing a node of the same
name. This command returns the ID of any node it replaces, or null if there
was no node of the same name in the Map. Notice that when we “remove” an
attribute from an element to make way for a new node of the same name, we
do not destroy it. We move the “removed” node to the Grove level, where
it may be garbage-collected at a later time. First we give the case in which
there is no node of the same name in the target Map.

g ≡ ap(cg′, <<<nameJArgKs 7→ [f]fid>>
idref
specified>D′

1
)

ap(cg′,∅EA) ≡ ap(cg,name′
id′ [< ea ]>JMapKs

idref
tp′ [f]fid′val′)

g′ ≡ ap(cg,name′
id′ [< ea⊗EA <<<nameJArgKs 7→ [f]fid>>

idref
true >EA ]>JMapKs

idref

tp′ [f]fid′val′)

s, d,g, n := setNamedItem(Map, Arg) [s|n � null], d,g

Note that since we know that g′ contains [< ea ⊗EA <<<nameJArgKs 7→
[f]fid>>

idref
true >EA ]>JMapKs , and since the DOM data structure demands that

Attr nodes in these structures be sibling unique, it follows that there is no

Attr node with name name in ea.

Next we give the case in which there is already a node of the same name

in the target Map.
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g ≡ ap(cg′, <<<nameJArgKs 7→ [f]fid>>
idref
specified>D′

1
)

ap(cg′,∅EA) ≡ ap(cg,name′
id′ [<

ea1 ⊗EA

<<<nameid′′′ 7→ [f′′′]fid′′′>>idref
specified>EA

⊗EA ea2

]>JMapKs
idref
tp′ [f]fid′val′)

g′ ≡ ap(cg,name′
id′ [< ea1 ⊗EA ea2 ⊗EA <<<nameJArgKs 7→ [f]fid>>

idref
true >EA ]>JMapKs

idref

tp′ [f]fid′val′)⊕
<<<nameid′′′ 7→ [f′′′]fid′′′>>idref

true >G

s, d,g, n := setNamedItem(Map, Arg) [s|n � id′′′], d,g

As with all commands that alter Attr nodes, this command always sets

“specified” to true as explained in Chapter 6.3.2.

removeNamedItem The command “removeNamedItem” is specified in [22]

as follows:

Begin Quote

removeNamedItem

Removes a node specified by name. If the removed node is an

Attr with a default value it is immediately replaced.

Parameters

name The name of a node to remove.

Return Value

The node removed from the map or null if no node with

such a name exists.

Exceptions

DOMException

NOT_FOUND_ERR: Raised if there is no node named

name in the map.

End Quote
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Note that in the case where there is no node named “name” in the map,

this specification appears to provide two possible inconsistent behaviours:

• It may return null

• It may throw the DOMException “NOT FOUND ERR”.

In this work, we will specify that in that case, the command should fault.

This is how we represent all instances in which a command may throw an

exception, which is one of the two possible readings of the above quote.

This interpretation is not supported by the following quote, from elsewhere

in the document:

Begin Quote

In general, DOM methods return specific error values in ordi-

nary processing situation, such as out-of-bound errors when us-

ing NodeList.

End Quote

This suggests that perhaps the preferred reading of the first quote is

the null option. However, [22] is sufficiently vague on this matter that

we feel justified in hedging out bets against both possible outcomes. By

specifying that in this case our command should fault, we ensure that our

fault-avoiding reasoning (presented in Chapter 7) will make no guarantees

of any kind about programs that encounter this case. Any program that we

prove will therefore work on any implementation of DOM, regardless of how

the author of that implementation may have read this particular section of

[22].

This command is further complicated by the behaviour of the “specified”

object attribute of the Attr nodes. As explained in Chapter 6.3.2: if an Attr

node is removed from a NamedNodeMap, and if the name of the Attr node

together with its parent Element appear in the DTD fragment d, then after

the Attr has been removed from the NamedNodeMap, a brand new one will

be created with that default value, and inserted into the NamedNodeMap.

First, we give the case in which no default value can be found in d.
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(s, JNameKs) 6∈ dom(d) ∧
g ≡ ap(cg, sid [<

ea1 ⊗EA <<<JNameKsid′ 7→ [f]fid′>>
idref
specified>EA ⊗EA ea2

]>JMapKs
idref
1

[f]fidnull)

g′ ≡ ap(cg, sid [<

ea1 ⊗EA ea2

]>JMapKs
idref
1

[f]fidnull)⊕<<<JNameKsid′ 7→ [f]fid>>
idref
specified>G

s, d,g, n := removeNamedItem(Map, Name) [s|n � id′], d,g′

Next, we give the case in which a default value “defaultVal” is found in

d, and so a new default Attr must be created.

d(s, JNameKs) = defaultVal ∧
dValNode = “#text”id′′′ [< ∅EA ]>null

idref
3 [∅TF]fid′′′defaultVal ∧

g ≡ ap(cg, sid [<

ea1 ⊗EA <<<JNameKsid′ 7→ [f]fid′>>
idref
specified>EA ⊗EA ea2

]>JMapKs
idref
1

[f]fidnull)

g′ ≡ ap(cg, sid [<

ea1 ⊗EA

<<<JNameKsid′′ 7→ [<dValNode>EA]fid′′>>
idref
false>EA

⊗EA ea2

]>JMapKs
idref
1

[f]fidnull)

⊕<<<JNameKsid′ 7→ [f]fid>>
idref
specified>G

s, d,g, n := removeNamedItem(Map, Name) [s|n � id′], d,g′

where id′′, id′′′,fid′′,fid′′′ are fresh.

Character Data

The CharacterData interface is subclassed by the TextNode and Comment

interfaces, although as [22] says:

Begin Quote

No DOM objects correspond directly to CharacterData

End Quote
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This means that a Character Data node is either a TextNode or a Com-

ment, and therefore that the Character Data commands take as their first

argument a node N, which has the following shape:

nameJNKs [< ∅EA ]>null
idref
txtp [f]s

where txtp ∈ {3, 8}, ensuring that the node is either a TextNode or a

Comment. Neither TextNodes nor Comments may have attributes, so their

aid must always be null. Both node types always have a non-null owner

document and a non-null value s.

Definition 58 (CharacterData Interface Commands). The CharacterData

Interface Commands are:

CCD ::= str := substringData(N, Offset, Count)

| appendData(N, Arg)

| deleteData(N, Offset, Count)

In all these commands, [22] specifies that:

Begin Quote

All offsets in this interface start from 0.

End Quote

substringData In [22], this command is specified as follows:

Begin Quote

substringData

Extracts a range of data from the node.

Parameters

offset Start offset of substring to extract.

count The number of characters to extract.

Return Value
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The specified substring. If the sum of offset and count

exceeds the length, then all characters to the end of

the data are returned.

Exceptions

DOMException

INDEX_SIZE_ERR: Raised if the specified offset is

negative or greater than the number of characters

in data, or if the specified count is negative.

DOMSTRING_SIZE_ERR: Raised if the specified range

of text does not fit into a DOMString.

End Quote

We handle this in two cases. First, the case where the sum of Offset and

Count does not exceed the length of the text value:

len(s1) = JOffsetKs ∧ len(s2) = JCountKs ∧
g ≡ ap(cg,nameJNKs [< ∅EA ]>null

idref
txtp [f]s1 ⊗S s2 ⊗S s3)

s, d,g, str := substringData(N, Offset, Count) [s|str � s2], d,g

Second, the case where the sum of Offset and Count does exceed the

length of the text value:

len(s1) = JOffsetKs ∧ len(s2) < JCountKs ∧
g ≡ ap(cg,nameJNKs [< ∅EA ]>null

idref
txtp [f]s1 ⊗S s2)

s, d,g, str := substringData(N, Offset, Count) [s|str � s2], d,g

Since there is no possible value of s1 with a negative length, or a length

greater than the number of characters in the data, neither of these rules

covers the case where [22] requires that we throw an INDEX SIZE ERR.

Thus, we fault as expected in place of that exception.

The DOMSTRING SIZE ERR however, is a class of error that we cannot

reason about since the size of a DOMString is implementation-dependant.
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This error is in the same class of errors as out of memory errors and arith-

metic overflow - it is beyond the scope of this work.

appendData This is a simple command, which appends the string Arg to

the end of the value of the node N

g ≡ ap(cg,nameJNKs [< ∅EA ]>null
idref
txtp [f]s)

g′ ≡ ap(cg,nameJNKs [< ∅EA ]>null
idref
txtp [f]s⊗S JArgKs)

s, d,g, appendData(N, Arg) s, d,g′

deleteData This command deletes data from the value of the node N. The

data to be deleted is specified exactly as for the command substringData

above, and so we have two analogous cases:

len(s1) = JOffsetKs ∧ len(s2) = JCountKs ∧
g ≡ ap(cg,nameJNKs [< ∅EA ]>null

idref
txtp [f]s1 ⊗S s2 ⊗S s3)

g′ ≡ ap(cg,nameJNKs [< ∅EA ]>null
idref
txtp [f]s1 ⊗S s3)

s, d,g, deleteData(N, Offset, Count) s, d,g′

len(s1) = JOffsetKs ∧ len(s2) < JCountKs ∧
g ≡ ap(cg,nameJNKs [< ∅EA ]>null

idref
txtp [f]s1 ⊗S s2)

g′ ≡ ap(cg,nameJNKs [< ∅EA ]>null
idref
txtp [f]s1)

s, d,g, deleteData(N, Offset, Count) s, d,g′
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7. Context Logic for DOM Core

Level 1

The context logic for DOM Core Level 1 follows the pattern of the logic for

Featherweight DOM introduced in Chapter 4.

7.1. Logical Variables

In reasoning about DOM programs, we will make use of logical variables.

We therefore introduce a logical environment e to store these variables, and

complement the program store s. For the purpose of writing programs in our

DOM language, we have identifier, string, integer and boolean variables. In

order to reason about programs, however, we will also require data structure

and context variables.

Definition 59 (The Environment). A logical environment e is a finite par-

tial function sending logical variables VarLogic to their values:

e:VarLogic → ({null} ∪ ID ∪ Z ∪ B ∪D ∪D1�D2)

where D,D1,D2 ∈ D (Given in Definition 37) and VarLogic denotes the set

of logical variables.

We distinguish between program variables and logical variables in our

reasoning by writing logical variables in UPPERCASE.

7.2. Logical Expressions

Just as in Featherweight DOM, we require logical expressions, in order to

compare and calculate with both program and logical variables.

Definition 60 (Logical Expressions). Given the special value null, the

empty string ∅S, characters c ∈ Char, integers n ∈ Z, booleans true and
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false, program variables var ∈ VarProg and logical variables var ∈ VarLogic,

expressions Expr ∈ Exp are defined by:

LExpr ::= null | ∅S | <c>S | n | true | false |
var | VAR |
LExpr = LExpr |
LExpr⊗D LExpr |
len(LExpr) |
LExpr + LExpr | LExpr− LExpr |
LExpr× LExpr | LExpr÷ LExpr |
LExpr ∧ LExpr | LExpr ∨ LExpr | ¬LExpr

Again, we write “abc” to refer to the string <‘a’>S⊗S <‘b’>S⊗S <‘c’>S

and we write logical expression names in UpperCamelCase.

Definition 61 (Logical Expression Evaluation). The evaluation JLExprKs,e
of logical expression LExpr in store s and environment e is given in Fig-

ure 7.1. Note that this evaluation is a partial function, since not all ex-

pressions can be successfully evaluated. If such an expression is part of a

formula, then that formula is unsatisfiable.

Lemma 62. Program and Logic Expression Equivalence: For any program

expression Expr, store s and environment e such that JExprKs does not fault,

JExprKs ≡ JExprKs,e

Proof. The proof follows directly from the definitions of program and logi-

cal expressions (which are identical except for the addition of environment

variables to logical expressions) and the evaluation functions of program

and logical expressions (which are identical except for the addition of envi-

ronment variable evaluation for logical expressions).

7.3. Logical Formulae

In addition to the sorts of formulae used to reason about Featherweight

DOM, DOM Core Level 1 requires formulae for checking the DTD Fragment,

for type casting and for flattening trees.
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JnullKs,e , null

J∅SKs,e , ∅S

J<c>SKs,e , <c>S

JnKs,e , n

JtrueKs,e , true

JfalseKs,e , false

JvarKs,e , s(var) iff var ∈ dom(s)

JVARKs,e , e(VAR) iff VAR ∈ dom(e)

JLExpr = LExpr′Ks,e , JLExprKs,e = JLExpr′Ks,e
JLExpr⊗D LExpr′Ks,e , JLExprKs,e ⊗D JLExpr′Ks,e iff JLExprKs,e, JLExpr′Ks,e ∈ D

Jlen(LExpr)Ks,e , len(JLExprKs,e)
JLExpr + LExpr′Ks,e , JLExprKs,e + JLExpr′Ks,e iff JLExprKs,e, JLExpr′Ks,e ∈ Z
JLExpr− LExpr′Ks,e , JLExprKs,e − JLExpr′Ks,e iff JLExprKs,e, JLExpr′Ks,e ∈ Z
JLExpr× LExpr′Ks,e , JLExprKs,e × JLExpr′Ks,e iff JLExprKs,e, JLExpr′Ks,e ∈ Z
JLExpr÷ LExpr′Ks,e , JLExprKs,e ÷ JLExpr′Ks,e iff JLExprKs,e, JLExpr′Ks,e ∈ Z
JLExpr ∧ LExpr′Ks,e , JLExprKs,e ∧ JLExpr′Ks,e iff JLExprKs,e, JLExpr′Ks,e ∈ B
JLExpr ∨ LExpr′Ks,e , JLExprKs,e ∨ JLExpr′Ks,e iff JLExprKs,e, JLExpr′Ks,e ∈ B

Figure 7.1.: Logical Expression Evaluation

Definition 63 (Logical Formulae). The formulae for DOM Core Level 1

are:

P ::= ¬P | P ∧ P | P ∨ P | trueA | falseA Boolean formulae

| P ◦D P | P ◦−D2 P | P −◦ P structural formulae

. . . (see below) . . . DOM-specific formulae

| VAR:A logical variables

| LExpr .
= LExpr | LExpr <· LExpr expression equality and inequality

| LExpr ∈ LExpr substring inclusion

| LExpr ∈ D type checking

| (LExpr, LExpr) ∈ dom(d) DTD Fragment Domain Check

| castD2(D1, P ) type casting

| flatten(LExpr, P ) tree flattening

| ∃VAR. P quantification

where VAR is a logical variable, A ∈ A , D,D1,D2 ∈ D and d is a DTD

Fragment as introduced in Definition 46.
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Definition 64 (DOM-Specific Formulae). The DOM-specific formulae are:

P ::= . . . | −D | PId [< P ]>Aid
IdRef
Tp [P ]FidP |

P ⊗D P | P ⊕G P | ∅D | <P>D |
<<PId 7→ [P ]Fid>>

IdRef
Specified | IdRefP Fid

| <P,P, P>DF |
LExpr | d(LExpr, LExpr)

where D ∈ D.

7.3.1. Formula Types

Just as in Section 4.4, the type annotations on the formulae enable us to

define a simple typing relation P :A by induction on the structure of formula

P .

Definition 65 (Formula Types). The types for all the formulae are as in

Featherweight DOM, except for those of the DOM-specific formulae which

have changed slightly and which we give in Figure 7.2.

7.3.2. Satisfaction Relation

Satisfaction for our formulae follows that of Featherweight DOM, with dif-

ferences in the DOM-specific cases.

Definition 66 (Satisfaction). The satisfaction relation e, s, d,a |=A P is

defined on environment e, variable store s, DTD fragment d, datum or

context a of type A, and formula P of type A by induction on P . In all the

following, A is a data or context type, d is a datum of type D and cd is a

context of type D1�D2.

We give the cases for the boolean formulae in Figure 7.3, the structural

formulae in Figure 7.4, the DOM-specific formulae in Figures 7.5 and 7.6,

and the remaining formulae in Figure 7.7.

As with Featherweight DOM, the behaviour of logical negation is subtle.

See Section 4.5 for details.

As in Featherweight DOM, we use
.
= and <· to distinguish between logical

equality and inequality and expression equality and inequality. As before,

expressions are untyped, while formulae are strongly typed, and if an expres-

sion appears without an explicit type declaration in a formula it is assumed

to be of the string type S.
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∅D:D −D:D�D

P1:F ∧ P2:F

(P1 ⊗F P2):F

(P1:D�F ∧ P2:F) ∨ (P1:F ∧ P2:D�F)

(P1 ⊗F P2):D�F

P :N

<P>G:G

P :D�N

<P>G:D�G

P1:G ∧ P2:G

(P1 ⊕ P2):G

P1:D�G ∧ P2:G

(P1 ⊕ P2):D�G

P :S ∧ P ′:EA ∧ P ′′:DF ∧ P ′′′:S

PId [< P ′ ]>Aid
IdRef
Tp [P ′′]FidP ′′′:DOC

P1:DNEL ∧ P2:DE ∧ P3:DNEL

<P1, P2, P3>DF:DF

P :S ∧ P ′:EA ∧ P ′′:D�DF ∧ P ′′′:S

PId [< P ′ ]>Aid
IdRef
Tp [P ′′]FidP ′′′:D�DOC

(P1:D�DNEL ∧ P2:DE ∧ P3:DNEL) ∨
(P1:DNEL ∧ P2:D�DE ∧ P3:DNEL) ∨
(P1:DNEL ∧ P2:DE ∧ P3:D�DNEL)

<P1, P2, P3>DF:D�DF

P :COMM

<P>DNEL:DNEL

P :D�COMM

<P>DNEL:D�DNEL

P :ELE

<P>DE:DE

P :D�ELE

<P>DE:D�DE

P :S ∧ P ′:EA ∧ P ′′:FRAGF ∧ P ′′′:S

PId [< P ′ ]>Aid
IdRef
Tp [P ′′]FidP ′′′:FRAG

P :S ∧ P ′:EA ∧ P ′′D�:FRAGF ∧ P ′′′:S

PId [< P ′ ]>Aid
IdRef
Tp [P ′′]FidP ′′′:D�FRAG

P :ELE ∨ P :TXT ∨ P :COMM

<P>FRAGF:FRAGF

P :D�ELE ∨ P :D�TXT ∨ P :D�COMM

<P>FRAGF:D�FRAGF

P :S ∧ P ′:EA ∧ P ′′:EF ∧ P ′′′:S

PId [< P ′ ]>Aid
IdRef
Tp [P ′′]FidP ′′′:ELE

(P :D�S ∧ P ′:EA ∧ P ′′:EF ∧ P ′′′:S) ∨
(P :S ∧ P ′:D�EA ∧ P ′′:EF ∧ P ′′′:S) ∨
(P :S ∧ P ′:EA ∧ P ′′:D�EF ∧ P ′′′:S) ∨
(P :S ∧ P ′:EA ∧ P ′′:EF ∧ P ′′′:D�S)

PId [< P ′ ]>Aid
IdRef
Tp [P ′′]FidP ′′′:D�ELE

P :ATTR

<P>EA:EA

P :D�ATTR

<P>EA:D�EA

P :ELE ∨ P :TXT ∨ P :COMM

<P>EF:EF

P :D�ELE ∨ P :D�TXT ∨ P :D�COMM

<P>EF:D�EF

P :S ∧ P ′:AF

<<PId 7→ [P ′]Fid>>
IdRef
Specified:ATTR

(P :D�S ∧ P ′:AF) ∨ (P :S ∧ P ′:D�AF)

<<PId 7→ [P ′]FId>>
IdRef
Specified:D�ATTR

P :TXT

<P>AF:AF

P :D�TXT

<P>AF:D�AF

P :S ∧ P ′:EA ∧ P ′′:CF ∧ P ′′′:S

PId [< P ′ ]>Aid
IdRef
Tp [P ′′]FidP ′′′:D�COMM

P :S ∧ P ′:EA ∧ P ′′:CF ∧ P ′′′:D�S

PId [< P ′ ]>Aid
IdRef
Tp [P ′′]FidP ′′′:D�COMM

P :S ∧ P ′:EA ∧ P ′′:TF ∧ P ′′′:S

PId [< P ′ ]>Aid
IdRef
Tp [P ′′]FidP ′′′:TXT

P :S ∧ P ′:EA ∧ P ′′:TF ∧ P ′′′:D�S

PId [< P ′ ]>Aid
IdRef
Tp [P ′′]FidP ′′′:D�TXT

P :S
IdRef
P Fid

:ES LExpr:S d(LExpr, LExpr′):S (LExpr, LExpr′) ∈ dom(d):A

where F ∈ F ,N ∈ N ,D ∈ D,A ∈ A , F ,N and D are given in Definition 37 and A is given in
Definition 40.

Figure 7.2.: The Types of DOM-Specific Formulae
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e, s, d,a |=A ¬P ⇐⇒ P :A ∧ e, s, d,a 6|=A P
e, s, d,a |=A P1 ∧ P2 ⇐⇒ (e, s, d,a |=A P1) ∧ (e, s, d,a |=A P2)
e, s, d,a |=A P1 ∨ P2 ⇐⇒ (e, s, d,a |=A P1) ∨ (e, s, d,a |=A P2)
e, s, d,a |=A trueA always
e, s, d,a |=A falseA never

Figure 7.3.: Satisfaction for the Boolean Formulae

e, s, d,d2 |=D2 P1 ◦D1 P2 ⇐⇒ ∃cd:(D1�D2),d1:D1.d2 = ap(cd,d1)
∧ e, s, d, cd |=D1�D2 P1 ∧ e, s, d,d1 |=D1 P2

e, s, d,d1 |=D1 P1 ◦−D2 P2 ⇐⇒ ∀cd:(D1�D2). (e, s, d, cd |=D1�D2 P1 ∧
ap(cd,d1)↓)⇒ e, s, d, ap(cd,d1) |=D2 P2

e, s, d, cd2|=D1�D2P1 −◦ P2 ⇐⇒ ∀d1:D1. e, s, d,d1 |=D1 P1 ∧ ap(cd2,d1)↓
⇒ e, s, d, ap(cd2,d1) |=D2 P2

Figure 7.4.: Satisfaction for the Structural Formulae

7.4. Derived Formulae

As with Featherweight DOM, ·>, <
.
=,

.
=> and 6∈ are derivable in the usual

way. Also following Featherweight DOM, we have the following derived

formulae.

Definition 67 (Derived Formulae). The notations for expressing ‘some-

where, potentially deep down’ ♦D1�D2P and ‘everywhere’ �D1�D2P are

defined by:

♦D1�D2P , trueD1�D2 ◦D1 P

�D1�D2P, ¬♦D1�D2¬P

Similarly, formula ♦⊗(P,TP) means “somewhere at this forest level”.

♦⊗(P,TP) , trueTP ⊗TP <P>TP ⊗TP true
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e, s, d, cd |=D�D −D ⇐⇒
cd ≡ −D

e, s, d,d |=D PId [< P ′ ]>AId
Owner
Tp [P ′′]FidP ′′′ ⇐⇒

∃name:S, ea:EA,d′′:D”, s:S.

(d ≡ nameJIdKs,e [< ea ]>JAIdKs,e
JOwnerKs,e
JTpKs,e

[d′′]JFidKs,es) ∧
e, s, d,name |=S P ∧ e, s, d, ea |=EA P ′ ∧
e, s, d,d′′ |=′′D P ′′ ∧ e, s, d, s |=S P ′′′

e, s, d, cd |=D1�D2
PId [< P ′ ]>AId

Owner
Tp [P ′′]FidP ′′′ ⇐⇒

∃name:S, c:D1�EA,d′′:D′′, s:S.

(cd ≡ nameJIdKs,e [< c ]>JAIdKs,e
JOwnerKs,e
JTpKs,e

[d′′]JFidKs,es) ∧
e, s, d,name |=S P ∧ e, s, d, c |=D1�EA P ′ ∧
e, s, d,d′′ |=′′D P ′′ ∧ e, s, d, s |=S P ′′′



∨


∃name:S, ea:EA, c:D1�D′′, s:S.

(cd ≡ nameJIdKs,e [< ea ]>JAIdKs,e
JOwnerKs,e
JTpKs,e

[c]JFidKs,es) ∧
e, s, d,name |=S P ∧ e, s, d, ea |=EA P ′ ∧
e, s, d, c |=D1�D′′ P ′′ ∧ e, s, d, s |=S P ′′′



∨


∃name:S, ea:EA,d′′:D′′, c:D1�S.

(cd ≡ nameJIdKs,e [< ea ]>JAIdKs,e
JOwnerKs,e
JTpKs,e

[d′′]JFidKs,ec) ∧
e, s, d,name |=S P ∧ e, s, d, ea |=EA P ′ ∧
e, s, d,d′′ |=′′D P ′′ ∧ e, s, d, c |=D1�S P ′′′



e, s, d,d |=D P ′ ⊗D P ′′ ⇐⇒
∃d′:D,d′′:D. (d ≡ d′ ⊗D d′′) ∧
e, s, d,d′ |=D P ′ ∧ e, s, d,d′′ |=D P ′′

e, s, d, cd |=D1�D2
P ′ ⊗D2

P ′′ ⇐⇒
∃cd′:(D1�D2),d:D2.
((cd ≡ cd′ ⊗D2

d) ∧ e, s, d, cd′ |=D1�D2
P ′ ∧ e, s, d,d |=D2

P ′′) ∨
((cd ≡ d⊗D2

cd′) ∧ e, s, d,d |=D2
P ′ ∧ e, s, d, cd′ |=D1�D2

P ′′)

e, s, d,d |=D P ′ ⊕ P ′′ ⇐⇒
∃d′:D,d′′:D. (d ≡ d′ ⊕ d′′) ∧
e, s, d,d′ |=D P ′ ∧ e, s, d,d′′ |=D P ′′

e, s, d, cd |=D1�D2
P ′ ⊕ P ′′ ⇐⇒

∃cd′:(D1�D2),d:D2.
(cd ≡ cd′ ⊕ d) ∧ e, s, d, cd′ |=D1�D2

P ′ ∧ e, s, d,d |=D2
P ′′

Figure 7.5.: Satisfaction for the DOM Formulae (Part One)
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e, s, d,d |=D ∅D ⇐⇒
d ≡ ∅D

e, s, d,d |=D <P>D ⇐⇒
∃d′:D′. (d ≡ <d′>D) ∧ e, s, d,d′ |=D′ P

e, s, d, cd |=D1�D2
<P>D3

⇐⇒
∃cd′:(D1�D′2). (cd≡<cd′>) ∧ e, s, d, cd′ |=D1�D′

2
P

e, s, d,attr |=ATTR <<PId 7→ [P ′]Fid>>Owner
Specified ⇐⇒

∃s:S,af:AF. (attr≡<<sJIdKs,e 7→ [af]JFidKs,e>>
JOwnerKs,e
JSpecifiedKs,e

)

∧ e, s, d, s |=S P ∧ e, s, d,af |=AF P ′

e, s, d, cattr |=D1�ATTR <<PId 7→ [P ′]Fid>>Owner
Specified ⇐⇒

∃s:S, caf:D1�AF. (attr≡<<sJIdKs,e 7→ [af]JFidKs,e>>
JOwnerKs,e
JSpecifiedKs,e

)

∧ e, s, d, s |=S P ∧ e, s, d, caf |=D1�AF P ′

e, s, d,d |=DF <P1, P2, P3>DF ⇐⇒
∃dnel:DNEL,de:DE,dnel′:DNEL.d ≡ <dnel,de,dnel’>DF ∧
dnel |=DNEL P1 ∧
de |=DE P2 ∧
dnel’ |=DNEL P3

e, s, d, cd |=D1�DF <P1, P2, P3>DF ⇐⇒
∃cdnel:D1�DNEL,de:DE,dnel′:DNEL.
cd ≡ <cdnel,de,dnel′>DF ∧
cdnel |=D1�DNEL P1 ∧
de |=DE P2 ∧
dnel′ |=DNEL P3



∨


∃dnel:DNEL, cd′:D1�DE,dnel′:DNEL.
cd ≡ <dnel, cd′,dnel′>DF ∧
dnel |=DNEL P1 ∧
cd′ |=D1�DE P2 ∧
dnel′ |=DNEL P3



∨


∃dnel:DNEL,de:DE, cdnel:D1�DNEL.
cd ≡ <dnel,de, cdnel>DF ∧
dnel |=DNEL P1 ∧
de |=DE P2 ∧
cdnel |=D1�DNEL P3


e, s, d, s |=S LExpr ⇐⇒

s ≡ JLExprKs,e ∧ JLExprKs,e ∈ S ∪ {null}

e, s, d, s |=S d(LExpr, LExpr′) ⇐⇒
s ≡ d(JLExprKs,e, JLExpr′Ks,e) ∧ JLExprKs,e, JLExpr′K ∈ S

Figure 7.6.: Satisfacion for the DOM Formulae (Part Two)
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e, s, d,a |=A VAR:A ⇐⇒ e(VAR) ∈ A ∧ a ≡ e(VAR)
e, s, d,a |=A LExpr

.
= LExpr′ ⇐⇒ JLExprKs,e = JLExpr′Ks,e

e, s, d,a |=A LExpr <· LExpr′ ⇐⇒ JLExprKs,e, JLExpr′Ks,e ∈ Z ∧ JLExprKs,e < JLExpr′Ks,e
e, s, d,a |=A LExpr ∈ LExpr′ ⇐⇒ JLExprKs,e, JLExpr′Ks,e ∈ S ∧ JLExprKs,e ∈ JLExpr′Ks,e
e, s, d,a |=A (LExpr, LExpr′) ∈ dom(d) ⇐⇒ JLExprKs,e, JLExprKs,e ∈ S ∧

(JLExprKs,e, JLExprKs,e) ∈ dom(d)
e, s, d,d |=D1

castD2
(D1, P ) ⇐⇒ e, s, d, (cast(D1,d)) |=D2

P
e, s, d,d |=D flatten(LExpr, P ) ⇐⇒ JLExprKs,e ∈ S ∧ e, s, d, (dosearch(JLExprKs,e,d)) |=EF P
e, s, d,a |=A ∃VAR. P ⇐⇒ ∃a′. e[VAR 7→ a′], s,a |=A P

Figure 7.7.: Satisfaction for the Remaining Formulae

The formula �⊗(P,TP) means “everywhere at this forest level”.

�⊗(P,TP) , ¬(♦⊗(¬P,TP))

Notice that because DOM Core Level One contains many more forest

types than Featherweight DOM, we have to specify the type of the forest

level that we’re talking about when we use ♦⊗ and �⊗.

As with Featherweight DOM, it is also sometimes convenient to write

formula without IDs, so we introduce the following shorthands:

PId [< P ′ ]>Tp [P ′′]P ′′′ , ∃AID, OWNER, FID. PId [< P ′ ]>AID
OWNER
Tp [P ′′]FIDP

′′′

P [< P ′ ]>Tp [P ′′]P ′′′ , ∃ID, AID, OWNER, FID. PID [< P ′ ]>AID
OWNER
Tp [P ′′]FIDP

′′′

<<PId 7→ [P ′]>> , ∃FID, OWNER, SPECIFIED. <<PId 7→ [P ′]FID>>
OWNER
SPECIFIED

<<P 7→ [P ′]>> , ∃ID, FID, OWNER, SPECIFIED. <<PID 7→ [P ′]FID>>
OWNER
SPECIFIED

7.5. Program Reasoning

The Program Reasoning for DOM Core Level 1 is similar to that presented

for Featherweight DOM in Chapter 4.7.

Definition 68 (Local Hoare Triples). Recall the evaluation relation  

relating configuration tuples s, d,g, C, terminal states s, d,g, and faults given

in Definition 48 and Section 6.3.2. The fault-avoiding partial correctness
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interpretation of local Hoare Triples is given by:

{P}C{Q} ⇐⇒

(P :G ∧Q:G ∧ ∀e, s, d,g. e, s, d,g |=G P ⇒
s, d,g, C 6 fault ∧ ∀s′, d′,g′. s, d,g, C s′, d′,g′ ⇒ e, s′, d′,g′|=GQ)

∨
(P :D ∧Q:D ∧ ∀e, s, d,g. e, s, d,g |=G <P>G ⇒
s, d,g, C 6 fault ∧ ∀s′, d′,g′. s, d,g, C s′, d′,g′ ⇒ e, s′, d′,g′|=G<Q>G)

where D ∈ N .

Notice that as with Featherweight DOM (Definition 23) our interpretation

of the Hoare triples on trees coerces those trees to groves using <−>G. This

is necessary as  is defined for configuration triples containing groves.

7.6. Command Axioms

For each command given in Section 6.3.2, we give command axioms here.

These axioms follow the pattern of those given for Featherweight DOM in

Definition 24.

7.6.1. Document

All the Document Interface commands simply introduce new structures to

the grove. The axioms are correspondingly simple.

{<“#document”Doc [< ∅EA ]>null
null
9 [F:DF]FIDnull>G ∧ x

.
= Y ∧ eltName(Name)}

x := createElement(Doc, Name)
∃AID′, FID′.
<“#document”Doc{Y/x} [< ∅EA ]>null

null
9 [F:DF]FIDnull>G ⊕

<Name{Y/x}x [< ∅EA ]>AID′
Doc{Y/x}
1 [∅EF]FID′null>G


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{<“#document”Doc [< ∅EA ]>null
null
9 [F:DF]FIDnull>G ∧ x

.
= Y}

x := createDocumentFragment(Doc)
∃FID′.
<“#document”Doc{Y/x} [< ∅EA ]>null

null
9 [F:DF]FIDnull>G ⊕

<“#document-fragment”x [< ∅EA ]>null
Doc{Y/x}
11 [∅FRAGF]FID′null>G



{<“#document”Doc [< ∅EA ]>null
null
9 [F:DF]FIDnull>G ∧ x

.
= Y}

x := createTextNode(Doc, Data)
∃FID′.
<“#document”Doc{Y/x} [< ∅EA ]>null

null
9 [F:DF]FIDnull>G ⊕

<“#text”x [< ∅EA ]>null
Doc{Y/x}
3 [∅TF]FID′Data{Y/x}>G



{<“#document”Doc [< ∅EA ]>null
null
9 [F:DF]FIDnull>G ∧ x

.
= Y}

x := createComment(Doc, Data)
∃FID′.
<“#document”Doc{Y/x} [< ∅EA ]>null

null
9 [F:DF]FIDnull>G ⊕

<“#comment”x [< ∅EA ]>null
Doc{Y/x}
8 [∅CF]FID′Data{Y/x}>G



{<“#document”Doc [< ∅EA ]>null
null
9 [F:DF]FIDnull>G ∧ x

.
= Y}

x := createAttribute(Doc, Name)
∃FID′.
<“#document”Doc{Y/x} [< ∅EA ]>null

null
9 [F:DF]FIDnull>G ⊕

<<<Name{Y/x}x 7→ [∅AF]FID′>>
Doc{Y/x}
false >G


{∅G}

x := createDocument()

{∃FID. <“#document”x [< ∅EA ]>null
null
9 [F:DF]FIDnull>G}

{<“#document”Doc [< ∅EA ]>null
null
9 [F:DF]FIDnull>G ∧ x

.
= Y}

x := getElementsByTagName(Doc, TagName){
<“#document”Doc{Y/x} [< ∅EA ]>null

null
9 [F:DF]FIDnull>G ⊕

<TagName{Y/x}Doc{Y/x}x >G

}
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7.6.2. Node

The Node Interface is the most substantial of the interfaces in DOM Core

Level 1 and provides the core functionality studied in Featherweight DOM.

Getters and Setters

The Node interface specifies several object-attributes which we represent as

pairs of getter and setter commands. These commands are all similar.

{NAMEN [< EA:EA ]>AIDN
IRN
TP [F:D]FIDVAL ∧ nm

.
= Y}

nm := getNodeName(N)

{NAMEN{Y/nm} [< EA:EA ]>AIDN
IRN
TP [F:D]FIDVAL ∧ nm

.
= NAME}

{<<NAMEN 7→ [AF:AF]FID>>
DOC
SPECIFIED ∧ nm

.
= Y}

nm := getNodeName(N)

{<<NAMEN{Y/nm} 7→ [AF:AF]FID>>
DOC
SPECIFIED ∧ nm

.
= NAME}

{NAMEN [< EA:EA ]>AIDN
IRN
TP [F:D]FIDVAL ∧ v

.
= Y}

v := getNodeValueHelper(N)

{NAMEN{Y/v} [< EA:EA ]>AIDN
IRN
TP [F:D]FIDVAL ∧ v

.
= VAL}

{NAMEN [< EA:EA ]>AIDN
DOC
TP [F:D]FIDVAL ∧ TP ∈ {2, 3, 4, 7, 8}}

setNodeValueHelper(N, S)

{NAMEN [< EA:EA ]>AIDN
DOC
TP [F:D]FIDS}

{NAMEN [< EA:EA ]>AIDN
IRN
TP [F:D]FIDVAL ∧ i

.
= Y}

i := getNodeType(N)

{NAMEN{Y/i} [< EA:EA ]>AIDN
IRN
TP [F:D]FIDVAL ∧ i

.
= TP}

{<<NAMEN 7→ [AF:AF]FID>>
DOC
SPECIFIED ∧ i

.
= Y}

i := getNodeType(N)

{<<NAMEN{Y/i} 7→ [AF:AF]FID>>
DOC
SPECIFIED ∧ i

.
= 2}
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

NAMEID [< EA:EA ]>AIDN
IRN
TP [

F1:D2 ⊗D2

<NAME′N [< EA′:EA ]>AIDN′
DOC
TP′ [F

′:D]FID′VAL
′>D2

⊗D2 F2:D2

]FIDVAL

∧ p .
= Y


p := getParentNode(N);

NAMEID [< EA:EA ]>AIDN
IRN
TP [

F1:D2 ⊗D2

<NAME′
N{Y/p} [< EA′:EA ]>AIDN′

DOC
TP′ [F

′:D]FID′VAL
′>D2

⊗D2 F2:D2

]FIDVAL

∧ p .
= ID


{<NAMEN [< EA:EA ]>AIDN

IRN
TP [F:D]FIDVAL>G ∧ p

.
= Y}

p := getParentNode(N);

{<NAMEN{Y/p} [< EA:EA ]>AIDN
IRN
TP [F:D]FIDVAL>G ∧ p

.
= null}

{<<NAMEN 7→ [AF:AF]FID>>
DOC
SPECIFIED ∧ p

.
= Y}

p := getParentNode(N);

{<<NAMEN{Y/p} 7→ [AF:AF]FID>>
DOC
SPECIFIED ∧ p

.
= null}

<<NAMEID 7→ [AF1:AF⊗AF <

“#text”N [< ∅EA ]>null
DOC
3 [∅TF]FID′VAL

′

>AF ⊗AF AF2:AF]FID>>
DOC
SPECIFIED ∧ p

.
= Y


p := getParentNode(N);

<<NAMEID 7→ [AF1:AF⊗AF <

“#text”N{Y/p} [< ∅EA ]>null
DOC
3 [∅TF]FID′VAL

′

>AF ⊗AF AF2:AF]FID>>
DOC
SPECIFIED ∧ p

.
= ID


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

T:DOC ∧

“#document”ID [< ∅EA ]>null
null
9 [

<DNEL1:DNEL⊗DNEL

<“#comment”N [< ∅EA ]>null
ID
8 [∅CF]FID′VAL

′>DNEL

⊗DNEL DNEL2:DNEL, DE:DE, DNEL:DNEL>DF

]FIDnull ∨
“#document”ID [< ∅EA ]>null

null
9 [

<DNEL1:DNEL,

<NAME′N [< EA′:EA ]>AID′
ID
1 [F′:EF]FID′null>DE,

DNEL2:DNEL>DF

]FIDnull ∨
“#document”ID [< ∅EA ]>null

null
9 [

<DNEL:DNEL, DE:DE, DNEL1:DNEL⊗DNEL

<“#comment”N [< ∅EA ]>null
ID
9 [∅CF]FID′VAL

′>DNEL

⊗DNEL DNEL2:DNEL>DF

]FIDnull




p := getParentNode(N);

{T:DOC ∧ p
.
= ID}

{NAMEN [< EA:EA ]>AIDN
IRN
TP [F:D]FIDVAL ∧ kids

.
= Y}

kids := getChildNodes(N);

{NAMEN{Y/kids} [< EA:EA ]>AIDN
IRN
TP [F:D]FIDVAL ∧ kids

.
= FID}

{<<NAMEN 7→ [AF:AF]FID>>
DOC
SPECIFIED ∧ kids

.
= Y}

kids := getChildNodes(N);

{<<NAMEN{Y/kids} 7→ [AF:AF]FID>>
DOC
SPECIFIED ∧ kids

.
= FID}

{NAMEN [< EA:EA ]>AIDN
IRN
TP [F:D]FIDVAL ∧ ats

.
= Y}

ats := getAttributes(N);

{NAMEN{Y/ats} [< EA:EA ]>AIDN
IRN
TP [F:D]FIDVAL ∧ ats

.
= AIDN}

{<<NAMEN 7→ [AF:AF]FID>>
DOC
SPECIFIED ∧ ats

.
= Y}

ats := getAttributes(N);

{<<NAMEN{Y/ats} 7→ [AF:AF]FID>>
DOC
SPECIFIED ∧ ats

.
= null}

{NAMEN [< EA:EA ]>AIDN
IRN
TP [F:D]FIDVAL ∧ od

.
= Y}

od := getOwnerDocument(N);

{NAMEN{Y/od} [< EA:EA ]>AIDN
IRN
TP [F:D]FIDVAL ∧ od

.
= IRN}

{<<NAMEN 7→ [AF:AF]FID>>
DOC
SPECIFIED ∧ od

.
= Y}

od := getOwnerDocument(N);

{<<NAMEN{Y/od} 7→ [AF:AF]FID>>
DOC
SPECIFIED ∧ od

.
= DOC}

177



appendChild

In the case of the appendChild command, there are several cases to consider.

First the case in which Parent is either an Element or a Document Fragment

node, and NewChild is either an Element, a Text node or a Comment node.
(∅D1 −◦ (CG:D2�G ◦D2 NAMEParent [< EA:EA ]>AIDN

DOC
TP [F:D3]FIDnull))

◦D1
(<NAME′NewChild [< EA′:EA ]>AIDN′

DOC
TP′ [F′:D4]FID′VAL

′>D1
)

∧ n .
= Y ∧ TP ∈ {1, 11} ∧ TP′ ∈ {1, 3, 8}


n := appendChild(Parent, NewChild);

(CG:D2�G ◦D2

NAMEParent{Y/n} [< EA:EA ]>AIDN
DOC
TP [

F:D3 ⊗D3

<NAME′NewChild{Y/n} [< EA′:EA ]>AIDN′
DOC
TP′ [F′:D4]FID′VAL

′>D3

]FIDnull)

∧ n .
= NewChild{Y/n}


Next, the case in which Parent is a Document node, NewChild is a Com-

ment node and Parent has no document element.



(∅D1
−◦ (CG:DOC�G ◦DOC “#document”Parent [< ∅EA ]>null

null
9 [

<F:DNEL,∅DE,∅DNEL>DF

]FIDnull))

◦D1
(<“#comment”NewChild [< ∅EA ]>null

Parent
8 [∅CF]FID′VAL

′>D1
)

∧ n .
= Y


n := appendChild(Parent, NewChild);

(CG:DOC�G ◦DOC (“#document”Parent{Y/n} [< ∅EA ]>null
null
9 [

<F:DNEL⊗DNEL

<“#comment”NewChild{Y/n} [< ∅EA ]>null
Parent{Y/n}
8 [∅CF]FID′VAL>DNEL,

∅DE,∅DNEL>DF

]FIDnull))

∧ n .
= NewChild{Y/n}


Next, the case in which Parent is a Document node and NewChild is an

Element.
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
(∅D1

−◦ (CG:DOC�G ◦DOC “#document”Parent [< ∅EA ]>null
null
9 [

<F:DNEL,∅DE,∅DNEL>DF ]FIDnull))

◦D1
(<SNewChild [< EA:EA ]>AID′

Parent
1 [F:EF]FID′null>D1

)

∧ n .
= Y


n := appendChild(Parent, NewChild);

(CG:DOC�G ◦DOC (“#document”Parent{Y/n} [< ∅EA ]>null
null
9 [

<F:DNEL,

<SNewChild{Y/n} [< EA:EA ]>AID′
Parent{Y/n}
1 [F:EF]FID′null>DE,

∅DNEL>DF

]FIDnull))

∧ n .
= NewChild{Y/n}


Next, the case in which Parent is a Document node, NewChild is a com-

ment node and Parent does have a document element.



(∅D1
−◦ (CG:DOC�G ◦DOC “#document”Parent [< ∅EA ]>null

null
9 [

<F1:DNEL, <ELE:ELE>DE, F2:DNEL>DF

]FIDnull))

◦D1 (<“#comment”NewChild [< ∅EA ]>null
Parent
8 [∅CF]FID′VAL

′>D1)

∧ n .
= Y


n := appendChild(Parent, NewChild);

(CG:DOC�G ◦DOC

(“#document”Parent{Y/n} [< ∅EA ]>null
null
9 [

<F1:DNEL, <ELE:ELE>DE, F2:DNEL⊗DNEL

<“#comment”NewChild{Y/n} [< ∅EA ]>null
Parent{Y/n}
8 [∅CF]FID′VAL>DNEL,

>DF

]FIDnull))

∧ n .
= NewChild{Y/n}


Next, the case in which Parent is an Attr node, and NewChild is a Text

node.
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
(∅D1

−◦ (CG:ATTR�G ◦ATTR <<SParent 7→ [F:AF]FID>>
DOC
SPECIFIED))

◦D1 (<“#text”NewChild [< ∅EA ]>null
DOC
3 [∅TF]FID′VAL>D1)

∧ n .
= Y


n := appendChild(Parent, NewChild);

CG:ATTR�G ◦ATTR

<<SParent 7→ [

F:AF⊗AF <“#text”NewChild [< ∅EA ]>null
DOC
3 [∅TF]FID′VAL>AF

]FID>>
DOC
SPECIFIED

∧ n .
= NewChild{Y/n}


Now, we repeat all the above cases, but with a Document Fragment as

NewChild. Recall from Section 6.3.2 that the effect of appendChild when

NewChild is a Document Fragment is to move all of NewChild’s children to

the end of Parent’s child list.

First, the case in which Parent is an Element node, and all the children

of NewChild are Elements, Text nodes and Commend nodes.

(CG:D2�G ◦D2
SParent [< EA:EA ]>AID

DOC
1 [F:EF]FIDnull)

⊕<“#document-fragment”NewChild [< ∅EA ]>null
DOC
11 [

F′:FRAGF ∧
�⊗((∃NAME′′, ID′′, EA′′, AIDN′′, TP′′, F′′, FID′′, VAL′′.

NAME′′ID′′ [< EA′′:EA ]>AIDN′′
DOC
TP′′ [F

′′:D]FID′′VAL
′′

∧ TP′′ ∈ {1, 3, 8}),FRAGF)

]FID′null>G

∧ n .
= Y


n := appendChild(Parent, NewChild);

(CG:D2�G ◦D2

SParent{Y/n} [< EA:EA ]>AID
DOC
1 [

F:EF⊗EF castFRAGF(EF, F′:FRAGF)

]FIDnull)⊕
<“#document-fragment”NewChild{Y/n} [< ∅EA ]>null

DOC
11 [∅FRAGF]FID′null>G

∧ n .
= NewChild{Y/n}


Next, the case in which Parent is also a Document Fragment.
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
(CG:D2�G ◦D2

“#document-fragment”Parent [< ∅EA ]>null
DOC
11 [F:FRAGF]FIDnull)

⊕<“#document-fragment”NewChild [< ∅EA ]>null
DOC
11 [F′:FRAGF]FID′null>G

∧ n .
= Y


n := appendChild(Parent, NewChild);

(CG:D2�G ◦D2

“#document-fragment”Parent{Y/n} [< ∅EA ]>null
DOC
11 [

F:FRAGF⊗FRAGF F′:FRAGF

]FIDnull)

⊕<“#document-fragment”NewChild{Y/n} [< ∅EA ]>null
DOC
11 [∅FRAGF]FID′VAL

′>G

∧ n .
= NewChild{Y/n}


There are three cases in which Parent is a Document node. First, the

case in which Parent is a Document node with no document element and

all the children to append are Comment nodes.



<“#document”Parent [< ∅EA ]>null
null
9 [<F:DNEL,∅DE,∅DNEL>DF]FIDnull>G

⊕ (<“#document-fragment”NewChild [< ∅EA ]>null
Parent
11 [

F′:FRAGF ∧
�⊗((∃ID′′, FID′′, VAL′′.

“#comment”ID′′ [< ∅EA ]>null
Parent
8 [∅CF]FID′′VAL

′′),FRAGF)

]FID′null>G)

∧ n .
= Y


n := appendChild(Parent, NewChild);

<“#document”Parent{Y/n} [< ∅EA ]>null
null
9 [

<F:DNEL⊗DNEL castFRAGF(DNEL, F′:FRAGF),

∅DE,∅DNEL>DF

]FIDnull>G ⊕
<“#document-fragment”NewChild{Y/n} [< ∅EA ]>null

Parent{Y/n}
11 [∅FRAGF]FID′null>G

∧ n .
= NewChild{Y/n}


Next, the case in which Parent is a Document node with no document

element and one of the children to append is an Element node.

181





<“#document”Parent [< ∅EA ]>null
null
9 [<F:DNEL,∅DE,∅DNEL>DF]FIDnull>G

⊕ (<“#document-fragment”NewChild [< ∅EA ]>null
Parent
11 [

(F′:FRAGF∧
�⊗((∃ID′′, FID′′, VAL′′.

“#comment”ID′′ [< ∅EA ]>null
Parent
8 [∅CF]FID′′VAL

′′),FRAGF))

⊗FRAGF <Sid′′′ [< EA′′′:EA ]>AID′′′
Parent
1 [EF′′′:EF]FID′′null>FRAGF ⊗FRAGF

(F′′′′:FRAGF∧
�⊗(((∃ID′′′′, FID′′′′, VAL′′′′.

“#comment”ID′′′′ [< ∅EA ]>null
Parent
8 [∅CF]FID′′′′VAL

′′′′),FRAGF))

]FID′null>G)

∧ n .
= Y


n := appendChild(Parent, NewChild);

<“#document”Parent{Y/n} [< ∅EA ]>null
null
9 [

<F:DNEL⊗DNEL castFRAGF(DNEL, F′:FRAGF),

<Sid′′′ [< EA′′′:EA ]>AID′′′
Parent{Y/n}
1 [EF′′′:EF]FID′′′null>DE,

castFRAGF(DNEL, F′′′′:FRAGF)>DF

]FIDnull>G ⊕
<“#document-fragment”NewChild{Y/n} [< ∅EA ]>null

Parent{Y/n}
11 [∅FRAGF]FID′null>G

∧ n .
= NewChild{Y/n}


Next, the case in which Parent is a Document node which already has a

document element, and all the nodes to append are Comment nodes.
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

<“#document”Parent [< ∅EA ]>null
null
9 [

<F1:DNEL, <DE:DE>DE, F2:DNEL>DF ]FIDnull>G

⊕ (<“#document-fragment”NewChild [< ∅EA ]>null
Parent
11 [

F′:FRAGF ∧
�⊗(((∃ID′′, FID′′, VAL′′.

“#comment”ID′′ [< ∅EA ]>null
Parent
8 [∅CF]FID′′VAL

′′),FRAGF)

]FID′null>G)

∧ n .
= Y


n := appendChild(Parent, NewChild);

<“#document”Parent{Y/n} [< ∅EA ]>null
null
9 [

<F1:DNEL,

<DE:DE>DE, F2:DNEL

⊗DNEL castFRAGF(DNEL, F′:FRAGF)∅DNEL>DF

]FIDnull>G ⊕
<“#document-fragment”NewChild{Y/n} [< ∅EA ]>null

Parent{Y/n}
11 [∅FRAGF]FID′null>G

∧ n .
= NewChild{Y/n}


Finally, the case in which Parent is an Attr node, and all the children to

append are Text nodes.



(CG:ATTR�G ◦ATTR <<SParent 7→ [F:AF]FID>>
DOC
SPECIFIED)

⊕ (<“#document-fragment”NewChild [< ∅EA ]>null
DOC
11 [

F′:FRAGF ∧
�⊗((∃ID′′, FID′′, VAL′′.

“#text”id′′ [< ∅EA ]>null
DOC
3 [∅TF]FID′′VAL

′′,FRAGF)

]FID′null>G)

∧ n .
= Y


n := appendChild(Parent, NewChild);

CG:ATTR�G ◦ATTR

<<SParent{Y/n} 7→ [F:AF⊗AF castFRAGF(AF, F′:FRAGF)]FID>>
DOC
SPECIFIED

⊕<“#document-fragment”NewChild{Y/n} [< ∅EA ]>null
DOC
11 [∅FRAGF]FID′null>G

∧ n .
= NewChild{Y/n}


removeChild

The cases for the removeChild command mirror the cases for appendChild

when NewChild is not a Document Fragment.

First, the usual case in which Parent is neither a Document nor an Attr
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node:



(CG:D1�G ◦D1 NAMEParent [< EA:EA ]>AIDN
DOC
TP [

F1:D2 ⊗D2

<NAMEOldChild [< EA′:EA ]>AIDN′
DOC
TP [F′:D3]FID′VAL

′>D2

⊗D2 F2:D2

]FIDnull)

∧ n .
= Y


n := removeChild(Parent, OldChild)

(CG:D1�G ◦D1 NAMEParent{Y/n} [< EA:EA ]>AIDN
DOC
TP [

F1:D2 ⊗D2 F2:D2

]FIDnull)⊕
<NAMEOldChild{Y/n} [< EA′:EA ]>AIDN′

DOC
TP [F′:D3]FID′VAL

′>G

∧ n .
= OldChild{Y/n}


Next, the case in which Parent is an Attr node:



(CG:ATTR�G ◦ATTR <<SParent 7→ [

F1:AF⊗AF

<“#text”OldChild [< ∅EA ]>null
DOC
3 [∅TF]FID′VAL

′>AF

⊗AF F2:AF

]FID>>
DOC
SPECIFIED)

∧ n .
= Y


n := removeChild(Parent, OldChild)

(CG:ATTR�G ◦ATTR <<SParent{Y/n} 7→ [

F1:AF⊗AF F2:AF

]FID>>
DOC
SPECIFIED)⊕

<“#text”OldChild{Y/n} [< ∅EA ]>AIDN′
DOC
TP [∅TF]FID′VAL

′>G

∧ n .
= OldChild{Y/n}


Finally, we present the three cases in which Parent is a Document node.

First, the case in which OldChild is a comment from the leftmost DNEL

structure.
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

<“#document”Parent [< ∅EA ]>null
null
9 [<

F1:DNEL⊗DNEL

<“#comment”OldChild [< ∅EA ]>null
Parent
8 [∅CF]FID′VAL

′>DNEL

⊗DNEL F2:DNEL, F3:DE, F4:DNEL

>DF]FIDnull>G

∧ n .
= Y


n := removeChild(Parent, OldChild)

<“#document”Parent{Y/n} [< ∅EA ]>null
null
9 [<

F1:DNEL⊗DNEL F2:DNEL, F3:DE, F4:DNEL

>DF]FIDnull)⊕
<“#comment”OldChild{Y/n} [< ∅EA ]>null

Parent{Y/n}
8 [∅CF]FID′VAL

′>G

∧ n .
= OldChild{Y/n}


Next, the case in which Parent is a Document node and OldChild is the

document element.



<“#document”Parent [< ∅EA ]>null
null
9 [<

F1:DNEL,

<NAMEOldChild [< EA:EA ]>AID′
Parent
1 [F:EF]FID′null>DE,

F2:DNEL

>DF]FIDnull>G

∧ n .
= Y


n := removeChild(Parent, OldChild)

<“#document”Parent{Y/n} [< ∅EA ]>null
null
9 [<

F1:DNEL⊗DNEL F2:DNEL,∅DE,∅DNEL

>DF]FIDnull)⊕
<NAMEOldChild{Y/n} [< EA:EA ]>AID′

Parent{Y/n}
1 [F:EF]FID′null>G

∧ n .
= OldChild{Y/n}


Finally, the case in which Parent is a Document node and OldChild is a

Comment node from the rightmost DNEL structure.
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

<“#document”Parent [< ∅EA ]>null
null
9 [<

F1:DNEL, F2:DE, F3:DNEL⊗DNEL

<“#comment”OldChild [< ∅EA ]>null
Parent
8 [∅CF]FID′VAL

′>DNEL

⊗DNEL F4:DNEL

>DF]FIDnull>G

∧ n .
= Y


n := removeChild(Parent, OldChild)

<“#document”Parent{Y/n} [< ∅EA ]>null
null
9 [<

F1:DNEL, F2:DE, F3:DNEL⊗DNEL F4:DNEL

>DF]FIDnull)⊕
<“#comment”OldChild{Y/n} [< ∅EA ]>null

Parent{Y/n}
8 [∅CF]FID′VAL

′>G

∧ n .
= OldChild{Y/n}


7.6.3. NodeList

The NodeList interface contains only one essential command, item, but that

command has a large number of cases to consider. First we present the two

possible cases in which the parent node is not a Document node an Attr

node or an Element Search structure.

(NAMEID [< EA:EA ]>AIDN
DOC
TP [

F1:D2 ⊗D2

<NAMEID′ [< EA′:EA ]>AIDN′
DOC
TP′ [F

′:D]FID′VAL
′>D2

⊗D2 F2:D2

]Listnull)

∧ n .
= Y ∧ len(F1)

.
= Int


n := item(List, Int)

(NAMEID [< EA:EA ]>AIDN
DOC
TP [

F1:D2 ⊗D2

<NAMEID′ [< EA′:EA ]>AIDN′
DOC
TP′ [F

′:D]FID′VAL
′>D2

⊗D2 F2:D2

]List{Y/n}null)

∧ n .
= ID′


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{
(NAMEID [< EA:EA ]>AIDN

DOC
TP [F:D]Listnull)

∧ n .
= Y ∧ (len(F) <

.
= Int ∨ Int <· 0)

}
n := item(List, Int){

(NAMEID [< EA:EA ]>AIDN
DOC
TP [F:D]List{Y/n}null)

∧ n .
= null

}
Next, the two possible cases in which the parent node is an Attr node.

(<<NAMEID 7→ [

F1:AF⊗AF

<“#text”ID′ [< ∅EA ]>null
DOC
3 [∅TF]FID′VAL

′>AF

⊗AF F2:AF

]List>>
DOC
SPECIFIED)

∧ n .
= Y ∧ len(F1)

.
= Int


n := item(List, Int)

(<<NAMEID 7→ [

F1:AF⊗AF

<“#text”ID′ [< ∅EA ]>AIDN′
DOC
3 [∅TF]FID′VAL

′>AF

⊗AF F2:AF

]List{Y/n}>>
DOC
SPECIFIED)

∧ n .
= ID′


{

(<<NAMEID 7→ [F:AF]List>>
DOC
SPECIFIED)

∧ n .
= Y ∧ (len(F) <

.
= Int ∨ Int <· 0)

}
n := item(List, Int){

(<<NAMEID 7→ [F:AF]List{Y/n}>>
DOC
SPECIFIED)

∧ n .
= null

}
There are four possible cases in which the parent is a Document node.

First, the case in which the parent is a Document node and the index points

into the leftmost DNEL structure.
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

“#document”ID [< ∅EA ]>null
null
9 [<

F1:DNEL⊗DNEL

<“#comment”ID′ [< ∅EA ]>null
ID
8 [∅CF]FID′VAL

′>DNEL

⊗DNEL F2:DNEL, F3:DE, F4:DNEL

>DF]Listnull

∧ n .
= Y ∧ len(F1)

.
= Int


n := item(List, Int)

“#document”ID [< ∅EA ]>null
null
9 [<

F1:DNEL⊗DNEL

<“#comment”ID′ [< ∅EA ]>null
ID
8 [∅CF]FID′VAL

′>DNEL

⊗DNEL F2:DNEL, F3:DE, F4:DNEL

>DF]List{Y/n}null

∧ n .
= ID′


Next, the case in which the parent is a Document node and the index

points to the document element.

“#document”ID [< ∅EA ]>null
null
9 [<

F1:DNEL,

<NAMEID′ [< EA′:EA ]>AID′
ID
1 [F′:EF]FID′null>DE,

F2:DNEL

>DF]Listnull

∧ n .
= Y ∧ len(F1)

.
= Int


n := item(List, Int)

“#document”ID [< ∅EA ]>null
null
9 [<

F1:DNEL,

<NAMEID′ [< EA′:EA ]>AID′
ID
1 [F′:EF]FID′null>DE,

F2:DNEL

>DF]List{Y/n}null

∧ n .
= ID′


Next, the case in which the parent is a Document node and the index

points into the rightmost DNEL structure.
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

“#document”ID [< ∅EA ]>null
null
9 [<

F1:DNEL, F2:DE, F3:DNEL⊗DNEL

<“#comment”ID′ [< ∅EA ]>null
ID
8 [∅CF]FID′VAL

′>DNEL

⊗DNEL F4:DNEL

>DF]Listnull

∧ n .
= Y ∧ (len(F1) + 1 + len(F3))

.
= Int


n := item(List, Int)

“#document”ID [< ∅EA ]>null
null
9 [<

F1:DNEL, F2:DE, F3:DNEL⊗DNEL

<“#comment”ID′ [< ∅EA ]>null
ID
8 [∅CF]FID′VAL

′>DNEL

⊗DNEL F4:DNEL

>DF]List{Y/n}null

∧ n .
= ID′


Next, the last Document case, in which the parent is a Document node

and the index is out of bounds.


“#document”ID [< ∅EA ]>null

null
9 [<

F1:DNEL, F2:DE, F3:DNEL

>DF]Listnull

∧ n .
= Y ∧ ((len(F1) + len(F2) + len(F3)) <

.
= Int ∨ Int <· 0)


n := item(List, Int)

“#document”ID [< ∅EA ]>null
null
9 [<

F1:DNEL, F2:DE, F3:DNEL

>DF]List{Y/n}null

∧ n .
= null


Finally we present the case in which the parent is an element search struc-

ture. Recall from Section 6.3.2 that in the case of an element search struc-

ture, the item command builds a forest on the fly using the dosearch func-

tion, and then gets the appropriate item from that forest. Recall from Defi-

nition 66 that the flatten(S, F) predicate is satisfied by precisely those struc-

tures d which produce a forest equal to F when searched with dosearch(S, d).
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

SIDList ⊕
(CG:D1�G ◦D1 NAMEID [< EA:EA ]>AIDN

DOCN
TP [F:D2 ∧

flatten(S, F1:EF⊗EF <

S′ID′ [< EA′:EA ]>AID′
DOC′

1 [F′:EF]FID′null

>EF ⊗EF F2:EF)

]FIDVAL)

∧ len(F1)
.
= Int ∧ n .

= Y


n := item(List, Int)

SID
List{Y/n} ⊕

(CG:D1�G ◦D1 NAMEID [< EA:EA ]>AIDN
DOCN
TP [F:D2]FIDVAL)

∧ n .
= ID′




SIDList ⊕
(CG:D1�G ◦D1 NAMEID [< EA:EA ]>AIDN

DOCN
TP [F:D2 ∧

flatten(S, F′:EF)

]FIDVAL)

∧ (len(F′:EF) <
.
= Int ∨ Int <· 0) ∧ n .

= Y


n := item(List, Int)

SID
List{Y/n} ⊕

(CG:D1�G ◦D1 NAMEID [< EA:EA ]>AIDN
DOCN
TP [F:D2]FIDVAL)

∧ n .
= null


7.6.4. Element

The Element interface contains only one essential command: getElements-

ByTagName.

{CG:ELE�G ◦ELE NAMEEle [< EA:EA ]>AID
DOC
1 [F:EF]FIDnull ∧ x .

= Y}
x := getElementsByTagName(Ele, TagName){

(CG:ELE�G ◦ELE NAMEEle{Y/x} [< EA:EA ]>AID
DOC
1 [F:EF]FIDnull)⊕

<DOC
TagName{Y/x}x

>G

}
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7.6.5. Attr

The Attr interface contains only one essential command: the getter com-

mand for the “specified” object-attribute.

{<<NAMEN 7→ [F:AF]FID>>
DOC
SPECIFIED ∧ sp

.
= Y}

sp := getSpecified(N)

{<<NAMEN{Y/sp} 7→ [F:AF]FID>>
DOC
SPECIFIED ∧ sp

.
= SPECIFIED}

7.6.6. NamedNodeMap

The NamedNodeMap interface contains three essential commands. We

present each in turn.

item

The item command behaves exactly the same as in the Nodelist interface.



NAMEID [<

EA1:EA⊗EA <

<<NAME′ID′ 7→ [F′:AF]FID′>>
DOC
SPECIFIED′ >⊗EA EA2:EA

]>Map
DOC
1 [F:EF]FIDnull

∧ len(EA1:EA)
.
= Int ∧ n .

= Y


n := item(Map, Int)

NAMEID [<

EA1:EA⊗EA <

<<NAME′ID′ 7→ [F′:AF]FID′>>
DOC
SPECIFIED′ >⊗EA EA2:EA

]>Map{Y/n}
DOC

1
[F:EF]FIDnull

∧ n .
= ID′


{

NAMEID [< EA:EA ]>Map
DOC
1 [F:EF]FIDnull

∧ (len(EA:EA) <
.
= Int ∨ Int <· 0) ∧ n .

= Y

}
n := item(Map, Int){

NAMEID [< EA:EA ]>Map{Y/n}
DOC

1
[F:EF]FIDnull

∧ n .
= null

}
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setNamedItem

The setNamedItem command, as described in Section 6.3.2, moves a par-

ticular node into a NamedNodeMap, possibly replacing a code of the same

name. There are two possible cases. First, the case where there is no item

of that name in the map.



(∅D1 −◦ (CG:ELE�G ◦ELE NAMEID [<

EA:EA ∧
¬♦⊗(∃ID′′, F′′, FID′′, SPECIFIED′′. <<NAME′ID′′ 7→ [F′′:AF]FID′′>>

DOC
SPECIFIED′′ ,EA)

]>Map
DOC
1 [F:EF]FIDnull))

◦D1 <<<NAME′Arg 7→ [F′:AF]FID′>>
DOC
SPECIFIED′>D1

∧ n .
= Y


n := setNamedItem(Map, Arg)

CG:ELE�G ◦ELE NAMEID [<

EA:EA⊗EA <<<NAME′
Arg{Y/n} 7→ [F′:AF]FID′>>

DOC
SPECIFIED′>EA

]>Map{Y/n}
DOC

1
[F:EF]FIDnull

∧ n .
= null


Next, the case in which there is an existing node of that name in the map.



(∅D1 −◦ (CG:ELE�G ◦ELE NAMEID [<

EA1:EA⊗EA <<<NAME′ID′′ 7→ [F′′:AF]FID′′>>
DOC
SPECIFIED′′>EA ⊗EA EA2:EA

]>Map
DOC
1 [F:EF]FIDnull))

◦D1 <<<NAME′Arg 7→ [F′:AF]FID′>>
DOC
SPECIFIED′>D1

∧ n .
= Y


n := setNamedItem(Map, Arg)

CG:ELE�G ◦ELE NAMEID [<

EA1:EA⊗EA EA2:EA⊗EA <<<NAME′
Arg{Y/n} 7→ [F′:AF]FID′>>

DOC
SPECIFIED′>EA

]>Map{Y/n}
DOC

1
[F:EF]FIDnull

⊕<<<NAME′ID′′ 7→ [F′′:AF]FID′′>>
DOC
SPECIFIED′′>G ∧ n

.
= null


removeNamedItem

The removeNamedItem command is a move command that removes an Attr

from a NamedNodeMap. The Attr node to remove it determined by its
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NodeName. In particular, recall from Section 6.3.2 that if the Attr to be

removed is mentioned by the DTD Fragment, then the act of removing it

from the NamedNodeMap will also create a new Attr node with a default

value given by the DTD Fragment.



CG:ELE�G ◦ELE NAMEID [<

EA1:EA⊗EA

<<<NameID′ 7→ [F′:AF]FID′>>
DOC
SPECIFIED>EA

⊗EAEA2:EA

]>Map
DOC
1 [F:EF]FIDnull

∧ n .
= Y


n := removeNamedItem(Map, Name)

∃ID′, FID′.
CG:ELE�G ◦ELE NAMEID [<

EA1:EA⊗EA(
((NAME, Name{Y/n}) 6∈ dom(d) ∧∅EA) ∨
(<“#text”ID′′ [< ∅EA ]>null

DOC
3 [∅TF]FID′′d(NAME, Name{Y/n})>EA)

)
⊗EA EA2:EA

]>Map{Y/n}
DOC

1
[F:EF]FIDnull

⊕<<<Name{Y/n}ID′ 7→ [F′:AF]FID′>>
DOC
SPECIFIED>G

∧ n .
= ID′


7.6.7. Character Data

The CharacterData interface contains three essential commands. We present

them each in turn.

substringData

This command extracts a range of data from a Text or Comment node.{
NAMENode [< ∅EA ]>null

DOC
TP [∅D](S1 ⊗S S2 ⊗S S3)

∧ len(S1)
.
= Offset ∧ len(S2)

.
= Count ∧ str .

= Y

}
str := substringData(Node, Offset, Count){

NAMENode{Y/str} [< ∅EA ]>null
DOC
TP [∅D](S1 ⊗S S2 ⊗S S3)

∧ str .
= S2

}
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{
NAMENd [< ∅EA ]>null

DOC
TP [∅D](S1 ⊗S S2)

∧ len(S1)
.
= Offset ∧ len(S2) <· Count ∧ str .

= Y

}
str := substringData(Nd, Offset, Count){
NAMENd{Y/str} [< ∅EA ]>null

DOC
TP [∅D](S1 ⊗S S2)

∧ str .
= S2

}

appendData

The appendData command appends new data to an existing Text or Com-

ment node. Recall that we can check the type of an expression in a formula

by using Expr ∈ D for any type D.{
NAMENd [< ∅EA ]>null

DOC
TP [∅D]S ∧ Arg ∈ S

}
appendData(Nd, Arg){

NAMENd [< ∅EA ]>null
DOC
TP [∅D](S⊗S Arg)

}
deleteData

The deleteData command removes a substring from the value of a Text or

Comment node.{
NAMENd [< ∅EA ]>null

DOC
TP [∅D](S1 ⊗S S2 ⊗S S3)

∧ len(S1)
.
= Offset ∧ len(S2)

.
= Count

}
deleteData(Nd, Offset, Count){

NAMENd [< ∅EA ]>null
DOC
TP [∅D](S1 ⊗S S3)

}
{

NAMENd [< ∅EA ]>null
DOC
TP [∅D](S1 ⊗S S2)

∧ len(S1)
.
= Offset ∧ len(S2) <· Count

}
deleteData(Nd, Offset, Count){
NAMENd [< ∅EA ]>null

DOC
TP [∅D]S1

}
7.7. Inference Rules

The inference rules are the same as those presented for Featherweight DOM

in Definition 25.
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<students>

<current>

<student startDate="Jan 2006">

<name>Gareth Smith</name>

<address>Over the rainbow</address>

<subject>Computer Science</subject>

<finalYear />

</student>

</current>

<alumni>

<student startDate="Sept 2002" finishDate="March 2007">

<name>Uri Zarfaty</name>

<address>Where the wild things are</address>

<subject>Computer Science</subject>

</student>

</alumni>

</students>

Figure 7.8.: Contacts Document

7.8. Example

Consider a document which represents the contact information for a uni-

versity development office. A snippit of such a document is presented in

Figure 7.8

We can describe the schema of documents such as this with the XML

Schema in Figure 7.9 or with the formula S given in Figure 7.10.

At the end of the academic year we may wish to graduate the final year

students, and move them into the “alumni” section of the data file, where

they can be fruitfully harvested. Assuming that some previous admin pro-

cess has tagged the current final year students with the “finalYear” element,

this operation of graduating the final year students can be performed by the

procedure graduateStudents(doc, currentDate)1 given in Figure 7.11.

We can prove that this procedure maintains the schema of the document

it operates over. As with our Featherweight DOM examples we require

an additional safety precondition to say the “currentDate” parameter is

1In a real system it is of course quite likely that there would be a system call for deter-
mining the current date. Since such system calls are beyond the scope of this work,
we satisfy ourselves with the “currentDate” parameter.
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<?xml version=’1.0’ encoding=’UTF-8’?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified">

<xs:element name="students">

<xs:complexType>

<xs:sequence>

<xs:element name="current" minOccurs="1" maxOccurs="1">

<xs:element name="student" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:element name="name" minOccurs="1"

maxOccurs="1" type="xs:string" />

<xs:element name="address" minOccurs="1"

maxOccurs="1" type="xs:string" />

<xs:element name="subject" minOccurs="1"

maxOccurs="1" type="xs:string" />

<xs:element name="finalYear" minOccurs="0"

maxOccurs="1" />

</xs:sequence>

<xs:attribute name="startDate" type="xs:string"/>

</xs:complexType>

</xs:element>

</xs:element>

<xs:element name="alumni" minOccurs="1" maxOccurs="1">

<xs:element name="student" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:element name="name" minOccurs="1"

maxOccurs="1" type="string" />

<xs:element name="address" minOccurs="1"

maxOccurs="1" type="string" />

<xs:element name="subject" minOccurs="1"

maxOccurs="1" type="string" />

</xs:sequence>

<xs:attribute name="startDate" type="xs:string"/>

<xs:attribute name="finalDate" type="xs:string"/>

</xs:complexType>

</xs:element>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

Figure 7.9.: Contacts Schema
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S ,
<“#document” [< ∅EA ]>9 [<∅DNEL, <

“students” [< ∅EA ]>1 [
“current” [< ∅EA ]>1 [
�⊗(“student” [< <

<<“startDate” 7→ [trueAF]>>
>EA ]>1 [

<“name” [< ∅EA ]>1 [TXTS]null>EF ⊗EF

<“address” [< ∅EA ]>1 [TXTS]null>EF ⊗EF

<“subject” [< ∅EA ]>1 [TXTS]null>EF ⊗EF

(∅EF ∨<“finalYear” [< ∅EA ]>1 [∅EF]null>EF)
]null,EF)

]null
“alumni” [< ∅EA ]>1 [
�⊗(“student” [< <

<<“startDate” 7→ [trueAF]>>⊗AF

<<“finishDate” 7→ [trueAF]>>
>EA ]>1 [

<“name” [< ∅EA ]>1 [TXTS]null>EF ⊗EF

<“address” [< ∅EA ]>1 [TXTS]null>EF ⊗EF

<“subject” [< ∅EA ]>1 [TXTS]null>EF ⊗EF

]null,EF)
]null

]null
>DE,∅DNEL>DF]null>G

TXTS , �⊗(“#text” [< ∅EA ]>3 [∅TF]trueS,EF)

P , currentDate ∈ S ∧ ♦DOC�G“#document”doc [< ∅EA ]>9 [trueDF]null

Figure 7.10.: Contacts Predicate and Safety Precondition
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graduateStudents(doc, currentDate) ,
local kids, de, alumni, tags, currentStudentTag,

currentStudent, finishDateAt, txt, ats :
kids := getChildNodes(doc) ;
de := item(kids, 0) ;
kids := getChildNodes(de) ;
alumni := item(kids, 1) ;
tags := getElementsByTagName(doc, “finalYear”) ;
currentStudentTag := item(tags,0) ;
while currentStudentTag 6= null do

currentStudent := getParentNode(currentStudentTag) ;
removeChild(currentStudent, currentStudentTag) ;
finishDateAt := createAttribute(doc, “finishDate”) ;
txt := createTextNode(doc, currentDate) ;
appendChild(finishDateAt, txt) ;
ats := getAttributes(currentStudent) ;
setNamedItem(ats, finishDateAt) ;
appendChild(alumni, currentStudent) ;
currentStudentTag := item(tags,0)

od

endloc

Figure 7.11.: The graduateStudents Procedure
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a String and that the “doc” parameter refers to a document in the grove.

This safety precondition S is also given in Figure 7.10. Finally, we may also

leave garbage in the grove which the garbage collector will dispose of for us.

The local Hoare triple for the procedure that we wish to prove is therefore:

{P ∧ S}graduateStudents(doc, currentDate){S ⊕ trueG}

The proof of this triple is a little lengthy but surprisingly readable, and given

in Appendix B.2. Notice that the footprints of many of our commands are

quite large, and that this adds significantly to the length of the proof. We

discuss this issue further in Chapter 9.
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8. DOM in the Wild

DOM implementations can be found in every modern web browser, and

in every major modern programming language. During the course of this

research we have tested the behaviour of a number of DOM implementa-

tions. In particular, our experiments into how web browsers handle default

attributes and normalize operations are recorded in Appendix C. Recall the

potentially confusing specification for the Attr node object attribute “spec-

ified” first mentioned in Section 1.1. Every web browser tested seemed to

treat this attribute differently. It is tempting to conclude that the W3C

specification has failed to clearly communicate its intent to browser devel-

opers – or at the very least to convince them of the wisdom of that intent.

On the issue of the normalize command, which was definitely not completely

specified (as discussed in Sections 1.1 and B.1), all web browsers apart from

Internet Explorer are in agreement. Our specification in Section B.1 follows

this consensus.

The W3C have provided a series of tests designed to judge the compliance

of an implementation with the specification [23]. To our knowledge, no web

browser has ever passed all these tests, though many perform well in the

specialised HTML sections. It should be noted that it may not be desirable

for a web browser to pass all tests, since some of them test failure modes

which we may not want to see in a practical browser. If the specification

requires that a common coding error result in a fault, is it better to insist

that implementations must fault on encountering that error, or should they

be free to try to detect the error, and compensate for it?

Historically, the market pressures on web browsers have tended to favour

those that tried to detect common errors and compensate for them. Re-

cently however, there have been grass-roots movements which have lobbied

for greater standards compliance in web browsers. These movements ar-

gue that attempting to compensate for poor code will result in a de-facto

standard that encourages poor code, to the detriment of all. Furthermore,
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they are wary of large companies making use of large market shares to warp

previously open web standards to their advantage, forcing more and more

people to use their technology exclusively.

A notable grass-roots movement is the Web Standards Project [66], who

have produced the infamous Acid Tests [1], which test browser compliance to

DOM, HTML, CSS and ECMAScript standards. According to those tests,

the only stable public release of a mainstream browser to be completely

compliant is Safari 4.0. The next stable release of Chrome is expected to

follow suit. Firefox does not perform as well as the two front runners, and

Internet Explorer lags further behind.

This formalisation promises a more precise way of measuring if a partic-

ular DOM implementation satisfies the specification. Gardner, Dinsdale-

Young and Wheelhouse have begun the work of linking high level reasoning

about specifications to low level reasoning about implementations in their

paper “Abstraction and Refinement for Local Reasoning”[29].

8.1. Python minidom

Recall that in Chapter 1.1, we asserted that presenting information about

the precondition of the Node command “appendChild” in the documenta-

tion of that command’s errors was potentially confusing. In this Section, we

present a real DOM implementation which missed that precondition, and

speculate on how it may have been overlooked.

The documentation for Python minidom[49] states “DOMException is

currently not supported in xml.dom.minidom. Instead, xml.dom.minidom

uses standard Python exceptions such as TypeError and AttributeError”.

This seems like a perfectly sensible design decision, if the standard Python

exceptions duplicate the functionality of DOMException. The definition of

“DOMException” in the DOM Level 1 spec says:

Begin Quote

DOM operations only raise exceptions in “exceptional” circum-

stances, i.e., when an operation is impossible to perform (either

for logical reasons, because data is lost, or because the imple-

mentation has become unstable). In general, DOM methods re-
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turn specific error values in ordinary processing situation, such

as out-of-bound errors when using NodeList.

Implementations may raise other exceptions under other cir-

cumstances. For example, implementations may raise an implementation-

dependent exception if a null argument is passed.

Some languages and object systems do not support the con-

cept of exceptions. For such systems, error conditions may be

indicated using native error reporting mechanisms. For some

bindings, for example, methods may return error codes similar

to those listed in the corresponding method descriptions.

End Quote

This looks encouraging – Python has a strong dynamic typing system

with associated mechanisms for detecting and reporting runtime errors. The

decision to use that native mechanism to handle any errors seems like a

good one. The DOM specification gives more detail in this section about

the specific sorts of DOMException which might be raised. There is one in

particular which interests us:

Begin Quote

HIERARCHY REQUEST ERR If any node is inserted some-

where it doesn’t belong

End Quote

Indeed Python minidom does make use of the type system to catch any

attempted insertion of a node into “somewhere it doesn’t belong”. Attempt-

ing to insert an Element as a child of an Attribute Node does raise a type

error. Python minidom certainly does seem to handle errors in a way that

is compliant with the description of “DOMException” in section 1.2 of the

core level 1 DOM spec.

Since the behaviour of DOMException is sufficiently handled globally

by existing Python error reporting mechanisms, is there any need for the

implementor to care about what DOMExceptions might be thrown by the

“insertBefore” method in particular?

Begin Quote
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HIERARCHY REQUEST ERR: Raised if this node is of a type

that does not allow children of the type of the newChild node,

or if the node to insert is one of this node’s ancestors.

End Quote

In fact, prior to 2007, Python minidom did not throw an error if you

attempted to insert a node as a child of one of its own children. Instead,

the operation silently went ahead, creating a structure with a loop where

we expected there to be a tree. Many other methods in Python minidom

also expected the data structure they operate over to be a tree, and would

diverge on encountering this loop. This issue was independently discovered

and fixed by Orendorff in 2007 [54].
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9. Conclusions and Future Work

In Chapter 3 we presented Featherweight DOM, which provided the concep-

tual core of this thesis and introduced our strategies for describing DOM. We

used an abstract data structure and accompanying context structure with

many different types of hole. We described essential commands from DOM

using that data and we used a simple imperative programming language to

describe the remaining commands. This chapter also introduced our philos-

ophy of working with a dynamic programming language, with dynamically

typed variables and expressions, and dynamic scope. Our specification of

Featherweight DOM is precise and compositional, in contrast to the W3C

specification.

In Chapter 4 we presented context logic for Featherweight DOM which

allows us to reason about Featherweight DOM programs. This logic is

necessarily different from previous work, since Featherweight DOM contexts

have many types of hole. We also presented a novel proof of soundness

for our reasoning, making use of a new definition for command locality.

Where previous work gives us reasoning about local commands, we provide

local reasoning about DOM commands, which are not all local by the old

definition. Our new definition has potential future applications in reasoning

about JavaScript, concurrent monitors and other programming constructs

of limited locality.

In Chapter 6 we presented the fundamental interfaces of DOM Core Level

1. In this chapter we described in rigorous detail all the quirks and corner

cases of that portion of the DOM Specification. We showed cases such as the

behaviour of the “specified” object-attribute which are confusing, and cases

such as the removeNamedItem command of the NamedNodeMap interface

and the normalize command of the Element interface which are inconsistent

or incomplete in the W3C specification. Where there was inconsistency

or incompleteness, we made decisions based on the behaviour of existing

implementations and on robustness of behaviour. As with Chapter 3, our

204



specification is precise and compositional.

In Chapter 7 we presented context logic for DOM Core Level 1, which

allows us to reason about programs written using the fundamental interfaces

of DOM Core Level 1. This logic followed the logic of Chapter 4 with

only small alterations to allow reasoning about structures such as DTD

Fragments and Element Searches.

In Chapters 5 and 7 we presented example programs written using Feath-

erweight DOM and DOM Core Level 1 respectively. These examples go a

long way towards demonstrating the practicality of this style of reasoning

about web programs, and the example in Chapter 7 in particular demon-

strates some of the current limits of this work. The proof of that example

program, while conceptually straightforward, is textually unwieldy. This

unwieldyness is a symptom of the same problem that inspired local reason-

ing with separation logic in the first place. The problem is that we are forced

to mention many superfluous structures in every step of our reasoning. The

promise of local reasoning is that we should be able to use the frame rule to

discard these structures when we are not explicitly interested in them, and

thus ensure that all our Hoare triples succinctly mention only the footprints

of the programs they describe. In the case of DOM is it clear that our foot-

prints are too large. This problem is particularly evident in the specification

of appendChild: when moving a node from a source to a target, context

logic requires that the footprint of the command be the smallest subtree of

the whole structure which contains both the source and the target points.

This tree may contain a large number of common ancestors of both nodes,

which are totally unaffected by the command, and which we would like to

safely ignore.

One solution to the problem of unwieldyness in our program proofs is to

fix our context logic so as to reduce the size of our footprints. This challenge

has been met by Gardner and Wheelhouse who, in response to this work on

DOM, have developed a new logic called “Segment Logic” [34]. This logic

allows us to build contexts with many labelled holes, which in turn allows

for a much smaller description of the appendChild command. Future work

on reasoning about web programs should certainly take advantage of this

development.

Another possible solution to the problem of unwieldyness is to introduce

automation to the process of reasoning about programs. All the program
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proofs given in this thesis have been enticingly mechanical, which gives us

hope that such proofs may be automated entirely. Local reasoning using

separation logic has enjoyed a great deal of success in reasoning about low-

level C programs. Tools such as smallfoot [61] and space invader [62] have

been used in the wild to find memory faults in real programs, and look

set to become an important tool for the system programmers of the future.

In comparison, local reasoning using context logic is in its infancy, and

this work represents its first claim of practical utility. The schema preser-

vation examples given in Chapters 5.4 and 7.8 hint at one possible route

towards the automated success of the separation logic community: it may

be possible to automatically generate predicates from traditional schema

descriptions written in subsets of languages such as XML Schema or Relax

NG. This would remove the need for training end-users in understanding

context logic notation. It may then be possible to develop a tool which uses

symbolic execution techniques mirroring those developed in the separation

logic community to attempt to prove that the generated schema formula was

maintained by the program. A system such as this could be used alongside

programs like the W3C HTML Validator [65]: while the W3C tool will val-

idate static HTML, our tool would test whether the JavaScript in the page

was capable of invalidating that HTML at runtime.

In joint work with Gardner and Wright [31], the author has begun the task

of adapting this work to reasoning about mash-ups. Mashups may acquire

data and code from remote sources at runtime, and incorporate those data

and code into their own data and control structures. This example-driven

work highlights another possible avenue for the exploitation of local rea-

soning about DOM. The vast majority of mashup programs are extremely

simple, written by large numbers of minimally trained programmers in or-

der to enhance the appearance or UI of websites. However, most of these

programs make use of a small number of extremely complex libraries, writ-

ten by a small number of highly trained programmers. One of the aims of

the work presented in [31] was to make easy programs easy to reason about,

and hard programs possible to reason about. There is enormous benefit to

be reaped in automating the relatively simple process of reasoning about

simple programs, and expending some human effort in providing trusted

specifications for the libraries which those simple programs use.

In joint work with Sergio Maffeis, Gardner and the author have recently
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begun the task of reasoning about the full JavaScript language using a vari-

ant of separation logic. Maffeis has recently completed an operational se-

mantics for JavaScript with Mitchell and Taly [48], and it is this operational

semantics which is forming the core of this new work. Local reasoning, of

the sort practised with separation logic and context logic, seems particularly

well suited to JavaScript, since that language is so very dependent on its

heap. For example, JavaScript has no variable stack, preferring instead to

emulate one as a linked list in the heap. This is how it is possible to in-

clude such features as the infamous “with” statement. However, early work

suggests that simple operations such as assignment in JavaScript are not

“local” in the traditional sense. Fortunately, through the use of the new

definition of locality introduced in this thesis in Chapter 4, a separation

logic for reasoning about JavaScript programs still seems possible.

The possibility of reasoning about languages as challenging as JavaScript

is exciting. In general, scripting languages are challenging to reason about,

since they tend to embrace a number of features that are traditionally con-

sidered “unsafe” - such as reflection, dynamic weak typing, implicit type

coercion and so on. These features are not present by accident, but because

they solve particular problems faced by programmers on the web. The au-

thor believes that local reasoning is uniquely suited to reasoning about these

“difficult” mechanisms.
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A. Featherweight DOM

This appendix contains additional material pertinent to Featherweight DOM,

as described in Chapters 3 and 4. Recall that Section 3.3 presents the com-

mands essential to the Node interface of [22]. Section A.1 contains imple-

mentations of the remaining commands, written in terms of the commands

given in Section 3.3. Recall further that Section 5.2 presents the derivation

of the weakest precondition for the getNodeName command. Section A.2

presents the derivations of the preconditions of all the remaining commands.

A.1. The Remaining Commands

In this section we present the commands from the Node Interface of [22] not

covered in Section 3.3.

getNodeValue This command returns the text contained in a text node,

or null if its argument is an element. First we define a helpful subroutine

“getDataLength”:

length := getDataLength(node) ,

local str :

length := 0 ;

str := substringData(node, length, 1) ;

while str 6= ∅S do

length := length + 1 ;

str := substringData(node, length, 1)

od

endloc

Using this command, it is simple to define “getNodeValue”:

216



v:=getNodeValue(n) ,

local name, len :

name:=getNodeName(n) ;

if name = “#text” then

len := getDataLength(n) ;

v := substringData(n, 0, len)

else

v := null

fi

endloc

setNodeValue This command sets the text of a text node. If called on

an element node, it faults.

setNodeValue(node, Str) ,

local len :

len := getDataLength(node) ;

if len = 0 then

appendData(node, Str)

else

replaceData(node, 0, len− 1, Str)

fi

endloc

getFirstChild and getLastChild These commands are convenient ways

to access the first and last child of a node.

child:=getFirstChild(n) ,

local kids :

kids:=getChildNodes(n) ;

child:=item(kids, 0)

endloc
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child:=getLastChild(n) ,

local kids, i, guard, currentNode :

kids:=getChildNodes(n) ;

i:=0 ;

guard:=false ;

child:=null ;

while guard do

currentNode:=item(kids, i) ;

if currentNode = null then

guard:=false

else

child:=currentNode

fi ;

i:=i + 1

od

endloc

getPreviousSibling and getNextSibling These commands are conve-

nient ways to access a node’s immediate siblings.
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sibling:=getPreviousSibling(n) ,

local parent, kids, i, guard, currentNode :

parent:=getParentNode(n) ;

if parent = null then

sibling:=null

else

kids:=getChildNodes(parent) ;

i:=0 ;

guard:=true ;

sibling:=null ;

while guard do

currentNode:=item(kids, i) ;

if (currentNode = n) then

guard:=false

else

sibling:=currentNode

fi ;

i:=i + 1

od

fi

endloc
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sibling:=getNextSibling(n) ,

local parent, kids, i, guard, currentNode :

parent:=getParentNode(n) ;

if parent = null then

sibling:=null

else

kids:=getChildNodes(parent) ;

i:=0 ;

guard:=true ;

while guard do

currentNode:=item(kids, i) ;

if (currentNode = n) then

guard:=false ;

sibling:=item(kids, i + 1)

else

skip

fi ;

i:=i + 1

od

fi

endloc

insertBefore As [22] says, this command:

Begin Quote

Inserts the node newChild before the existing child node re-

fChild. If refChild is null, insert newChild at the end of the list

of children.

End Quote

220



insertBefore(parent, newChild, refChild) ,

local kids, i, currentNode, foundNewChild :

if refChild = null then

appendChild(parent, newChild)

else

kids:=getChildNodes(parent) ;

i:=0 ;

currentNode:=item(kids, i) ;

foundNewChild:=false ;

while currentNode 6= null ∧ currentNode 6= refChild do

if currentNode = newChild then

foundNewChild:=true

fi ;

i:=i + 1 ;

currentNode:=item(kids, i)

od ;

if currentNode = null then

fault

fi ;

appendChild(parent, newChild) ;

if foundNewChild then

i:=i− 1

fi ;

appendChild(parent, refChild) ;

currentNode:=item(kids, i) ;

while currentNode 6= newChild do

appendChild(parent, currentNode) ;

currentNode:=item(kids, i)

od

fi

endloc

replaceChild According to [22], this command:

Begin Quote

Replaces the child node oldChild with newChild in the list of

children, and returns the oldChild node. If the newChild is al-

ready in the tree, it is first removed.

End Quote
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replaceChild(parent, newChild, oldChild) ,

insertBefore(parent, newChild, oldChild) ;

removeChild(parent, oldChild)

hasChildNodes [22] describes this method as “a convenience method to

allow easy determination of whether a node has any children” which returns

“true if the node has any children, false if the node has no children”.

v:=hasChildNodes(node) ,

local name, kids, n :

name:=getNodeName(node) ;

if name = “#text” then

v:=false

else

kids:=getChildNodes(node) ;

n:=item(kids, 0) ;

if n = null then

v:=false

else

v:=true

fi

fi

endloc

cloneNode According to [22], this command:

Begin Quote

Returns a duplicate of this node, i.e., serves as a generic copy

constructor for nodes. The duplicate node has no parent (par-

entNode returns null.).

Cloning an Element copies all attributes and their values, in-

cluding those generated by the XML processor to represent de-

faulted attributes, but this method does not copy any text it

contains unless it is a deep clone, since the text is contained in a

child Text node. Cloning any other type of node simply returns
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a copy of this node.

End Quote

The command returns “The duplicate node.”, and takes the parameter

“deep”: “If true, recursively clone the subtree under the specified node; if

false, clone only the node itself (and its attributes, if it is an Element).”

newNode:=cloneNode(node, deep) ,

local name, valstr, kids, i, kid, newKid :

name:=getNodeName(node) ;

if name = “#text” then

valstr:=getNodeValue(node) ;

newNode:=createTextNode(valstr)

else

newNode:=createElement(name) ;

if deep then

kids:=getChildNodes(node) ;

i:=0 ;

kid:=item(kids, i) ;

while kid 6= null do

newKid:=cloneNode(kid, true) ;

appendChild(newNode, newKid) ;

i:=i + 1 ;

kid:=item(kids, i)

od

fi

fi

endloc

A.2. Weakest Preconditions

In this section, we present the derivations of the weakest preconditions for

Featherweight DOM.
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A.2.1. appendChild

{(∅D −◦ (C:ELE�G ◦ELE (NAMEparent[F:F]FID))) ◦D <(NAME′newChild[F
′:F]FID′ ∨ “#text”newChildVAL) ∧ T:D′>D}

appendChild(parent, newChild)

{C:ELE�G ◦ELE (NAMEparent[F:F⊗F <T:D′>F]FID)}

Frame{
((C:ELE�G ◦ELE (NAMEparent[F:F⊗F <T:D′>F]FID))−◦ P ) ◦G
((∅D −◦ (C:ELE�G ◦ELE (NAMEparent[F:F]FID))) ◦D <(NAME′newChild[F

′:F]FID′ ∨ “#text”newChildVAL) ∧ T:D′>D)

}
appendChild(parent, newChild){

((C:ELE�G ◦ELE (NAMEparent[F:F⊗F <T:D′>F]FID))−◦ P ) ◦G
(C:ELE�G ◦ELE (NAMEparent[F:F⊗F <T:D′>F]FID))

}

Cons{
((C:ELE�G ◦ELE (NAMEparent[F:F⊗F <T:D′>F]FID))−◦ P ) ◦G
((∅D −◦ (C:ELE�G ◦ELE (NAMEparent[F:F]FID))) ◦D <(NAME′newChild[F

′:F]FID′ ∨ “#text”newChildVAL) ∧ T:D′>D)

}
appendChild(parent, newChild){
P
}

Elim
∃C, NAME, F, T, FID, NAME′, F′, FID′, VAL.
((C:ELE�G ◦ELE (NAMEparent[F:F⊗F <T:D′>F]FID))−◦ P ) ◦G
((∅D −◦ (C:ELE�G ◦ELE (NAMEparent[F:F]FID))) ◦D <(NAME′newChild[F

′:F]FID′ ∨ “#text”newChildVAL) ∧ T:D′>D)


appendChild(parent, newChild){
P
}

where D ∈ {F,G},D′ ∈ {ELE,TXT}
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A.2.2. removeChild{
<C:ELE�G ◦ELE (NAMEparent[F1:F⊗F <(NAME′oldChild[F

′:F]FID′ ∨ “#text”oldChildVAL) ∧ T:D>F ⊗F F2:F]FID)>G

}
removeChild(parent, oldChild){
<C:ELE�G ◦ELE (NAMEparent[F1:F⊗F F2:F]FID)>G ⊕<T:D>G

}
Frame{

((<C:ELE�G ◦ELE (NAMEparent[F1:F⊗F F2:F]FID)>G ⊕<T:D>G)−◦ P )◦G
(<C:ELE�G ◦ELE (NAMEparent[F1:F⊗F <(NAME′oldChild[F

′:F]FID′ ∨ “#text”oldChildVAL) ∧ T:D>F ⊗F F2:F]FID)>G)

}
removeChild(parent, oldChild){

((<C:ELE�G ◦ELE (NAMEparent[F1:F⊗F F2:F]FID)>G ⊕<T:D>G)−◦ P )◦G
(<C:ELE�G ◦ELE (NAMEparent[F1:F⊗F F2:F]FID)>G ⊕<T:D>G)

}

Cons{
((<C:ELE�G ◦ELE (NAMEparent[F1:F⊗F F2:F]FID)>G ⊕<T:D>G)−◦ P )◦G
(<C:ELE�G ◦ELE (NAMEparent[F1:F⊗F <(NAME′oldChild[F

′:F]FID′ ∨ “#text”oldChildVAL) ∧ T:D>F ⊗F F2:F]FID)>G)

}
removeChild(parent, oldChild){
P
}

Elim{
∃C, NAME, F1, F2, FID, T, NAME′, F′, FID′, VAL. ((<C:ELE�G ◦ELE (NAMEparent[F1:F⊗F F2:F]FID)>G ⊕<T:D>G)−◦ P )◦G
(<C:ELE�G ◦ELE (NAMEparent[F1:F⊗F <(NAME′oldChild[F

′:F]FID′ ∨ “#text”oldChildVAL) ∧ T:D>F ⊗F F2:F]FID)>G)

}
removeChild(parent, oldChild){
P
}

where D ∈ {ELE,TXT}
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A.2.3. getNodeName{
(NAMEnode[F:F]FID ∨ “#text”nodeVAL) ∧ T:D

}
var := getNodeName(node){
T:D ∧ (var

.
= NAME)

}
Frame{

(T:D−◦ P{NAME/var}) ◦D
((NAMEnode[F:F]FID ∨ “#text”nodeVAL) ∧ T:D)

}
var := getNodeName(node){

(T:D−◦ P{NAME/var}) ◦D
(T:D ∧ (var

.
= NAME))

}

Cons{
♦D�D′ ((NAMEnode[F:F]FID ∨ “#text”nodeVAL) ∧ T:D) ∧ P{NAME/var}

}
var := getNodeName(node){
P{NAME/var} ∧ (var

.
= NAME)

}
Cons/Elim{

∃NAME, F, FID, VAL, T.
♦D�D′ ((NAMEnode[F:F]FID ∨ “#text”nodeVAL) ∧ T:D) ∧ P{NAME/var}

}
var := getNodeName(node){
P
}

where D ∈ {ELE,TXT},D′ ∈ {ELE,TXT,F,G}

226



A.2.4. getParentNode{
NAME′

ID′ [F1:F⊗F <(NAMEnode[F:F]FID ∨ “#text”nodeVAL) ∧ T:D>F ⊗F F2:F]FID′
}

var := getParentNode(node){
NAME′

ID′ [F1:F⊗F <T:D>F ⊗F F2:F]FID′ ∧ (var
.
= ID′)

}
Frame{

((NAME′
ID′ [F1:F⊗F <T:D>F ⊗F F2:F]FID′ )−◦ P{ID′/var}) ◦ELE

(NAME′
ID′ [F1:F⊗F <(NAMEnode[F:F]FID ∨ “#text”nodeVAL) ∧ T:D>F ⊗F F2:F]FID′ )

}
var := getParentNode(node){

((NAME′
ID′ [F1:F⊗F <T:D>F ⊗F F2:F]FID′ )−◦ P{ID′/var}) ◦ELE

(NAME′
ID′ [F1:F⊗F <T:D>F ⊗F F2:F]FID′ ∧ (var

.
= ID′))

}

Cons{
♦ELE�D′NAME′

ID′ [F1:F⊗F <(NAMEnode[F:F]FID ∨ “#text”nodeVAL) ∧ T:D>F ⊗F F2:F]FID′

∧ P{ID′/var} ◦ELE

}
var := getParentNode(node){
P{ID′/var} ∧ (var

.
= ID′)

}
Cons/Elim

∃NAME′, ID′, F1, NAME, F, FID, VAL, T, F2, FID′.
♦ELE�D′NAME′

ID′ [F1:F⊗F <(NAMEnode[F:F]FID ∨ “#text”nodeVAL) ∧ T:D>F ⊗F F2:F]FID′

∧ P{ID′/var} ◦ELE


var := getParentNode(node){
P
}

where D ∈ {ELE,TXT},D′ ∈ {ELE,F,G}
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{
<(NAMEnode[F:F]FID ∨ “#text”nodeVAL) ∧ T:D>G

}
var := getParentNode(node){
<T:D>G ∧ (var

.
= null)

}
Frame{

(<T:D>G −◦ P{null/var}) ◦D
(<(NAMEnode[F:F]FID ∨ “#text”nodeVAL) ∧ T:D>G)

}
var := getParentNode(node){

(<T:D>G −◦ P{null/var}) ◦D
(<T:D>G ∧ (var

.
= null))

}

Cons{
♦G�G<(NAMEnode[F:F]FID ∨ “#text”nodeVAL) ∧ T:D>G ∧ P{null/var}

}
var := getParentNode(node){
P{null/var} ∧ (var

.
= null))

}
Cons/Elim{

∃NAME, F, FID, VAL, T.
♦G�G<(NAMEnode[F:F]FID ∨ “#text”nodeVAL) ∧ T:D>G ∧ P{null/var}

}
var := getParentNode(node){
P
}

where D ∈ {ELE,TXT}

A.2.5. getChildNodes{
NAMEY[F:F]FID ∧ node

.
= Y
}

list := getChildNodes(node){
NAMEY[F:F]FID ∧ (list

.
= FID)

}
Frame{

(NAMEY[F:F]FID −◦ P{FID/list}) ◦ELE

(NAMEY[F:F]FID ∧ node
.
= Y)

}
list := getChildNodes(node){

(NAMEY[F:F]FID −◦ P{FID/list}) ◦ELE

(NAMEY[F:F]FID ∧ (list
.
= FID))

}

Cons{
♦ELE�DNAMEY[F:F]FID ∧ P{FID/list} ∧ (node

.
= Y)

}
list := getChildNodes(node){
P{FID/list} ∧ (list

.
= FID)

}
Cons/Elim{

∃NAME, Y, F, FID.
♦ELE�DNAMEY[F:F]FID ∧ P{FID/list} ∧ (node

.
= Y)

}
list := getChildNodes(node){
P
}
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A.2.6. createElement{
∅G ∧ Name ∈ S ∧ ‘#′ 6∈ Name ∧ node

.
= Y
}

node := createElement(Name){
<Name{Y/node}node[∅F]FID>G

}
Frame/Elim

∃Y. (∀NODE, FID.
<Name{Y/node}NODE[∅F]FID>G −◦ P{NODE/node}) ◦G
(∅G ∧ Name ∈ S ∧ ‘#′ 6∈ Name ∧ node

.
= Y)


node := createElement(Name)
∃Y. (∀NODE, FID.
<Name{Y/node}NODE[∅F]FID>G −◦ P{NODE/node}) ◦G
<Name{Y/node}node[∅F]FID>G


Cons

∀NODE, FID.
(<NameNODE[∅F]FID>G −◦ P{NODE/node}) ◦G
(∅G ∧ Name ∈ S ∧ ‘#′ 6∈ Name)


node := createElement(Name){
P
}

A.2.7. item{
NAMEID[F1:F⊗F <(NAME′

ID′ [F
′:F]FID′ ∨ “#text”ID′VAL

′) ∧ T:D>F ⊗F F2:F]list

∧ (Int
.
= len(F1)) ∧ Y

.
= list

}
node := item(list, Int){
NAMEID[F1:F⊗F <T:D>F ⊗F F2:F]Y ∧ (node

.
= ID′)

}
Frame

(NAMEID[F1:F⊗F <T:D>F ⊗F F2:F]Y −◦ P{ID′/node}) ◦ELE

(NAMEID[F1:F⊗F <(NAME′
ID′ [F

′:F]FID′ ∨ “#text”ID′VAL
′) ∧ T:D>F ⊗F F2:F]list

∧ (Int
.
= len(F1)) ∧ Y

.
= list)


node := item(list, Int){

(NAMEID[F1:F⊗F <T:D>F ⊗F F2:F]Y −◦ P{ID′/node}) ◦ELE

(NAMEID[F1:F⊗F <T:D>F ⊗F F2:F]Y ∧ (node
.
= ID′))

}

Cons{
♦ELE�D′ (NAMEID[F1:F⊗F <(NAME′

ID′ [F
′:F]FID′ ∨ “#text”ID′VAL

′) ∧ T:D>F ⊗F F2:F]Y)

∧ P{ID′/node} ∧ (Int
.
= len(F1)) ∧ (Y

.
= list)

}
node := item(list, Int){
P{ID′/node} ∧ (node

.
= ID′))

}
Cons/Elim

∃NAME, ID, F1, NAME′, ID′, F′, FID′, VAL′T, F2.
♦ELE�D′ (NAMEID[F1:F⊗F <(NAME′

ID′ [F
′:F]FID′ ∨ “#text”ID′VAL

′) ∧ T:D>F ⊗F F2:F]list)

∧ P{ID′/node} ∧ (Int
.
= len(F1))


node := item(list, Int){
P
}

where D ∈ {ELE,TXT},D′ ∈ {ELE,F,G}

229



{
NAMEID[F:F]list ∧ list

.
= Y ∧ (Int <· 0 ∨ Int

.
=> len(F))

}
node := item(list, Int){
NAMEID[F:F]Y ∧ (node

.
= null)

}
Frame{

(NAMEID[F:F]Y −◦ P{null/node}) ◦ELE

(NAMEID[F:F]list ∧ list
.
= Y ∧ (Int <· 0 ∨ Int

.
=> len(F)))

}
node := item(list, Int){

(NAMEID[F:F]Y −◦ P{null/node}) ◦ELE

(NAMEID[F:F]Y ∧ (node
.
= null))

}

Cons{
♦ELE�D(NAMEID[F:F]list) ∧ P{null/node}
∧ (Int <· 0 ∨ Int

.
=> len(F)))

}
node := item(list, Int){
P{null/node} ∧ (node

.
= null)

}
Cons/Elim

∃NAME, ID, F.
♦ELE�D(NAMEID[F:F]list) ∧ P{null/node}
∧ (Int <· 0 ∨ Int

.
=> len(F)))


node := item(list, Int){
P
}

where D ∈ {ELE,F,G}
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A.2.8. substringData{
“#text”YSTR1 ⊗S STR′ ⊗S STR2 ∧ (Offset

.
= len(STR1))

∧ (Count
.
= len(STR′) ∧ node

.
= Y)

}
str:=substringData(node,Offset,Count){

“#text”YSTR1 ⊗S STR′ ⊗S STR2 ∧ (str
.
= STR′)

}
Frame

(“#text”YSTR1 ⊗S STR′ ⊗S STR2 −◦ P{STR′/str}) ◦TXT

(“#text”YSTR1 ⊗S STR′ ⊗S STR2 ∧ (Offset
.
= len(STR1))

∧ (Count
.
= len(STR′) ∧ node

.
= Y))


str:=substringData(node,Offset,Count){

(“#text”YSTR1 ⊗S STR′ ⊗S STR2 −◦ P{STR′/str}) ◦TXT

(“#text”YSTR1 ⊗S STR′ ⊗S STR2 ∧ (str
.
= STR′))

}

Cons
♦TXT�D(“#text”nodeSTR1 ⊗S STR′ ⊗S STR2 ∧ P{STR′/str})
∧ (Offset

.
= len(STR1))

∧ (Count
.
= len(STR′))


str:=substringData(node,Offset,Count){
P{STR′/str} ∧ (str

.
= STR′)

}
Cons/Elim

∃STR1, STR′, STR2.
♦TXT�D(“#text”nodeSTR1 ⊗S STR′ ⊗S STR2 ∧ P{STR′/str})
∧ (Offset

.
= len(STR1))

∧ (Count
.
= len(STR′))


str:=substringData(node,Offset,Count){
P
}

where D ∈ {ELE,TXT,F,G}
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{
“#text”YSTR1 ⊗S STR′ ∧ (Offset

.
= len(STR1))

∧ (Count·> len(STR′)) ∧ node
.
= Y

}
str:=substringData(node, Offset, Count){

“#text”YSTR1 ⊗S STR′ ∧ (str
.
= STR′)

}
Frame

(“#text”YSTR1 ⊗S STR′ −◦ P{STR′/str}) ◦TXT

(“#text”YSTR1 ⊗S STR′ ∧ (Offset
.
= len(STR1))

∧ (Count·> len(STR′)) ∧ node
.
= Y)


str:=substringData(node, Offset, Count){

(“#text”YSTR1 ⊗S STR′ −◦ P{STR′/str}) ◦TXT

(“#text”YSTR1 ⊗S STR′ ∧ (str
.
= STR′))

}

Cons{
♦TXT�D(“#text”nodeSTR1 ⊗S STR′) ∧ P{STR′/str}
∧ (Offset

.
= len(STR1)) ∧ (Count·> len(STR′))

}
str:=substringData(node, Offset, Count){
P{STR′/str} ∧ (str

.
= STR′)

}
Cons/Elim

∃STR1, STR′.
♦TXT�D(“#text”nodeSTR1 ⊗S STR′) ∧ P{STR′/str}
∧ (Offset

.
= len(STR1)) ∧ (Count·> len(STR′))


str:=substringData(node, Offset, Count){
P
}

where D ∈ {ELE,TXT,F,G}
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A.2.9. appendData{
“#text”nodeSTR ∧ Arg ∈ S

}
appendData(node, Arg){

“#text”nodeSTR⊗S Arg
}

Frame{
(“#text”nodeSTR⊗S Arg−◦ P ) ◦TXT

(“#text”nodeSTR ∧ Arg ∈ S)

}
appendData(node, Arg){

(“#text”nodeSTR⊗S Arg−◦ P ) ◦TXT

(“#text”nodeSTR⊗S Arg)

}

Cons{
(“#text”nodeSTR⊗S Arg−◦ P ) ◦TXT

(“#text”nodeSTR ∧ Arg ∈ S)

}
appendData(node, Arg){
P
}

Elim
∃STR.
(“#text”nodeSTR⊗S Arg−◦ P ) ◦TXT

(“#text”nodeSTR ∧ Arg ∈ S)


appendData(node, Arg){
P
}
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A.2.10. deleteData{
“#text”nodeSTR1 ⊗S STR⊗S STR2 ∧ (Offset

.
= len(STR1))

∧ (Count
.
= len(STR))

}
deleteData(node, Offset, Count){

“#text”nodeSTR1 ⊗S STR2

}
Frame

(“#text”nodeSTR1 ⊗S STR2 −◦ P ) ◦TXT

(“#text”nodeSTR1 ⊗S STR⊗S STR2 ∧ (Offset
.
= len(STR1))

∧ (Count
.
= len(STR)))


deleteData(node, Offset, Count){

(“#text”nodeSTR1 ⊗S STR2 −◦ P ) ◦TXT

(“#text”nodeSTR1 ⊗S STR2)

}

Cons/Elim
∃STR1, STR2, STR.
(“#text”nodeSTR1 ⊗S STR2 −◦ P ) ◦TXT

(“#text”nodeSTR1 ⊗S STR⊗S STR2 ∧ (Offset
.
= len(STR1))

∧ (Count
.
= len(STR)))


deleteData(node, Offset, Count){
P
}

{
“#text”nodeSTR1 ⊗S STR ∧ (Offset

.
= len(STR1))

∧ (Count·> len(STR))

}
deleteData(node, Offset, Count){

“#text”nodeSTR1

}

Frame
(“#text”nodeSTR1 −◦ P ) ◦TXT

(“#text”nodeSTR1 ⊗S STR ∧ (Offset
.
= len(STR1))

∧ (Count·> len(STR)))


deleteData(node, Offset, Count){

(“#text”nodeSTR1 −◦ P ) ◦TXT

(“#text”nodeSTR1)

}

Cons/Elim
∃STR1, STR.
(“#text”nodeSTR1 −◦ P ) ◦TXT

(“#text”nodeSTR1 ⊗S STR ∧ (Offset
.
= len(STR1))

∧ (Count·> len(STR)))


deleteData(node, Offset, Count){
P
}
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A.2.11. createTextNode{
∅G ∧ node

.
= Y ∧ Str ∈ S

}
node := createTextNode(Str){
<“text”nodeStr{Y/node}>G

}
Frame

(∀NODE.
<“text”NODEStr{Y/node}>G −◦ P{NODE/node}) ◦G
∅G ∧ node

.
= Y ∧ Str ∈ S


node := createTextNode(Str)

(∀NODE.
<“text”NODEStr{Y/node}>G −◦ P{NODE/node}) ◦G
<“text”nodeStr{Y/node}>G


Cons/Elim

∃Y.
(∀NODE.
<“text”NODEStr{Y/node}>G −◦ P{NODE/node}) ◦G
∅G ∧ node

.
= Y ∧ Str ∈ S


node := createTextNode(Str){
P
}

A.2.12. assignment{
∅D ∧ (Y

.
= Exp)

}
var := Exp{
∅D ∧ (var

.
= Y)

}
Frame{

(∅D −◦ P{Y/var}) ◦D
∅D ∧ (Y

.
= Exp)

}
var := Exp{

(∅D −◦ P{Y/var}) ◦D
(∅D ∧ (var

.
= Y))

}

Cons{
P{Exp/var}

}
var := Exp{
P
}

where D ∈ {F,G,S}
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A.2.13. skip{
∅D

}
skip{
∅D

}
Frame{

(∅D −◦ P ) ◦D ∅D

}
skip{

(∅D −◦ P ) ◦D ∅D

}
Cons{

P
}

skip{
P
}

where D ∈ {F,G,S}
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B. DOM Core Level 1

This appendix contains additional material pertinent to DOM Core Level

1, as described in Chapters 6 and 7. Recall that Section 6.3 presents the

commands essential to the fundamental interfaces of DOM Core Level 1.

Section B.1 contains implementations of the remaining commands, written

in terms of the commands given in Section 6.3. Further recall that Sec-

tion 7.8 presents reasoning about an example program that manipulates a

student data document. Section B.2 presents the full proof of that program.

B.1. The Remaining Commands

In this section we take each interface specified by [22] in turn, and re-

produce the IDL definition given for that interface by [22]. Each object

attribute and method in these IDL definitions which has been provided in

Section 6.3.2, is rendered in bold. For every behaviour not explicitly pro-

vided in Section 6.3.2 we provide a composite command. In these composite

commands, we often make use of constants such as ELEMENT NODE

and DOCUMENT NODE to refer to the type numbers of particular node

types, in this case, 1 and 9 respectively.

DOMImplementation

This interface provides only one behaviour – the method “hasFeature”. This

method returns true if this particular implementation has a given feature,

and false otherwise. This is necessarily implementation dependant, and so

we do not reason about it here.

DocumentFragment

This interface contains no behaviours that are not already covered by the

Node interface:
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Begin Quote

interface DocumentFragment : Node {

};

End Quote

Document

The IDL Definition given in [22] for this Interface is:

Begin Quote

interface Document : Node {
readonly attribute DocumentType doctype;

readonly attribute DOMImplementation implementation;

readonly attribute Element documentElement;

Element createElement(in DOMString tagName)

raises(DOMException);

DocumentFragment createDocumentFragment();

Text createTextNode(in DOMString data);

Comment createComment(in DOMString data);

CDATASection createCDATASection(in DOMString data)

raises(DOMException);

ProcessingInstruction createProcessingInstruction(

in DOMString target,

in DOMString data)

raises(DOMException);

Attr createAttribute(in DOMString name)

raises(DOMException);

EntityReference createEntityReference(in DOMString name)

raises(DOMException);

NodeList getElementsByTagName(in DOMString tagname);

};
End Quote

We deal with each attribute and method in turn.

doctype The DocumentType interface is one of the “Extended Interfaces”

of DOM Core Level 1, and so is beyond the scope of this work, as explained

in the opening paragraphs of this chapter.
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implementation As explained above, the DOMImplementation interface

is entirely implementation dependant, and so we do not reason about it.

documentElement Recall that Document nodes have zero or one Ele-

ment node children, and may have any number of Comment node children.

The “documentElement” attribute is a read-only object attribute, which

provides access to the Element child of a Document node. We provide a

composite getter command which returns the Element child of a Document,

or null if the Document has no element child. If this command is called on

a node of any other type, it faults.
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n:=getDocumentElement(doc) ,

local tp, kids, i, guard, currentNode, tp :

tp:=getNodeType(doc) ;

if tp = DOCUMENT NODE then

kids:=getChildNodes(doc) ;

i:=0 ;

n:=null ;

guard:=true ;

while guard do

currentNode:=item(kids, i) ;

if currentNode = null then

guard:=false

else

tp:=getNodeType(currentNode) ;

if tp = ELEMENT NODE then

n:=currentNode ;

guard:=false

else

skip

fi

fi ;

i:=i + 1

od

else

fault

fi

endloc

createCDATASection, createProcessingInstruction and createEn-

tityReference Since each of these methods exist to create objects from

the Extended Interfaces, they are beyond the scope of this work.

Node

The IDL definition of this interface is given in Figure B.1.

240



Begin Quote

interface Node {
// NodeType
const unsigned short ELEMENT NODE = 1;
const unsigned short ATTRIBUTE NODE = 2;
const unsigned short TEXT NODE = 3;
const unsigned short CDATA SECTION NODE = 4;
const unsigned short ENTITY REFERENCE NODE = 5;
const unsigned short ENTITY NODE = 6;
const unsigned short PROCESSING INSTRUCTION NODE = 7;
const unsigned short COMMENT NODE = 8;
const unsigned short DOCUMENT NODE = 9;
const unsigned short DOCUMENT TYPE NODE = 10;
const unsigned short DOCUMENT FRAGMENT NODE = 11;
const unsigned short NOTATION NODE = 12;

readonly attribute DOMString nodeName;
attribute DOMString nodeValue;

// raises(DOMException) on setting
// raises(DOMException) on retrieval

readonly attribute unsigned short nodeType;
readonly attribute Node parentNode;
readonly attribute NodeList childNodes;
readonly attribute Node firstChild;
readonly attribute Node lastChild;
readonly attribute Node previousSibling;
readonly attribute Node nextSibling;
readonly attribute NamedNodeMap attributes;
readonly attribute Document ownerDocument;
Node insertBefore(in Node newChild,

in Node refChild)
raises(DOMException);

Node replaceChild(in Node newChild,
in Node oldChild)
raises(DOMException);

Node removeChild(in Node oldChild)
raises(DOMException);

Node appendChild(in Node newChild)
raises(DOMException);

boolean hasChildNodes();
Node cloneNode(in boolean deep);

};
End Quote

Figure B.1.: The Node Interface
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We represent the const unsigned short values “ELEMENT NODE”, “AT-

TRIBUTE NODE” and so on with the constants ELEMENT NODE,

ATTRIBUTE NODE and so on.

nodeValue In Section 6.3.2 we provided helper commands, which are

equivalent to the getter and setter commands getNodeValue and setNodeValue

in the non-Attr cases. Here we provide the full getter and setter commands,

which make use of those helpers, and also accurately handle the interesting

Attr cases.

The Attr cases are interesting because the object attribute named “value”

of an Attr node is only one of two representations of the value of the XML

attribute’s that the Attr object represents. The other representation is the

list of TextNodes that are children of the Attr. This state of affairs is

suggested by the following quotes from [22]:

Begin Quote

Note that the nodeValue attribute on the Attr instance can also

be used to retrieve the string version of the attribute’s value(s).

In XML, where the value of an attribute can contain entity

references, the child nodes of the Attr node provide a

representation in which entity references are not expanded.

These child nodes may be either Text or EntityReference nodes.

End Quote

Recall that EntityReference Nodes are not part of the Fundamental In-

terfaces of Core Level 1, and hence are not modelled in this thesis.

Begin Quote

Attributes

...
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value

On retrieval, the value of the attribute is returned as a

string. Character and general entity references are replaced

with their values.

On setting, this creates a Text node with the unparsed

contents of the string.

End Quote

It seems clear that the “value” of an Attr node must be accessible us-

ing both the object-attribute “nodeValue” and by reading the “nodeValue”

object-attributes of all the Text node children of the Attr node. These two

values must remain consistent at all times.

Since the object attribute representation can be calculated from the TextN-

ode representation but not vice-versa, we choose the TextNode representa-

tion as the canonical form, and calculate the object attribute representation

on the fly, with the following procedures:
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v:=getNodeValue(n) ,

local tp, kids, i, guard, currentNode, s :

tp:=getNodeType(n) ;

if tp = ATTRIBUTE NODE then

v:=”” ;

kids:=getChildNodes(n) ;

i:=0 ;

guard:=true ;

while guard do

currentNode:=item(kids, i) ;

if currentNode = null then

guard:=false

else

s:=getNodeValueHelper(currentNode) ;

v:=v⊗S s

fi ;

i:=i + 1

od

else

v := getNodeValueHelper(n)

fi

endloc
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setNodeValue(n, v) ,

local tp, kids, guard, currentNode, owner, newContent :

tp:=getNodeType(n) ;

if tp = ATTRIBUTE NODE then

kids:=getChildNodes(n) ;

guard:=true ;

while guard do

currentNode:=item(kids, 0) ;

if currentNode = null then

guard:=false

else

removeChild(n, currentNode)

fi

od ;

owner:=getOwnerDocument(n) ;

newContent:=createTextNode(owner, v) ;

appendChild(n, newContent) ;

else

setNodeValueHelper(n, v)

fi

endloc

firstChild and lastChild These read-only object attributes are conve-

nient ways to access the first and last child of a node. We provide the

following composite getter commands.

child:=getFirstChild(n) ,

local kids :

kids:=getChildNodes(n) ;

child:=item(kids, 0)

endloc
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child:=getLastChild(n) ,

local kids, i, guard, currentNode :

kids:=getChildNodes(n) ;

i:=0 ;

guard:=false ;

child:=null ;

while guard do

currentNode:=item(kids, i) ;

if currentNode = null then

guard:=false

else

child:=currentNode

fi ;

i:=i + 1

od

endloc

previousSibling and nextSibling These read-only object attributes are

convenient ways to access a node’s immediate siblings. We provide the

following composite getter commands.
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sibling:=getPreviousSibling(n) ,

local parent, kids, i, guard, currentNode :

parent:=getParentNode(n) ;

if parent = null then

sibling:=null

else

kids:=getChildNodes(parent) ;

i:=0 ;

guard:=true ;

sibling:=null ;

while guard do

currentNode:=item(kids, i) ;

if (currentNode = n) then

guard:=false

else

sibling:=currentNode

fi ;

i:=i + 1

od

fi

endloc
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sibling:=getNextSibling(n) ,

local parent, kids, i, guard, currentNode :

parent:=getParentNode(n) ;

if parent = null then

sibling:=null

else

kids:=getChildNodes(parent) ;

i:=0 ;

guard:=true ;

while guard do

currentNode:=item(kids, i) ;

if (currentNode = n) then

guard:=false ;

sibling:=item(kids, i + 1)

else

skip

fi ;

i:=i + 1

od

fi

endloc

insertBefore As [22] says, this command:

Begin Quote

Inserts the node newChild before the existing child node ref-

Child. If refChild is null, insert newChild at the end of the list

of children.

End Quote
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n:=insertBefore(parent, newChild, refChild) ,

local kids, i, currentNode, foundNewChild, firstNewChild, tp, fragKids :

if refChild = null then

n:=appendChild(parent, newChild)

else

kids:=getChildNodes(parent) ;

i:=0 ;

currentNode:=item(kids, i) ;

foundNewChild:=false ;

while currentNode 6= null ∧ currentNode 6= refChild do

if currentNode = newChild then

foundNewChild:=true

fi ;

i:=i + 1 ;

currentNode:=item(kids, i)

od ;

if currentNode = null then

fault

fi ;

firstNewChild:=newChild ;

tp:=getNodeType(firstNewChild) ;

if tp = DOCUMENT FRAGMENT then

fragKids:=getChildNodes(firstNewChild) ;

firstNewChild:=item(fragKids, 0) ;

if firstNewChild = null then

firstNewChild:=refChild

fi

fi ;

n:=appendChild(parent, newChild) ;

if foundNewChild then

i:=i− 1

fi ;

n:=appendChild(parent, refChild) ;

currentNode:=item(kids, i) ;

while currentNode 6= firstNewChild do

n:=appendChild(parent, currentNode) ;

currentNode:=item(kids, i)

od ;

n:=newChild

fi

endloc
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replaceChild According to [22], this command:

Begin Quote

Replaces the child node oldChild with newChild in the list of

children, and returns the oldChild node. If the newChild is al-

ready in the tree, it is first removed.

End Quote

n:=replaceChild(parent, newChild, oldChild) ,

n:=insertBefore(parent, newChild, oldChild) ;

n:=removeChild(parent, oldChild)

hasChildNodes [22] describes this method as “a convenience method to

allow easy determination of whether a node has any children” which returns

“true if the node has any children, false if the node has no children”.

v:=hasChildNodes(node) ,

local kids, n :

kids:=getChildNodes(node) ;

n:=item(kids, 0) ;

if n = null then

v:=false

else

v:=true

fi

endloc

cloneNode According to [22], this command:

Begin Quote

Returns a duplicate of this node, i.e., serves as a generic copy

constructor for nodes. The duplicate node has no parent (par-

entNode returns null.).
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Cloning an Element copies all attributes and their values, in-

cluding those generated by the XML processor to represent de-

faulted attributes, but this method does not copy any text it

contains unless it is a deep clone, since the text is contained in a

child Text node. Cloning any other type of node simply returns

a copy of this node.

End Quote

The command returns “The duplicate node.”, and takes the parameter

“deep”: “If true, recursively clone the subtree under the specified node; if

false, clone only the node itself (and its attributes, if it is an Element).”
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newNode:=cloneNode(node, deep) ,

local doc, tp, name, ats, i, oldat, newat, valstr, valnode, newats, kids, kid, newKid :

doc:=getOwnerDocument(node) ; tp:=getNodeType(node) ; name:=getNodeName(node) ;

if tp = 1 then

// node is an Element node

newNode:=createElement(doc, name) ; newats:=getAttributes(newNode) ;

ats:=getAttributes(node) ; i:=0 ; oldat:=item(ats, i) ;

while oldat 6= null do

name:=getNodeName(oldat) ; newat:=createAttribute(doc, name) ;

valstr:=getNodeValue(oldat) ; valnode:=createTextNode(doc, valstr) ;

appendChild(newat, valnode) ; setNamedItem(newats, newat) ;

i:=i + 1 ; oldat:=item(ats, i)

od

else

if tp = 2 then

// node is an Attribute node

newNode:=createAttribute(doc, name) ; valstr:=getNodeValue(node) ;

valnode:=createTextNode(doc, valstr) ; appendChild(newNode, valnode)

else

if tp = 3 then

// node is a Text node

valstr:=getNodeValue(node) ; newNode:=createTextNode(doc, valstr)

else

if tp = 8 then

// node is a Comment node

valstr:=getNodeValue(node) ; newNode:=createComment(doc, valstr)

else

if tp = 9 then

// node is a Document node

newNode:=createDocument()

else

// node is a Document Fragment node

newNode:=createDocumentFragment(doc)

fi

fi

fi

fi

fi ;

if deep then

kids:=getChildNodes(node) ; i:=0 ; kid:=item(kids, i) ;

while kid 6= null do

newKid:=cloneNode(kid, true) ; appendChild(newNode, newKid) ;

i:=i + 1 ; kid:=item(kids, i)

od

fi

endloc
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Note that [22] specifies that “Cloning an Element copies all attributes and

their values”. This is subtly different from copying the attributes and all

their children, even though the concatenation of the values of the children

of an attribute does represent the value of the attribute. We copy the value

as a single string which is used to instantiate a new TextNode in the cloned

attr node. We do not copy the text nodes which happen to correspond to

the value of the attribute. The specification is admittedly unclear as to

which of these two behaviours is preferred. We have chosen the one which

we believe is preferable, but it is easy to see how the implementation of

cloneNode could be changed to provide the alternate behaviour.

Note also that attempting a deep clone of a document node which has any

children will fault (although a shallow clone will return without error). This

is because of an interaction between cloneNode and and the object attribute

“ownerDocument” of Node objects. When deep cloning a Document node,

[22] says cloneNode should return “a duplicate of this node”, which is to

say, another distinct Document node, and should “recursively clone the

subtree”. When we clone the first child node of the Document node in

question, we take heed of the child node’s ownerDocument, which is “the

Document object used to create new nodes”. The new clone of the child

node is therefore owned by the same Document node as the old child node,

and therefore cannot be made a child of the newly cloned Document node.

When our cloneNode procedure attempts to add the new child to the new

Document node, it faults.

The crux of the matter here is that the clone of a child of a Document

node cannot both be a faithful clone of the original child (and therefore

owned by the original Document), and also be owned by the clone of the

Document. This interpretation of the specification may be controversial in

some quarters, so we further justify our decision here by noting that our

chosen interpretation is the more conservative one in the context of a fault-

avoiding reasoning. If a program does not fault under our interpretation of

the specification, it certainly will not fault or behave unpredictably under

the competing (non-faulting) interpretation. Finally, this command was

discussed on the W3C DOM mailing list in 1998, and can be read in the

archive here: [47].
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NodeList

The IDL definition of this interface is:

Begin Quote

interface NodeList {
Node item(in unsigned long index);

readonly attribute unsigned long length;

};
End Quote

length The readonly object attribute “length” is described in [22] as rep-

resenting “The number of nodes in the list. The range of valid child node

indices is 0 to length-1 inclusive.”.

We provide the getter command getLength:

length:=getLength(list) ,

local n :

length:=0 ;

n:=item(list, length) ;

while n 6= null do

length:=length + 1 ;

n:=item(list, length)

od

endloc

Note that, since the only DOM command used by this procedure is

“item”, this command will also function perfectly well as a getter command

for the NamedNodeMap object attribute “length”, mentioned below.

NamedNodeMap

The IDL definition of this interface is:
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Begin Quote

interface NamedNodeMap {
Node getNamedItem(in DOMString name);

Node setNamedItem(in Node arg)

raises(DOMException);

Node removeNamedItem(in DOMString name)

raises(DOMException);

Node item(in unsigned long index);

readonly attribute unsigned long length;

};
End Quote

getNamedItem According to [22] this method “Retrieves a node speci-

fied by name.”. It takes the parameter name which represents the “Name of

a node to retrieve.” and returns “A Node (of any type) with the specified

name, or null if the specified name did not identify any node in the map.”.

n:=getNamedItem(list, name) ,

local i, currentName :

i:=0 ;

n:=item(list, i) ;

if n 6= null then

currentName:=getNodeName(n)

fi ;

while currentName 6= name ∧ n 6= null do

i:=i + 1 ;

n:=item(list, i) ;

if n 6= null then

currentName:=getNodeName(n)

fi

od

endloc

length This readonly object attribute demonstrates behaviour identical to

that of the “item” attribute of the NodeList interface. Our getter command

getLength given earlier in this section requires only one DOM command in

order to function: “item”, which also operates on NamedNodeMaps. That
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implementation of therefore functions perfectly well as both a NodeList

command and a NamedNodeMap command.

Character Data

The IDL definition of this interface is:

Begin Quote

interface CharacterData : Node {
attribute DOMString data;

// raises(DOMException) on setting

// raises(DOMException) on retrieval

readonly attribute unsigned long length;

DOMString substringData(in unsigned long offset,

in unsigned long count)

raises(DOMException);

void appendData(in DOMString arg)

raises(DOMException);

void insertData(in unsigned long offset,

in DOMString arg)

raises(DOMException);

void deleteData(in unsigned long offset,

in unsigned long count)

raises(DOMException);

void replaceData(in unsigned long offset,

in unsigned long count,

in DOMString arg)

raises(DOMException);

};
End Quote

data The object attribute “data” of the CharacterData interface is func-

tionally equivalent to the “value” object attribute of the Node interface.

val:=getData(n) ,

local tp :

tp:=getNodeType(n) ;

if tp = 3 ∨ tp = 8 then

val:=getNodeValue(n)

else

fault

fi

endloc
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setData(n, newval) ,

local tp :

tp:=getNodeType(n) ;

if tp = 3 ∨ tp = 8 then

setNodeValue(n, newval)

else

fault

fi

endloc

length This readonly object attribute represents “The number of charac-

ters that are available through data and the substringData method below.

This may have the value zero, i.e., CharacterData nodes may be empty.”.

We provide the getter command “getTextLength”, which we have named

in order to avoid a name clash with the “getLength” which operates on

NodeLists and NamedNodeMaps.

l:=getTextLength(n) ,

local tp, val :

tp:=getNodeType(n) ;

if tp = 3 ∨ tp = 8 then

val:=getNodeValue(n) ;

l:= len(val)

else

fault

fi

endloc

insertData According to [22], this method will “Insert a string at the

specified character offset.” taking arguments offset “The character offset

at which to insert.” and arg “The DOMString to insert.”.
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insertData(n, offset, arg) ,

local len, s :

len:=getTextLength() ;

s:=substringData(offset, len) ;

deleteData(n, offset, len) ;

appendData(n, arg) ;

appendData(n, s)

endloc

replaceData According to [22], this method will “Replace the characters

starting at the specified character offset with the specified string.” taking

arguments offset “The offset from which to start replacing”, count “The

number of characters to replace” and arg “The DOMString with which the

range must be replaced”.

replaceData(n, offset, count, arg) ,

deleteData(n, offset, count) ;

insertData(n, offset, arg)

Attr

The IDL definition of this interface is:

Begin Quote

interface Attr : Node {
readonly attribute DOMString name;

readonly attribute boolean specified;

attribute DOMString value;

};
End Quote

name The readonly object attribute “name” of the Attr interface is func-

tionally equivalent to the “nodeName” object attribute of the Node inter-

face.
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nm:=getName(n) ,

local tp :

tp:=getNodeType(n) ;

if tp = 2 then

nm:=getNodeName(n)

else

fault

fi

endloc

value The object attribute “value” of the Attr interface represents the

same data as the concatenation of all that Attr’s children. As with other

object attributes we provide getter and setter commands.

[22] says: “On retrieval, the value of the attribute is returned as a string.”

val := getValue(n) ,

local tp, kids, i, len, kid, s :

tp := getNodeType(n) ;

if tp 6= 2 then

fault

fi ;

val := ”” ;

kids := getChildNodes(n) ;

i := 0 ;

len := getLength(kids) ;

while i < len do

kid := item(kids, i) ;

s := getNodeValue(kid) ;

val := val⊗S s ;

i := i + 1

od

endloc

[22] also says: “On setting, this creates a Text node with the unparsed

contents of the string”.
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setValue(n, val) ,

local tp, kids, i, currentNode, doc, newNode :

tp := getNodeType(n) ;

if tp 6= 2 then

fault

fi ;

kids := getChildNodes(n) ;

i := getLength(kids) ;

while i > 0 do

currentNode := item(kids, 0) ;

removeChild(n, currentNode) ;

i := i− 1

od ;

doc := getOwnerDocument(n) ;

newNode := createTextNode(doc, val) ;

appendChild(n, newNode)

endloc

Element

The IDL definition of this interface is:

Begin Quote

interface Element : Node {
readonly attribute DOMString tagName;

DOMString getAttribute(in DOMString name);

void setAttribute(in DOMString name,

in DOMString value)

raises(DOMException);

void removeAttribute(in DOMString name)

raises(DOMException);

Attr getAttributeNode(in DOMString name);

Attr setAttributeNode(in Attr newAttr)

raises(DOMException);

Attr removeAttributeNode(in Attr oldAttr)

raises(DOMException);

NodeList getElementsByTagName(in DOMString name);

void normalize();

};
End Quote
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tagName This readonly object attribute is functionally equivalent to the

“nodeName” object attribute of the Node interface.

nm:=getTagName(n) ,

local tp :

tp:=getNodeType(n) ;

if tp = 1 then

nm:=getNodeName(n)

else

fault

fi

endloc

getAttribute This method “Retrieves an attribute value by name”, re-

turning “The Attr value as a string, or the empty string if that attribute

does not have a specified or default value.”

str := getAttribute(n, name) ,

local ats, at :

ats := getAttributes(n) ;

at := getNamedItem(ats, name) ;

if at = null then

str = “”

else

str := getNodeValue(at)

fi

endloc

setAttribute This method “Adds a new attribute. If an attribute with

that name is already present in the element, its value is changed to be that

of the value parameter.”
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setAttribute(n, name, value) ,

local ats, at, doc :

ats := getAttributes(n) ;

at := getNamedItem(ats, name) ;

if at = null then

doc := getOwnerDocument(n) ;

at := createAttribute(doc, name) ;

setNodeValue(at, value) ;

setNamedItem(ats, at)

else

setNodeValue(at, value)

fi

endloc

removeAttribute This method “Removes an attribute by name. If the

removed attribute has a default value it is immediately replaced”. Recall

that the immediate replacement if the attribute has a default name is han-

dled by our removeNamedItem command.

removeAttribute(n, name) ,

local ats :

ats := getAttributes(n) ;

removeNamedItem(ats, name)

endloc

getAttributeNode This method “Retrieves an Attr node by name.”

at := getAttributeNode(n, name) ,

local ats :

ats := getAttributes(n) ;

at := getNamedItem(ats, name)

endloc

setAttributeNode This method “Adds a new attribute. If an attribute

with that name is already present in the element, it is replaced by the new

one.” ... “If the newAttr attribute replaces an existing attribute with the
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same name, the previously existing Attr node is returned, otherwise null is

returned.”

oldAttr := setAttributeNode(n, newAttr) ,

local ats :

ats := getAttributes(n) ;

oldAttr := setNamedItem(ats, newAttr)

endloc

removeAttributeNode This method “Removes the specified attribute”,

returning “The Attr node that was removed”.

at := removeAttributeNode(n, oldAttr) ,

local ats, i, name :

ats := getAttributes(n) ;

i := 0 ;

at := item(ats, i) ;

while at 6= null ∧ at 6= oldAttr do

i := i + 1 ;

at := item(ats, i)

od ;

if at 6= null then

name := getNodeName(at) ;

removeNamedItem(ats, name)

else

skip

fi

endloc

normalize This method “Puts all Text nodes in the full depth of the

sub-tree underneath this Element into a ”normal” form where only markup

(e.g., tags, comments, processing instructions, CDATA sections, and entity

references) separates Text nodes, i.e., there are no adjacent Text nodes.”

As we indicated in Chapter 1.1, this specification is not complete since

it does not specify whether any of the text nodes in the pre-normalized

structure should be re-used in the normalized structure. Our experiments

with DOM implementations (See Chapter 8 and Appendix C) show that
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there is a surprising consensus among web browsers that the first Text node

in any consecutive sequence should be re-used. The following procedure

follows that example.
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normalize(n) ,

local tp, kids, lastNode, i, currentNode, lasttp, text :

tp:=getNodeType(n) ;

if tp = 1 then

kids := getChildNodes(n) ;

lastNode := n ;

i := 0 ;

currentNode := item(kids, i) ;

while currentNode 6= null do

tp := getNodeType(currentNode) ;

if tp = 3 then

lasttp := getNodeType(lastNode) ;

if lasttp = 3 then

text := getNodeValue(currentNode) ;

appendData(lastNode, text) ;

removeChild(n, currentNode) ;

i := i− 1

else

lastNode := currentNode

fi

else

lastNode := currentNode ;

if tp = 1 then

normalize(currentNode)

else

skip

fi

fi ;

i := i + 1 ;

currentNode := item(kids, i)

od

else

fault

fi

endloc
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Text

The Text interface inherits from “CharacterData” interface, which provides

most of its functionality. There is one text-specific method though, and

that is “splitText”. The IDL definition of this interface is:

Begin Quote

interface Text : CharacterData {
Text splitText(in unsigned long offset)

raises(DOMException);

};
End Quote

splitText This method “Breaks this Text node into two Text nodes at

the specified offset, keeping both in the tree as siblings. This node then

only contains all the content up to the offset point. And a new Text node,

which is inserted as the next sibling of this node, contains all the content

at and after the offset point” and returns “The new Text node”.

newText := splitText(n, offset) ,

local tp, length, text, doc, parent :

tp := getNodeType(n) ;

if tp = 3 then

length := getTextLength(n) ;

text := substringData(n, offset, length) ;

deleteData(n, offset, length) ;

doc := getOwnerDocument(n) ;

newText := createTextNode(doc, text) ;

parent := getParentNode(n) ;

insertBefore(parent, newText, n) ;

insertBefore(parent, n, newText) ;

else

fault

fi

endloc

266



Comment

The Comment interface inherits from the CharacterData interface, and pro-

vides no additional functionality. These nodes represent comments in the

XML data, which are handled by DOM in the same way as other character

data.

B.2. Proving Schema Preservation of the

graduateStudents Procedure

In this section, we present the full proof of the example program given in

Section 7.8.
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{P ∧ S}
graduateStudents(doc, currentDate) ,

localkids, de, alumni, tags, currentStudentTag,

currentStudent, finishDateAt, txt, ats :

kids = getChildNodes(doc) ;

de = item(kids, 0) ;

kids = getChildNodes(de) ;

alumniitem(kids, 1) ;

tags := getElementsByTagName(doc, “finalYear”) ;

<“#document”doc [< ∅EA ]>9 [<∅DNEL, <

“students”de [< ∅EA ]>1 [

“current” [< ∅EA ]>1 [

�⊗(“student” [< <

<<“startDate” 7→ [trueAF]>>

>EA ]>1 [

<“name” [< ∅EA ]>1 [TXTS]null>EF ⊗EF

<“address” [< ∅EA ]>1 [TXTS]null>EF ⊗EF

<“subject” [< ∅EA ]>1 [TXTS]null>EF ⊗EF

(∅EF ∨<“finalYear” [< ∅EA ]>1 [∅EF]null>EF)

]null,EF)

]null

“alumni”alumni [< ∅EA ]>1 [

�⊗(“student” [< <

<<“startDate” 7→ [trueAF]>>⊗AF

<<“finishDate” 7→ [trueAF]>>

>EA ]>1 [

<“name” [< ∅EA ]>1 [TXTS]null>EF ⊗EF

<“address” [< ∅EA ]>1 [TXTS]null>EF ⊗EF

<“subject” [< ∅EA ]>1 [TXTS]null>EF ⊗EF

]null,EF)

]null

]kidsnull

>DE,∅DNEL>DF ∧ flatten(“finalYear”, FINALS:EF)]null>G ⊕
<“finalYear”doctags>G


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currentStudentTag := item(tags,0) ;

while currentStudentTag 6= null do

currentStudent := getParentNode(currentStudentTag) ;

<“#document”doc [< ∅EA ]>9 [<∅DNEL, <

“students”de [< ∅EA ]>1 [

“current” [< ∅EA ]>1 [

�⊗(“student” [< <

<<“startDate” 7→ [trueAF]>>

>EA ]>1 [

<“name” [< ∅EA ]>1 [TXTS]null>EF ⊗EF

<“address” [< ∅EA ]>1 [TXTS]null>EF ⊗EF

<“subject” [< ∅EA ]>1 [TXTS]null>EF ⊗EF

(∅EF ∨<“finalYear” [< ∅EA ]>1 [∅EF]null>EF)

]null,EF)⊗EF

“student”currentStudent [< <

<<“startDate” 7→ [trueAF]>>

>EA ]>1 [

<“name” [< ∅EA ]>1 [TXTS]null>EF ⊗EF

<“address” [< ∅EA ]>1 [TXTS]null>EF ⊗EF

<“subject” [< ∅EA ]>1 [TXTS]null>EF ⊗EF

<“finalYear”currentStudentTag [< ∅EA ]>1 [∅EF]null>EF

]null⊗EF

�⊗(“student” [< <

<<“startDate” 7→ [trueAF]>>

>EA ]>1 [

<“name” [< ∅EA ]>1 [TXTS]null>EF ⊗EF

<“address” [< ∅EA ]>1 [TXTS]null>EF ⊗EF

<“subject” [< ∅EA ]>1 [TXTS]null>EF ⊗EF

(∅EF ∨<“finalYear” [< ∅EA ]>1 [∅EF]null>EF)

]null,EF)

]null

“alumni”alumni [< ∅EA ]>1 [

�⊗(“student” [< <

<<“startDate” 7→ [trueAF]>>⊗AF

<<“finishDate” 7→ [trueAF]>>

>EA ]>1 [

<“name” [< ∅EA ]>1 [TXTS]null>EF ⊗EF

<“address” [< ∅EA ]>1 [TXTS]null>EF ⊗EF

<“subject” [< ∅EA ]>1 [TXTS]null>EF ⊗EF

]null,EF)

]null

]kidsnull

>DE,∅DNEL>DF ∧
flatten(“finalYear”,

<“finalYear”currentStudentTag [< ∅EA ]>1 [∅EF]null>EF

⊗EF FINALS′:EF

)]null>G ⊕<“finalYear”doctags>G


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removeChild(currentStudent, currentStudentTag) ;

finishDateAt := createAttribute(doc, “finishDate”) ;

txt = createTextNode(doc, currentDate) ; appendChild(finishDateAt, txt) ;

ats := getAttributes(currentStudent) ; setNamedItem(ats, finishDateAt) ;

appendChild(alumni, currentStudent) ; currentStudentTag := item(tags,0)

<“#document”doc [< ∅EA ]>9 [<∅DNEL, <“students”de [< ∅EA ]>1 [

“current” [< ∅EA ]>1 [

�⊗(“student” [< <<<“startDate” 7→ [trueAF]>>>EA ]>1 [

<“name” [< ∅EA ]>1 [TXTS]null>EF ⊗EF

<“address” [< ∅EA ]>1 [TXTS]null>EF ⊗EF

<“subject” [< ∅EA ]>1 [TXTS]null>EF ⊗EF

(∅EF ∨<“finalYear” [< ∅EA ]>1 [∅EF]null>EF)

]null,EF)⊗EF

∅EF⊗EF

�⊗(“student” [< <<<“startDate” 7→ [trueAF]>>>EA ]>1 [

<“name” [< ∅EA ]>1 [TXTS]null>EF ⊗EF

<“address” [< ∅EA ]>1 [TXTS]null>EF ⊗EF

<“subject” [< ∅EA ]>1 [TXTS]null>EF ⊗EF

(∅EF ∨<“finalYear” [< ∅EA ]>1 [∅EF]null>EF)

]null,EF)

]null

“alumni”alumni [< ∅EA ]>1 [�⊗(“student” [< <

<<“startDate” 7→ [trueAF]>>⊗AF

<<“finishDate” 7→ [trueAF]>>

>EA ]>1 [

<“name” [< ∅EA ]>1 [TXTS]null>EF ⊗EF

<“address” [< ∅EA ]>1 [TXTS]null>EF ⊗EF

<“subject” [< ∅EA ]>1 [TXTS]null>EF ⊗EF

]null,EF)⊗EF

“student”currentStudent [< <

<<“startDate” 7→ [trueAF]>>⊗AF

<<“finishDate” 7→ [trueAF]>>

>EA ]>1 [

<“name” [< ∅EA ]>1 [TXTS]null>EF ⊗EF

<“address” [< ∅EA ]>1 [TXTS]null>EF ⊗EF

<“subject” [< ∅EA ]>1 [TXTS]null>EF ⊗EF

∅EF

]null⊗EF

�⊗(“student” [< <

<<“startDate” 7→ [trueAF]>>⊗AF

<<“finishDate” 7→ [trueAF]>>

>EA ]>1 [

<“name” [< ∅EA ]>1 [TXTS]null>EF ⊗EF

<“address” [< ∅EA ]>1 [TXTS]null>EF ⊗EF

<“subject” [< ∅EA ]>1 [TXTS]null>EF ⊗EF

]null,EF)]null

]kidsnull>DE,∅DNEL>DF ∧
flatten(“finalYear”, FINALS′:EF)]null>G ⊕
<“finalYear”doctags>G ⊕
<“finalYear”currentStudentTag [< ∅EA ]>1 [∅EF]null>G
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C. Implementation Behaviour

This appendix documents several experiments performed to ascertain the

behaviour of various real world DOM implementations. Section C.1 investi-

gates the behaviour of the normalize command, Section C.2 investigates the

behaviour of default attributes and Section C.3 investigates the behaviour

of the “specified” object-attribute.

C.1. The normalize Command

We investigated the behaviour of browsers when executing a “normalize”

operation with a series of JavaScript tests [36]. The source for these tests

is reproduced here:

<html>

<head>

<title>An experiment with DOM normalize</title>

<script>

text = null;

oldText = null;

function addmorewords() {

para = document.getElementById("words")

oldText = para.childNodes.item(0);

text = document.createTextNode("... and now there are more words.");

para.appendChild(text);

}

function viewtext() {

if (text==null) {

alert("That node is null - you can’t view the contents");

}

else { alert("The contents of that node are: "+(text.nodeValue)); }

}
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function viewoldtext() {

if (oldText==null) {

alert("That node is null - you can’t view the contents");

}

else { alert("The contents of that node are: "+(oldText.nodeValue)); }

}

function normexp() {

para = document.getElementById("words");

para.normalize();

}

function moveexp() {

para = document.getElementById("sandbox");

para.appendChild(text);

}

function moveoldexp() {

para = document.getElementById("sandbox");

para.appendChild(oldText);

}

</script>

</head>

<body>

<h1>An experiment with DOM normalize</h1>

<p id="words">

This paragraph is the one we will experiment with - it contains some words.

</p>

<p>

You can add some more words to the previous paragraph by clicking this button:

<input type="button" value="Add More Words" onclick="addmorewords()"/>

</p>

<p>

If you just clicked on that button, then the paragraph now has more words in

it. These are distinct from the original words - they are a separate text node

which was added by the javascript in the button (if you’re using firefox, you

can verify this with the DOM Inspector). I’ve kept a reference to that text

node. You can see the contents of that new separate text node by clicking this

button:
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<input type="button" value="View Text Node Contents" onclick="viewtext()"/>

</p>

<p>

When you added more words, I also kept a reference to the text that

was already in the paragraph. You can see the contents of that node

by clicking here:

<input type="button" value="View Old Text Contents" onclick="viewoldtext()"/>

</p>

<p>

If we don’t want there to be two different text nodes inside that paragraph, we

can <em>normalize</em> the paragraph. DOM specifies normalize like

<a href="http://www.w3.org/TR/REC-DOM-Level-1/level-one-core.html#ID-162CF083">so

</a>:

<blockquote>

Puts all Text nodes in the full depth of the sub-tree

underneath this Element into a &quot;normal&quot; form where

only markup (e.g., tags, comments, processing instructions,

CDATA sections, and entity references) separates Text nodes,

i.e., there are no adjacent Text nodes. This can be used to

ensure that the DOM view of a document is the same as if it

were saved and re-loaded, and is useful when operations (such

as XPointer lookups) that depend on a particular document tree

structure are to be used.<br />

This method has no parameters.<br />

This method returns nothing.<br />

This method raises no exceptions.

</blockquote>

</p>

<p>

You can normalize our experimental paragraph with this button:

<input type="button" value="Normalize!" onclick="normexp()"/>

</p>

<p>

So now there should be only one text node in our paragraph - but it

should render just the same (again - look in the DOM Inspector). So

far so good. But what about the reference we had to the second text
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node? Given what the DOM spec said - what should the value of that

variable be? What about the old text node? You can click the

&quot;View Text Node Contents&quot; and &quot;View Old Text

Contents&quot; buttons to find out...

</p>

<p>

If you’re using firefox, chrome or safari, then what’s happened here

is that the contents of the second text node were copied, and appended

to the first text node. The second text node was then removed as if

with &quot;removeChild&quot; - so the reference to that node is still

valid, and it can in fact be moved back into the document tree. Try

it:

<input type="button"

value="Move text to sandbox"

onclick="moveexp()" />

Similarly, we can try to move the old text node (which now contains

all the text) into the sand box:

<input type="button"

value="Move old text to sandbox"

onclick="moveoldexp()" />

If, on the other hand, you were using Internet Explorer, then both

text nodes were removed, and a brand new one was created containing

the concatenation of their contents.

</p>

<p id="sandbox">

Here’s a sandbox you can move a text node into.

</p>

</body>

</html>

C.2. Default Attributes

We investigated the behaviour of browsers when interacting with default

attributes with a series of JavaScript tests [35]. The source for these tests

is reproduced here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
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"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html> <head>

<title>Default Attribute Test</title>

<SCRIPT TYPE="text/javascript">

function bingFirst() {

ele = document.getElementsByTagName("a").item(0);

at = ele.attributes.getNamedItem("shape")

if(at==null) {

alert("It doesn’t exist");

} else {

val = at.value;

alert("The value is: ‘"+val+"’");

}

}

function bingSecond() {

ele = document.getElementsByTagName("a").item(1);

at = ele.attributes.getNamedItem("shape")

if(at==null) {

alert("It doesn’t exist");

} else {

val = at.value;

alert("The value is: ‘"+val+"’");

}

}

function bingThird() {

ele = document.getElementsByTagName("a").item(2);

at = ele.attributes.getNamedItem("href")

if(at==null) {

alert("It doesn’t exist");

} else {

val = at.value;

alert("The value is: ‘"+val+"’");

}

}
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function bingFourth() {

ele = document.getElementsByTagName("a").item(3);

at = ele.attributes.getNamedItem("href")

if(at==null) {

alert("It doesn’t exist");

} else {

val = at.value;

alert("The value is: ‘"+val+"’");

}

}

function ieTest() {

ele = document.getElementsByTagName("a").item(3);

at = ele.attributes.getNamedItem("fraggle");

if(at==null) {

alert("It doesn’t exist. And that’s good, because it’s a magic fraggle.");

} else {

val = at.value;

alert("Fraggles exist! With value: ‘"+val+"’");

}

}

function ieSecondTest() {

para = document.getElementById("iePara");

a = document.createElement("a");

a.appendChild(document.createTextNode("Link"));

at = a.attributes.getNamedItem("href");

if(at==null) {

alert("It doesn’t exist. Despite being specified in the DTD.");

} else {

val = at.value;

alert("It does exist. With value: ‘"+val+"’");

}
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para.appendChild(a);

ele = document.getElementsByTagName("a").item(4);

at = ele.attributes.getNamedItem("href")

if(at==null) {

alert("It still doesn’t exist. Despite being specified in the DTD.");

} else {

val = at.value;

alert("It does exist now. With value: ‘"+val+"’");

}

}

</SCRIPT>

</head>

<body>

<h1>Default Attribute Test</h1>

<p>

This is a test of how the DOM deals with default attributes. All test

results mentioned in the prose were gotten using Firefox 2.0.0.14,

Firefox 3.5.5, Safari 4.0.4, IE

6.0.2900.2180.xpsp_sp2_gdr.070227-2254, IE 8.0.6001.18702 and Chrome

4.0.249.30. Here’s the bit of DOM spec (with broken internal links)

that caused me to ask these questions:</p>

<blockquote>

<dt><b>Interface <i>Attr</i></b></dt>

<dd>

<p />

The <code>Attr</code> interface represents an attribute in an

<code>Element</code> object. Typically the allowable values for
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the attribute are defined in a document type definition.

<p />

...

<p />

The attribute’s effective value is determined as follows: if this

attribute has been explicitly assigned any value, that value is the

attribute’s effective value; otherwise, if there is a declaration for

this attribute, and that declaration includes a default value, then

that default value is the attribute’s effective value; otherwise, the

attribute does not exist on this element in the structure model until

it has been explicitly added. Note that the <code>nodeValue</code>

attribute on the <code>Attr</code> instance can also be used to

retrieve the string version of the attribute’s value(s).

<p />

...

<p />

<dl>

<dt><b>Attributes</b></dt>

<dd>

...

<dl>

<dt><code class=’attribute-name’>specified</code></dt>

<dd>

If this attribute was explicitly given a value in the original

document, this is <code>true</code>; otherwise, it is <code>false</code>.

Note that the implementation is in charge of this attribute, not the

user. If the user changes the value of the attribute (even if it ends up

having the same value as the default value) then the <code>specified</code>

flag is automatically flipped to <code>true</code>. To re-specify the

attribute as the default value from the DTD, the user must delete the

attribute. The implementation will then make a new attribute available

with <code>specified</code> set to <code>false</code> and the default value

(if one exists).<p>
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In summary:

<ul>

<li> If the attribute has an assigned value in the document then

<code>specified</code> is <code>true</code>, and the value is the

assigned value.

</li>

<li> If the attribute has no assigned value in the document and has

a default value in the DTD, then <code>specified</code> is

<code>false</code>, and the value is the default value in the DTD.

</li>

<li> If the attribute has no assigned value in the document and has

a value of #IMPLIED in the DTD, then the attribute does not appear

in the structure model of the document.

</li>

</ul>

</dd>

</dl>

</dd>

</dl>

</dd>

</dl>

</blockquote>

<p>I want to understand how DTD specified default-values actually

work. First, I’m going to create an element node with an attribute

which has a default value in the DTD. Here’s a section of the xhtml

DTD we’re using:

</p>

<pre>

&lt;!--================== The Anchor Element ==========================--&gt;
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&lt;!-- content is %Inline; except that anchors shouldn’t be nested --&gt;

&lt;!ELEMENT a %a.content;&gt;

&lt;!ATTLIST a

%attrs;

%focus;

charset %Charset; #IMPLIED

type %ContentType; #IMPLIED

name NMTOKEN #IMPLIED

href %URI; #IMPLIED

hreflang %LanguageCode; #IMPLIED

rel %LinkTypes; #IMPLIED

rev %LinkTypes; #IMPLIED

shape %Shape; &quot;rect&quot;

coords %Coords; #IMPLIED

&gt;

</pre>

<p>

Since the anchor element has a default shape, I’m going to experiment

with a few anchor elements. Here’s one

to <a href="http://google.com">Google</a>. And

here’s <a href="http://www.google.com" shape>one</a> with an empty

shape attribute (if such a thing exists). Next we’ll have a couple of

buttons to bing the contents of those shape attributes up in our

faces.

</p>

<p>

<input type="button" value="Bing first value" onclick="bingFirst()" />

<input type="button" value="Bing second value" onclick="bingSecond()" />

</p>

<p>

Notice how in chrome, safari and firefox, the first value simply

doesn’t exist, and the second is assumed to be &quot;&quot;. IE

returns the latter value for both. Neither of these are the default
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value specified in the DTD.

</p>

<p>

Since the specified attribute values don’t seem to behave entirely as

specced, there’s probably nothing useful to be learned from #IMPLIED

attribute values. Still, we might as well try. Two links with none

existent and empty anchors are <a>here</a> and <a href>here</a>.

</p>

<input type="button" value="Bing third value" onclick="bingThird()" />

<input type="button" value="Bing fourth value" onclick="bingFourth()" />

<p>

In firefox, chrome, safari and IE 6 these second two buttons behave

exactly like the first two. In IE 8 they both report that the value

doesn’t exist.

</p>

<p>Given the results from IE, there’s one more test that needs

performing. Does IE magically call any attribute you like into

existence whenever you ask for it in code?

<input type="button" value="IE test" onclick="ieTest()" />

</p>

<p id="iePara">On all platforms, that attribute doesn’t exist. As well

it shouldn’t. But this suggests that IE was only calling unmentioned

attributes into existence when they were mentioned in the DTD - not

indiscriminately. Does it do this the whole time, or only at parse

time? Let’s try to create an anchor node without an href, and add it

to this paragraph.

<input type="button" value="IE Test take 2" onclick="ieSecondTest()" />

</p>

<p>

It does seem to be impossible to create anchor tags in IE 6 without

href attributes. Like it actually is enforcing the DTD in the

DOM. Interestingly, IE 8 doesn’t do this.

</p>

<p>

Experiment with the &quot;specified&quot; property

<a href="specified.html">here</a>
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</p>

</body> </html>

C.3. The “specified” Attribute

We investigated the behaviour of browsers when interacting with the “spec-

ified” object attribute of Attr nodes with a series of JavaScript tests [37].

The source for these tests is reproduced here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html> <head>

<title>Attribute &quot;specified&quot; Test</title>

<SCRIPT TYPE="text/javascript">

function bingFirst() {

ele = document.getElementsByTagName("a").item(1);

at = ele.attributes.getNamedItem("shape")

if(at==null) {

alert("It doesn’t exist");

} else {

val = at.specified;

alert("The value is: ‘"+val+"’");

}

}

function bingSecond() {

ele = document.getElementsByTagName("a").item(2);

at = ele.attributes.getNamedItem("shape")

if(at==null) {

alert("It doesn’t exist");

} else {

val = at.specified;

alert("The value is: ‘"+val+"’");

}

}
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function bingThird() {

ele = document.getElementsByTagName("a").item(3);

at = ele.attributes.getNamedItem("href")

if(at==null) {

alert("It doesn’t exist");

} else {

val = at.specified;

alert("The value is: ‘"+val+"’");

}

}

function bingFourth() {

ele = document.getElementsByTagName("a").item(4);

at = ele.attributes.getNamedItem("href")

if(at==null) {

alert("It doesn’t exist");

} else {

val = at.specified;

alert("The value is: ‘"+val+"’");

}

}

function tweakAttr() {

ele=document.getElementsByTagName("a").item(4);

at = ele.attributes.getNamedItem("href");

if(at==null) {

alert("It doesn’t exist");

} else {

at.value = "http://www.doc.ic.ac.uk";

alert("Changed");

}

}

function gdsSpecified() {

ele=document.getElementsByTagName("a").item(5);

at = ele.attributes.getNamedItem("gds");

284



if(at==null) {

alert("It doesn’t exist");

} else {

val = at.specified;

alert("The value is: ‘"+val+"’");

}

}

function changeGds() {

ele=document.getElementsByTagName("a").item(5);

at = ele.attributes.getNamedItem("gds");

if(at==null) {

alert("It doesn’t exist");

} else {

at.value = "red";

alert("Changed");

}

}

function newShapeAttr() {

at = document.createAttribute("shape");

alert("The value is: ‘"+at.specified+"’");

}

function newHrefAttr() {

at = document.createAttribute("href");

alert("The value is: ‘"+at.specified+"’");

}

function newGdsAttr() {

at = document.createAttribute("gdsish");

alert("The value is: ‘"+at.specified+"’");

}

</SCRIPT>

</head>
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<body>

<h1>Attribute &quot;specified&quot; Test</h1>

<p>

I experimented with the default values of

attributes <a href="defaultAttribute.html">here</a>. Here, we learn

about the &quot;specified&quot; property. Here’s the relevent bit of

the DOM spec again:

</p>

<blockquote>

<dl>

<dt><code class=’attribute-name’>specified</code></dt>

<dd>

If this attribute was explicitly given a value in the original

document, this is <code>true</code>; otherwise, it is <code>false</code>.

Note that the implementation is in charge of this attribute, not the

user. If the user changes the value of the attribute (even if it ends up

having the same value as the default value) then the <code>specified</code>

flag is automatically flipped to <code>true</code>. To re-specify the

attribute as the default value from the DTD, the user must delete the

attribute. The implementation will then make a new attribute available

with <code>specified</code> set to <code>false</code> and the default value

(if one exists).<p>

In summary:

<ul>

<li> If the attribute has an assigned value in the document then

<code>specified</code> is <code>true</code>, and the value is the

assigned value.

</li>

<li> If the attribute has no assigned value in the document and has

a default value in the DTD, then <code>specified</code> is

<code>false</code>, and the value is the default value in the DTD.

</li>

<li> If the attribute has no assigned value in the document and has

a value of #IMPLIED in the DTD, then the attribute does not appear

in the structure model of the document.
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</li>

</ul>

</dd>

</dl>

</blockquote>

<p>

You may be forgiven for thinking that one of the instances of the

word <q>true</q> in there must be a typo. How does that attribute ever

get set to false? Let’s find out.

</p>

<p>

Since the anchor element has a default shape, we experimented with a

few anchor elements. Here’s one

to <a href="http://google.com">Google</a>. And

here’s <a href="http://www.google.com" shape>one</a> with an empty

shape attribute (if such a thing exists). Next we’ll have a couple of

buttons to bing the specified attribute of those shape attrs up in our

faces.</p>

<p>

<input type="button" value="Bing first value" onclick="bingFirst()" />

<input type="button" value="Bing second value" onclick="bingSecond()" />

</p>

<p>

In chrome, safari and firefox, the first one doesn’t exist - as we

noticed in the previous experiment. The second one has a specified of

true. IE 6 agrees with the second but disagrees with the first, setting

that specified to false. IE 8 sets both to false.</p>

<p>

We perform the same experiment with #IMPLIED attribute values. Two

links with none existent and empty anchors are <a>here</a>

and <a href>here</a>.

</p>

<input type="button" value="Bing third value" onclick="bingThird()" />

<input type="button" value="Bing fourth value" onclick="bingFourth()" />
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<p>As in the default attribute test, in firefox, chrome, safari and IE

6 these second two buttons behave exactly like the first two. In IE 8

they both report that the value doesn’t exist.</p>

<p>

We can tweak the value of the last link, and see the difference it makes.

<input type="button" value="Tweak the attr" onclick="tweakAttr()" />

</p>

<p>It makes no difference on any platform.</a>

<p>

So far, we’ve discovered no false specifieds in chrome, safari or

firefox. Let’s try two penultimate things to do that. Here’s

a <a href="http://news.bbc.co.uk" gds="blue">link</a> with a weird

&quot;gds&quot; attribute.

</p>

<input type="button" value="gds specified?" onclick="gdsSpecified()" />

<input type="button" value="change gds" onclick="changeGds()" />

<p>The gds attr has a specified attribute of true whether it’s changed

in code or not, on all platforms.</p>

<p>

Finally, what happens when we create a brand new attribute? With a

default value, implied, and unmentioned in the DTD?

<input type="button" value="new shape one" onclick="newShapeAttr()" />

<input type="button" value="new href one" onclick="newHrefAttr()" />

<input type="button" value="new gds one" onclick="newGdsAttr()" />

</p>

<p>

In firefox, those last three are all false. In chrome and safari, it

does seem to be impossible to find a false value for specified. IE

agrees with firefox.

</p>

</body> </html>
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