
Views: Compositional Reasoning for Concurrent
Programs

Thomas Dinsdale-Young1, Lars Birkedal2, Philippa Gardner1,
Matthew J. Parkinson3, and Hongseok Yang4

1 Imperial College London 2 IT University of Copenhagen
3 Microsoft Research Cambridge 4 University of Oxford

Abstract. We present a framework for reasoning compositionally about
concurrent programs. At its core is the notion of a view : an abstraction
of the state that takes account of the possible interference due to other
threads. Threads’ views are composable, and an update to the state by
one thread must preserve the views of other threads. We prove sound-
ness for our framework, and demonstrate its utility by studying exam-
ples, which include concurrent separation logic and type systems. Our
framework is already being used to develop new reasoning systems.

1 Introduction

There has been a recent flurry of research activity on type systems and pro-
gram logics for reasoning modularly about programs with dynamically allo-
cated, shared mutable state. Type systems have been extended with linear
types [23,1,30] and related capability systems [8] that enforce a mixture of local
and global properties. Program logics, extending separation logic [25], have been
developed to reason about various notions of sharing: for sequential languages,
by combining with types [32] and various frame rules [26,29,2]; for concurrent
languages by adding invariant [24,17,18,5] or relational reasoning [15,33,13,11].

These developments have led to increasingly elaborate reasoning systems,
each introducing new features to tackle specific applications of modular reasoning
and new metatheory to justify these features. Despite their ad hoc nature, these
systems employ a common approach to compositionality. They provide thread-
specific abstractions of the state, which embody enough information to prove
the behaviour of a thread whilst allowing for the possible behaviours of other
threads. In this paper, we provide a general framework for these abstractions,
identifying simple properties necessary for sound, compositional reasoning.

Our fundamental idea is that threads have different views of the machine.
Intuitively, a thread’s view consists of information about the current state of the
machine, the right of the thread to modify the state as long as the environment’s
view is stable (invariant) with respect to such changes, and the thread’s right
to the stability of its own view with respect to changes being made by the
environment. Threads’ views can be composed, which ensures that the rights
and information held by different threads are compatible with each other.

A thread’s view provides a partial, abstract description of the state of the
machine. It is partial in that it only describes the state relevant to the thread.

2 T. Dinsdale-Young, L. Birkedal, P. Gardner, M. Parkinson, H. Yang

It is abstract in that the verifier can use additional information to help with the
reasoning, such as types, ghost state or permissions. Such instrumentation has
no representation in the concrete state but is a useful fiction for the verifier. To
relate the program logic with the operational semantics, we require that a view
can be reified to a set of concrete machine states. Using reification, we prove a
general soundness result, which we have formally verified in Coq.

To illustrate the essential compositionality of views, consider a command C
that updates the view p to the view q. For compositional reasoning, we would
require that C updates p ∗ r to q ∗ r, where r represents any view held by the
environment and ∗ is the composition operation on views. Traditional approaches
in separation logic have achieved this by enforcing that commands satisfy so-
called locality conditions [7]. We take the alternative approach of embedding
compositionality into the meaning of “C updates p to q”: for all r, it must
update p ∗ r to q ∗ r. This interpretation has been used for extending sequential
separation logic for higher-order languages, where it is otherwise difficult to
characterise locality [2,3]. We show that the interpretation also gives a simpler
and more general metatheory for logics for concurrent programs.

A crucial implication of this interpretation is that views should be stable with
respect to any operation that a thread with a consistent view could perform. At
one extreme, stability can be enforced by disjointness between views: one thread
can access variable x , say, while the other cannot have anything to do with x .
At the other, stability can be enforced by invariant properties: both threads may
agree that x always has type bool, for instance. In the middle ground lie many
logics that allow controlled sharing. Views capture this whole spectrum.

The views framework embodies the essential ingredients for sound composi-
tional reasoning. This minimality reveals that aspects that seem integral to com-
plex proof systems can in fact be understood as separate concerns. For example,
the logic of concurrent abstract predicates [11] models interference with rely and
guarantee relations, which pervade the soundness proof. When understood in
terms of views, however, interference relations are just a means of constructing
the set of views, and have no special significance in the soundness proof.

Our framework provides a recipe for designing new reasoning sys-
tems. We demonstrate this by presenting several examples of type sys-
tems and program logics in our views framework. Further examples with
advanced features can be found in our technical report [10]. The views

Programming Language
(A: Atomic Commands)

High-level program logic
(B: View Monoid, C: Atomic Axioms)

Soundness (F: Reification,
G: Atomic Soundness)

Low-level operational semantics
(D: States, E: Atomic Semantics)

Fig. 1. Overview of framework

framework has already proved useful to
researchers creating new type systems and
program logics, which we discuss in §5.

2 Views Framework

We present the views framework for devel-
oping sound program logics, an overview
of which is given in Fig. 1. We use a con-
current programming language, parame-

Views: Compositional Reasoning for Concurrent Programs 3

terised by atomic commands (A), with a low-level operational semantics that is
parameterised by the notion of state (D) and how the atomic commands ma-
nipulate that state (E). We provide a high-level program logic to reason about
this system, which is parameterised by its form of assertions — views (B) —
and its axioms for atomic commands (C). We provide a soundness result for
the logic with respect to the operational semantics, which is parameterised by
a relationship connecting the high-level assertions to states (F) and a property
each axiom must satisfy with respect to the operational semantics (G). Simply
defining the Parameters A–F and proving property G will ensure a sound logic.

Our programming language is built from standard composite commands, and
parameterised by a set of atomic commands.

Parameter A (Atomic Commands). Assume a countable set of (syntactic)
atomic commands Atom, ranged over by a.

Definition 1 (Language Syntax). The set of (syntactic) commands, Comm,
ranged over by C, is defined by the following grammar:

C ::= a
∣∣ skip

∣∣ C;C
∣∣ C + C

∣∣ C ‖ C ∣∣ C∗.
Views form assertions in our program logic. We have one basic requirement

for views: that they form a commutative monoid.

Parameter B (View Monoid). Assume a commutative monoid (View, ∗, u).
The variables p, q, r are used to denote elements of View.

Intuitively, views are resources that embody knowledge and rights; combining
two views with ∗ produces a view with the knowledge and rights of its compo-
nents. The resource monoid underlies the logic of Bunched Implications [28],
whose models are monoids with additional logical structure.

We define a program logic for our programming language, in which views
provide the pre- and postconditions of the commands. The program logic is
parameterised by the set of axioms for atomic commands.

Parameter C (Axiomatisation). Assume a set of axioms Axiom ⊆ View ×
Atom× View.

Definition 2 (Program Logic). The program logic’s judgements are of the
form ` {p} C {q}, where p, q ∈ View provide the precondition and postcondition
of command C ∈ Comm. The proof rules for these judgements are as follows:

(p, a, q) ∈ Axiom

` {p} a {q}
` {p} C {q}

` {p ∗ r} C {q ∗ r} ` {p} skip {p}
` {p} C1 {q} ` {p} C2 {q}

` {p} C1 + C2 {q}

` {p} C1 {r} ` {r} C2 {q}
` {p} C1;C2 {q}

` {p1} C1 {q1} ` {p2} C2 {q2}
` {p1 ∗ p2} C1 ‖ C2 {q1 ∗ q2}

` {p} C {p}
` {p} C∗ {p}

The intended semantics of ` {p} C {q} is that if the program C is run to ter-
mination from an initial state that is described by the view p, then the resulting

4 T. Dinsdale-Young, L. Birkedal, P. Gardner, M. Parkinson, H. Yang

state will be described by the view q. This is a partial correctness interpretation:
the judgements say nothing about non-terminating executions.

The proof rules are standard rules from disjoint concurrent separation logic.
They include the frame rule, which captures the intuition that a program’s view
can be extended with a composable view, and the disjoint concurrency rule,
which allows the views of two threads to be composed.

The operational semantics is parameterised by a model of machine states and
an interpretation of the atomic commands as state transformers.

Parameter D (Machine States). Assume a set of machine states S, ranged
over by s.

Parameter E (Interpretation of Atomic Commands). Assume a func-
tion [[−]] : Atom→ S → P(S) that associates each atomic command with a non-
deterministic state transformers. [Where necessary, we lift non-deterministic
state transformers to sets of states: for S ∈ P(S), α(S) =

⋃
{α(s) | s ∈ S}.]

From machine state s, the set of states [[a]](s) is the set of possible outcomes
of running the atomic command a. If the set is empty, then the command blocks.
Here, we consider partial correctness, and so ignore blocking executions.

We define the operational semantics of the language using a labelled tran-
sition system. Transitions are between commands, and are labelled by atomic
commands or id. id labels computation steps in which the state is not changed.

Definition 3 (Labelled Transition System and Operational Seman-

tics). The labelled transition relation − −−→ − : Comm× (Atom] {id})× Comm
is defined by the following rules, where α ranges over Atom] {id}:

C1
α−→C′1

C1;C2
α−→C′1;C2 skip;C2

id−→C2 C1 +C2
id−→Ci

i∈{1, 2}
C∗

id−→C;C∗ C∗
id−→ skip

a
a−→ skip

C1
α−→C′1

C1 ‖C2
α−→C′1 ‖C2

C2
α−→C′2

C1 ‖C2
α−→C1 ‖C′2 skip ‖C2

id−→C2 C1 ‖ skip
id−→C1

The multi-step operational transition relation −,− →∗ −,− : (Comm × S) ×
(Comm× S) is defined by the following rules:

C, s→∗ C, s
C1

a−→ C2 s2 ∈ [[a]](s1) C2, s2 →∗ C3, s3

C1, s1 →∗ C3, s3

C1
id−→ C2 C2, s1 →∗ C3, s3

C1, s1 →∗ C3, s3

We prove that our program logic is sound with respect to the operational
semantics. To do this, we must relate the views (partial, abstract states) with
the machine states (concrete, complete states).

Parameter F (Reification). Assume a reification function b−c : View →
P(S) which maps views to sets of machine states.

Soundness requires that the axioms concerning atomic commands are satis-
fied by the operational interpretation of the commands. For each axiom (p, a, q),
the interpretation of a must update view p to q while preserving any environment
view. This is captured by the following property:

Views: Compositional Reasoning for Concurrent Programs 5

Consequence: p � p′ ` {p′} C {q}
` {p} C {q}

` {p} C {q′} q′ � q

` {p} C {q}

Disjunction:
∀i ∈ I.` {pi} C {q}
`
{∨
{pi}i∈I

}
C
{
q
} Conjunction:

∀i ∈ I.` {p} C {qi}
`
{
p
}
C
{∧
{qi}i∈I

}
Fig. 2. Additional proof rules.

Property G (Atomic Soundness). For every (p, a, q) ∈ Axiom, and every
r ∈ View then [[a]]bp ∗ rc ⊆ bq ∗ rc.

This property is both necessary and sufficient for the soundness of the pro-
gram logic. We state the soundness result here; proof details, including Coq proof
scripts, are available [10].

Theorem 1 (Soundness). Assume that ` {p} C {q} is derivable in the pro-
gram logic. Then, for all s ∈ bpc and s′ ∈ S, if (C, s)→∗ (skip, s′) then s′ ∈ bqc.

Remark 1. The views framework is more general than existing axiomatisations
of separation logic [7], in that it does not restrict views to be sets of (machine)
states but allows them to be elements in any monoid. In fact, choosing this views
monoid and an accompanying reification function well is the most important step
of using our framework. A good choice of the views monoid leads to a program
logic where a verifier works on the right level of abstraction of machine states.
Also, it picks an appropriate scope for the universal quantification in the Atomic
Soundness property, and gives an effective set of axioms for atomic commands.
This influence of the views monoid on Atomic Soundness corresponds to selecting
a notion of locality properties for commands, which was usually done in a fixed
manner in the work on separation logic.

2.1 Additional Rules

The rules in Definition 2 form the core of our proof system; however, views are
often equipped with additional structure, which gives rise to additional rules.

Consequence. When views are equipped with an entailment relation, we can
add rules of consequence, given in Fig. 2. (When � is reflexive, these rules can
be condensed into a single rule.)

Parameter H (Entailment). Assume a relation � ⊆ View × View.

We can give a semantic notion entailment that comes directly from the compo-
sition and reification parameters:

Definition 4 (Semantic Entailment). p � q def⇐⇒ ∀r ∈ View.bp∗rc ⊆ bq∗rc.

The soundness of the rules of consequence may be justified by the following
necessary and sufficient property.

Property I (Entailment Locality). p � q =⇒ p � q.

6 T. Dinsdale-Young, L. Birkedal, P. Gardner, M. Parkinson, H. Yang

Disjunction. When views are equipped with a notion of disjunction, we can
add a rule of disjunction given in Fig. 2.

Parameter J (Disjunction). Assume a function
∨

: P(View)→ View.

The soundness of the rule of disjunction is justified when the following two
properties hold:

Property K (Join Distributivity). p ∗
∨
{qi}i∈I =

∨
{p ∗ qi}i∈I .

Property L (Join-semilattice Morphism).
⌊∨
{pi}i∈I

⌋
=
⋃
{bpic}i∈I .

Conjunction. When views are equipped with a notion of conjunction, we can
add a rule of conjunction given in Fig. 2.

Parameter M (Conjunction). Assume a function
∧

: P(View)→ View.

The soundness of the rule of conjunction is justified when the following two
properties hold:

Property N (Primitive Conjunctivity). If ∀r ∈ View. [[a]]bp ∗ rc ⊆ bqi ∗ rc
for all i, then ∀r ∈ View. [[a]]bp ∗ rc ⊆

⌊
(
∧
{qi}i∈I) ∗ r

⌋
.

Property O (Meet Supremum).
∧
{pi}i∈I is the supremum (least upper

bound) of {pi}i∈I with respect to �.

3 Examples

For illustrative purposes, we use some simple atomic primitives for manipulating
the heap. These are standard commands from separation logic [19].

Definition 5 (Atomic Heap Commands). Assume a set of variable names
Var, ranged over by x and y , and a set of values Val, ranged over by v, of which
a subset Loc ⊆ Val represents heap addresses, ranged over by l. The syntax of
atomic heap commands, AtomH, is defined by the grammar:

a ::= x := y
∣∣ [x] := v

∣∣ [x] := y
∣∣ x := [y]

∣∣ x := ref y .

Definition 6 (Heap States). Machine states are partial functions from vari-
ables and locations to values. There is also an exceptional faulting state, de-
noted , which represents the result of an invalid memory access. Formally,

SH
def
= ((Var] Loc) ⇀fin Val)] { }.

Definition 7 (Heap Command Semantics). The semantics of the atomic
heap-update commands are given by:

[[x := y]](s)
def
= if y ∈ dom(s) then {s[x 7→ s(y)]} else { }

[[[x] := v]](s)
def
= if x , s(x) ∈ dom(s) then {s[s(x) 7→ v]} else { }

[[[x] := y]](s)
def
= if x , y , s(x) ∈ dom(s) then {s[s(x) 7→ s(y)]} else { }

[[x := [y]]](s)
def
= if x , s(y) ∈ dom(s) then {s[x 7→ s(s(y))]} else { }

[[x := ref y]](s)
def
= if y ∈dom(s) then {s[x 7→ l, l 7→ s(y)] | l∈ Loc \dom(s)} else { }

Here we extend dom to SH by taking dom() = ∅.

Views: Compositional Reasoning for Concurrent Programs 7

Separation Algebras. Calcagno et al. [7] introduced the concept of separa-
tion algebras to generalise separation logic. For many examples, we use a gen-
eralisation of separation algebras with multiple units [6,12] (and without the
cancellativity requirement) to construct a view monoid.

Definition 8 (Separation Algebra). A separation algebra (M, •, I) is a par-
tial, commutative monoid with multiple units. Namely, it is a set M equipped
with a partial operator • :M×M⇀M and a unit set I ⊆M satisfying:

– Commutativity: m1 •m2 = m2 •m1 when either is defined;
– Associativity: m1 • (m2 •m3) = (m1 •m2) •m3 when either is defined;
– Existence of Unit: for all m ∈M there exists i ∈ I such that i •m = m; and
– Minimality of Unit: for all m ∈ M and i ∈ I, if i • m is defined then
i •m = m.

Definition 9 (Separation View Monoid). Each separation algebra (M, •, I)
induces a separation view monoid (P(M), ∗, I), where p1 ∗ p2 is defined to be
{m1 •m2 | m1 ∈ p1,m2 ∈ p2}.

Separation algebras are typically constructed by adding instrumentation to
machine states; this instrumentation determines how states may be composed,
typically by recording ownership or invariant properties. While previous work
has required cancellativity, we do not. With this flexibility, we can use union
(rather than disjoint union) as a separation operator, which leads to views that
express global invariant properties.

Remark 2. For Separation View Monoids, subset inclusion (⊆), union (
⋃

) and
intersection (

⋂
) are natural choices for entailment, disjunction and conjunction

respectively for the additional rules.

Disjoint Concurrent Separation Logic. Judgements of disjoint concurrent
separation logic are, as in the views framework, triples of the form ` {p} C {q}.
Abstractly, the state is treated as a resource, which is divided up by individ-
ual variables and heap addresses. Thus, p and q describe resources, which hold
information about part of the state. Formally, p and q are views from the sep-
aration view monoid induced by the separation algebra (MDCSL,], {∅}), where

MDCSL
def
= (Var] Loc) ⇀fin Val. That is, MDCSL is the set of finite partial

functions from variables and heap addresses to values, with the partial monoid
operation given by the union of partial functions with disjoint domains], and
the unit consisting of only the partial function with the empty domain, ∅.

Elements of MDCSL declare ownership of the variables and heap addresses
that belong to their domains, as well as defining their values. Significantly, they
do not declare information about parts of the state which are not owned. Views
p, q ∈ P(MDCSL) are sets of these abstract states.

The view x ⇀⇁ v denotes the singleton set of the partial function mapping
variable x to value v, and x ⇀⇁ denotes the set of all partial functions that
only map variable x to a value. Similarly, the views l 7→ v and l 7→ map heap

8 T. Dinsdale-Young, L. Birkedal, P. Gardner, M. Parkinson, H. Yang

address l to v or any value respectively. The view ∃v. p(v) is the (infinite) join
of p(v) for all values of v.

The axiomatisation for separation logic is given by the schemas:

{x ⇀⇁ ∗ y ⇀⇁ v} x := y {x ⇀⇁ v ∗ y ⇀⇁ v} {x ⇀⇁ l ∗ l 7→ } [x] := v {x ⇀⇁ l ∗ l 7→ v}
{x ⇀⇁ l ∗ l 7→ ∗ y ⇀⇁ v} [x] := y {x ⇀⇁ l ∗ l 7→ v ∗ y ⇀⇁ v}
{y ⇀⇁ l ∗ l 7→ v ∗ x ⇀⇁ } x := [y] {y ⇀⇁ l ∗ l 7→ v ∗ x ⇀⇁ v}
{x ⇀⇁ ∗ y ⇀⇁ v} x := ref y {∃l. x ⇀⇁ l ∗ l 7→ v ∗ y ⇀⇁ v}

Since separation-logic views are sets of partial functions from variables and
locations to values, they can be seen as sets of heap states. Thus, we can define
a simple notion of reification.

Definition 10 (DCSL Reification). bpcDCSL
def
= p.

Our axioms for atomic commands are sound in the sense of Property G. We
can also justify the soundness of the additional rules. Taking entailment to be ⊆,
it is easy to establish Property I (Entailment Locality). Taking disjunction to be⋃

, Property K (Join Distributivity) holds by construction (as it does whenever
views are constructed from separation algebras), and Property L is trivial given
the definition of reification. Taking conjunction to be

⋂
, it is possible (although

not trivial) to establish Property N (Primitive Conjunctivity), while Property O
(Meet Supremum) holds trivially.

Remark 3. Although mathematically they may be defined the same way, intu-
itively a separation-logic state and a heap state represent different things. In a
separation-logic state, the partiality of the function means that the rest of the
state is unknown and not accessible by the thread. In a heap state, the partiality
of the function means that the undefined parts are unallocated.

Reification can be seen as completing the state by treating the unknown
regions as unallocated. We could define reification differently, by completing the
state in every possible way. For example bx ⇀⇁ 5c would be the set of all states
in which x has value 5. By changing the reification like this, we obtain a slightly
different notion of soundness. This reification admits a more permissive notion of
entailment where p∗ q � p. Use of this weakening in a proof can be thought of as
a thread renouncing ownership of some resource (without ownership transferring
elsewhere). This gives “intuitionistic” separation logic [19].

Note that the reification function does not cover the machine state space:
there is no view p with ∈ bpc. This means that separation-logic triples do not
permit memory faults to occur, which is part of the standard interpretation.

Weak-update Type System. Consider a simple type system for heap update,
which types variables and heap cells with the set of types Type, ranged over by
τ , and defined by: τ ::= val

∣∣ ref τ . The type val indicates that a variable
or heap cell contains some unspecified value, while the type ref τ indicates that
it contains the address of a heap cell whose contents is typed as τ . A typing
context Γ : Var ⇀ Type is a partial function which assigns types to variables. In

Views: Compositional Reasoning for Concurrent Programs 9

a weak update type system, the types of variables are fixed, and all assignments
must preserve the typing. For the heap update language, we define such a type
system by the typing rules:

x : τ, y : τ ` x := y x : ref val ` [x] := v x : ref τ, y : τ ` [x] := y

x : τ, y : ref τ ` x := [y] x : ref τ, y : τ ` x := ref y Γ ` skip

Γ ` C1 Γ ` C2 op ∈ {; ,+, ‖}
Γ ` C1 op C2

Γ ` C
Γ ` C∗

Γ ` C
Γ, Γ ′ ` C

The intended meaning of a typing judgement Γ ` C is that, whenever the
program C is executed from an initial state in which the variables can be typed
according to Γ , the program does not fault and results in a state in which the
variables can still be typed according to Γ .

Typing contexts may be combined when they agree on the types of all vari-
ables that they have in common by taking their union (as relations). We intro-
duce a new context, ⊥, the inconsistent typing context, to represent the result
of combining contexts that do not agree. We thus have a view monoid of typing
contexts: ((Var ⇀ Type)] {⊥} ,∪⊥, ∅).

We fit the type system into the views framework by interpreting the judge-
ment Γ ` C as ` {Γ} C {Γ}. By taking the first five rules of the type system
as axioms, we obtain an instance of the views logic. The remaining rules of the
type system are then easily justified by the proof rules of the views program
logic. The most interesting of these is the last, the weakening rule, which is an
instance of the frame rule, with the frame Γ ′.

We reify typing contexts as the set of states which are well-typed with respect
to the context. Consequently, we must define a notion of typing for states.

Definition 11 (State Typing). The state typing judgement Γ ;Θ ` s, where
Γ : Var ⇀ Type, s ∈ SH and Θ : Loc ⇀ Type ranges over heap typing contexts,
is defined as follows:

Γ ;Θ ` s def⇐⇒ ∀x ∈ dom (Γ) . Θ ` s(x) : Γ (x) ∧ ∀l ∈ dom (Θ) . Θ ` s(l) : Θ(l)

where Θ ` v : τ
def⇐⇒ τ = val ∨ τ = ref (Θ(v)).

The state typing essentially ensures that every typed variable and location
has a value consistent with its type. Specifically, this means that references
must refer to addresses that have the appropriate type. Note that it would not
be possible to have x and y referencing the same location in the typing context
x : ref val, y : ref ref val. This is necessary, since otherwise an update to the
location via x could invalidate the type of y .

Definition 12 (Weak Type Reification). bΓ cWTS
def
= {s∈SH | ∃Θ.Γ ;Θ ` s}.

To establish soundness, we need only show Property G (Atomic Soundness).
This is straightforward; for further details, consult [10]. Importantly, this works
because we do not require locality at the low level of the semantics, only at the

10 T. Dinsdale-Young, L. Birkedal, P. Gardner, M. Parkinson, H. Yang

high level. Thus, standard separation algebra approaches [7,12] would not work
for this example.

Strong-update Type System. In the previous example, every command pre-
serves the types of variables: they are weak updates. We now consider a type
system in which strong updates, which may change the type of variables, are
permitted. In this system, each thread has its own local variables, which allows
the types of the variables to be updated, since they are not shared with any
other threads. The types of heap locations cannot be updated, however, since
multiple threads may have aliases to the same location.

Typing judgements here use the same typing contexts as in the weak-update
example. Since type-changing updates are permitted, judgements have input
and output typing contexts. The type system is defined by the following typing
axioms (the rules are derived directly from the views framework):

x : τ0, y : τ ` x := y a x : τ, y : τ x : ref val ` [x] := v a x : ref val

x : ref τ, y : τ ` [x] := y a x : ref τ, y : τ x : τ0, y : ref τ ` x := [y] a x : τ, y : ref τ

x : τ0, y : τ ` x := ref y a x : ref τ, y : τ

The interpretation of a typing judgement Γ ` C a Γ ′ is that, when C is
executed to termination from an initial state satisfying the typing context Γ , it
will not fault and will result in a state satisfying the typing context Γ ′.

Here, we combine typing contexts only when the variables they type are
disjoint. This enforces the intended discipline of ownership: threads may modify
the types and values of variables that they own, but have no knowledge or rights
to any other variables. Whenever there is an overlap between contexts, their
combination is ⊥. This gives a view monoid: ((Var ⇀ Type)] {⊥} ,]⊥, ∅).

We interpret the type judgement Γ ` C a Γ ′ as ` {Γ} C {Γ ′} within the
views framework. As before, we take the typing axioms as the axioms of our
framework instance. The standard rules of this type system can be seen simply
as instances of the rules from the views framework.

Γ, x : val ` C a Γ ′

Γ, x : ref τ ` C a Γ ′

Fig. 3. Subtyping rule

We can add the subtyping rule in Fig. 3 to the
system, which is an instance of the (left) rule of con-
sequence if we define an entailment relation corre-
sponding to subtyping: Γ, x : ref τ � Γ, x : val.

For the strong-update type system, we use an analogous reification to that of
Definition 12 for weak update. It is straightforward to prove atomic soundness.
For details, see [10]. To justify subtyping, we must establish Property I (Entail-
ment Locality). This amounts to showing that bΓ, x : ref τc ⊆ bΓ, x : valc, which
is the case since in any state in which x holds a reference, x also holds a value.

The framework also tells us what cannot be used as a subtyping judgement,
as Property I is necessary. For instance, one might wish to allow subtyping in the
heap: x : ref ref τ � x : ref val. Although bx : ref ref τc ⊆ bx : ref valc does hold,
we are required to consider all contexts. However, bx : ref ref τ, y : ref ref τc 6⊆
bx : ref val, y : ref ref τc, because on the left x can equal y but on the right it
cannot. Thus Property I would not hold, and this subtyping would be unsound.

Views: Compositional Reasoning for Concurrent Programs 11

Typed Separation Logic. Separation logic has been used to reason about pro-
gramming languages with types. However, separation-logic reasoning typically
ignores the types, although the work of Tan et al. [32] is a notable exception.
Since type information is shared and global, and separation-logic reasoning is
local, it previously seemed difficult to integrate the two systems. However, with
our framework, it is easy. The system we present here only allows weak updates
of the heap. We also have an example with strong updates [10].

We can axiomatise the atomic commands by combining the axioms of the

Γ1 ` a a Γ2 {p} a {q}
Γ1 ` {p} a {q} a Γ2

{p} x := [y] {q}
x : ` {p} x := [y] {q} a x : val

Γ1 ` x := [y] a Γ2

Γ1 ` {x ⇀⇁ } x := [y] {x ⇀⇁ } a Γ2

Fig. 4. Combined typing and separa-
tion logic rules.

strong-update type system and separation
logic; see the first rule in Fig. 4. If the
atomic command is allowed by the type
system and the separation logic, then it is
allowed in the combined system. We can
also add axioms, such as the second and
third rules in Fig. 4, which derive from
only one of the systems. Importantly, any-
thing that is changed must be allowed by
both systems, but the ability to access
something only needs to be justified in one
of the underlying systems.

To model this in the framework, we simply take the direct product of the

two earlier monoids, ViewTSL
def
= ViewSTS × ViewDCSL, and lift the operators

in the obvious way. We interpret the judgements Γ1 ` {p} C {q} a Γ2 as
` {Γ1, p} C {Γ2, q}. We define the reification as the intersection of the reifi-
cations of the underlying systems.

Definition 13 (TSL reification). bΓ, pcTSL
def
= bΓ cSTS ∩ bp ∗ truecDCSL .

In the separation logic component, we allow the state to be larger than specified
by the formula to account for any extension that the type system might describe.
The type system’s reification is already closed under larger states.

The soundness of the combined axiom follows directly from the soundness of
the underlying two axioms. The new axioms’ soundness proofs are straightfor-
ward and given in the extended version [10].

4 Views and Interference

Views model partial, abstracted information about machine states that is stable
— immune to interference from other threads. In logics with more fine-grained
permissions such as those used in deny-guarantee (DG) [13] and concurrent
abstract predicates (CAP) [11], the elements of the separation algebra are not
stable by construction, but an additional obligation is added to only mention
stable sets of elements. This can simply be seen as another way of constructing
a view monoid from a separation algebra and an interference relation.

Definition 14 (Interference Relation). An interference relation R ⊆ M×
M on a separation algebra (M, •, I) is a preorder satisfying the properties:

12 T. Dinsdale-Young, L. Birkedal, P. Gardner, M. Parkinson, H. Yang

– for all m1,m2,m,m
′ ∈ M with m = m1 • m2 and m R m′, there exist

m′1,m
′
2 ∈M with m1 R m′1, m2 R m′2 and m′ = m′1 •m′2; and

– for all i ∈ I and m ∈M with i R m, m ∈ I.

Definition 15 (Stabilised View Monoid). An interference relation R
on a separation algebra (M, •, I) generates a stabilised view monoid
(R(ViewM), ∗, I), where R(ViewM) = {p ∈ P(M) | R(p) ⊆ p}1 and ∗ is as in
Definition 9. That R(ViewM) is closed under ∗ and includes I follows from the
conditions in Definition 14

Remark 4. Unlike in CAP [11] and DG [13], we do not need to provide a guaran-
tee relation to say what a thread can do. That is dealt with by atomic soundness.

We illustrate how interference can be used to construct views, by showing
how separation logic can be constructed this way. Rather than the view monoid
introduced in Section 3, we construct a monoid for disjoint concurrent separation
logic by instrumenting machine states (excluding) with an ownership mask,
which provides explicit permissions for stating which variables and addresses are
“owned”. Our set of instrumented states is:

MMSL
def
= (Var] Loc) ⇀fin (Val× {0, 1}) .

Given instrumented state m ∈MMSL, for each variable x (or address l), the first
component of m(x) (or m(l)) is its actual value in the machine, while the second
component indicates whether or not the variable (or location) is owned; if m(x)
is undefined, the variable is not in the state at all; if m(l) is undefined then l is
not allocated. Composition is defined by:

m1 •m2 = m
def⇐⇒ dom (m1) = dom (m2) = dom (m)

∧ ∀k ∈ dom (m) .m1(k)↓1 = m2(k)↓1 = m(k)↓1
∧m1(k)↓2 +m2(k)↓2 = m(k)↓2

Composition requires that the state components are the same as that of the com-
posite, and that their ownership masks sum to give the mask of the composite.
This ensures that each variable and location is uniquely owned.

This composition is well-defined, associative and commutative. To com-

plete the separation algebra (MMSL, •, I), it remains to give the unit: I
def
=

{m ∈MMSL | ∀k ∈ dom (m) .m(k)↓2 = 0}.
If we constructed a view model based on this separation algebra, the com-

mands we could reason about would be very limited: they could not alter the
(machine) state. This is because programs are required to preserve all frames,
and therefore all values. However, the intention is that only variables and loca-
tions that are owned are preserved by other threads. Thus, instead of preserving
all frames, we wish only to preserve all stable frames for a suitable notion of
stability. This can be obtained by defining an interference relation:

mRm′
def⇐⇒ ∀k∈dom (m) .m(k)↓2> 0 =⇒ m′(k) =m(k)

1 The notation R(p) means {m ∈M | ∃mp ∈ p.mp R m}.

Views: Compositional Reasoning for Concurrent Programs 13

This relation expresses that the environment can do anything that does not alter
the variables and locations owned by the thread. It is not difficult to see that
the interference relation satisfies the decomposition property: any change that
does not alter the variables or locations owned by either thread does not alter
the variables or locations owned by each thread individually.

If we consider the view monoid induced by the separation algebra under
this interference relation, R(ViewMSL), we obtain a notion of view that is spe-
cific about variables and locations that are owned, but can say nothing at all
about variables and locations that are not owned. Thus, threads are at liberty
to mutate variables and heap locations they own, and allocate locations that
are not owned by other threads, since these operations preserve stable frames.
(Note that composition plays an important role here, since it enforces that the
environment cannot also own variables and locations that belong to the thread.)
It can be shown that the DCSL monoid is isomorphic to this monoid, so we can
consider the separation logic model as being constructed in this way.

We can define a separation logic with fractional permissions [4] by using
fractions from the interval [0, 1] instead of a bit mask. This approach also extends
to model the logics of CAP [11] and DG [13]; more details can be found in [10].

5 Conclusions and Related Work

We have introduced views as a general framework in which a wide variety of
compositional reasoning approaches can be constructed, understood and proved
sound. We find it surprising and revealing that diverse approaches such as sep-
aration logic and type theory can be understood in an elegant, unifying setting.

The examples present in this paper have been intentionally elementary to
illustrate the use of the framework. However, many further examples have been
encoded into the framework. In the extended version of this paper [10], we ex-
tend the typing system to recursive types, to demonstrate that the type system
can handle more realistic typing challenges. We have combined this extended
type system with unique references to deal with separating allocation and ini-
tialisation of data structures, and also demonstrated that the unique references
can be replaced by separation logic in a similar system to Tan et al. [32]. We also
present an encoding of concurrent abstract predicates into the views framework
using the interference relation discussed in Section 4.

Our views framework is already being used to develop logics for advanced lan-
guage features. Concurrent abstract predicates has been extended with higher-
order features and the soundness of this uses the views framework extended with
step-indexing [31]. Views have also been extended to reason about C] with in-
teresting permission annotations to ensure isolation between threads [16]. Views
have also inspired work on dependent types involving sharing [22].

In on-going work, views are being applied to help construct sound logics for
local reasoning about abstract structured data, such as trees. These logics allow
structured resource (such as a file system or XML data) to be decomposed into
fragments that record how they connect together; this can be justified by the

14 T. Dinsdale-Young, L. Birkedal, P. Gardner, M. Parkinson, H. Yang

general notion of entailment in the views framework. Views are also helping to
construct logics for reasoning about power-fault-tolerant programs and message
passing concurrency.

Related Work. Our composition operator provides a logical notion of separa-
tion, which, as we have demonstrated by examples, need not be realized by phys-
ical separation in the concrete machine. This idea of fictional separation has been
used in recent work on separation logics for concurrent languages [11,15,33,13].
Similar ideas are also useful in a purely sequential setting to enable modular
reasoning about abstract data structures implemented using physical sharing,
but for which a logical notion of separation can be defined [9,21,20].

The soundness of Pottier’s capability system [27] is based on an axiom that is
similar to our definition of interference relation, and the soundness proof of con-
current abstract predicates [11] also uses an equivalent lemma. Our framework
does not have an explicit notion of guarantee, so many of the other properties
required in both Pottier’s work and concurrent abstract predicates are not re-
quired. Feng’s LRG [14] also provides conditions such that the stable predicates
can be composed. The condition requires fences to delimit the scope of interfer-
ence, which we do not require. LRG is the only combination of rely-guarantee
with separation logic we have not encoded into our framework, and remains
future work.

References

1. Ahmed, A., Fluet, M., Morrisett, G.: L3: A linear language with locations. Fundam.
Inform. 77(4), 397–449 (2007)

2. Birkedal, L., Torp-Smith, N., Yang, H.: Semantics of separation-logic typing and
higher-order frame rules for Algol-like languages. LMCS 2(5:1) (2006)

3. Birkedal, L., Reus, B., Schwinghammer, J., Yang, H.: A simple model of separation
logic for higher-order store. In: ICALP (2008)

4. Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission accounting in
separation logic. In: POPL’05 (2005)

5. Buisse, A., Birkedal, L., Støvring, K.: A step-indexed Kripke model of separation
logic for storable locks. In: MFPS (2011)

6. Calcagno, C., Gardner, P., Zarfaty, U.: Local reasoning about data update. ENTCS
172, 133–175 (2007)

7. Calcagno, C., O’Hearn, P.W., Yang, H.: Local action and abstract separation logic.
In: LICS. pp. 366–378. IEEE Computer Society (2007)

8. Charguéraud, A., Pottier, F.: Functional translation of a calculus of capabilities.
In: ICFP. pp. 213–224 (2008)

9. Dinsdale-Young, T., Gardner, P., Wheelhouse, M.: Abstraction and refinement for
local reasoning. In: VSTTE (2010)

10. Dinsdale-Young, T., Birkedal, L., Gardner, P., Parkinson, M., Yang, H.: Adddi-
tional material. http://sites.google.com/site/viewsmodel/ (2012)

11. Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Con-
current abstract predicates. In: ECOOP (2010)

12. Dockins, R., Hobor, A., Appel, A.W.: A fresh look at separation algebras and share
accounting. In: APLAS (2009)

http://sites.google.com/site/viewsmodel/

Views: Compositional Reasoning for Concurrent Programs 15

13. Dodds, M., Feng, X., Parkinson, M.J., Vafeiadis, V.: Deny-guarantee reasoning.
In: ESOP. pp. 363–377 (2009)

14. Feng, X.: Local rely-guarantee reasoning. In: POPL (2009)
15. Feng, X., Ferreira, R., Shao, Z.: On the relationship between concurrent separation

logic and assume-guarantee reasoning. In: ESOP. pp. 173–188 (2007)
16. Gordon, C., Parkinson, M., Parsons, J., Bromfield, A., Duffy, J.: A low level type

system for convertible reference immutability and parallelism (2012), draft
17. Gotsman, A., Berdine, J., Cook, B., Rinetzky, N., Sagiv, M.: Local reasoning for

storable locks and threads. In: APLAS (2007)
18. Hobor, A.: Oracle Semantics. Ph.D. thesis, Princeton University, Department of

Computer Science, Princeton, NJ (October 2008)
19. Ishtiaq, S.S., O’Hearn, P.W.: BI as an assertion language for mutable data struc-

tures. In: POPL. pp. 14–26 (2001)
20. Jensen, J.B., Birkedal, L.: Fictional separation logic. In: ESOP (2012)
21. Krishnaswami, N., Birkedal, L., Aldrich, J.: Verifying event-driven programs using

ramified frame properties. In: TLDI (2010)
22. Krishnaswami, N., Turon, A., Dreyer, D., Garg, D.: Superficially substructural

types (2012), draft
23. Morrisett, G., Walker, D., Crary, K., Glew, N.: From system F to typed assembly

language. TOPLAS 21(3), 527–568 (1999)
24. O’Hearn, P.W.: Resources, concurrency, and local reasoning. Theor. Comput. Sci.

375(1-3), 271–307 (2007)
25. O’Hearn, P.W., Reynolds, J.C., Yang, H.: Local reasoning about programs that

alter data structures. In: CSL. pp. 1–19 (2001)
26. O’Hearn, P.W., Yang, H., Reynolds, J.C.: Separation and information hiding. In:

POPL. pp. 268–280 (2004)
27. Pottier, F.: Syntactic soundness proof of a type-and-capability system with hidden

state. Tech. rep., INRIA (2011), (available from the author)
28. Pym, D.J.: The Semantics and Proof Theory of the Logic of Bunched Implications,

Applied Logic Series, vol. 26. Springer (2002)
29. Schwinghammer, J., Yang, H., Birkedal, L., Pottier, F., Reus, B.: A semantic foun-

dation for hidden state. In: FOSSACS. pp. 2–16 (2010)
30. Smith, F., Walker, D., Morrisett, J.G.: Alias types. In: ESOP (2000)
31. Svendsen, K., Birkedal, L., Parkinson, M.: Joined-up thinking: A specification of

the joins library in higher-order separation logic (2012), draft
32. Tan, G., Shao, Z., Feng, X., Cai, H.: Weak updates and separation logic. In:

APLAS. pp. 178–193. Springer-Verlag (2009)
33. Vafeiadis, V., Parkinson, M.J.: A marriage of rely/guarantee and separation logic.

In: CONCUR. pp. 256–271 (2007)

	Views: Compositional Reasoning for Concurrent Programs

