
LOGIC-BASED VERIFICATION OF
JAVASCRIPT PROGRAMS

PETAR	MAKSIMOVIĆ
IMPERIAL	COLLEGE	LONDON

FORMAL 	METHODS 	MEET 	 JAVASCRIPT
IMPER IA L , 	MARCH 	2018

WITH JOSÉ FRAGOSO SANTOS,	PHILIPPA GARDNER,	
DAIVA NAUDŽIŪNIENĖ,	AND THOMAS WOOD

WHAT IS JAVERT?
JaVerT	is	a	semi-automatic	verification	toolchain	
for	JavaScript	based	on	separation	logic

WHAT IS ITS PURPOSE?
JaVerT	is	aimed	at	the	specialist	developer	wanting	rich,	
mechanically	verified	specifications	of	critical	JavaScript	code

JAVERT:	JAVASCRIPT VERIFICATION TOOLCHAIN (POPL’	18)

JAVERT:	THE CHALLENGES

SPECIFICATION CHALLENGE:	To	design	specifications	readable	by	developers	
(S1)	Abstractions	that	capture	key	JavaScript	concepts

Prototype	inheritance,	variable	scoping,	function	closures
Property	iteration	(for-in)

(S2)	Abstractions	that	hide	JavaScript	internals

VERIFICATION CHALLENGE:	
To	handle	the	complex	nature	of	JavaScript	without	simplification

(V1)	Complexity	of	JavaScript	statements
(V2)	Fundamental	dynamic	behaviour	of	JavaScript

Extensible	objects,	dynamic	property	access,	dynamic	function	calls
(V3)	JavaScript	internal	functions

VALIDATION CHALLENGE
To	understand	what	it	means	for	the	verification	to	be	trusted

JAVERT:	SPECIFICATION CHALLENGE

SPECIFICATION CHALLENGE:	To	design	specifications	readable	by	developers	
(S1)	Abstractions	that	capture	key	JavaScript	concepts

Prototype	inheritance,	variable	scoping,	function	closures
Property	iteration	(for-in)

(S2)	Abstractions	that	hide	JavaScript	internals

VERIFICATION CHALLENGE:	
To	handle	the	complex	nature	of	JavaScript	without	simplification

(V1)	Complexity	of	JavaScript	statements
(V2)	Fundamental	dynamic	behaviour	of	JavaScript

Extensible	objects,	dynamic	property	access,	dynamic	function	calls
(V3)	JavaScript	internal	functions

VALIDATION CHALLENGE
To	understand	what	it	means	for	the	verification	to	be	trusted

JAVASCRIPT:	KEY-VALUE MAP

JAVASCRIPT:	KEY-VALUE MAP
BREAKING THE LIBRARY:	1/2

JAVASCRIPT:	KEY-VALUE MAP
BREAKING THE LIBRARY:	2/2

MAP OBJECTS
Must	not	contain	get,	put,	and	validKey	

MAP.PROTOTYPE AND OBJECT.PROTOTYPE
Must	not	contain	_contents	as	non-writable

PROTOTYPE SAFETY

• Constructed	objects	cannot	redefine	properties	that	are	to	be	found	in	their	prototypes	
• Prototypes	cannot	have	non-writable	properties	that	are	to	be	present	in	their	instances	

SOME BASIC ABSTRACTIONS:

JAVASCRIPT:	KEY-VALUE MAP SPECIFICATION

JSObject(o) =

JSObjectWithProto(o, pr) =

(o, “@proto”) -> Object.prototype *
(o, “@class) -> “Object” *
(o, “@extensible”) -> true

(o, “@proto”) -> pr *
(o, “@class) -> “Object” *
(o, “@extensible”) -> true

DataProp(o, p, v) = (o, p) -> [“d”, v, true, true, true]

FunctionObject(o, id, sc) = (o, “@body”) -> id *
(o, “@scope”) -> sc * ...

WHAT DOES IT MEAN TO BE A MAP?

Map (m, mp, kvs) =
JSObjectWithProto(m, mp) *
(m, "get") -> None *
(m, "put") -> None *
(m, "validKey") -> None *
DataProp(m, "_contents", c) *
JSObject(c) *
KVPairs(c, kvs) *
emptyFields(c | first(kvs))

JAVASCRIPT:	KEY-VALUE MAP SPECIFICATION

DETAIL:	 KVPairs(c, kvs) captures	the	key-value	pairs	of	c.

WHAT DOES IT MEAN TO BE A MAP PROTOTYPE?

MapProto (mp) =
JSObject(mp) *
(mp, "_contents") -> None) *
DataProp(mp, "get", gf) *
FunctionObject(gf, “get”, g_sc) *
DataProp(mp, "put", pf) *
FunctionObject(pf, “put”, p_sc) *
DataProp(mp, "validKey", vkf) *
FunctionObject(vkf, “validKey”, vk_sc)

CAVEAT:	 The	definition	of	MapProto	cannot	be	part	of	the	Map	predicate
because	of	shared	resource.	All	maps	share	the	same	prototype.

JAVASCRIPT:	KEY-VALUE MAP SPECIFICATION

SPECIFICATION OF THE GET FUNCTION

[Map(this, mp, kvs) * MapProto(mp) *
!(k in first(kvs)) * ValidKey(k) * ObjProto()]

get(k)

[Precondition * (ret = null)]

[Map(this, mp, kvs) * MapProto(mp) *
(k, v) in kvs * ObjProto()]

get(k)

[Precondition * (ret = v)]

JAVASCRIPT:	KEY-VALUE MAP SPECIFICATION

JAVERT:	THE CHALLENGES

SPECIFICATION CHALLENGE:	To	design	specifications	readable	by	developers	
(S1)	Abstractions	that	capture	key	JavaScript	concepts

Prototype	inheritance,	variable	scoping,	function	closures
Property	iteration	(for-in)

(S2)	Abstractions	that	hide	JavaScript	internals

VERIFICATION CHALLENGE:	
To	handle	the	complex	nature	of	JavaScript	without	simplification

(V1)	Complexity	of	JavaScript	statements
(V2)	Fundamental	dynamic	behaviour	of	JavaScript

Extensible	objects,	dynamic	property	access,	dynamic	function	calls
(V3)	JavaScript	internal	functions

VALIDATION CHALLENGE
To	understand	what	it	means	for	the	verification	to	be	trusted

ANNOTATED JS	PROGRAMS

JS	PROGRAMS

JS-2-JSIL
COMPILER

JS-2-JSIL
LOGIC TRANSLATOR

JSIL	PROGRAMS
JSIL	LOGIC

ANNOTATIONS

JSIL	LOGIC SPECS
OF JS	INTERNAL
FUNCTIONS

JSIL	VERIFY

J	A	V	E	R	T:	JAVASCRIPTV
ERIFICATIO

N
TO

O
LCHAIN

ANNOTATED JSIL	PROGRAMS

Yes	/	No

JAVERT:	OVERALL STRUCTURE

JS	LOGIC
ANNOTATIONS

JS
IL
	V
ER

IF
IC
AT

IO
N
IN
FR
AS

TR
U
CT

U
RE

JS	PROGRAMS

JS-2-JSIL
COMPILER

JS-2-JSIL
LOGIC TRANSLATOR

JSIL	PROGRAMS
JSIL	LOGIC

ANNOTATIONS

JSIL	LOGIC SPECS
OF JS	INTERNAL
FUNCTIONS

JSIL	VERIFY

J	A	V	E	R	T:	JAVASCRIPTV
ERIFICATIO

N
TO

O
LCHAIN

Yes	/	No

(V1)	COMPLEXITY OF JAVASCRIPT STATEMENTS

JS	LOGIC
ANNOTATIONS

JS
IL
	V
ER

IF
IC
AT

IO
N
IN
FR
AS

TR
U
CT

U
RE

ANNOTATED JS	PROGRAMS

ANNOTATED JSIL	PROGRAMS

ANNOTATED JS	PROGRAMS

JS	PROGRAMS

JS-2-JSIL
COMPILER

JS-2-JSIL
LOGIC TRANSLATOR

JSIL	PROGRAMS
JSIL	LOGIC

ANNOTATIONS

J	A	V	E	R	T:	JAVASCRIPTV
ERIFICATIO

N
TO

O
LCHAIN

(V2)	FUNDAMENTAL DYNAMIC BEHAVIOUR OF JAVASCRIPT

JS	LOGIC
ANNOTATIONS

JS
IL
	V
ER

IF
IC
AT

IO
N
IN
FR
AS

TR
U
CT

U
RE

JSIL	VERIFY

Yes	/	No

JSIL	LOGIC SPECS
OF JS	INTERNAL
FUNCTIONS

ANNOTATED JSIL	PROGRAMS

ANNOTATED JS	PROGRAMS

JS	PROGRAMS

JS-2-JSIL
COMPILER

JS-2-JSIL
LOGIC TRANSLATOR

JSIL	PROGRAMS
JSIL	LOGIC

ANNOTATIONS

J	A	V	E	R	T:	JAVASCRIPTV
ERIFICATIO

N
TO

O
LCHAIN

ANNOTATED JSIL	PROGRAMS

(V3)	JAVASCRIPT INTERNAL FUNCTIONS

JS	LOGIC
ANNOTATIONS

JS
IL
	V
ER

IF
IC
AT

IO
N
IN
FR
AS

TR
U
CT

U
RE

JSIL	LOGIC SPECS
OF JS	INTERNAL
FUNCTIONS

JSIL	VERIFY

Yes	/	No

ANNOTATED JS	PROGRAMS

JS	PROGRAMS

JS-2-JSIL
COMPILER

JS-2-JSIL
LOGIC TRANSLATOR

JSIL	PROGRAMS
JSIL	LOGIC

ANNOTATIONS

JSIL	LOGIC SPECS
OF JS	INTERNAL
FUNCTIONS

JSIL	VERIFY

Tested	against	
ECMAScript	
Test262	test	suite

Proven	
correct

JSIL	Logic	
proven	sound

Satisfied	by
JSIL	reference
implementations

J	A	V	E	R	T:	JAVASCRIPTV
ERIFICATIO

N
TO

O
LCHAIN

ANNOTATED JSIL	PROGRAMS

Yes	/	No

JAVERT:	TRUSTED VERIFICATION

JS	LOGIC
ANNOTATIONS

JS
IL
	V
ER

IF
IC
AT

IO
N
IN
FR
AS

TR
U
CT

U
RE

PROPER
VALIDATION

Fragment	
proven	correct

Follows	the	
standard	line-by-line

THAT WENT WELL…

OUR SPECIFICATION OF MAP.GET FAILED – HOW CAN WE FIND THE ERROR?

§ We	assume	that	JaVerT	is	working	correctly
§ The	specifications	seem	reasonable,	there	is	no	obvious	error
§ Lifting	meaningful	error	messages	from	JSIL	to	JavaScript	is	difficult
§ JaVerT’s	debugging	proof	trace	for	this	example	is	346,786	lines	long

We	cannot	expect	the	developer	to	go	through	the	proof	trace.
We	need	a	more	robust	approach.

COSETTE:	SYMBOLIC TESTING FOR JAVASCRIPT

EXTENDED JS	PROGRAMS

JS-2-JSIL
COMPILER

EXTENDED JSIL	PROGRAMS

ROSETTE
IMPLEMENTATIONS OF
INTERNAL/BUILT-IN

FUNCTIONS

ROSETTE

JSIL	SYMBOLIC
INTERPRETER

Yes	(up	to	a	bound) or
Counter-model

Rosette: solver-aided	programming	language		
(first-order	logic)	

§ JS	and	JSIL	extended	with	simple	constructs	
for	creating/reasoning	about	symbolic	values

§ JSIL	concrete interpreter	written	in	Rosette

§ Concrete	interpreter	carefully	written	so	that	
Rosette’s	solver-aided	constructs	are	lifted,	
obtaining	a	JSIL	symbolic	interpreter

§ JSIL	symbolic	execution	formalised	and	proven	
sound;	absence	of	false	positives	proven (joint	work	with	Julian	Dolby,	IBM)

COSETTE:	SIMPLE SYMBOLIC TEST FOR MAP.GET

var k = __s; /* let k be a symbolic string */

var v = __n; /* let v be a symbolic number */

var m = new Map(); /* let m be an empty key-value map */

if validKey(k) { /* let k be a valid key */

m.put(k, v); /* put the key-value pair (k, v) in the map */

var w = m.get(k); /* get the value corresponding to the key k */

assert(v = w); /* that value must equal the one that we put */
}

JAVASCRIPT:	KEY-VALUE MAP REVISITED
BREAKING THE LIBRARY:	3/3

MAP OBJECTS
Must	not	contain	get,	put,	and	validKey	

MAP.PROTOTYPE AND OBJECT.PROTOTYPE
Must	not	contain	_contents	as	non-writable

MAP CONTENTS
Must	not	contain	hasOwnProperty as	non-writable

PROTOTYPE SAFETY REVISITED

• Constructed	objects	cannot	redefine	properties	that	are	to	be	found	in	their	prototypes	
• Prototypes	cannot	have	non-writable	properties	that	are	to	be	present	in	their	instances	

WHAT DOES IT MEAN TO BE A MAP?
Map (m, mp, kvs) :=

JSObjectWithProto(m, mp) *
(m, "get") -> None *
(m, "put") -> None *
(m, "validKey") -> None *
DataProp(m, "_contents", c) *
JSObject(c) *
(c, "hasOwnProperty") -> None *
KVPairs(c, kvs) *
emptyFields(c | first(kvs)

U "hasOwnProperty")

JAVASCRIPT:	KEY-VALUE MAP SPECIFICATION REVISITED

DETAIL:	 KVPairs(c, kvs) captures	the	key-value	pairs	of	c.

JAVERT:	SUMMARY

SPECIFICATION CHALLENGES
(S1)	Abstractions	capturing	key	JavaScript	concepts

Prototype	inheritance,	variable	scoping,	function	closures
Property	iteration	(for-in)

(S2)	Abstractions	that	hide	JavaScript	internals

VERIFICATION CHALLENGES
(V1)	Complexity	of	JavaScript	statements
(V2)	Fundamental	dynamic	behaviour	of	JavaScript
(V3)	Internal	functions

CAVEAT:	No	higher-order	reasoning	yet

VALIDATION CHALLENGES
Correctness	of	JS-2-JSIL
Correctness	of	assertion	translation
Soundness	of	JSIL	Logic
Correctness	of	specifications	for	internal	functions

JAVERT:	FURTHER VERIFIED EXAMPLES

ID	GENERATOR: function	closures
PRIORITY QUEUE: library	based on	a	real-world	Node.js	library

BINARY SEARCH TREES: set	reasoning
INSERTION SORT: list	reasoning

TEST262	EXAMPLES: complex	JS	statements	(switch,	try/catch/finally)

FUTURE:	THE JAVERT	ECOSYSTEM

DOM	SSL	Logic

JS	Types

JS	Infer

Higher-order	JaVerT

JaVerT	+	DOM

APLAS’16

JSCert
POPL’14

JaVerT

POPL’18

Web	API	client	
testing

Debugging	JaVerT	
specifications

JS	Logic
POPL’12

Cosette

