
Towards Formal Verification in 
Cryptographic Web Applications
A Three Year Evolution

Nadim Kobeissi



About Us

• PROSECCO: Programming Securely with 
Cryptography.

• Team at INRIA Paris specializing in applied 
cryptography and formal verification.

• Goals:

• Formally delineate the patterns in which 
cryptographic flaws occur across all the 
world’s important protocols.

• Develop technologies to minimize these 
flaws occurring again in the future, based on 
what we’ve learned.



Technologies

• Major projects:

• F*: ML programming language that lends itself to formal verification.

• Dependent types, refinements, etc.

• HACL* verified cryptography library, miTLS verified TLS implementation.

• ProVerif: Automated protocol verification in the symbolic model.

• Network execution under a Dolev-Yao attacker.

• ProScript, TLS, Signal, ACME, Capsule, LDL…

• CryptoVerif: Guided protocol verification with proofs in the computational model.

• TLS, Signal, WireGuard…



Cryptographic Web 
Applications

• Radical propulsion in market share:

• Cryptocat: end-to-end encrypted 
chat with OTR (2011)

• WhatsApp Web: end-to-end 
encrypted view into mobile 
device (2016)

• Signal Desktop: Electron App 
(2017)

• Skype: Electron App (2018)



Signal 
Protocol



Linking JavaScript 
Implementations to 
Verification 
Frameworks

• ProScript: evolution from Defensive 
JavaScript (Antoine Delignat-
Lavaud, 2014) into a full language: 
subset of JavaScript -> ProVerif



ProScript to ProVerif: Quick Example



Verification in 
ProVerif

• Define a top-level process.

• Define queries.

• Execute over a network with an 
active attacker.

• Protocol bugs: Key Compromise 
Impersonation. If Bob’s long-term 
secret and Bob’s signed pre-key is 
compromised, attacker can 
impersonate Alice to Bob.

• Implementation bugs: missing 
HMAC check.



Verification in 
ProVerif

• We verify:

• Confidentiality.

• Authenticity.

• Forward secrecy.

• Future secrecy.

• Indistinguishability.

• Absence of replay attacks.



ProVerif 
Trace: 

Capsule



Cryptographic Web 
Applications

• Cryptocat (2016):

• ProScript protocol core (Signal)

• Translates and verifies in ProVerif

• Manually proven in CryptoVerif

• Trusted cryptographic core

• The structure is there, but can we 
improve upon the individual 
components?



HACL-WASM: F* Primitives in 
WebAssembly

1

HACL: a 
cryptographic 
library written 
in F*.

2

Low*: a subset 
of F* we can 
compile to C.

3

Kremlin: a 
Low* to C 
compiler.

4

Kremlin: now 
also a Low* to 
WASM 
compiler.

5

HACL-WASM!

• Native 64-bit 
operations: useful for 
Ed25519, Blake2b, etc.

• Maintain constant-time 
and functional 
correctness properties.



SignalStar and HACL-WASM

• HACL-WASM gives us perhaps the 
most high-assurance 
cryptographic primitives for the 
web.

• Can we pair this with a protocol 
implementation from F*?

• Integration: Signal, Skype, 
Cryptocat, Capsule.



Conclusion

Three years of following different complimentary 
approaches: advances in one branch leads to 
conclusions useful for another.

In the future: generating full applications that are 
formally verified: protocol, primitives, etc. and 
facilitating availability to provers.


