
Verifying Cryptographic
Web Applications

Karthikeyan Bhargavan
Inria

Cryptographic Apps in JavaScript?

Each app embeds a crypto protocol for end-to-end security
● Little or no reliance on a trusted server, all protections are in JavaScript

Crypto Web Application Architecture

Application
Skype (React/Electron/Node)

Crypto Protocol
Signal (JavaScript)

Crypto Library
curve25519 (JS compiled from C)
window.crypto (native C library)

Challenge: Verify the crypto library and protocol code
 and protect both from application bugs

HACL*: Verified Crypto in C and WASM

● Verified modern (+ upcoming) crypto primitives
Chacha20, Poly1305, Curve25519, Ed25519, SHA-3, RSA-PSS, PQ crypto etc

● We prove correctness, memory safety, secret independence
Open challenge: propagate side channel protections from WASM to assembly

Verifying crypto protocols in JavaScript

Methodology applied to Signal, TLS 1.3
Open challenge: formal guarantees for model extraction tools

Protecting Crypto from Application Bugs

● Write protocol and crypto in a “defensive” style
Self-contained, no calls to application code or untrusted libraries
Provide clean APIs that hide (most) secrets from application

● Write application in statically typed Flow/Typescript
Prevents common errors, can enforce correct use of protocol API l
Open challenge: can we enforce type abstraction for secrets

● Write and verify crypto/protocol/application in F*
Compilers to C, JavaScript, WebAssembly
Open challenge: formal guarantees for compilers and typechecker

Conclusion

● Many exciting research challenges
in verifying cryptographic web applications
○ Typed sub-languages (WASM, Flow) help verification a LOT

● Additional language support would be a big help
○ Ask: Constant-time guarantees for WebAssembly
○ Ask: Enforce type abstraction in Flow

● Composing verified and unverified JS is a challenge
○ Ask: Link formal semantics of Wasm and JS

