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Cryptographic Apps in JavaScript?

WhatsApp LastPass .|

Use WhatsApp on your phone to scan the code

LastPass remembers your passwords so
your digital life is easier and more secure.
Everything's backed up automatically, so
you'll always have your data.

Each app embeds a crypto protocol for end-to-end security
e Little or no reliance on a trusted server, all protections are in JavaScript



Crypto Web Application Architecture
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Verify the crypto library and protocol code
and protect both from application bugs



HACL": Verified Crypto in C and WASM
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e Verified modern (+ upcoming) crypto primitives
Chacha20, Poly1305, Curve25519, Ed25519, SHA-3, RSA-PSS, PQ crypto etc

e \We prove correctness, memory safety, secret independence
propagate side channel protections from WASM to assembly



Verifying crypto protocols in JavaScript
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Methodology applied to Signal, TLS 1.3

formal guarantees for model extraction tools




Protecting Crypto from Application Bugs

e Write protocol and crypto in a “defensive” style

Self-contained, no calls to application code or untrusted libraries
Provide clean APIs that hide (most) secrets from application

e Write application in statically typed Flow/Typescript
Prevents common errors, can enforce correct use of protocol API |
can we enforce type abstraction for secrets

e Write and verify crypto/protocol/application in F*
Compilers to C, JavaScript, WebAssembly
formal guarantees for compilers and typechecker



Conclusion

Many exciting research challenges

in verifying cryptographic web applications
o Typed sub-languages (WASM, Flow) help verification a LOT

Additional language support would be a big help
O Constant-time guarantees for WebAssembly
o Enforce type abstraction in Flow

Composing verified and unverified JS is a challenge
o Link formal semantics of Wasm and JS



