Verifying Cryptographic
Web Applications

Karthikeyan Bhargavan
Inria

Cryptographic Apps in JavaScript?

WhatsApp LastPass .|

Use WhatsApp on your phone to scan the code

LastPass remembers your passwords so
your digital life is easier and more secure.
Everything's backed up automatically, so
you'll always have your data.

Each app embeds a crypto protocol for end-to-end security
e Little or no reliance on a trusted server, all protections are in JavaScript

Crypto Web Application Architecture

Application
Skype (React/Electron/Node)

Application Code

Protoco{Code | | Proto_col Code Crypto PrOtOCOI
Signal (JavaScript)

Crypto Crypto
Library ‘ Library

Crypto Library
curve25519 (JS compiled from C)
window.crypto (native C library)

Untrusted Network

Verify the crypto library and protocol code
and protect both from application bugs

HACL": Verified Crypto in C and WASM

High-level . Optimized Low*
Crypto Specs ~ *
ypto Sp Verification Crypto Code (subset of F*)

KreMLin Compiler

Crypto Library Crypto Library
(WebAssembly) (C)

e Verified modern (+ upcoming) crypto primitives
Chacha20, Poly1305, Curve25519, Ed25519, SHA-3, RSA-PSS, PQ crypto etc

e \We prove correctness, memory safety, secret independence
propagate side channel protections from WASM to assembly

Verifying crypto protocols in JavaScript

model extraction

Protocol Protocol Protocol Code
Symbolic Model Crypto Model . (JavaScript)

Protocol manual edits embed
Fix

A

i

? Crypto Web Other

ProVerif CryptoVerif Application Implementations

Potential
Attack

Symbolic Cryptographic
Proof Proof

Interop Testing

Methodology applied to Signal, TLS 1.3

formal guarantees for model extraction tools

Protecting Crypto from Application Bugs

e Write protocol and crypto in a “defensive” style

Self-contained, no calls to application code or untrusted libraries
Provide clean APIs that hide (most) secrets from application

e Write application in statically typed Flow/Typescript
Prevents common errors, can enforce correct use of protocol API |
can we enforce type abstraction for secrets

e Write and verify crypto/protocol/application in F*
Compilers to C, JavaScript, WebAssembly
formal guarantees for compilers and typechecker

Conclusion

Many exciting research challenges

in verifying cryptographic web applications
o Typed sub-languages (WASM, Flow) help verification a LOT

Additional language support would be a big help
O Constant-time guarantees for WebAssembly
o Enforce type abstraction in Flow

Composing verified and unverified JS is a challenge
o Link formal semantics of Wasm and JS

