
On-going	work:	Snapshot	
Transactions	running	under	snapshot	isolation,	a	weak	
consistency	model,	take	a	copy	of	the	entire	database,	update	
locally	and	can	commit	if	no	write	conflict.	This	leads	to	some	
unintuitive	behaviours.	
We	extend	RG	to	capture	the	unintuitive	behaviours.

On-going	work:	Total-TaDA
Extends	TaDA to	verifying	the	termination	of	a	subtle	subset	
of	concurrent,	heap	manipulating	programs	known	as	"wait-
free"	programs.
Attempts	to	maintain	the	separation	of	client	and	module	
verification,	possible	with	abstract	TaDA specifications.

Hoare Logic/Hoare Triple
First-order assertions P and Q describe the machine states
before and after the sequential program .
It cannot prove the program terminates, but in the case of
non-termination, the triple guarantees no crash.
It cannot deal with reasoning about the heap.
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Applications
Specifications	for	Concurrent	Maps/Indexes.	We	give	specifications	that	allow	reasoning	about	client	programs	such	as	
producer-consumer and	parallel	sieve	of	Eratosthenes	and	verifying	the	implementations	such	as	B-tree	and	skiplist.
Concurrent	Specifications	for	file	systems.	Specifications	of	POSIX	are	written	in	English	and	sometime	can	be	ambiguous,	
particularly	in	the	concurrent	case.	TaDA-Refine,	an	extension	of	TaDA,	has	been	used	to	formally	specify	the	core	parts	of	
the	POSIX	file	system	operations.		

Time	and	Data	Abstraction	(TaDA)
TaDA introduces	abstract	atomicity based	on	a	
correctness	condition	known	as linearizability.
Abstract	atomicity	allows	for	more	precise	specifications	
that	are	not	weakened	to	account	for	interference	from	
the	environment.

Concurrent	Local	Subjective	Logic	(CoLoSL)
CoLoSL introduces	a	way	to re-organise	the	boundaries	
of	modules	and	their	interferences	(“contract”)	at	the	
logic	level.	
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Rely-guarantee	(RG)
Threads	sharing	resources	in	a	“well-designed”	concurrent	
program	will	modify	the	resources	following	a	“contract”.	It	
allows	an	abstraction of	the	collaboration	between	threads.
Rely (R )	and	guarantee (G )	abstract	the	behaviour of	the	
environment	and	the	current	thread	respectively.

Motivation
Concurrency aims to increases performance. However, changes
to a part of a concurrent program might ”leak” to other part of
the program and potentially modify the expected behaviour.
Compared with traditional tests, formal verification offers higher
guarantees, which is particularly important for critical systems.
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Concurrent	Abstract	Predicate	(CAP)
CAP	introduces	abstract	specifications allowing	clients	and	module	
implementations	to	be	verified	separately.	
CAP	has	a	notion	of	abstract	separation.	For	example	on	the	right,	the																															
predicate																															keeps	track	of	a		thread’s	contribution	v to	a	
counter	at	x and	the	permission			 .	When	the	permission	is	1,	then	the	
contribution	v is	the	true	value	of	the	counter.
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CAP		

`
�
P
 

C
�
Q
 

R,G `
�
P
 

C
�
Q
 

`
�
P
 

C
�
Q
 

`
�
P ⇤R

 
C

�
Q ⇤R

 

`
�
P1

 
C1

�
Q1

 
`
�
P2

 
C2

�
Q2

 

`
�
P1 ⇤ P2

 
C1 k C2

�
Q1 ⇤Q2

 

�
Counter (x, 0, 1)

 
�
Counter (x, 0, 0.6) ⇤ Counter (x, 0, 0.4)

 
�
Counter (x, 0, 0.6)

 

inc(x)�
Counter (x, 1, 0.6)

 

�
Counter (x, 0, 0.4)

 

inc(x)�
Counter (x, 1, 0.4)

 
�
Counter (x, 1, 0.6) ⇤ Counter (x, 1, 0.4)

 
�
Counter (x, 2, 1)

 

1

location ”value” permission
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Separation	Logic		(Sep.)					

Hoare	logic	has	difficulty	guaranteeing	locality	of	side-effects	
when	aliasing	is	possible,	for	example	the	heap.
Sep.	Logic	extends	assertion	grammar	with	a	separational
conjunction,	P ∗ Q ,	which	asserts	that	the	heap	has	two	
disjoint	sub-heaps,	each	satisfying	P and	Q respectively.
The	frame	rule	allows	localised	reasoning.
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