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The web's evolution

@ We want richer web apps - 3D rendering, physics, 60fps.
@ Asm.js exists but is too slow and janky.
@ We're at the limits of JavaScript - need a purpose-built language.
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The web’s evolution

@ We want richer web apps - 3D rendering, physics, 60fps.
@ Asm.js exists but is too slow and janky.
@ We're at the limits of JavaScript - need a purpose-built language.

https://github.com/evanw/webgl-water
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What is WebAssembly?

o A web-friendly bytecode.

@ Runs on any browser. m

@ “Near-native” performance.

o Targetted by LLVM. WEBASSEMBLY
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WebAssembly is weird

A stack reduction semantics...

i32.const 4

i32.const 2

i32.const 1 i32.const 4

i32.add > i32.const 3 N>

i32.add i32.add i32.const 7
Type: [i32] Type: [i32 ] Type: [i32]
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WebAssembly is weird

...but allows only structured control flow.

loop loop
i32.const 4 i32.const 4
i32.const 2 label{...} i32.const 2
i32.const 1 i32.const 4 i32.const 1
132.add >  i32.const 3 N\ 1label{...} N>  i32.add
i32.add i32.add i32.const 7 i32.add
br 0 br 0 br 0 br 0

end end end end

label is an “administrative” operation. It represents the loop unrolled
once, keeping track of the continuation (abbreviated).
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The WebAssembly type system

@ All WebAssembly programs must be validated (typed) before
execution.

@ WebAssembly instruction types have the form t* — t*

i32.const 4 i32.add f32.const O
i32.add i32.const 4
i32.add
Type: Type: Type:
[] — [i32] [i32, 132, i32] — [i32] 1
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The WebAssembly type system

Preservation

If a program P is validated with a type ts, the program obtained by
running P one step to P’ can also be validated with type ts.

Progress

For any validated program P that is not a list of constant values or a bare
trap result, there exists P’ such that P reduces to P’
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Initial mechanisation and soundness proof

Initially based on an accepted draft of the WASM group’s PLDI
paper! combined with the draft specification.

Definitions and proofs in Isabelle.

Type soundness properties: preservation and progress.

Progress property as stated in the draft had a trivial counterexample.

! Andreas Haas et al. “Bringing the Web Up to Speed with WebAssembly”. In:
Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design
and Implementation. PLDI 2017. New York, NY, USA: ACM; 2047, pp. 185=200.
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Problems found - administrative instructions

@ Exceptions did not properly propagate through administrative
instructions.

@ Malformed, irreducible nestings of administrative instructions
containing a return opcode could be well-typed.

@ Our suggested fixes were incorporated into the specification.

label{...} la:i;. L3
tra tra
trap ~> P {35 add ~> p
end
end
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Problems found

@ Various trivial mistakes in the constraints of casting instructions.
@ Big one - host function interface was unsound.?

@ After these changes, managed to get a fully mechanised proof of
soundness! (~5000 LOC)

2Andreas Rossberg. [spec] Fix and clean up invariants for host functions. Sept.
2017. URL: https://github.com/WebAssembly/spec/pull/563.
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https://github.com/WebAssembly/spec/pull/563

Verified reference interpreter

@ Directly animating the mechanised specification was infeasible.

@ For the reduction relation - exception propagation is non-deterministic
(but confluent), and the specification leans heavily on recursively
defined evaluation contexts.

@ For the typing judgement - there is a weakening rule with no upper
bound, and the rules for typing dead code(!) involve a high degree of
polymorphism - not syntax-directed.

@ Some of these problems are solvable by re-formulating the
mechanisation, but wanted eyeball-closeness with the official
specification.
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The flow of trust
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The flow of trust
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The flow of trust
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@ A separate reference interpreter, and typechecker.

@ Proof of correctness between the inductive rules of the model, and
the executable definitions of the interpreter and typechecker.

@ Attempted fuzzing using interpreter as a test oracle - only found crash
bugs in industry tools unfortunately.

Conrad Watt (Cambridge, UK) Mechanising WebAssembly AN 18 / 21



Next steps

@ The threads proposal!

o We've already seen that specifying interop between JS and
WebAssembly isn't trivial, but this is on another level.

@ Need a compatible axiomatic weak memory model.

@ But more complicated than JS: WASM memory can change size, but
(until now) SharedArrayBuffers cannot.
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Next steps

@ Already finding bugs in the JS memory model.3

Atomics.wait (tA, 0, 0) H Atomics.store(tA, 0, 1)
var x = Atomics.load(tA, 0) Atomics.wake(tA, 0, 1)

@ Full formal spec for WebAssembly threading is being drafted.

@ Mechanisation? Not impossible, but meaningful proofs could be a lot
of work.

3Conrad Watt. Normative: Strengthen Atomics.wait/wake synchronization to the
level of other Atomics operations. Mar. 2018. URL:
https://github.com/tc39/ecma262/pull/1127.
Conrad Watt (Cambridge, UK) Mechanising WebAssembly AN 20 /21


https://github.com/tc39/ecma262/pull/1127

@ Continue looking at SharedArrayBuffer, WASM threads.
o Verifying ct-wasm (watch this space!).

@ Model module instantiation.

@ Look at Ethereum’'s EVM2.0 (7)
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