Adventures in Mechanising and Verifying WebAssembly

Conrad Watt

University of Cambridge, UK

Formal Methods Meets JavaScript, VeTSS

REMS

Conrad Watt (Cambridge, UK) Mechanising WebAssembly VeTSS 1/21

The web's evolution

@ We want richer web apps - 3D rendering, physics, 60fps.
@ Asm.js exists but is too slow and janky.
@ We're at the limits of JavaScript - need a purpose-built language.

Peter Sewell

Professor of Computer Science, Computer
Laboratory, University of Cambridge

Member of the Cambridge Programming, Logic,
and Semantics Group

Fellow of Wolfson college

Here are my contact details, a photo, short bio
and CV

PhD students, RAs, and Co-authors Meetings Funding Papers (by
date) Papers (by topic)

Teaching

» The 2017-18 Part 1B Semantics of Programming Languages course.
= The 2017-18 Multicore Semantics and Programming (R204) ACS

MPhil module
= ...previous teaching

http://www.cl.cam.ac.uk/~pes20/

Conrad Watt (Cambridge, UK) Mechanising WebAssembly VeTSS 2/

The web’s evolution

@ We want richer web apps - 3D rendering, physics, 60fps.
@ Asm.js exists but is too slow and janky.
@ We're at the limits of JavaScript - need a purpose-built language.

https://github.com/evanw/webgl-water

Conrad Watt (Cambridge, UK) Mechanising WebAssembly VeTSS 3/21

What is WebAssembly?

o A web-friendly bytecode.

@ Runs on any browser. m

@ “Near-native” performance.

o Targetted by LLVM. WEBASSEMBLY

Conrad Watt (Cambridge, UK) Mechanising WebAssembly VeTSS 4/21

WebAssembly is weird

A stack reduction semantics...

i32.const 4

i32.const 2

i32.const 1 i32.const 4

i32.add > i32.const 3 N>

i32.add i32.add i32.const 7
Type: [i32] Type: [i32] Type: [i32]

Conrad Watt (Cambridge, UK) Mechanising WebAssembly VeTSS 5/21

WebAssembly is weird

...but allows only structured control flow.

loop loop
i32.const 4 i32.const 4
i32.const 2 label{...} i32.const 2
i32.const 1 i32.const 4 i32.const 1
132.add > i32.const 3 N\ 1label{...} N> i32.add
i32.add i32.add i32.const 7 i32.add
br 0 br 0 br 0 br 0

end end end end

label is an “administrative” operation. It represents the loop unrolled
once, keeping track of the continuation (abbreviated).

Conrad Watt (Cambridge, UK) Mechanising WebAssembly VeTSS 6 /21

The WebAssembly type system

@ All WebAssembly programs must be validated (typed) before
execution.

@ WebAssembly instruction types have the form t* — t*

i32.const 4 i32.add f32.const O
i32.add i32.const 4
i32.add
Type: Type: Type:
[] — [i32] [i32, 132, i32] — [i32] 1

Conrad Watt (Cambridge, UK) Mechanising WebAssembly VeTSS 7/21

The WebAssembly type system

Preservation

If a program P is validated with a type ts, the program obtained by
running P one step to P’ can also be validated with type ts.

Progress

For any validated program P that is not a list of constant values or a bare
trap result, there exists P’ such that P reduces to P’

Conrad Watt (Cambridge, UK) Mechanising WebAssembly VeTSS 8/21

Initial mechanisation and soundness proof

Initially based on an accepted draft of the WASM group’s PLDI
paper! combined with the draft specification.

Definitions and proofs in Isabelle.

Type soundness properties: preservation and progress.

Progress property as stated in the draft had a trivial counterexample.

! Andreas Haas et al. “Bringing the Web Up to Speed with WebAssembly”. In:
Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design
and Implementation. PLDI 2017. New York, NY, USA: ACM; 2047, pp. 185=200.

Conrad Watt (Cambridge, UK) Mechanising WebAssembly VeTSS 9/21

Problems found - administrative instructions

@ Exceptions did not properly propagate through administrative
instructions.

@ Malformed, irreducible nestings of administrative instructions
containing a return opcode could be well-typed.

@ Our suggested fixes were incorporated into the specification.

label{...} la:i;. L3
tra tra
trap ~> P {35 add ~> p
end
end

Conrad Watt (Cambridge, UK) Mechanising WebAssembly VeTSS 10 / 21

Problems found

@ Various trivial mistakes in the constraints of casting instructions.
@ Big one - host function interface was unsound.?

@ After these changes, managed to get a fully mechanised proof of
soundness! (~5000 LOC)

2Andreas Rossberg. [spec] Fix and clean up invariants for host functions. Sept.
2017. URL: https://github.com/WebAssembly/spec/pull/563.
Conrad Watt (Cambridge, UK) Mechanising WebAssembly AN 1 /21

https://github.com/WebAssembly/spec/pull/563

Verified reference interpreter

@ Directly animating the mechanised specification was infeasible.

@ For the reduction relation - exception propagation is non-deterministic
(but confluent), and the specification leans heavily on recursively
defined evaluation contexts.

@ For the typing judgement - there is a weakening rule with no upper
bound, and the rules for typing dead code(!) involve a high degree of
polymorphism - not syntax-directed.

@ Some of these problems are solvable by re-formulating the
mechanisation, but wanted eyeball-closeness with the official
specification.

Conrad Watt (Cambridge, UK) Mechanising WebAssembly VeTSS 12 /21

The flow of trust

Normative Mechanised
specification specification
.

Proven
properties

Conformance
tests

Conrad Watt (Cambridge, UK) Mechanising WebAssembly VeTSS

The flow of trust

Mechanised
executable
specification

Normative
. Fmmmmmm e mm e mmon s >
specification

~
~

Extracted
implementation
(4untrusted interface)

Proven
properties

A

Conformance
tests

Conrad Watt (Cambridge, UK) Mechanising WebAssembly VeTSS 14 /21

The flow of trust

Normative Mechanised
specification specification
.

Proven
properties

Conformance
tests

Conrad Watt (Cambridge, UK) Mechanising WebAssembly

The flow of trust

Normative
specification
.

Mechanised Verified
specification implementation

Conformance
tests

Proven
properties

Conrad Watt (Cambridge, UK) Mechanising WebAssembly VeTSS 16 / 21

The flow of trust

Normative
specification

Mechanised Verified
specification implementation

J

Y.

Conrad Watt (Cambridge, UK)

Proven
properties

Mechanising WebAssembly

Extracted
implementation

(4untrusted interface)

A

Conformance
tests

VeTSS

17 / 21

@ A separate reference interpreter, and typechecker.

@ Proof of correctness between the inductive rules of the model, and
the executable definitions of the interpreter and typechecker.

@ Attempted fuzzing using interpreter as a test oracle - only found crash
bugs in industry tools unfortunately.

Conrad Watt (Cambridge, UK) Mechanising WebAssembly AN 18 / 21

Next steps

@ The threads proposal!

o We've already seen that specifying interop between JS and
WebAssembly isn't trivial, but this is on another level.

@ Need a compatible axiomatic weak memory model.

@ But more complicated than JS: WASM memory can change size, but
(until now) SharedArrayBuffers cannot.

Conrad Watt (Cambridge, UK) Mechanising WebAssembly AN 19 /21

Next steps

@ Already finding bugs in the JS memory model.3

Atomics.wait (tA, 0, 0) H Atomics.store(tA, 0, 1)
var x = Atomics.load(tA, 0) Atomics.wake(tA, 0, 1)

@ Full formal spec for WebAssembly threading is being drafted.

@ Mechanisation? Not impossible, but meaningful proofs could be a lot
of work.

3Conrad Watt. Normative: Strengthen Atomics.wait/wake synchronization to the
level of other Atomics operations. Mar. 2018. URL:
https://github.com/tc39/ecma262/pull/1127.
Conrad Watt (Cambridge, UK) Mechanising WebAssembly AN 20 /21

https://github.com/tc39/ecma262/pull/1127

@ Continue looking at SharedArrayBuffer, WASM threads.
o Verifying ct-wasm (watch this space!).

@ Model module instantiation.

@ Look at Ethereum’'s EVM2.0 (7)

Conrad Watt (Cambridge, UK) Mechanising WebAssembly AN 21 /21

