
Adventures in Mechanising and Verifying WebAssembly

Conrad Watt

University of Cambridge, UK

Formal Methods Meets JavaScript, VeTSS

Conrad Watt (Cambridge, UK) Mechanising WebAssembly VeTSS 1 / 21

The web’s evolution

We want richer web apps - 3D rendering, physics, 60fps.
Asm.js exists but is too slow and janky.
We’re at the limits of JavaScript - need a purpose-built language.

http://www.cl.cam.ac.uk/⇠pes20/

Conrad Watt (Cambridge, UK) Mechanising WebAssembly VeTSS 2 / 21

The web’s evolution

We want richer web apps - 3D rendering, physics, 60fps.
Asm.js exists but is too slow and janky.
We’re at the limits of JavaScript - need a purpose-built language.

https://github.com/evanw/webgl-water

Conrad Watt (Cambridge, UK) Mechanising WebAssembly VeTSS 3 / 21

What is WebAssembly?

A web-friendly bytecode.

Runs on any browser.

“Near-native” performance.

Targetted by LLVM.

Conrad Watt (Cambridge, UK) Mechanising WebAssembly VeTSS 4 / 21

WebAssembly is weird

A stack reduction semantics...

i32.const 4

i32.const 2

i32.const 1

i32.add

i32.add

Type: [i32]

;
i32.const 4

i32.const 3

i32.add

Type: [i32]

;
i32.const 7

Type: [i32]

Conrad Watt (Cambridge, UK) Mechanising WebAssembly VeTSS 5 / 21

WebAssembly is weird

...but allows only structured control flow.

loop

i32.const 4

i32.const 2

i32.const 1

i32.add

i32.add

br 0

end

;
label{...}

i32.const 4

i32.const 3

i32.add

br 0

end

; label{...}

i32.const 7

br 0

end

;

loop

i32.const 4

i32.const 2

i32.const 1

i32.add

i32.add

br 0

end

Note

label is an “administrative” operation. It represents the loop unrolled
once, keeping track of the continuation (abbreviated).

Conrad Watt (Cambridge, UK) Mechanising WebAssembly VeTSS 6 / 21

The WebAssembly type system

All WebAssembly programs must be validated (typed) before
execution.

WebAssembly instruction types have the form t* ! t*

i32.const 4

Type:
[] ! [i32]

i32.add

i32.add

Type:
[i32, i32, i32] ! [i32]

f32.const 0

i32.const 4

i32.add

Type:
?

Conrad Watt (Cambridge, UK) Mechanising WebAssembly VeTSS 7 / 21

The WebAssembly type system

Preservation

If a program P is validated with a type ts, the program obtained by
running P one step to P’ can also be validated with type ts.

Progress

For any validated program P that is not a list of constant values or a bare
trap result, there exists P’ such that P reduces to P’

Conrad Watt (Cambridge, UK) Mechanising WebAssembly VeTSS 8 / 21

Initial mechanisation and soundness proof

Initially based on an accepted draft of the WASM group’s PLDI
paper1 combined with the draft specification.

Definitions and proofs in Isabelle.

Type soundness properties: preservation and progress.

Progress property as stated in the draft had a trivial counterexample.

1Andreas Haas et al. “Bringing the Web Up to Speed with WebAssembly”. In:
Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design

and Implementation. PLDI 2017. New York, NY, USA: ACM, 2017, pp. 185–200.
Conrad Watt (Cambridge, UK) Mechanising WebAssembly VeTSS 9 / 21

Problems found - administrative instructions

Exceptions did not properly propagate through administrative
instructions.

Malformed, irreducible nestings of administrative instructions
containing a return opcode could be well-typed.

Our suggested fixes were incorporated into the specification.

label{...}

trap

end

; trap

label{...}

trap

i32.add

end

; trap

Conrad Watt (Cambridge, UK) Mechanising WebAssembly VeTSS 10 / 21

Problems found

Various trivial mistakes in the constraints of casting instructions.

Big one - host function interface was unsound.2

After these changes, managed to get a fully mechanised proof of
soundness! (⇠5000 LOC)

2Andreas Rossberg. [spec] Fix and clean up invariants for host functions. Sept.
2017. url: https://github.com/WebAssembly/spec/pull/563.

Conrad Watt (Cambridge, UK) Mechanising WebAssembly VeTSS 11 / 21

https://github.com/WebAssembly/spec/pull/563

Verified reference interpreter

Directly animating the mechanised specification was infeasible.

For the reduction relation - exception propagation is non-deterministic
(but confluent), and the specification leans heavily on recursively
defined evaluation contexts.

For the typing judgement - there is a weakening rule with no upper
bound, and the rules for typing dead code(!) involve a high degree of
polymorphism - not syntax-directed.

Some of these problems are solvable by re-formulating the
mechanisation, but wanted eyeball-closeness with the o�cial
specification.

Conrad Watt (Cambridge, UK) Mechanising WebAssembly VeTSS 12 / 21

The flow of trust

Normative
specification

Mechanised
specification

Proven
properties

Conformance
tests

Conrad Watt (Cambridge, UK) Mechanising WebAssembly VeTSS 13 / 21

The flow of trust

Normative
specification

Mechanised
executable
specification

Extracted
implementation

(+untrusted interface)

Proven
properties

Conformance
tests

Conrad Watt (Cambridge, UK) Mechanising WebAssembly VeTSS 14 / 21

The flow of trust

Normative
specification

Mechanised
specification

Proven
properties

Conformance
tests

Conrad Watt (Cambridge, UK) Mechanising WebAssembly VeTSS 15 / 21

The flow of trust

Normative
specification

Mechanised
specification

Proven
properties

Conformance
tests

Verified
implementation

Conrad Watt (Cambridge, UK) Mechanising WebAssembly VeTSS 16 / 21

The flow of trust

Normative
specification

Mechanised
specification

Proven
properties

Verified
implementation

Extracted
implementation

(+untrusted interface)

Conformance
tests

Conrad Watt (Cambridge, UK) Mechanising WebAssembly VeTSS 17 / 21

Solution

A separate reference interpreter, and typechecker.

Proof of correctness between the inductive rules of the model, and
the executable definitions of the interpreter and typechecker.

Attempted fuzzing using interpreter as a test oracle - only found crash
bugs in industry tools unfortunately.

Conrad Watt (Cambridge, UK) Mechanising WebAssembly VeTSS 18 / 21

Next steps

The threads proposal!

We’ve already seen that specifying interop between JS and
WebAssembly isn’t trivial, but this is on another level.

Need a compatible axiomatic weak memory model.

But more complicated than JS: WASM memory can change size, but
(until now) SharedArrayBu↵ers cannot.

Conrad Watt (Cambridge, UK) Mechanising WebAssembly VeTSS 19 / 21

Next steps

Already finding bugs in the JS memory model.3

Atomics.wait(tA, 0, 0)

var x = Atomics.load(tA, 0)

|| Atomics.store(tA, 0, 1)

Atomics.wake(tA, 0, 1)

Full formal spec for WebAssembly threading is being drafted.

Mechanisation? Not impossible, but meaningful proofs could be a lot
of work.

3Conrad Watt. Normative: Strengthen Atomics.wait/wake synchronization to the

level of other Atomics operations. Mar. 2018. url:
https://github.com/tc39/ecma262/pull/1127.

Conrad Watt (Cambridge, UK) Mechanising WebAssembly VeTSS 20 / 21

https://github.com/tc39/ecma262/pull/1127

Future work

Continue looking at SharedArrayBu↵er, WASM threads.

Verifying ct-wasm (watch this space!).

Model module instantiation.

Look at Ethereum’s EVM2.0 (?)

Conrad Watt (Cambridge, UK) Mechanising WebAssembly VeTSS 21 / 21

